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Abstract. 
In this document an attempt is made to explain the origin of gravity. The basis for the analysis 
is a merger of Quantum theory and Relativity. Nowhere in the analysis there is any need to 
deviate from well proven and successful concepts of both theories and rules of calculation, 
and no exotic new particles will have to be introduced. By doing so it is demonstrated that, 
next to its local interactions of a multi-particle system, the Schrödinger equation leads to pairs 
of two and only two members. This solution is used as the invariant term in the quantized 
Einstein energy equation which finally leads to gravitational interactions between members of 
the pairs. With this particular solution for the quantum-mechanical wave function it is found 
that gravity is a second order effect operating over a long range. In this document it is tried to 
give a complete and consistent account of all steps that have been taken in the derivation of 
the classical Newton’s law. Further the document emphasizes precise justification of some of 
the basic assumptions made and how it works out on a cosmological scale. It is also found 
that the generator of gravity is contributing mass to particles that have gravitational 
interaction.  
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1. Introduction. 
In our daily life, gravity is experienced everywhere and at all moments. Without gravity the 
world as an entity would not exist, the Sun would not shine, water waves would not run, etc. 
Even if we would evaluate the consequences of a small change in the gravitational interaction, 
the universe would look different from how it is now. It is accepted as an inescapable force 
that keeps our existence together. However, where we have some basic understandings of the 
processes around us, there was not exist a suitable explanation for this force at a microscopic 
level.  
Gravitation interaction manifests itself where other forces are not the determining factor. 
Therefore, in our real world, we see that our direct vicinity has structures that are changing 
over short distances like mountains, cities, sky scrapers, boats, forests etc. At larger distances, 
of the order of 100 kilometers, the gravity becomes the dominant factor and bodies begin to 
take spherical shapes. Obviously, the smaller the gravity is, so to speak at smaller planets than 
earth, the structural variability will become larger. That the electromagnetic interaction 
becomes insignificant in shaping the environment is not due to the form of the electrostatic 
interaction, which has basically the same shape as the gravitational interaction, but it is due to 
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the fact that positive and negative charges balance and compensate for their interaction. The 
influence of electromagnetism is becoming insignificant already at short distances. 
Now the general belief is that any suitable theory should include, or will be, a merger of 
classical quantum theory and relativity, but until now no theory that is widely accepted has 
been proposed. Following earlier papers [9] and [10], the present document will give an 
updated scheme of analysis for the mutual interaction between particles that have some 
exchange with respect to time and space, The remarkable thing is that, apparently for more 
than one reason, particles will be interacting in groups of two and only two and can give rise 
to gravitational exchange. This pair formation is described quantum mechanically. Either 
starting from the classical Schrödinger equation or the relativistic Einstein energy equation, 
but this latter formulated in a quantum mechanical setting known as the “Klein Gordon” (KG) 
equation, results in the same wave function describing pairs of particles. Since this wave 
function represents a pair potential, a relativistic mass can be attributed to it which is used in 
the KG-equation to derive an interaction field between the members that form the ensemble. It 
is found that the right form of Newton’s gravity law emerges by consequently working 
through the proposed schemes of both quantum mechanics and the basic equations of 
relativity theory as expressed by the quantum mechanical equivalent of the Einstein energy 
equation [6], [7].  

2. Groups of particles and sub-spaces. 
Gravity is an attractive force between two bodies, or, at a microscopic level, two particles and 
therefore any theory will have to account for multi-particle systems. For the development of 
the theory we have therefore to modify the Hamiltonian for such a multi-particle system.  
The most simple expression for the kinetic energy in the Hamiltonian for a group of particles 
numbered by k is given by: 

𝑝̂ଶ/2𝑚 = ∑ 𝑝௞ෞଶ 2𝑚௞ൗ௞  .           (2.1) 

This expression does, however, not clearly enough describe the behaviour of particle 
interaction as members of a group, but it will be shown that an alternative representation is 
possible in which still the total kinetic energy remains the same. The first step is to write 
equation slightly differently:   

𝑝̂ଶ/2𝑚 = ∑ 𝑝௞ෞଶ 2𝑚௞ൗ௞ = ∑ ൫𝑝௞ෞ ඥ2𝑚௞⁄ ൯
ଶ

௞ .        (2.2) 

This equation does not look so special, but it shows that, if we want to modify the kinetic 

energy in the Hamiltonian, we will have to perform our analysis in the 𝑝௞ෞ ඥ2𝑚௞⁄  – space. 

For reasons that will become clear later we will now modify the Hamiltonian for the two-
particle ensemble (ij) and refer to Figure 1.  
In this Figure 1 particles mi and mj are moving with momenta pi and pj. But we are interested 
in their behaviour in the space as seen from point O2 and therefore we apply the cosine-rule to 
both triangles “1” and “2”. Knowing that:  

cos 𝛿ଶ = −cos(180 − 𝛿ଶ) and taking 𝑝௜௝/ඥ2𝑚௜ = 𝑝௝௜/ඥ2𝑚௝, it follows that:  

𝑝పෝ ଶ 2𝑚௜ൗ + 𝑝ఫෝ ଶ 2𝑚௝ൗ = 𝑝௚ෞଶ 2𝑚௚ൗ + 𝑝పఫෞ ଶ 2𝑚௜ൗ + 𝑝ఫపෞ ଶ 2𝑚௝ൗ .     (2.3) 
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In this modified kinetic energy part of the Hamiltonian the first term at the right hand is the 
kinetic energy of the group, identified with label g, consisting of mi and mj with mass 𝑚௚ =

𝑚௜ + 𝑚௝ and moving as one single entity. The second term and third term left are the kinetic 

energies in the sub-space. The group momentum vector 𝑝௚ෞ ඥ2𝑚௚⁄  is not equal to any of the 

other ones so that  𝑝௚ෞ has to be defined separately. As the interaction between the two 

particles is only within the sub-space rij, we will not have to bother about this first term at the 

right hand. This is fortunate because it depends on the angle between  𝑝పෞ ඥ2𝑚௜⁄  and 

 𝑝ఫෞ ඥ2𝑚௝⁄  which would severely complicate the problem.  

 

mi mj
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Pj/√(2mj)
Pi/√(2mi)

Pji/√(2mj)

O1

Pg/√(2mg)

[1]

d2

180-d2
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O2

Sub-space rij

d1

X

Y

Z

mj

mi
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Figure 1: The relation (2.3) found by applying the cosine-rule to both triangles [1] and [2] if 

the lengths of the arrows 𝑝௜௝/ඥ2𝑚௜ and 𝑝௝௜/ඥ2𝑚௝ are the same. In this view vectors and 

operators are treated as equivalent. Note that, in this two-dimensional momentum space, the 
velocity or the momentum vectors for particles always have the same origin.   

It can also be seen that this modification of the Hamiltonian only works well for two particles 
as the geometrical argument is confined to one plane. More particles would compel us to 
perform the analysis in many more different planes and would not give a tractable solution. 

Another important observation is that because 𝑝௜௝/ඥ2𝑚௜ = 𝑝௝௜/ඥ2𝑚௝ the sub-space is 

symmetric from the point of view of an observer in O2. This issue of symmetry will come 
back in the solution of the Schrödinger equation with the modified Hamiltonian in the sub-
space.   
We will now extend the modified Hamiltonian equation obtained by substituting equation 
(2.3) into (2.2) for more than two particles, but all of them interacting in groups of two and 
only two:  
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∑ 𝑝௞ෞଶ 2𝑚௞ൗ௞ = 1/𝑁(∑ 𝑝௚ෞଶ 2𝑚௚ൗ௚ + 1/2 ∑ (௜ஷ௝ 𝑝పఫෞ ଶ 2𝑚௜ൗ + 𝑝ఫపෞ ଶ 2𝑚௝ൗ )).    (2.4) 

The N-factor, the number of particles, is necessary as in the summation each particle is 
counted N times. The pairs are counted by the g- index. Later, when the analysis brings us to 
the final result, we will come back to the group momentum and evaluate the consequence of 
its dependence on the momenta of mi and mj.  
For completeness we will now derive this dependence and come back to it later. For this we 
apply the cosine-rules from the corner O1 for the triangles “1” and “2” separately and 
together: “1+2”. the equations are:  

൫𝑝పఫෞ ඥ2𝑚௜ + 𝑝ఫపෞ ඥ2𝑚௝⁄⁄ ൯
ଶ

= 𝑝పෝ ଶ 2𝑚௜ൗ + 𝑝ఫෝ ଶ 2𝑚௝ൗ − 2𝑝పෝ 𝑝ఫෝ 𝑐𝑜𝑠𝛿ଵ/ඥ4𝑚௜𝑚௝ ,            (2.5a) 

𝑝௚ෞଶ 2𝑚௚ൗ = 𝑝పෝ ଶ 2𝑚௜ൗ + 𝑝ఫෝ ଶ 2𝑚௝ൗ − 𝑝పఫෞ ଶ 2𝑚௜ൗ − 𝑝ఫపෞ ଶ 2𝑚௝ൗ .              (2.5b) 

This cosine factor showing up complicates the analysis, but in the end it will not trouble our 
analysis as it can be circumvented. 

Considering relativity the analysis will have to be repeated starting from the equation (2.4), 
but as it is only dealing with the momenta, the result of the previous analysis can be used if 

we simply replace the vector  𝑝௞ ඥ2𝑚௞⁄  by 𝑐𝑚௞ඥ𝛾௞
ଶ − 1 with the k- label representing i, j, g 

and  𝑝௜௝ , 𝑝௝௜ unchanged. The symbol 𝛾௞ equals (1 − 𝑣௞
ଶ 𝑐ଶ⁄ )ିଵ/ଶ. The analysis will be 

continued in paragraph 7. 

3. The sub-space in more detail.  
The total wave function describing a particle or a larger entity under its local influences, 

𝛹௟௢௖(𝑟௟௢௖ , 𝑡), and its extension in outer space,  𝛹௜௡௙൫𝑟௜௡௙ , 𝑡൯,  is given by: 𝛹௧௢௧ = 𝛹௟௢௖𝛹௜௡௙. 

The coordinate 𝑟௟௢௖ is the position of the centre-of-mass of the particle inside the atom or 
nucleus or a solid object or, eventually of a body as a whole, and the coordinate, 𝑟௜௡௙, is the 

position of this entity from the point of view of an outside observer. They, therefore, can be 
considered as mutually independent. In the same way we define, as before, the Hamilton 

operator as: 𝐻 ෢
௧௢௧ =  {𝑝̂ଶ}௟௢௖/2𝑚௟௢௖ + {𝑝̂ଶ}௜௡௙/2𝑚௜௡௙ + 𝑉௟௢௖(𝑟௟௢௖) + 𝑉௜௡௙(𝑟௜௡௙). The masses 

𝑚௟௢௖ and 𝑚௜௡௙ are not necessarily the same. The 𝑚௜௡௙ is the mass to be connected to the 

particle as it can move freely around whereas 𝑚௟௢௖ is the mass of the particle under the 
influence of the local interactions, sometimes called “reduced mass”. It follows that: 

𝐻 ෢
௧௢௧𝛹௧௢௧ = ({𝑝̂ଶ}௟௢௖/2𝑚௟௢௖ +{𝑝̂ଶ}௜௡௙ 2𝑚௜௡௙ൗ  +𝑉௟௢௖ + 𝑉௜௡௙)( 𝛹௟௢௖𝛹௜௡௙) = 

 
= ({𝑝̂ଶ}௟௢௖/2𝑚௟௢௖ +𝑉௟௢௖)𝛹௟௢௖𝛹௜௡௙ + ({𝑝̂ଶ}௜௡௙/2𝑚௜௡௙ +𝑉௜௡௙)𝛹௟௢௖𝛹௜௡௙.                  (3.1) 

 
Separating the local effect from the surroundings we can set:  

({𝑝̂ଶ}௟௢௖/2𝑚௟௢௖  + 𝑉௟௢௖) 𝛹௟௢௖ = 𝐸௟௢௖𝛹௟௢௖ and:                                             (3.2a) 

({𝑝̂ଶ}௜௡௙/2𝑚௜௡௙  +  𝑉௜௡௙) 𝛹௜௡௙ = 𝐸௜௡௙𝛹௜௡௙ .                                               (3.2b) 



 

The first equation (3.2a) is the Schrödinger equation describing the behaviour of the entity in 
its local environment like in the nucleus or a solid or, again, as the entity as a whole where it 
has its individual interactions. The second equation (
in the outer space in which the particle, or as a larger entity or part o
taking 𝑉௜௡௙ as a constant it is assumed that the behaviour out of its local influences is taken 

into consideration. This second equation is the starting point in the development of the theory 
in the next paragraphs. The splitt
interactions, as is normally done in quantum mechanics, from the movement or presence of 
the particle or the entity individually. 
In what follows we will only consider the second equation as th
gravitational interaction. Because 
interactions we will from now on take for the mass 

case for the coordinates.  
Starting from the unmodified Hamiltonian, the 
independent particles in spherical symme

𝑝̂ଶ/2𝑚 = ∑ 𝑝̂௞
ଶ 2𝑚௞⁄௞  , and reads:

𝛹 =. . 𝛹௜𝛹௝ … 𝛹௟ =. . ቀ
ఈ೔

௥೔
ቁ 𝑒௜ఉ೔௥

We have regrouped the kinetic 
particles as: 

𝑝̂ଶ/2𝑚 = ∑ 𝑝̂௞
ଶ 2𝑚௞ ⁄௞ = 1/𝑁

and first we will only consider the second part of it at the right hand side, to start with the 
group (ij) of two particles only, thus we 
restrict ourselves to the sub-space with 
coordinates rij. 

 
Figure 2: Forming and describing of 
𝒩=N!/2(N-2)! Pairs. In this example the 
number of groups is three.  
 

Per group there are two independent particles
For the group under consideration
Figure 2, it is indicated by the masses 
mj . and they experience some force reflected 
by the potential Vi and Vj . Spherical symmetry is next adopted and the only boundary 
condition is that the wave function is zero at infinity. 
rij around mi and one rji around 
and at rji from particle mj will see that the total wave equation of the individual pair (
defined as follows [4], [5]: 
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.2a) is the Schrödinger equation describing the behaviour of the entity in 
environment like in the nucleus or a solid or, again, as the entity as a whole where it 

has its individual interactions. The second equation (3.2b) describes its movement or presence 
in the outer space in which the particle, or as a larger entity or part of it, can move around. By 

as a constant it is assumed that the behaviour out of its local influences is taken 

into consideration. This second equation is the starting point in the development of the theory 
in the next paragraphs. The splitting up as in equation (3.2a) and (3.2b) disconnects the local 
interactions, as is normally done in quantum mechanics, from the movement or presence of 
the particle or the entity individually.  
In what follows we will only consider the second equation as this gives the generator for the 

Because we are interested in the effects of masses outside the local 
interactions we will from now on take for the mass 𝑚௜௡௙ the quantity 𝑚, as it will also be the 

Starting from the unmodified Hamiltonian, the general solution of a wave equation describing 
independent particles in spherical symmetry is initiated by the operator: 

, and reads:  

௥೔x ൬
ఈೕ

௥ೕ
൰ 𝑒௜ఉೕ௥ೕx....xቀ

ఈ೗

௥೗
ቁ 𝑒௜ఉ೗௥೗ = ∏ ቀ

ఈೖ

௥ೖ
ቁ 𝑒௜ఉೖ

௞

have regrouped the kinetic energy contribution to the Hamiltonian for the same set of 

𝑁(∑ 𝑝̂௚
ଶ 2𝑚௚ ൗ௚ + 1/2 ∑ (𝑝̂௜௝

ଶ 2𝑚௜ ⁄௜ஷ௝ + 𝑝̂௝௜
ଶ 2ൗ

will only consider the second part of it at the right hand side, to start with the 
) of two particles only, thus we 

space with 

: Forming and describing of 
this example the 

Per group there are two independent particles. 
or the group under consideration, like in 

, it is indicated by the masses mi and 
and they experience some force reflected 

. Spherical symmetry is next adopted and the only boundary 
condition is that the wave function is zero at infinity. We have per pair one coordinate system 

around mj. In this way an observer at a distance rij from particle 
will see that the total wave equation of the individual pair (

.2a) is the Schrödinger equation describing the behaviour of the entity in 
environment like in the nucleus or a solid or, again, as the entity as a whole where it 

.2b) describes its movement or presence 
f it, can move around. By 

as a constant it is assumed that the behaviour out of its local influences is taken 

into consideration. This second equation is the starting point in the development of the theory 
.2b) disconnects the local 

interactions, as is normally done in quantum mechanics, from the movement or presence of 

is gives the generator for the 
we are interested in the effects of masses outside the local 

, as it will also be the 

general solution of a wave equation describing 

ೖ௥ೖ .   (3.3) 

contribution to the Hamiltonian for the same set of 

2𝑚௝ )ൗ ),  

will only consider the second part of it at the right hand side, to start with the 

. Spherical symmetry is next adopted and the only boundary 
We have per pair one coordinate system 

from particle mi 
will see that the total wave equation of the individual pair (ij) is 
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𝐻పఫ
෢ 𝛹௜௝,௧ = 𝑖ħ

డ

డ௧
𝛹௜௝,௧ =  − ൬

ħమ

ଶ௠೔

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
𝑟௜௝

ଶ డ

డ௥೔ೕ
+

ħమ

ଶ௠ೕ

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
𝑟௝௜

ଶ డ

డ௥ೕ೔
൰ 𝛹௜௝,௧+൫𝑉௜ + 𝑉௝൯

 
𝛹௜௝,௧    (3.4) 

𝛹௜௝,௧ is the time and space dependent wave function. The time dependence can be removed by 

replacing the time dependent wave function 𝛹௜௝,௧ by 𝛹௜௝𝑒௜ா೔ೕ௧/ħ.  Further, define   𝑉௜+ 𝑉௝ by 

𝑉௜௝and we get: 

(𝐸௜௝ − 𝑉௜௝)𝛹௜௝ +
ħమ

ଶ௠೔

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
𝑟௜௝

ଶ డ

డ௥೔ೕ
𝛹௜௝ +

ħమ

ଶ௠ೕ

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
𝑟௝௜

ଶ డ

డ௥ೕ೔
𝛹௜௝ = 0.     (3.5) 

To simplify the equation replace  𝐸௜௝ − 𝑉௜௝  by 𝜀௜௝ to propose a solution that is valid in areas 

where the Vij is not of great influence anymore as follows: 

𝛹௜௝ = ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ ,          (3.6) 

where 𝛼௜௝and 𝛽௜௝ are constants independent of space coordinates and time. This solution 

means that we consider the wave function outside the surroundings where the potential energy 
with all its peculiarities has a very minor effect on the shape of the wave function. The only 
interaction that can play a role will then be based solely on gravitational interaction. By 
substituting the solution in equation (3.5) the following relation is found: 

 −
ħమ௜

௥೔ೕ ௥ೕ೔
൬

ఈ೔ೕఉೕ೔

௠ೕ
+

ఈೕ೔ఉ೔ೕ

௠೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ −  

ħమ

ଶ
൬

ఉ೔ೕ
మ

௠೔
+

ఉೕ೔
మ

௠ೕ
൰x     

x൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ +  ε௜௝ ൬

ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ = 0.                        (3.7) 

The complex first term at the left hand side is to be set to zero and in a pair-wise process 

𝛼௜௝𝛽௝௜ 𝑚௝⁄ +𝛼௝௜𝛽௜௝ 𝑚௜⁄ = 0 and 𝛽௜௝
ଶ ħଶ 2𝑚௜⁄ +𝛽௝௜

ଶ ħଶ 2𝑚௝ൗ  = ε௜௝ =  𝜎(𝑚௜ + 𝑚௝) so that for every 

value of the energy there will be a value for 𝜎 and the 𝛽’s  can adapt themselves. Therefore, 
whatever is the situation in which mi and mj find themselves, there is always a 𝛽௝௜ and a 

𝛽௜௝ and they have no influence on the 𝛼ᇱ𝑠 as long as 𝛼௜௝ = 𝛼௝௜. It means, that the interaction 

occurs in the sub-space with a pair to be considered as one single entity with a mass of 
(𝑚௜ + 𝑚௝) and, apart from the separation between the members of the pair (R), independent 

of the situation these members are in. Further, it has to be noticed that the Schrödinger 
equation based on the modified Hamiltonian only is possible for groups of two and only two 
particles. This conclusion has already been drawn in a slightly different way in the previous 
paragraph where the geometrical argument in momentum space is only possible for two 
partices with momenta vectors in one plane.  
We already came across the fact that the sub-space rij in momentum space for the observer in 

O2 in Figure 1 is symmetric and therefore the solution 𝛹൫𝛼௜௝ , 𝛼௝௜൯ is symmetric, meaning, 

again, that 𝛼௜௝ = 𝛼௝௜ . 

At the moment not much is known about the 𝛼ᇱ𝑠, but one requirement to be imposed on the 
wave function is that it represents a pair of particles. For the time being it can be said that: 
i. The 𝛼ᇱ𝑠 cannot depend on the running variables in the wave equation: rij or t. It will be a 
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constant that can only depend on fundamental nature constants and the particle masses.  
ii. It should make no difference for the outside world how one member sees its partner or 
whether and how we see the two members of the pair. It means that we can say: 𝛼௜௝ =

 𝑓(𝑚௜)𝑓൫𝑚௝൯. 

iii. There is no pair if either mi or mj equals zero so that 𝑓(𝑚௜) = 0 for 𝑚௜ = 0 and the pair 
potential should increase linearly with both participating masses in the pair. 
 
To sum up also the movement of the group as one entity and the fact that there are N particles 
and 𝒩=N!/2(N-2)! pairs, leads to a total wave function as:  

𝛹 = ∏ ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔

௜௝ ∏ ൬
ఈ೒

௥೒
൰ 𝑒௜ఉ೒௥೒

௚ .        (3.8) 

The second product is due to the first contribution to the momentum-based energy term in 
equation (2.4) and, as already mentioned, it generates no gravitational interaction. The index g 
is identified by the pair (ij) as indicated in figure 1. The first term in the product (3.8) gives 
gravitational interaction in the case of two, and only two members in an ensemble where the 
sum is taken over all possible and unique pairs (ij). As the pairs are to be considered in their 
own unique coordinate system 𝑟௜௝,  there is no reason to consider all the pairs together but 

only the behaviour of a single pair. In the end we will add up all the contributions of the pairs 
as shown schematically in Figure 4 in paragraph 5.   
There is freedom in the choice of the  particles mi, mj, ---, ml, ---. It can actuallly be anything 
like elementary particles, nuclei or even larger entities if, at least, we can describe such an 
entity by a single wave function in its own coordinate system and solve the equation to form a 
pair with another entity.  
 
Later it will be confirmed that, as before and for the sake of symmetry in the mutual 
gravitational interaction, the two 𝛼′𝑠 should be equal. It also means that the β’s have opposite 
signs and fixed values and, by taking the 𝛼′𝑠 equal, we make their values independent of the 
masses and the energies of the members of the pair. The 𝜀௜௝ could have been split into two 

separate quantities as 𝜀௜௝ and 𝜀௝௜ to dedicate the 𝛽௜௝
ଶ  and 𝛽௝௜

ଶ -values to the separate energies of 

the two particles.  
It is also interesting to notice that the solution of the wave equation for the pairs like in 
equation (3.8) looks different from a solution for a single particle on the basis of the 
unmodified Hamiltonian as in equation (3.3). For instance, if we take a look at the rij- 

dependence in the solution (3.8), we see that there is an extra rij-dependent factor in the 
exponential term. This latter term is insufficient to make such a solution applicable for the 
operator working on rij. For it to be sufficient we need the total pre-exponential factor as 
given in equation (3.8). 
 
An alternative approach is possible by taking the KG-equation as the starting point. In this 
way we guarantee full co-variance throughout the entire analysis. The Einstein energy 
equation is the basis of the KG- equation [5] and reads:  
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𝐸ଶ - 𝑝ଶ𝑐ଶ = 𝑚଴

ଶ𝑐ସ or expressed alternatively: 𝐸ଶ/𝑚଴
ଶ𝑐ସ - 𝑝ଶ/𝑚଴

ଶ𝑐ଶ = 1,  

and translated into quantum mechanical language for an ensemble of two particles [6]:  
 

(𝐸௜௝
ଶ /𝑚଴௜

ଶ 𝑐ସ − 𝐸௝௜
ଶ/𝑚଴௝

ଶ 𝑐ସ)𝛹௜௝ –((𝑝పఫෞ)ଶ/𝑚଴௜
ଶ 𝑐ଶ − (𝑝ఫపෞ)ଶ/𝑚଴௝

ଶ 𝑐ଶ))𝛹௜௝ = 0.    (3.9) 

Where 𝑝పఫ ෞ ଶ is the square of the momentum operator in spherical coordinates as in equation 

(3.3) and 𝑚଴௜, 𝑚଴௝  the rest mass of the particle i, j in the ensemble (ij). Also in this case it 

immediately can be seen that, with the solution of the form as in equation (3.6), the same 
interpretation as before can be given. It is even possible to show that the solution of equation 
(3.9) in the limit of c to infinity becomes identical to equation (3.6). So there is not much 
news in this alternative, but a wave equation with zero masses starting from: 

 (𝐸௜௝
ଶ + 𝐸௝௜

ଶ)𝛹௜௝ –𝑐ଶ((𝑝పఫෞ)ଶ − (𝑝ఫపෞ)ଶ)𝛹௜௝ = 0                (3.10) 

 
has a non constant solution in space and time coordinates. This is remarkable as a zero mass 
particle like a photon can result in a mass-like presence in open space. It may well be that this 
is the basis for the fact that in the Friedmann cosmological equations also energy related 
gravitational pull has to be adopted [3]. 

Now we come to the central transition point from quantum mechanics to quantum-based 
relativity.  
The wave function as derived gives the presence of an entity to which a rest mass, 𝑚଴௜௝, can 

be dedicated. In quantum mechanical language this rest mass becomes an operator and 

therefore it has to be multiplied by the wave function and its conjugated function: 𝜓௜௝
∗ 𝑚଴௜௝

ଶ 𝜓௜௝ 

and we get:   

 𝜓௜௝
∗ 𝑐ସ𝑚଴௜௝

ଶ 𝜓௜௝ = 𝑐ସ𝑚଴௜௝
ଶ ൬

ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰

ଶ

.                  (3.11) 

This equation says that there is a probability that this pair potential can be found anywhere in 
the free space, but it is obviously concentrated between and around the two particles forming 
the pair. So there is a space coordinate dependent probability to find it somewhere, but this 
probability is not connected to other quantities like energy.  
At this moment it is obvious already that 𝑚଴௜௝ will be proportional to the masses of both 

participating particles in the interaction. But this is for the time being only a temporary 
conclusion. It will be justified later as it is of great importance for the final derivation of the 
gravity law.  
Another very important thing is that from  𝛼௜௝𝛽௝௜ 𝑚௝⁄ +𝛼௝௜𝛽௜௝ 𝑚௜⁄ = 0 with 𝛼௜௝ = 𝛼௝௜ it follows 

that there is for the 𝛼-values some freedom in choosing its dependence on relativistic 
parameters such that the right hand side of equation (3.11) becomes an invariant as it should 
be, but also it is important for the conclusion that the form of the gravity law is independent of 
the mutually interacting masses of macroscopic bodies.   
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4. Relativistic interaction.  
Now, in the next step, the pair is considered as essentially one entity and the problem can be 
analysed in the relativistic four dimensional space. We will draw up the KG-equation 
remembering the rules of adding up four-vectors and subsequently the formation of the 
invariant out of this sum. In this representation, however, the rest mass due to the interacting 
particles in the pair (ij), 𝑚଴௜௝, is to be considered as an entity that is completely independent 

of all the other rest masses formed. 
But the most important difference from the treatment before is that we will be working in the 
momentum based sub-space rij where the group is seen as one single entity. The energy 
reflects the energy of the two particles together as well as masses and momenta like: 𝑝ଶ =

(𝑝పఫ
෢ + 𝑝ఫపෞ)ଶ and: 𝐸ଶ = ൫𝐸ప

෡ + 𝐸ఫ
෡ ൯

ଶ
 with: 𝐸ଶ - 𝑝ଶ𝑐ଶ = 𝑚଴

ଶ𝑐ସ.    

Again we will have to translate this equation into the appropriate quantum mechanical 
language for pairs as one entity and therefore make the following transformations: 

-𝑝ଶ𝑐ଶ𝜑௜௝,௧𝜑௝௜,௧= (𝑚଴
ଶ𝑐ସ-𝐸ଶ)𝜑௜௝,௧𝜑௝௜,௧,   𝐸ଶ = ൫𝐸ప

෡ + 𝐸ఫ
෡ ൯

ଶ
= −ħଶ డమ

డ௧మ
  and: 

𝑝ଶ = (𝑝పఫ
෢ + 𝑝ఫపෞ)2  = -ħ2൬

ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
𝑟௜௝

ଶ డ

డ௥೔ೕ
+  

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
𝑟௝௜

ଶ డ

డ௥ೕ೔
+

డ

డ௥೔ೕ

డ

డ௥ೕ೔
+  

డ

డ௥ೕ೔

డ

డ௥೔ೕ
൰.   

The last expression is, as different from earlier, a mixed sum of the momenta. This 
representation is a consequence of the fact that the particles have been treated only in pairs 
and that spherical symmetry remains to be adopted.  
Referring to Figure 2 the total relativistic KG-equation for a number of pairs (𝒩) now will be 
set up. There are N particles which make a total of 𝒩=N!/2(N-2)! pairs, each of which are 
described by a wave function as a solution of the initial Schrödinger equation. As before, 
the 𝛼-values accommodate all necessary multiplication factors.  

Adding up for all pairs, treating them as mutually independent and taking into account the 
basic rules of quantum mechanics and four-vector algebra lead to: 

c2ħ2∑ ൬
ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
𝑟௜௝

ଶ డ

డ௥೔ೕ
+  

ଵ

௥ೕ೔
మ

డ

డ௥ೕ೔
𝑟௝௜

ଶ డ

డ௥ೕ೔
+

డ

డ௥೔ೕ

డ

డ௥ೕ೔
+  

డ

డ௥ೕ೔

డ

డ௥೔ೕ
൰ ∏ 𝜑௝௜,௧𝜑௜௝,௧௜௝௜௝ =  

= ∑ 𝑚଴௜௝
ଶ ൬

ఈ೔ೕ
మ

௥೔ೕ
మ + 2

ఈ೔ೕ

௥೔ೕ

ఈೕ೔

௥ೕ೔
+

ఈೕ೔
మ

௥ೕ೔
మ ൰௜௝ ∏ 𝜑௝௜,௧𝜑௜௝,௧ −𝒊𝒋 ∑ (𝐸ప

෡
௜௝ +𝐸ఫ

෡ )2∏ 𝜑௜௝,௧𝜑௝௜,௧௜௝
     (4.1)  

with: ∏ 𝜑௜௝,௧𝜑௝௜,௧௜௝ = 𝐹(𝑡) ∏ 𝜑௜௝𝜑௝௜௜௝ = ∏ 𝜑௜௝𝜑௝௜௜௝ ∏ ൬
ఈ೒

௥೒
൰ 𝑒௜൫௞೒௥೒ିఠ೒௧൯𝒩

ଵ .   (4.2) 

𝑚଴௜௝ is the rest mass to be dedicated to the interaction field created by the masses mi and mj. 

This factor also accommodates the c2 as in equation (3.11).The pairs in both products, in total 

𝒩=N!/2(N-2)! are numbered by g, if there are N particles. The term 𝑒௜൫௞೒௥೒ିఠ೒௧൯ expresses a 
wave propagating in radial direction representing the moving of individual groups, but with 
reducing amplitude, or, rather probability, as it progresses. If there is no interaction between 
members of the pairs (𝛼௠௡ = 0) we get the movement of the individual particles outside their 
local influence.  



 

This set-up has a very delicate interpretation. It shows that an observer from outside sees a 
pair creating a sub-space but cannot determine its structure inside. In the space inside, 
expressed by the coordinates r
only sees the separate interacting members of the pair with an energy due to this interaction as 
is shown schematically in Figure 
agreement and are, by acting as a pair, exchanging information. We can see both persons but 
we cannot explain why they behave as they behave. 

As before, the time dependences can be removed by setting

𝜑௜௝,௧𝜑௝௜,௧ = 𝜑௜௝𝜑௝௜𝑒
௜(ா೔ೕା ாೕ೔)௧/

so that: 

∑ (𝐸ప
෡

௜௝ +𝐸ఫ
෡ )2𝜑௜௝,௧𝜑௝௜,௧=∑ (𝐸௜௝௜௝ +

If all 𝛼ᇱ𝑠 would have been equal to zero, a 
propagating wave 𝜑௜௝,௧𝜑௝௜,௧ extending in the 

radial direction with the light velocity would 
have resulted. Non zero values of 
this speed and, as a consequence, give mass 
to the field 𝜑௜௝,௧𝜑௝௜,௧.   

Figure 3: Energy transfer from the pair to 
the surroundings and the sub-space (white 
area) with internal exchanges as observed 
from far away.  

The proposed solution will be 

𝜑௜௝ = 𝛾௜௝𝑟
௜௝

ି௠బ೔ೕఈ೔ೕ ħୡ⁄
,   

𝛾௜௝ is the amplitude, not to confuse with the relativity factor 

From the boundary condition that 

𝛼ᇱ𝑠 can be derived: 
iv. 𝛼௜௝ is positive under all circumstances. 

Equation (4.5) is inserted into:

∑ (𝐸௜௝௜௝ +𝐸௝௜)
2∏ 𝜑௝௜𝜑௜௝௜௝ − ∑௜௝

 

+𝑐ଶħଶ ∑ ൬
ଵ

௥೔ೕ
మ

డ

డ௥೔ೕ
𝑟௜௝

ଶ డ

డ௥೔ೕ
+  

ଵ

௥ೕ೔
మ௜௝

and some algebra needs to be done 
hand side are equal to the ones at the right hand side and therefore disappear
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we cannot explain why they behave as they behave.  

the time dependences can be removed by setting:    

/ħ,       

+𝐸௝௜)
2𝜑௜௝𝜑௝௜.      

would have been equal to zero, a 
extending in the 

radial direction with the light velocity would 
have resulted. Non zero values of 𝛼 reduce 
this speed and, as a consequence, give mass 

: Energy transfer from the pair to 
space (white 

area) with internal exchanges as observed 

 *):  

        

is the amplitude, not to confuse with the relativity factor 𝛾௞.  

From the boundary condition that 𝜑௜௝൫𝑟௜௝, 𝛼௜௝൯ = 0 for 𝑟௜௝ to inϐinity  a fourth

under all circumstances.  

is inserted into: 

𝑚଴௜௝
ଶ ൬

ఈ೔ೕ
మ

௥೔ೕ
మ + 2

ఈ೔ೕ

௥೔ೕ

ఈೕ೔

௥ೕ೔
+

ఈೕ೔
మ

௥ೕ೔
మ ൰ ∏ 𝜑௝௜𝜑௜௝௜௝ +  

ೕ೔
మ

డ

డ௥ೕ೔
𝑟௝௜

ଶ డ

డ௥ೕ೔
+

డ

డ௥೔ೕ

డ

డ௥ೕ೔
+  

డ

డ௥ೕ೔

డ

డ௥೔ೕ
൰ ∏ 𝜑௝௜𝜑௜௝௜௝ =

some algebra needs to be done during which it will be found that many 
hand side are equal to the ones at the right hand side and therefore disappear

up has a very delicate interpretation. It shows that an observer from outside sees a 
space but cannot determine its structure inside. In the space inside, 

, gravitational interactions are occurring. Our observer 
only sees the separate interacting members of the pair with an energy due to this interaction as 

. It is as if we see two persons who have made a secret 
agreement and are, by acting as a pair, exchanging information. We can see both persons but 

   (4.3) 

    (4.4) 

   (4.5) 

fourth condition on the 

= 0,    (4.6) 

many terms on the left 
hand side are equal to the ones at the right hand side and therefore disappear **). We get:  
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(𝐸௜௝
ଶ + 2𝐸௜௝𝐸௝௜ + 𝐸௝௜

ଶ)𝜑௜௝𝜑௝௜ −  𝑐ħ𝑚଴௜௝ ൬
ఈ೔ೕ

௥೔ೕ
మ +

ఈೕ೔

௥ೕ೔
మ ൰ 𝜑௝௜𝜑௜௝ = 0..      (4.7) 

 
At this point a remark has to be made: removing the term 𝛼௞௟

ଶ 𝑟௞௟
ଶ⁄  means that some basic 

interaction occurs between the gravitational field and the particle. Obviously, for this separate 
term, a KG-equation can be formulated that shows that an entity with some relativistically 
derived mass operates and leaves behind a contribution to the interaction energy in the 
equation (4.7). So already at this point there is direct interaction between the pair and the field 
around. Also removing the term with  𝛼௜௝𝛼௝௜ 𝑟௝௜𝑟௜௝⁄  means that there is a third interaction 

between the fields and the pair. It is schematically represented in Figure 3. 
Taking all these interactions into account it is seen that all α-terms, as they occur in equation 
(4.6), have disappeared. This has a profound meaning: in this model gravity is due to second 
order effects of the peculiarities of the spherical symmetry in a relativistic setting. The effect 
is weak and operates over a long range.   

The contributions can now be redistributed, but first multiply all terms by 𝑟௜௝𝑟௝௜  and observe 

that the proposed solution is the only one that gives a sharp value for the 
quantity 𝐸௜௝ 𝑟௜௝  and 𝐸௝௜ 𝑟௝௜ : 

(𝐸௜௝
ଶ 𝑟௝௜𝑟௜௝ + 𝐸௜௝𝐸௝௜𝑟௝௜𝑟௜௝)𝜑௜௝𝜑௝௜ − 𝑐ħ𝑚଴௜௝𝛼௜௝

௥ೕ೔

௥೔ೕ
𝜑௜௝𝜑௝௜ = 0,                        (4.8a) 

(𝐸௝௜
ଶ 𝑟௝௜𝑟௜௝ + 𝐸௜௝𝐸௝௜𝑟௝௜𝑟௜௝)𝜑௜௝𝜑௝௜ − 𝑐ħ𝑚଴௜௝𝛼௝௜  

௥೔ೕ

௥ೕ೔
𝜑௜௝𝜑௝௜ = 0.                      (4.8b) 

Cutting the equation (4.7) into two separate ones as given in equations (4.8a) and (4.8b) looks 
like arbitrary, as any cut between terms can be made. But if we now come back to the original 
suggestion and shown in Figure 1, we see that in the sub-space the gravitational interaction 
becomes symmetric. The gravitational energy of particle i is equal to the gravitational energy 
of particle j. It also reflects the point that a pair has to be seen as one entity. The observer 
cannot distinguish between the separate members of the pair. 

It is also important to notice that the operators 𝐸௞
෢ and 𝑟௟ commute. It means that “Er” is the 

quantity that has a sharp value, meaning that E has sharp value if r is well defined.   

*) The solution proposed, but more general: 𝜑௜௝ = 𝛾௜௝𝑟௜௝
௡, can also be applied to a KG-

equation not involving pair formation so that 𝜑௜ = 𝛾௜𝑟௜
௡ and giving a solution similar to 𝐸௜ 𝑟௜ . 

The exponent n remains undefined so that 𝐸௜ 𝑟௜  can adopt any arbitrary value. It can also be 
chosen to be zero to give a reference point to the system.  

**) This solution (4.5) reduces all invariant and momentum terms in equation (4.6) but brings 
back a single gradient term. No other solution has better performance than the one proposed 
in (4.5) so it is to be considered as the most appropriate one. It is actually the spherical 
symmetry that is responsible for this remaining gradient term. In this model, therefore, the 
whole story is reduced to one simple statement: Gravity is a consequence of the three 
dimensional space with spherical symmetry and nothing else.  
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5. Law of gravity. 
Most important for finding out how the members of a pair see each other is to consider the 
equations (4.8a) and (4.8b) from the viewpoint of an observer who sees the particle mi at a 
distance of 𝑟௜௝ and particle mj from a distance rji. They already know that  𝛼௜௝ = 𝛼௝௜ = 𝛼, 

𝑟௜௝ = 𝑟௝௜ = 𝑅, and 𝐸 = 𝐸௜௝ + 𝐸௜௝ with 𝐸௜௝ = 𝐸௜௝ so that 𝐸௜௝ = 𝐸/2. There are also no operators 

anymore in equation (4.7a) and (4.7b). In this conclusion a geometrical factor is established in 
momentum space as in Figure 1 which will need some more justification to be given later in 
this paragraph. Obviously an electron and a proton forming a pair will have mutual interaction 
which are the same although their masses differ by some factor of about 1800. The result is a 
simple relation:  

2(𝐸 2⁄ )ଶ𝑅ଶ = 𝑐ħ𝛼𝑚଴.                       (5.1) 
 
Because both particles in the pair change their energy by the same amount, it follows for the 
two members of the ensemble together that:  
 

𝐸𝑅 = ඥ2𝑐ħ𝛼𝑚଴,                        (5.2)  

and the gravitational force is given by:  -𝜕𝐸 𝜕𝑅⁄  = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡/𝑅ଶ.  
Now it is important to see how pairs consisting of particles of different masses present 
themselves in 𝛼 and 𝑚଴. It looks like both parameters are tightly glued together in, for 
instance equation (3.11), but they stem from different places. 𝛼 is derived from the quantum 
mechanical considerations whereas 𝑚଴ comes from the relativity theory. They have in 
common that both reflect the fact that pairs of obviously undefined mass units are responsible 
for the interaction. The most simple conclusion, which needs some justification, would be 
that: 𝑚଴௞௟𝛼௞௟ =  σଵ(𝑚௞𝑚௟). σଶ(𝑚௞𝑚௟).      
In accordance with the rules of four-vector algebra we build up two bodies m1 and m2 
composed of n1 and n2 by their mass identical building blocks identified by mi in m1 and mj in 
m2 such that they in total make up the mass of m1 and m2. The process is shown in Figure 4. 
These building blocks can be anything like elementary particles, collection of atoms, as long 
as their masses are the same.  
According to equation (5.2) the interaction between the two bodies m1 and m2 will be given by 

(𝐸𝑅)ଵଶ = ඥ2𝑐ħ𝛼ଵଶ𝑚଴ଵଶ in which the factor 𝛼ଵଶ𝑚଴ଵଶ stems from the composite solution as 

in equation (4.3). This composite solution reads:  

𝜑ଵଶ = 𝛾ଵଶ𝑟ଵଶ
ି௠బభమ ఈభమ ħୡ⁄

= 𝛾ଵଶ𝑟ଵଶ

ି൫௠బభమ/௠బ೔ೕ൯൫ ఈభమ௠బ೔ೕ൯ ħୡ⁄
.                (5.3) 

First we consider the rest-mass carrying the gravitational interaction. 
It is found that the pair (ij) has gravitational energy, say 𝜀 and thus a mass 𝜀 𝑐ଶ⁄ . In the 
interaction space between m1 and m2 there are n1n2 pairs carrying the interaction between m1 
and m2 and so we can conclude that 𝑚଴ଵଶ = 𝑛ଵ𝑛ଶ𝑚଴௜௝.  

The function 𝜑௜௝ for the pair (ij), occurs in 𝜑ଵଶ n1n2 times and so we get in the multiplication 

of 𝜑௜௝𝜑௝௜ over all pairs between m1 and m2: 𝑛ଵ𝑛ଶ𝑚଴௜௝(𝛼௜௝ + 𝛼௝௜) = 𝑚଴௜௝(𝛼ଵଶ + 𝛼ଶଵ). 



 

Combining the two arguments we finally get: 

m1 and m2 are composed of identical building blocks, we can conclude that 
σ𝑚ଵ

ଶ𝑚ଶ
ଶ, which leads to the result:

𝐸ଵଶ = 𝐸ଶଵ =  √2σ𝑐ħ. (𝑚ଵ𝑚ଶ)

 
The distance between the masses is due to the 
values which, obviously, are different for each 
building block. It means that R
the center-of-mass- distance between 
 
Figure 4: Interaction between masses
structures from equal mass units

In view of this equation (5.4) we 
the gravitational interaction is 
masses of the participating particles in the pair. 
In the Figure 4 a more simple argument is given by 
the summation starting from the equation (5.4): all 
pairs that have been formed are acting independently so that we can add all the c
of different masses at their individual locations together and in this way constitute bodies in 
the real world without any interference. This latter argument, however, violates causality. It 
starts from the assumption that the interaction is p
and builds up the interaction between larger bodies. It is an easy argument and it says that we 
can start from any size of building blocks and build up the
all sizes and steps in its building up the equation (
this is possible is due to the freedom of choice for 

equation (3.7). This adding up of all the interactions between particles, which in part see 
other at different distances, is a problem that has already been solved in the formulation of the
classical theory of electrostatics [
which, in vector notation reads: 
field around an entity constituting 
known gravitational constant equal to: 6.673x10
In accordance with the theory of electrostatics the gravity law can also be given in vector 
representation for bodies M1 and 
 
𝑭𝟏𝟐 = (𝐺𝑀ଵ𝑀ଶ 𝑅ଷ)⁄ 𝑹.  
 
From the equations (5.4) and (
and also, with the help of these equations the small mass to be attributed to the gravitational 
interaction can be found. This 

In Figure 1 a sub-space is presented in momentum space with an observer in point O
eventually, observers on the two particles
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Combining the two arguments we finally get: 𝑚଴ଵଶ𝛼ଵଶ = 𝑛ଵ
ଶ𝑛ଶ

ଶ𝑚଴௜௝𝛼௜௝ and, remembering that 

are composed of identical building blocks, we can conclude that 
result: 

)/𝑅.            

The distance between the masses is due to the Rij- 
are different for each 

R is to be considered as 
distance between m1 and m2.   

Interaction between masses by building up 
structures from equal mass units.  

) we conclude that also 
the gravitational interaction is proportional to both 
masses of the participating particles in the pair.  
In the Figure 4 a more simple argument is given by 
the summation starting from the equation (5.4): all 
pairs that have been formed are acting independently so that we can add all the c
of different masses at their individual locations together and in this way constitute bodies in 
the real world without any interference. This latter argument, however, violates causality. It 
starts from the assumption that the interaction is proportional to the product of the masses, 
and builds up the interaction between larger bodies. It is an easy argument and it says that we 
can start from any size of building blocks and build up the macroscopic structure such that at 

its building up the equation (5.4) remains valid. The basic reason that 
possible is due to the freedom of choice for 𝛼௜௝ as it came as a conclusion from 

This adding up of all the interactions between particles, which in part see 
other at different distances, is a problem that has already been solved in the formulation of the
classical theory of electrostatics [8]. In this way, finally, Newton’s gravitation law is obtained 
which, in vector notation reads: 𝑑𝑖𝑣𝒈 = 4𝜋𝜌𝐺 in which 𝒈 is defined as a gravitational 
field around an entity constituting a space coordinates dependent mass density 
known gravitational constant equal to: 6.673x10-11 m3kg-1sec-2 [3]. 
In accordance with the theory of electrostatics the gravity law can also be given in vector 

and M2 which have their centres of gravity at a separation of 

        

and (5.5) an explicit expression for the parameter 

and also, with the help of these equations the small mass to be attributed to the gravitational 
interaction can be found. This σ parameter is equal to 2.7x102 Jm/kg4.  
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 σ  can be derived 
and also, with the help of these equations the small mass to be attributed to the gravitational 

space is presented in momentum space with an observer in point O2 or, 
They see that the total energy of the pair (ij) is 
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lower than the energy of the particles separately. But since  𝐸௜௝ =  𝐸௝௜  they must conclude 

that 𝑟௜௝ = 𝑟௝௜ . The locations where 𝑟௜௝ = 𝑟௝௜, have in this respect, a specific meaning. 

If we form the operator 𝑝పఫෞ − 𝑝ఫపෞ  and apply it to the wave function:  

𝜓௜௝ = ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ we get the “eigenvalue” equation:  
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௜
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డ
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−

డ
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൰ 𝜓௜௝ =  ൜ħ ൬

ఈ೔ೕఉ೔ೕ

௥೔ೕ 
–

ఈೕ೔ఉೕ೔

௥ೕ೔
൰ −

ħ

௜
൬

ఈ೔ೕ

௥೔ೕ
మ −

ఈೕ೔

௥ೕ೔
మ ൰ൠ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ .    (5.6) 

In the earlier argument as shown in Figure 7 we have the mass units 𝑚ଵ = 𝑚ଶ, or for this 
argument 𝑚௜ = 𝑚௝ , and so we have 𝛽௜௝ = −𝛽௝௜, and we get a pure “eigenvalue” equation for 

the operator 𝑝పఫෞ − 𝑝ఫప ෞ if 𝑟௜௝ = 𝑟௝௜. So the observer at point O2 in Figure 1 with 𝑟௜௝ = 𝑟௝௜ = 𝑅/2, 

will see a sharp and well defined value for the difference between the momenta of the mass 
entities mi and mj. This observer can evaluate equations (4.8a) and (4.8b) but in that case with 
𝐸 = 𝐸௜௝ = 𝐸௜௝ leading to the same result as equation (5.1): 

2(𝐸 2⁄ )ଶ𝑅ଶ = 2𝐸ଶ(𝑅 2⁄ )ଶ = 𝑐ħ𝛼𝑚଴.                     (5.7) 
 
The other option is two observers, one on mi and one on mj, so that and 𝑟௜௝ = 𝑟௝௜ = 𝑅, but now 

with 𝐸 = 𝐸௜௝ + 𝐸௜௝ and the result of equation (5.7).  

6. Transfer of energy and mass. 
In the analysis going from equation (4.6) to (4.8) terms are disappearing due to the solution 
proposed in equation (4.3). But this has to be interpreted with caution. The pair function 
𝜑௜௝𝜑௝௜ in equation (4.1) represents a field carrying the gravitational energy. Therefore, the 

disappearance of the generator at the left hand side of equation (4.6), (𝛼௜௝ 𝑟௜௝ + 𝛼௝௜ 𝑟௝௜⁄⁄ )ଶ, 

involves exchange of energy from the pair to the surrounding space which is equal to the 
energy given in equation (5.4). As a consequence, when the positive value for the energy is 
taken, the energy of the pair itself is reduced by the same amount. In that case the interaction 
between the members of the pair is attractive. The process is schematically shown in Figure 3.  
The opposite situation in which the energy of the pair is positive, which in principle is 
allowed by the Einstein energy, is not possible when we assume that the energy of the 
vacuum, to be taken as the reference point, is zero. In this interpretation the interaction 
between mass and the surroundings is a means to transfer mass related energy (mc2) to 
gravitational energy. This transfer changes the rest masses of the pair but does not create new 
mass.  
If, however the vacuum state is, as it is generally believed, a non-zero energy state there might 
be energy available which increases with the interaction area, the white area in Figure 3, that 
can be transferred to the pair. The situation could be such that, when the distance between the 
members of the pair increases, the energy needed is reducing whereas the energy, or number 
of fluctuations carrying sufficient energy is increasing. It means that at some separation 
distance of the members of the pair the interaction can become repulsive as the Einstein 
equation allows both negative and positive values for the interaction energy.  
A solution for the Schrödinger equation of a pair of particles for an observer at distances 𝑟௜௝ 



15 
 

and 𝑟௝௜ from particle i and j is given in equation (3.6). Now if we put our observer close by 

particle i, the second term in equation (3.6) becomes negligible against the first term: 

𝛹௜௝ = ൬
ఈ೔ೕ

௥೔ೕ
+

ఈೕ೔

௥ೕ೔
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ ≅  ൬

ఈ೔ೕ

௥೔ೕ
൰ 𝑒௜ఉ೔ೕ௥೔ೕା௜ఉೕ೔௥ೕ೔ and: 𝛹௜௝

∗ 𝛹௜௝ ≅ ൬
ఈ೔ೕ

௥೔ೕ
൰

ଶ

.   (6.1) 

The KG-equation in operator language now reads: 
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ఈ೔ೕ
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൰

ଶ

𝜑௜௝,௧.       (6.2) 

Setting the right hand side to zero, a mass-less particle, we see an equation for a travelling 
wave at the speed of  light. To get rid of the singularity we set 𝛼௜௝ 𝑟௜௝ = ⁄  𝛼௜௝ 𝑟௜௣⁄  for 𝑟௜௝ <

𝑟௜௣(= 𝑟௣), and removing the first term on the left hand side gives the London Equation which 

explains the shielding of the inside of a superconducting material from the outside magnetic 
field: the “Meissner” effect [2]. A similar thing can be imagined in this case with the 𝜑௜௝,௧-

field for 𝑟௜௝ < 𝑟௣.  The distance rp can be identified as the distance from the centre to where 

local influences have no impact.  
We can solve the equation (6.2) with in the right hand term 𝑟௣ for  𝑟௜௝, but it is not necessary 

as it can immediately be seen that it dedicates mass to the field in the vicinity of the particle 
which is equal to 𝑚௣ = 𝑚଴௜ 𝛼௜௝ 𝑟௣сଶ⁄ . As this is the mass to be attributed to the ith particle, 

due to another particle somewhere in the surroundings, we will have to add up over all 
particles which can make a pair with our particle, so with mp =  mi: 

𝑚௣ = ∑ 𝑚଴௜௝𝛼௜௝ 𝑟௣𝑐ଶ⁄௝ = (σ
𝑟௣𝑐ଶൗ ) ∑ 𝑚௣

ଶ
௝ 𝑚௝

ଶ.       (6.3) 

The consequence is that either 𝑚௣ = 0,  a mass-free particle, or: 

𝑚௣ = 𝑟௣𝑐ଶ/σ ∑ 𝑚௝
ଶ

௝ , with, as shown, 𝑚଴௜௝𝛼௜௝ = σ𝑚௜
ଶ𝑚௝

ଶ.  First the equation allows that there 

are mass-free particles like a photon which makes no pairs according the theorem based on 
the Schrödinger equation, but it can, according to the KG-equation (3.10). It could generate 
gravity as it is argued in Chapter 9: Cosmography of  W.D. Heacox’s book on the expanding 
Universe [8]. Second, the other solution is that there is a mass carrying particle whose mass 
becomes higher when 𝑟௣ increases and, most important, it is all the mass in the surroundings 

that generate the mass of the ith particle. It is actually mass due to the field, but since the 
singularity moves with the particle the observer nearby can only interpret it as a mass 
contribution to the particle he is looking at. The conclusion taken here corresponds to Mach’s 
ideas about the effect of all physical entities in the universe. 
It would be tempting to evaluate 𝑚௣ but, as we know already from observation, it is better to 

estimate the size or the extension of the particle if only this effect is responsible for the mass. 
The analysis concerns incredibly large and small numbers but leads to a surprising outcome.  

Starting from 𝑚௣̴ = 𝑟௣𝑐ଶ/σ ∑ 𝑚௝
ଶ

௝  and assuming that the mass of the universe is basically due 

to protons and neutrons with almost the same mass, so 𝑚௣ = 𝑚௝ , and assuming there are N 

particles in the whole universe giving it a total mass of 𝑀௨ we can set: 

𝑀௨ = 𝑁𝑚௝  = 𝑁𝑟௣𝑐ଶ/σ ∑ 𝑚௝
ଶ

௝ = 𝑁𝑟௣𝑐ଶ/σ𝑁𝑚௝
ଶ = 𝑟௣𝑐ଶ/σ𝑚௝

ଶ.      (6.4) 
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Estimates of the size of the universe on the basis of the inverse Hubble constant and the fact 
that the average intergalactic density is 1000 hydrogen atoms per cubic meter tells us that the 
total mass of the universe is of the order of 1055 kg. σ is calculated in paragraph 5 at 2.7x102 
Jm/kg4 and the proton mass is 1.7x10-27 kg [11]. It leads to an estimate for the 𝑟௣-value in the 

order of 10-15 m, which is about the size of a proton (0.8 femtometers) [1]. An electron which 
is 1840 times lighter than the proton will, according to equation (6.3), see the same 
surrounding as the proton, so its size would be smaller by the same factor. 
Although the correspondence with measured data is surprisingly good, it is still a rough 
estimate and not without speculation.  
Even a discrepancy by a factor of 10 would already be acceptable for the outcome of this 

analysis. For instance, the sub-space due to the generator 𝑚଴௜
ଶ (𝛼௜௝ 𝑟௜௝ + 𝛼௝௜ 𝑟௝௜⁄ൗ )ଶ would be a 

quantum-mechanical reality, but it says nothing about its internal structure and interactions. 
The mass of the universe is rather uncertain in view of the discussion about dark matter, and 
the proton size, or how to define it, is not so obvious.  
The surprising, and at the same time bizarre, conclusion of the analysis given is that, 
apparently, each single particle has interaction with all other particles in the cosmos. It means 
that in the universe an unimaginable number of pair-wise interactions exists with greatly 
varying intensity and extensions and which depend on the masses of the members of the pair. 
It is difficult to comprehend, but it follows unambiguously from the equations describing the 
behaviour of the pairs.  
As a last remark for this paragraph, causality is of importance to keep in mind. The model 
starts from the fact that there are masses, and it is seen that they can form pairs and generate 
gravity. It yields numerical data about the masses following gravitational parameters. The 
strength of the model is the consistency of the data with what we observe in reality. On the 
other hand one can say that the mass can be introduced into the Schrödinger equation as an 
unknown quantity and the theory comes back with a numerical value for it if the size of the 
particle is known.  

7.  Gravity depending on dynamical masses. 
In paragraph 2 at the end it is mentioned that a group as a whole, identified with the label g, 
has kinetic energy and therefore a relativistic mass equal to 𝛾௚𝑚௚. Although the present 

theory is only concerned with the situation in the sub-space rij where gravity originates, it still 
is of interest to know the dynamic mass of the group because the Hamiltonian operator has 

been modified. The momentum of the group, 𝑝௚ෞ ඥ2𝑚௚⁄ , will determine the dynamic mass to 

be dedicated to the members of the group.  To see this we come back to equation (5.4), now 
renumbered to (7.1): 

𝐸௜௝ =  √2σ𝑐ħ. (𝑚௜𝑚௝)/𝑅.                      (7.1)  

This equation is valid for the sub-space in which the gravitational energy is independent of the 
momenta of the particles in the group. But by inspection we see a problem.  
For an observer outside the sub-space the second term left in equation (4.6) should be 
invariant under Lorentz transformation. However, the rkl transforms as a member of a four-
vector. Therefore, the parameters 𝛼௞௟ or, in the case of equation (7.1), σ should transform in 
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the same way as rkl, but apparently it would make left and right hand side in equation (5.2) 
transform differently, which cannot be the case. We should, however, notice that the Planck’s 
constant, h, is invariant, but ħ = ℎ/2𝜋 is not. 
Make the following “thought-experiment”. Consider a pair flying away from us at a speed v 
such that the separation vector of the members of the pair is aligned in the direction of v. Due 
to the fact that 𝜋 transforms just like 1/rkl the result is that the interaction energy of the pair 
we measure becomes invariant. There is invariance throughout if the alignment perpendicular 
to the speed. So the conclusion is that the interaction energy in the pair is invariant and 
independent of the alignment towards the observer. We can see the pair moving by and, 
whatever alignment they have, we will see the same interaction energy. But for the observer 
outside the sub-space, actually in point O1 in figure 1, the group as a whole is moving which 
gives a dynamical mass to the particles in the group, but with the same 𝛾௚- factor.  

Knowing this we can from equations (2.5a) and (2.5b), in principle, give the value for this 

group momentum if the replacement of the vectors 𝑝௞ෞ ඥ2𝑚௞⁄  by their relativistic equivalents 

has been done. However, there remains a disturbing 𝑐𝑜𝑠𝛿ଵ-term making a general solution 
inappropriate. But the purpose of an endeavour in which such a group related dynamic mass is 
significant makes only sense where gravity is important and speeds are approaching the speed 
of light. So it is not relevant outside the realm of cosmology.  
In this respect the main problem of the incompatibility between quantum theory and relativity, 
however, comes to the surface. We therefore have to carefully replace the vectors in Figure 1 
by the relativistically relevant ones which are to be derived from the equations (2.5a) and 
(2.5b) leading to the transitions: 

𝑝௔/ඥ2𝑚௔ ↦ 𝑐𝑚௔ඥ𝛾௔
ଶ − 1  with 𝑎 = 𝑖, 𝑗 and 𝑔. 

Now we can put our observer on one of the interacting particles, say mi in the group (ij), and 
consider the surroundings from this point of view so that 𝑝௜ = 0. In this case 𝑐𝑜𝑠𝛿ଵ = −1, but 
because 𝑝௜ = 0 the 𝑐𝑜𝑠𝛿ଵ- factor has no influence anymore. We end up in a rather 
complicated situation if we want to know the mass and 𝛾௚- values for the group and we find 

non relativistic:  

𝑣௚
ଶ 𝑐ଶ⁄ =

௠ೕ

ଶ൫௠೔ା௠ೕ൯
𝑣௝

ଶ 𝑐ଶ⁄ , and relativistic: 𝛾௚
ଶ − 1 =  

௠ೕ
మ

ଶఎమ൫௠೔ା௠ೕ൯
మ ൫𝛾௝

ଶ − 1൯.   (7.2a, 7.2b) 

The extra parameter 𝜂 complicates the situation. If our observer is on mass mi which is much 
smaller than mj: 𝜂 = 1, and both equations are identical. But in paragraph 5, equation (5.3) we 
have constructed our bodies with building blocks of masses 𝑚௜which all are identical in their 

masses. We should, therefore, start from the case of 𝑚௜ = 𝑚௝ , so that: 𝜂 = ඥ1/2.  

The result is:   

𝛾௚
ଶ − 1 = ൫𝛾௝

ଶ − 1൯/4.                       (7.3) 

With the aid of the definition of 𝛾 it is easily changed into the relation: 
 

𝑣௚
ଶ 𝑐ଶ⁄ = 𝑣௝

ଶ (4𝑐ଶ − 3𝑣ଶ)⁄ .                                (7.4) 
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This gives the mass to be allotted to both members of the group. At low velocities (v << c), 
The mass of the group particles is determined by half the speed of the moving particle. When 
the speed of the moving particle approaches the light velocity, both speeds become equal. 
This result is similar to the velocity addition rule for relativistic velocities on the basis of 
standard relativity theory [7], but in this case arrived at in way involving gravity.  
At low speeds we have to dedicate dynamic mass to both particles and the equation will read:  
 

𝑭𝟏𝟐 = 𝑹𝐺൫𝑀଴ଵ/ඥ(1 − 𝑣ଶ 4𝑐ଶ⁄ 𝑀଴ଶ/ඥ(1 − 𝑣ଶ 4𝑐ଶ⁄ ൯ 𝑅ଷ⁄ .                  (7.5) 

 
When speeds are approaching the speed of light, of course, the speeds of both particles are 
still the same and opposite, but at the value 𝑣௝. An alternative way of interpreting equation 

(7.5) is to place the observer in the sub-space in the middle between the two particles so that 
the observer sees their speeds 𝑣ᇱ = 𝑣 2⁄  and  opposite and the distance 𝑅ᇱ = 𝑅 2⁄ . In that case 
the equation becomes:  
 

𝑭𝟏𝟐 = 𝑹ᇱ𝐺൫𝑀଴ଵ/ඥ(1 − 𝑣ᇱଶ 𝑐ଶ⁄ 𝑀଴ଶ/ඥ(1 − 𝑣ᇱଶ 𝑐ଶ⁄ ൯ 4𝑅ᇱଷ⁄ .                           (7.6) 

This interpretation has to be considered as an alternative interpretation of equation (7.5) and 
not of the real situation of two particles moving away from the observer at equal but opposite 
speeds. This is because the equations are derived for the case that we have taken the 
momentum of one of the group members as zero. It, however, allows a remarkable 
interpretation. It looks like a “mirror” mass shows up at a distance of R from the moving mass 
that moves at the same speed as the moving one. Far from the light speed the relative speed 
between the two masses is double the speed seen by the observer but when it approaches c, 
the relative speed becomes c as well.   

In conclusion it can be said that particles in a group in the sub-space have gravitational 
interaction have masses which must be corrected with the relativistic transformation factor 𝛾௚ 

as defined by equation (7.2a and -b).  
The kinetic energy of the group remains to be defined by the value: 
 
 𝐸௞௜௡ = 𝑇௞ = 𝑀଴ଵ(𝛾ଵ − 1)𝑐ଶ + 𝑀଴ଶ(𝛾ଶ − 1)𝑐ଶ.                            (7.8)  
 
8. Discussion and conclusions. 
An attempt is made to find an explanation for the gravity law, or Newton’s third law starting 
from well established and proven theorems: Special Relativity and Quantum Mechanics. 
Although these two theories cannot be readily combined, it is possible to use the outcome of 
quantum mechanical considerations as starting point for further analysis by taking into 
account the rules of specific relativity. If we apply the two concepts in those areas where they 
have their applicability it was proved possible to derive the gravity law as it has been 
established already more than three hundred years ago. The main issues in the analysis are: 
1. We can separate the local behaviour of particles in its direct environment like a gas, liquid 
or a solid from its behavior in free space as a member of a larger entity.  
2. We can modify the Hamiltonian of a set of two individual particles, or tightly connected 
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entities, such that for two and only two of such entities, characterized by their masses, the 
Hamiltonian is represented by a group kinetic energy operator and a second part which is the 
direct interaction in a separate momentum based sub-space.  
3. From this, a group wave function and a wave function representing the members in the 
group emerge, the first one is found to be responsible for the dynamic masses to be allotted to 
the particles in the gravity law and the second one is responsible for the gravitational 
interaction.  
4. The two particle wave function is then recognized as a pair potential in a sub-space 
between the members of the group and is taken as the relativistically invariant rest mass in the 
Klein Gordon field equation.  
5. By solving the Klein Gordon field equation for the pair represented as a single entity we 
finally arrive at the right form of Newton’s third law of gravity. Also by adding up the basic 
functions for single group of particles, or groups of particles, the right form of the gravity law 
between large bodies is obtained. 
6. Considering the dynamics of the group as a whole also the influence of the dynamic 
relativistic mass in the gravity equation is derived.  
7. The Klein Gordon equation is also found to be applicable at the level of a single particle 
and gives a value for its mass in dependence of all mass around in the entire universe. Most 
surprising is that the calculated values are of the right order even though the numbers that are  
going into the equations are extremely large and extremely small.  
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