An Essay on the Zeroes of an L-function

Matanari Shimoinuda

We set the following notation.

- *K* a global field
- K_v a local field, completion of *K* at the place v of *K*
- A_K the adele ring of K
- *C_K* the idele class group $GL_1(A_K)/K^*$
- \hat{C}_K the dual group of C_K .

0.

We will summarize the spectral interpretation of critical zeros of $L(\mathcal{X}, s)$ associated χ of C_K by Alain Connes. Let h be a test function. The Weil explicit formula says

$$
\sum_{v} \int_{K_v^*} \frac{h(\mu^{-1})}{|1-\mu|} d^* \mu = \hat{h}(0) + \hat{h}(1) - \sum_{L(\chi,\rho) = 0} \hat{h}(\chi,\rho).
$$

Suppose that there exists a representation U of C_K , and that

$$
\operatorname{tr} U(h) = \sum_{v} \int_{K_v^*}^{\cdot} \frac{h(\mu^{-1})}{|1-\mu|} d^* \mu
$$

is satisfied. We see that

$$
\operatorname{tr} U(h) = \hat{h}(0) + \hat{h}(1) - \sum_{L(\chi,\rho)=0} \hat{h}(\chi,\rho)
$$

holds. We can say that critical zeros of $L(\chi, s)$ appear as the spectra of the operator U . It is just *the spectral interpretation of critical zeros of* $L(\chi, s)$.

Let

$$
X = A_K/K^*.
$$

The left regular representation U of C_K on $L^2_{\,\,\delta}(X)$ which is a weighted $\,L^2$ space $\,$ can be used to accomplish our task. Namely, it holds that

$$
\text{tr}U(h) = \hat{h}(0) + \hat{h}(1) - \sum_{\substack{L(\chi,\rho) = 0 \\ \text{Re}\rho = 1/2}} \hat{h}(\chi,\rho) + \infty h(1).
$$

However we will not try to treat the representation $(U,L^2_{\ \delta}(X))$ directly. $\;$ Instead $\;$ of the representation $(U, L^2_{\,\,\delta}(X))$, we will think of the operator $\mathsf{Q}_{A}U$ where U is the left regular representation of C_K on $L^2(X)$. Because, firstly there is a possibility of using some results to compute $Trace$ Q_AU , secondly we can eliminate the parameter δ of L^2_{δ} (*X*). Now, we can show that

$$
Trace\ Q_A U(h) = \hat{h}(0) + \hat{h}(1) - \sum_{\substack{L(\chi,\rho)=0\\ \text{Re}\rho = l/2}} \hat{h}(\chi,\rho) + \infty h(1) \qquad A \to \infty
$$

for the function *h* which belongs to *Bruhat-Shwartz space* $S(C_K)$ of functions on C_K .

We try to compute $Trace Q_AU(h)$. This has the relationship to the validity of the Riemann Hypothesis. Suppose that we can compute as follows;

Trace Q_AU(h) = 2h(1)log' A +
$$
\sum_{v} \int_{K_v^*}^{'} \frac{h(\mu^{-1})}{|1-\mu|} d^* \mu + o(1)
$$
 $A \to \infty$

where $2\log A = \int_{\Delta} e^{-\frac{1}{2}(\lambda - \mu)} d^{\alpha} \lambda$. We obtain a trace formula: $\int_{\lambda \in C_K, \, |\lambda| \in [\Lambda^{-1}, \, \Lambda]}$

$$
\hat{h}(0) + \hat{h}(1) - \sum_{\substack{L(\chi,\rho) = 0 \\ \text{Re}\,\rho = 1/2}} \hat{h}(\chi,\rho) + \infty h(1) = 2h(1)\log^{\prime} A + \sum_{\nu} \int_{K_{\nu}^{*}} \frac{h(\mu^{-1})}{|1 - \mu|} d^{*}\mu + o(1) \Delta_{\infty}.
$$

The left side is spectral and the right side is geometrical. From the Weil explicit formula, we have seen that

$$
\sum_{v} \int_{K_v^*} \frac{h(\mu^{-1})}{|1-\mu|} d^* \mu = \hat{h}(0) + \hat{h}(1) - \sum_{L(\chi,\rho) = 0} \hat{h}(\chi,\rho).
$$

Therefore, one obtains that

$$
\sum_{L(\chi,\rho)=0}\hat{h}(\chi,\rho)=\sum_{\substack{L(\chi,\rho)=0\\ \text{Re}\rho=1/2}}\hat{h}(\chi,\rho).
$$

It means the validity of the Riemann Hypothesis. Conversely, the validity of the Riemann Hypothesis implies that

Trace Q_AU(h) = 2h(1)log' A +
$$
\sum_{v} \int_{K_v^*}^{'} \frac{h(\mu^{-1})}{|1-\mu|} d^* \mu + o(1)
$$
 $A \to \infty$.

We try to characterize L-functions from the view of the representation theory.

We will begin with the local case. Denote the set of the irreducible representations of K_{ν} ^{*} by Irr(K_{ν} ^{*}). Let ($\pi_{\nu},$ $V_{\pi_{\nu}}$) be an irreducible representation of K_{ν} ^{*}. Put

$$
\pi_{\nu}(f)\nu=\int_{K_{\nu}^*}f(g)\pi_{\nu}(g)\nu d^*g\,,\quad f\in\mathcal{S}(K_{\nu}).
$$

Suppose that tr $\pi_{\nu}(f)$ can be defined, namely $\pi_{\nu}(f)$ is a trace class operator. So we may think that there exists a character $\operatorname{tr} \pi_{\nu}$ of $K_{\nu}{}^*$, and

$$
\text{tr}\pi_{\nu}(f)=\int_{K_{\nu}^*}f(g)\text{tr}\pi_{\nu}(g)d^*g.
$$

Define the local zeta function as

$$
Z(s,\chi,\boldsymbol{\Phi})=\int_{K_{\boldsymbol{v}}^*}\boldsymbol{\Phi}(g)\chi(g)|g|^s\,d^*g.
$$

Here $s\in \mathbb{C}$, χ is a character of $K_{\nu}{}^*$ and $\varPhi \in \mathcal{S}(K_{\nu}).$ The integral converges at $\mathrm{Re}(s) > 0$ 0. The L-factor $L(s, \chi)$ is defined as $Z(s, \chi, \phi)/L(s, \chi)$ being entire. We will see that the local zeta function associated with π_{ν} can be

$$
Z(s, \operatorname{tr} \pi_{\nu}, \boldsymbol{\Phi}) = \int_{K_{\nu}^*} \boldsymbol{\Phi}(g) \operatorname{tr} \pi_{\nu}(g) |g|^{s} d^{*}g.
$$

The L-factor $L(s, \pi_v)$ is defined as $Z(s, tr\pi_v, \Phi)/L(s, \pi_v)$ being entire.

Next, we will think of the global case. It is performed on the adele ring of *K*. Set

$$
\pi = \bigotimes_{V} \pi_{V}, \qquad V_{\pi} = \bigotimes_{V} V_{\pi_{V}}.
$$

We can obtain an irreducible representation $(\pi,\,V_\pi)$ of ${\rm A_K}^*$. Denote the set of the irreducible representations of $\mathrm{A_{\mathit{K}}}^*$ by Irr($\mathrm{A_{\mathit{K}}}^*$). Suppose that $\pi(f)$ where $f \!\in\! \mathcal{S}(\mathrm{A_{\mathit{K}}})$ is a trace class operator. Then tr π is given as a character of $\mathrm{A\mathit{k}}^*$. We $\,$ also $\,$ obtain $\,$ the global zeta function

$$
Z(s, tr\pi, \boldsymbol{\Phi}) = \prod_{v} Z(s, tr\pi_{v}, \boldsymbol{\Phi}).
$$

Here $\boldsymbol{\Phi} \in \mathcal{S}(\mathcal{A}_K)$. We define the L-function associated with π as follows;

$$
L(s,\,\pi)=\prod_{v}L(s,\,\pi_{v}).
$$

Each L-factor $L(s, \pi_v)$ gives the Euler factor of $L(s, \pi)$, namely $L(s, \pi)$ has the Euler product. The $L(s, \pi)$ satisfies the functional equation which is given by the functional equation of the global zeta function. Thus, $L(s, \pi)$ is analytically continued to the function which is meromorphic in the whole plain C.

We shall consider an irreducible representation (π, V_{π}) of C_K . Let \mathcal{H}_{π} be a suitable completion of V_{π} with a certain inner product. One obtains a unitary representation (π, \mathcal{H}_n) , which is a left regular representation of C_K on \mathcal{H}_n . We may say that if $\pi \in \text{Irr}(C_K)$ then $\pi \in \hat{C}_K$. Thus,

$$
\mathcal{H} = \bigoplus_{\pi \in \hat{C}_K} \mathcal{H}_{\pi}, \quad \mathcal{H}_{\pi} = \left\{ \xi \mid \xi(g^{-1}x) = \pi(g)\xi(x), \forall g \in C_K \right\}.
$$

We know that tr π is a character of C_K . We frequently use χ to denote a character of C_K . Then, $tr\pi = \chi$. Correspondingly, $L(s, \pi) = L(s, \chi)$.

 Lastly we will mention trace formulae. The trace formula which is given by a zeta function:

is a prototype. Selberg's trace formula is that

There exists an operator M such that it is commutative with the Laplacian of H. The operator is the integral operator which has *k*(*z*, *w*) as an integral kernel

$$
M(f)(z) = \int_{H} k(z, w) f(w) d\mu(w).
$$

The Selberg's trace formula gives the explicit formula of Selberg's zeta function.

The trace formula given by Connes is the same type as Selberg's. It is that

$$
\frac{\ldots}{\ldots} = \frac{\ldots}{\ldots}
$$
Characters Geometrical side

Here $U(h)$: $C_{\rm c}^{\infty}(X) \longrightarrow C_{\rm c}^{\infty}(X)$

$$
(U(h)\xi)(x) = \int_{C_K} h(g)(U(g)\xi)(x) d^*g.
$$

The operator $U(h)$ is the integral operator which has $k_h(x, y)$ as an integral kernel

$$
(U(h)\xi)(x) = \int_{C_K} k_h(x, y)\xi(y)d^*y.
$$

The space $S(A_K)_0$ is given as the codimension 2 subspace of $S(A_K)$ such that

$$
f(0) = 0
$$
, $\int_X f(x) dx = 0$.

Let $L^2(X)_0$ be the completion of $\mathcal{S}(\mathrm{A}_K)_0$. We obtain an exact sequence:

$$
0 \to L^2(X)_0 \to L^2(X) \to \mathbb{C} \oplus \mathbb{C}(1) \to 0
$$

where $\mathbb{C} \oplus \mathbb{C}(1) \cong L^2(X)/L^2(X)_0$.

[Remark] $\mathbb C$ is a trivial C_K module:

 $T(g)\lambda = \lambda \qquad g{\in}C_K$, $\lambda{\in}\mathbb{C}$. is Tate twist: $T(g)\lambda = |g|\lambda \quad g{\in}C_K$, $\lambda{\in}\mathbb{C}$.

 $\mathbb{C}(1)$ is Tate twist:

 Here we have to give one's attention to the space *X*. The space *X* is *a delicate quotient space*. It must be non-compact. It must be also questionable to think that X contains C_K as a subspace. However, considering the construction of $\,L^2(C_K)$, if we restrict the function in $L^2(X)$ to C_K then it can be a function on C_K . We can also obtain the following exact sequence:

$$
0 \to L^2(X)_0 \stackrel{\mathrm{T}}{\to} L^2(C_K) \to \mathcal{H} \to 0
$$

where $\mathcal{H} \cong L^2(C_K)/\text{Im}(\mathrm{T})$. Let U be a left regular representation of C_K on $\ L^2(X,\,dx)$ and V be a left regular representation of C_K on $L^2(C_K,$ $d^*x).$ For $f(x){\in L^2(X,\,dx)}.$ let $(Tf)(a)$ be the restriction of $f(x)$ to C_K . Then,

$$
(\mathrm{T}f)(a) = |a|^{1/2} f(a) \quad \forall a \in C_K.
$$

Since $dx = |x|d^*x$, we will understand that $(Tf)(a) \in L^2(C_K, d^*x)$. Set

$$
(U(g)f)(x) = f(g^{-1}x) \quad \forall g \in C_K, x \in X.
$$

It turns out that

$$
T(U(g)f)(a) = \text{the restriction of } f(g^{-1}x)
$$

= $|g|^{1/2}(V(g)Tf)(a)$ $\forall a, g \in C_K.$

From this equation, it is that $\left|g\right|^{-1/2} \text{T}(U(g) f)(a) = V(g)(\text{T} f)(a).$ For $(\text{T} f)(a),$

$$
V(g)(\text{T}f)(a) = \text{the restriction of } |g|^{-1/2} f(g^{-1}x) \\
 = |a|^{1/2} |g|^{-1/2} f(g^{-1}a).
$$

From $f\!\in\!\mathcal{S}(A_K)$, we will see that $\left|g\right|^{-1/2}\!f(x)\!\in\!L^2(X)_0$, and that $\left|g\right|^{-1/2}\!f(g^{-1}x)\!\in\!L^2(X)_0.$ Thus $V(\text{Im}(T)) \subseteq \text{Im}(T)$, namely $\text{Im}(T)$ is an invariant subspace for *V*. Now, we have to turn one's attention to using $L^2(C_K)$. Because C_K is abelian locally compact, we can't always decompose $L^2(C_K)$ in the direct sum of finite $\,$ dimensional $\,$ subspaces. This fact, $L^2(C_K)$ having no finite dimensional subrepresentation, is an obstacle to our attempt computing the trace of *U*.

"The second subtle point is that since C_K is abelian and non compact, its regular *representation does not contain any finite dimensional subrepresentation so that the Polya-Hilbert space cannot be a subrepresentation* (*or unitary quotient*) *of V*. *There is an easy way out which is to replace* $L^2(C_K)$ *by* $L^2_{\delta}(C_K)$ *using the polynominal* $weight (\log^2 |a|)^{\delta/2}, i.e.$ the norm $||\xi||^2_{\delta} = \int_{C_K} |\xi(a)|^2 (1 + \log^2 |a|)^{\delta/2} d^*a$." in A. Connes [2].

Because $L^2_{\,\,\delta}(C_K)$ is a weighted L^2 space, we can decompose it in $\,$ the $\,$ direct $\,$ sum $\,$ of finite dimensional subspaces. Let the Hilbert space $L^2_{\,\,\delta}(X)$ $(\delta\!>\!1)\,$ be the space of functions on *X* with the square norm

$$
||f||_{\delta}^{2} = \int_{X} |f(x)|^{2} (1 + (\log |x|)^{2})^{\delta/2} dx.
$$

The Hilbert space $L^2_{\,\,\delta}(C_K)$ is obtained from the space of functions with the square norm

$$
\left\|f\right\|_{\delta}^{2} = \int_{C_{K}} \left|f(g)\right|^{2} (1 + (\log|g|)^{2})^{\delta/2} d^{*}g
$$

where we normalize the Haar measure of the multiplicative group C_K

$$
\int_{|g|\in[1,\,\Lambda]} d^*g \sim \log \Lambda \qquad \Lambda \to +\infty \, .
$$

We understand that the representation $(V, L^2_{\ \delta}(C_K))$ isn't unitary because of the suffix $(1+(\log |g|)^2)^{\delta/2}$. However

$$
||V(a)||_{\delta} = O((\log|a|)^{\delta/2}) \qquad |a| \to \infty.
$$

It is also satisfied that

$$
||V(a)||_{\delta} = O((\log|a|)^{\delta/2}) \qquad |a| \to 0.
$$

[Remark] It holds that

 \leq (c· $(1+(\log |a|)^2)^{\delta/2}$)^{1/2}. Here we may say that $||V(a)||_{\delta} \geq 0$. We can compute as follows; $V(a)$ $\Big|_{\delta} \leq$ (c·(1+(log|*a*) $V(a)\big|_{\delta}$

 $V(a)|_{\delta}^2 \leq c \cdot (1 + (\log |a|)^2)^{\delta/2}$

moreover,

$$
||V(a)||_{\delta}^{4/\delta} \leq c^{4/\delta} \cdot (1 + (\log|a|)^2).
$$

Thus,

$$
\frac{\|V(a)\|_{\delta}^{4/\delta}}{(\log|a|)^2} \leq c^{4/\delta} \cdot \frac{1+(\log|a|)^2}{(\log|a|)^2}.
$$

It turns out that

$$
\frac{|V(a)|_{{\delta}}^{{\mathbf{1}}/{\delta}}}{(\log|a|)^2} \leq c^{4/\delta} \quad |a| \to \infty \quad \text{and} \quad \frac{\|V(a)\|_{{\delta}}^{{\mathbf{1}}/{\delta}}}{(\log|a|)^2} \leq c^{4/\delta} \quad |a| \to 0.
$$

We can show that

$$
\frac{\|V(a)\|_{\delta}^{4/\delta}}{(\log|a|)^2} = \left(\frac{\|V(a)\|_{\delta}}{(\log|a|)^{\delta/2}}\right)^{4/\delta}.
$$

Therefore,

$$
\frac{\|V(a)\|_{\delta}}{\left|\left(\log|a|\right)^{\delta/2}\right|} \leq c \quad |a| \to \infty \quad \text{and} \quad \frac{\|V(a)\|_{\delta}}{\left|\left(\log|a|\right)^{\delta/2}\right|} \leq c \quad |a| \to 0.
$$

We have a following decomposition:

$$
C_K \cong C_{K,1} \times N.
$$

Here $C_{K,1}$ is the maximal compact subgroup: { $g \in C_K$ | $|g|=1$ } and $\,N=\mathbb{R}^*_{>0}.$ Let ${\mathcal{X}}_0$ be a character of $C_{K,1}.$ We use $\tilde{\mathcal{X}}_0$ to denote an extension of ${\mathcal{X}}_0$ as a character of C_K . Namely, $\tilde{\chi}_0(g) = \chi_0(g); \forall g \in C_{K,1}$. Here $\tilde{\chi}_0$ has the form $\tilde{\chi}_0 = \chi_0 |\cdot|^\rho, \rho \in i\mathbb{R}$. Restrict V to $C_{K,1}$, one decompose $L^2_{\,\,\delta}(C_K)$ in the direct sum of the finite dimensional subspaces,

$$
L^2_{\delta, \chi_0} = \left\{ \xi \in L^2_{\delta}(C_K) \middle| \xi(a^{-1}g) = \chi_0(a)\xi(g) \quad \forall g \in C_K \ \forall a \in C_{K,1} \right\}.
$$

The dual space $(L^2_{\,\,\delta}(C_K))^*$ of $\,\,L^2_{\,\,\delta}(C_K)$ can be identified with $\,\,L^2_{\,-\delta}(C_K).$ It is also decomposed in the direct sum of the subspaces,

$$
L^2_{-\delta, \chi_0} = \left\{ \xi \in L^2_{-\delta}(C_K) \mid \xi(ag) = \chi_0(a)\xi(g) \quad \forall g \in C_K \ \forall a \in C_{K,1} \right\}.
$$

Here, we use the transposed of *V*

$$
(V^{\tau}(a)\eta)(x) = \eta(ax); \quad \eta(x) \in (L^2_{\delta}(C_K))^*.
$$

The pairing between $L^2_{\ \delta}(C_K)$ and its dual $(L^2_{\ \delta}(C_K))^* = L^2_{-\delta}(C_K)$ is given by

$$
\langle f, \eta \rangle = \int_{C_K} f(x) \eta(x) d^*x.
$$

We can obtain the following exact sequences:

$$
0 \to L^2_{\delta}(X)_0 \xrightarrow{\mathrm{T}} L^2_{\delta}(C_K) \to \mathcal{H} \to 0.
$$

Let

Im(T)⁰ = {
$$
\eta \in (L^2_{\delta}(C_K))^*
$$
 | $\langle Tf, \eta \rangle = 0, \forall f \in S(A_K)_0$ }.

It holds that

$$
\eta(x) \in \mathrm{Im}(T)^0 \iff \int_{C_K} Tf(a)\eta(a)d^*a = 0, \ \forall f \in \mathcal{S}(A_K)_0.
$$

For $\eta(x)\,{\in}\, L^2_{-\delta,\,{\mathcal{X}}_0},$ we may think that it has the form:

$$
\eta(x) = \tilde{\chi}_0(x)\Psi(|x|).
$$

Now

$$
\Psi(|x|) = \int_{-\infty}^{\infty} \hat{\Psi}(t) |x|^{n} dt
$$

where $\hat{\mathcal{F}}(\mathsf{t}) = \int_{\mathcal{C}_K} \mathcal{F}(a) |a|^{\mathsf{\scriptscriptstyle H}} d^{\mathsf{\scriptscriptstyle T}} a$. Thus,

$$
\eta(x) = \int_{-\infty}^{\infty} \eta(x; t) dt; \quad \eta(x; t) = \tilde{\chi}_0(x) |x|^{\mu} \hat{\mathcal{P}}(t).
$$

Then,

$$
\eta(x) \in \text{Im}(T)^0 \Longleftrightarrow \langle Tf, \eta \rangle = 0
$$

\n
$$
\Longleftrightarrow \int_{C_K} Tf(a) \int_{-\infty}^{\infty} \tilde{\chi}_0(a) |a|^{\mu} \hat{\Psi}(t) dt d^* a = 0
$$

\n
$$
\Longleftrightarrow \int_{-\infty}^{\infty} \int_{C_K} Tf(a) \tilde{\chi}_0(a) |a|^{\mu} \hat{\Psi}(t) d^* a dt = 0, \ \forall f \in \mathcal{S}(A_K)_0.
$$

As the consequence of Tate's work,

Lemma 2.1. For $\text{Re}(s) > 0$, and any character χ_0 of C_K , $\int_{C_K} Tf(a) \chi_0(a) |a|^{s-1/2} d^*a = L(\chi_0, s)D'_s(f), \quad \forall f \in S(A_K)_0.$

Here, $D'_{s}(f)$ is a holomorphic function of s ($Re(s) > 0$).

From this lemma, we can say that

$$
\eta(x) \in \text{Im}(T)^0 \iff L(\tilde{\chi}_0, 1/2 + \rho) = 0; \ \rho \in i\mathbb{R}.
$$

Here $\mathcal{H} \cong L^2_{\delta}(C_K)/\text{Im}(T)$. Think of the left regular representation W of C_K on \mathcal{H} : (W, \mathcal{H}) , where one deduces W from V. Restrict W to $C_{K,1}$, one decompose \mathcal{H} in the direct sum of the subspaces,

$$
\mathcal{H} = \bigoplus_{\chi_0 \in \hat{\mathcal{C}}_{K,1}} d(\chi_0) \mathcal{H}_{\chi_0} \qquad d(\mathcal{X}_0) < \infty
$$

where $\mathcal{H}_{\chi_0} = \big\{ \xi \, \big| \, W(a) \xi \! = \! \chi_{_0}(a) \xi, \,\, \forall a \! \in \! C_{K,1} \big\}$ and we denote the dimension of \mathcal{H}_{χ_0} by $d(\boldsymbol{\mathcal{X}}_0).$ We will also consider its dual. We obtain the transposition \boldsymbol{W}^τ of $\ C_K$ on $\ \mathcal{H}^* .$ $(W^{\tau},\, \mathcal{H}^{*})$, where one deduces W^{τ} from $\;V^{\tau}.$ Now, let h be a test function on $\;C_K\;$ and set

$$
W(h) = \int_{C_K} h(g)W(g) d^*g.
$$

Denote h 's Fourier transform by \hat{h} :

$$
\hat{h}(\chi,z) = \int_{C_K} h(\mu) \chi(\mu) |\mu|^z d^* \mu.
$$

Recall

$$
\mathcal{H}^* \cong (L^2_{\delta}(C_K)/\mathrm{Im}(T))^* \cong \mathrm{Im}(T)^0,
$$

moreover

 $\text{tr}W = \text{tr}W^{\tau}$.

We can compute

$$
\int_{C_K} h(g)(V^{\tau}(g)\eta)(x) d^*g = \int_{C_K} h(g)(V^{\tau}(g)) \int_{-\infty}^{\infty} \eta(\cdot; t) dt)(x) d^*g
$$

=
$$
\int_{C_K} \int_{-\infty}^{\infty} h(g) \tilde{\chi}_0(g) |g|^{\mu} \tilde{\chi}_0(x) |x|^{\mu} \hat{\Psi}(t) dt d^*g
$$

10

$$
= \int_{-\infty}^{\infty} \hat{h}(\tilde{\chi}_0, it) \tilde{\chi}_0(x) |x|^{it} \hat{\mathbf{\Psi}}(t) dt,
$$

thus

$$
\langle Tf, (V^{\tau}(h)\eta)(x) \rangle = \int_{C_K} Tf(a) \int_{-\infty}^{\infty} \hat{h}(\tilde{\chi}_0, it) \tilde{\chi}_0(a) |a|^{it} \hat{\Psi}(t) dt d^*a
$$

=
$$
\int_{-\infty}^{\infty} \int_{C_K} Tf(a) \tilde{\chi}_0(a) |a|^{it} \hat{h}(\tilde{\chi}_0, it) \hat{\Psi}(t) d^*a dt.
$$

If $\eta(x) \in \text{Im}(T)^0$ then $\langle Tf, (V^{\tau}(h)\eta)(x) \rangle = 0$, $\forall f \in \mathcal{S}(A_K)_0$. Therefore, $(V^{\tau}(h)\eta)(x) \in$ $Im(T)^{0}$. The above computation shows that

$$
\hat{h}(\tilde{\chi}_0,\rho)L(\tilde{\chi}_0,1/2+\rho)=0;\ \rho\in i\mathbb{R}.
$$

So, we see that

$$
\mathrm{tr} W(h) = \sum_{L(\tilde{\chi}_0, 1/2 + \rho) = 0} \hat{h}(\tilde{\chi}_0, \rho).
$$

Let $\chi_0\!\in\! \hat{C}_{K,1}$. Recall $\tilde{\chi}_0=\!\chi_0\vert\cdot\vert^\rho$ ($\rho\!\in\!\mathbb{C}$). The action of C_K on \mathcal{H}_{χ_0} can be $W\!(g)\xi=$ $\tilde{\chi}_0(g)\xi$, and it turns out that $W(g)\xi = |g|^{\rho}\xi; g \in N$. So it is satisfied that

$$
|g|^{Re(\rho)} \leq ||W(g)||_{\delta}, \quad g \in C_K.
$$

Let $W_{{\chi}_0} = W|_{\mathcal{H}_{{\chi}_0}}$ and $\,e^{\mathrm{t}}= g$ $(g{\in}N).$ We will rewrite the action of N on $\mathcal{H}_{{\chi}_0}$ as

$$
W_{\chi_0}(e^t): \mathbb{R} \longrightarrow \mathcal{H}_{\chi_0}.
$$

The following things

(a) $W_{\chi_0}(e^0) = 1$, (b) $W_{\chi_0}(e^{t+s}) = W_{\chi_0}(e^t)W_{\chi_0}(e^s)$

are satisfied. $\;$ Thus $W_{\chi_0}(e^\mathrm{t})$ is a semi-group. From the theory of semi-group, we can say that

$$
W_{\chi_0}(e^{\mathrm{t}})=e^{\mathrm{t}D_{\chi_0}}
$$

where

$$
D_{\chi_0} \xi = \lim_{\epsilon \to 0^+} \frac{W_{\chi_0}(e^\epsilon) \xi - W_{\chi_0}(e^0) \xi}{t} \qquad \qquad \xi \in \mathcal{H}_{\chi_0}
$$

.

The operator $D_{\boldsymbol{\chi}_0}$ has discrete spectra. We may think that the discrete spectrum is given by the element $\boldsymbol{\xi}$ which belongs to $\text{Im(T)}^0.$

Let $\tilde{\chi}_0$ be the unique extension of $\chi_0{\in}\hat{C}_{K,1}$ to C_K which is equal <code>to 1</code> on N . We see that $\chi = \tilde{\chi}_0 \left| \cdot \right|^{it_0} (t_0 \in \mathbb{R})$ for $\chi \in \hat{C}_K$. Then $L(\chi, 1/2+it) = L(\tilde{\chi}_0, 1/2+i(t_0+t))$. Thus, as the extension of ${\boldsymbol{\chi}}_0$, we will use the above unique extension $\,\tilde{\boldsymbol{\chi}}_0$.

 $\Lambda_0 = \hat{C}_{K,1}$, $\delta > 1$. Then D_{χ_0} has discrete spectra, ${\rm sp}D_{\chi_0}$ \subset i R is the set of imaginary parts of zeros of the L function with Grossencharacter $\tilde{\chi}_0$ which have real part equal to 1/2;

 $\rho \in \mathrm{sp}D \iff L(\tilde{\chi}_0\,,\,1/2+\rho) = 0$ and $\rho \in i\mathbb{R},$ where $\tilde{\chi}_0$ is the unique extension of χ_0 to C_K which is equal to 1 on N.

Moreover the multiplicity of ρ in sp*D* is equal to the largest integer of $n < \frac{1+\delta}{2}$, $n \le$ *multiplicity of* $1/2 + \rho$ as a zero of *L*.

The action of *N* is that

$$
W_{\chi_0}(e^t)\xi=|e^t|^{\rho}\xi=e^{\rho t}\xi.
$$

Then,

$$
D_{\chi_0}\xi\,=\,\frac{dW_{\chi_0}(e^{\mathrm{t}})\xi}{dt}\bigg|_{\mathrm{t}=0}\,=\,\rho\xi\,.
$$

Therefore, ρ is the spectrum of $D_{\boldsymbol{\chi}_0}$. Consider

$$
\lim_{|g| \to \infty} \frac{|g|^\alpha}{\log |g|} = \infty \quad (\alpha > 0) \quad \text{and} \quad \lim_{|g| \to 0} \frac{|g|^\alpha}{\log |g|} = \infty \quad (\alpha < 0).
$$

Because $|g|^{Re(\rho)} \leq ||W(g)||_{\delta}$; $g \in C_K$, if $Re(\rho) > 0$ or $Re(\rho) < 0$ then each of them conflicts with

$$
||V(a)||_{\delta} = O((\log|a|)^{\delta/2}) \qquad |a| \to \infty
$$

or

$$
||V(a)||_{\delta} = O((\log|a|)^{\delta/2}) \qquad |a| \to 0
$$

Therefore, it is that $\rho = it$ ($t \in \mathbb{R}$). Thus,

$$
\tilde{\chi}_0 = \chi_0 \left| \cdot \right|^{it} \quad t \in \mathbb{R}.
$$

We see that D_{χ_0} has a purely imaginary spectrum, so we obtain the following corollary.

Corollary 2.2. For any Shwarzt function $h \in S(C_K)$ the operator $\int_{C_K} h(g) W(g) d^* g$ in H is of trace class, and its trace is given by

$$
\mathrm{tr} W(h) = \sum_{L(\tilde{\chi}_0, 1/2 + \rho) = 0 \atop \rho \in i\mathbb{R}} \hat{h}(\tilde{\chi}_0, \rho)
$$

where the multiplicity is counted as in Theorem 2**.** 1 . and where Fourier transform \hat{h} of *h* is defined by $\hat{h}(\chi, z) = \int_{C_K} h(\mu) \chi(\mu) |\mu|^z d^* \mu$.

We can obtain the following exact sequences:

$$
0 \to L^2_{\delta}(X)_0 \to L^2_{\delta}(X) \to \mathbb{C} \oplus \mathbb{C}(1) \to 0
$$

and

$$
0 \to L^2_{\delta}(X)_0 \stackrel{\mathrm{T}}{\to} L^2_{\delta}(C_K) \to \mathcal{H} \to 0.
$$

We will compute $\mathrm{tr}U(h)$ for $(U,L^2_{\,\,\delta}(X))$ from spectral side. From the above first sequence, considering *Lefchetz formula*, we will see that

$$
A = trU|_{L^2 \delta(X)_0} - trU|_{L^2 \delta(X)} + trU|_{\mathbb{C} \oplus \mathbb{C}(1)}.
$$

From the second sequence, we will obtain

$$
A' = trU|_{L^2 \delta(X)_0} - trU|_{L^2 \delta(C_K)} + trU|_{\mathcal{H}}.
$$

Therefore, it is satisfied that

$$
\operatorname{tr} U|_{L^2 \delta(X)} = \operatorname{tr} U|_{\mathbb{C} \oplus \mathbb{C}(1)} - \operatorname{tr} U|_{\mathcal{H}} + \operatorname{tr} U|_{L^2 \delta(C_K)} + A' - A.
$$

We try to compute tr*U*(*h*) spectrally. Here,

$$
U(h) = \int_{C_K} h(g)U(g) d^*g.
$$

The first term $\left. \mathrm{tr} U \right|_{\mathbb{C} \oplus \mathbb{C}(1)}$ gives

 $\hat{h}(0) + \hat{h}(1)$.

Considering that $T(U(g)\xi)(a) = |g|^{1/2}(V(g)T\xi)(a)$,

$$
U|_{L^2_{\delta}(C_K)} \text{ is } (|\cdot|^{1/2}V, L^2_{\delta}(C_K)) \text{ and } U|_{\mathcal{H}} \text{ is } (|\cdot|^{1/2}V, \text{ Im}(T)^0).
$$

So we will understand that the second term gives

$$
\sum_{L(\tilde{\chi}_0, \, \rho) = 0 \atop {\rm Re} \rho = 1/2} \hat{h}(\tilde{\chi}_0, \rho) \, .
$$

Finally, the term $\mathrm{tr} U\vert_{L^2_{\delta}(C_K)} + \mathrm{A'}-\mathrm{A}$ gives $\infty h(1)$. Thus,

$$
\mathrm{tr} U(h) = \hat{h}(0) + \hat{h}(1) - \sum_{L(\tilde{\chi}_0, \rho) = 0 \atop \mathrm{Re}\rho = 1/2} \hat{h}(\tilde{\chi}_0, \rho) + \infty h(1) .
$$

We try to compute trU geometrically.

Let S be a finite set of places of *K* containing all infinite places. Set

$$
A_{S} = \prod_{v \in S} K_{v} \times \prod_{v \notin S} R_{v} \text{ and } J_{S} = \prod_{v \in S} K_{v}^{*} \times \prod_{v \notin S} R_{v}^{*}
$$

where R_v is the ring of integers of K_v . The S-units of K is given by

$$
\mathcal{O}^*_{\mathrm{S}} = \mathrm{J}_{\mathrm{S}} \cap K^*.
$$

The idele class C_K is embedded in $C_{\rm S} = {\rm J}_{\rm S}/\mathcal{O}^*_{\rm S}$ and $\,X_{\rm S} = {\rm A}_{\rm S}/\mathcal{O}^*_{\rm S}$ plays the same roll as *X*. We will think of $L^2(X_S)$ which is obtained by a completion of $S(A_S)$. Let

$$
R_{\Lambda} = \hat{P}_{\Lambda} P_{\Lambda}, \qquad \Lambda \in \mathbb{R}_{+}.
$$

Here P_A is the orthogonal projection onto the subspace,

$$
P_A = \left\{ \xi \in L^2(X_s) \middle| \xi(x) = 0, \forall x, |x| > A \right\}
$$

while $\hat{P}_{A} = F\, P_{A}\, F^{-1}$ where F is the Fourier transform.

Theorem 3.1. For any $h \in \mathcal{S}_c(C_S)$, one has

$$
Trace(R_{\Lambda}U(h)) = 2\log^{\prime}(\Lambda)h(1) + \sum_{v \in S} \int_{K_v^*}^{\infty} \frac{h(\mu^{-1})}{|1-\mu|} d^*\mu + o(1) \qquad \Lambda \to \infty
$$

2 log'(A) = $\int d^*\lambda$.

where $2\log'(A) = \int_{\lambda \in C_S, |\lambda| \in [\Lambda^1, \Lambda]} d^* \lambda$.

Let χ_0 be a character of $C_{S,1}$ which is the subgroup: { $g \in C_S | |g| = 1$ }. The Hilbert space $L^2(X_S)$ is decomposed in the subspace,

$$
L^{2} \chi_{0} = \left\{ \xi \in L^{2}(X_{S}) \middle| \xi(a^{-1}x) = \chi_{0}(a)\xi(x) \quad \forall x \in X_{S}, a \in C_{S,1} \right\}.
$$

Let $\mathcal{U}_\mathbb{S}$ be the image in $C_\mathbb{S}$ of the open subgroup $\prod R_{\nu}$ *. Fix a character $\pmb{\mathcal{X}}$ of $\ \ \mathcal{U}_\mathbb{S}$, and think of χ_0 whose restriction to \mathcal{U}_S is equal to χ . Set

$$
L^{2}(X_{S})_{\chi} = \left\{ \xi \in L^{2}(X_{S}) \middle| \xi(a^{-1}x) = \chi(a)\xi(x) \quad \forall x \in X_{S}, a \in \mathcal{U}_{S} \right\}.
$$

We can find $h_{\chi} \in S(C_{S})$ such that

$$
Supp(h_{\chi}) = U_{S} \qquad h_{\chi}(x) = \lambda \overline{\chi}(x) \quad \forall x \in U_{S}
$$

where the constant λ is determined by corresponding normalization of the Haar measure on C_S.

Let $\ B_A = \text{Im}(P_A) \cap \text{Im}(\ \hat P_{|A})$ be the intersection of the ranges of the projection P_A and \hat{P} $_\Lambda$. We will think of $B_\Lambda{}^\chi$ which is the intersection of $\,B_\Lambda$ with $\,L^2(X_\mathrm{S})_\chi$. For each character χ of $\mathcal{U}_\mathbb{S}$, we can find a vector $\eta_\chi\!\in\! L^2\text{(X}_\mathbb{S})_\chi$ such that

$$
U(g)(\eta_{\chi}) \in B_{\Lambda} \qquad g \in C_{\mathcal{S}}, \Lambda^{-1} \leq |g| \leq \Lambda.
$$

Then $B_\varLambda{}^\chi$ is given as the linear span of $U(g)(\eta_\chi)$:

$$
B_{\Lambda}{}^{\chi} = \sum_{g \in D_{\mathrm{S}} |g| \in [\Lambda^{-1}, \Lambda]} \lambda_g U(g)(\eta_{\chi}) \quad D_{\mathrm{S}} = C_{\mathrm{S}} / \mathcal{U}_{\mathrm{S}}.
$$

Set

$$
(B_A{}^{\chi})^0 = \text{The whole of} \sum_{g \in D_S \text{ } |g| \in [A^{-1}, A]: \text{ finite sum}} \lambda_g U(g) (\eta_\chi) \,.
$$

It turns out that $(B_A^{\chi})^0 \subseteq B_A^{\chi} \subseteq L^2(X_{S})_{\chi}$. We may say that $(B_A^{\chi})^0$ is dense in B_A^{χ} . So, from the compactness of $\{g \in C_s | A^{-1} \leq |g| \leq \Lambda\}$, we can consider that $B_A{}^{\chi}$ is a vector space which has a countable basis at most. It must be hard to show that $B_{\varLambda}{}^{\chi}=L^2(X_{\rm S})_{\chi}$ for sufficient large $\varLambda.$ We will replace R_{\varLambda} by the $\,$ orthogonal <code>projec-</code> tion Q_A on $\text{Im}(P_A) \cap \text{Im}(\hat{P}_A)$. Suppose that $B_A{}^{\chi} = L^2(X_S)_{\chi}$ for sufficient large A . Then we can identify $trR_A U$ with $trQ_A U$ of $(U, L^2(X_S))$. From the Theorem 3.1., we can show the following.

Corollary. Let Q_A be the orthogonal projection on the subspace of $L^2(X_S)$ spanned by the $f \in S(A_S)$, which vanish as well as Fourier transform for $|x| > A$. Let $h \in$ $S(C_S)$ have compact support. Then when $A \rightarrow \infty$, one has

$$
Trace(Q_A U(h)) = 2h(1) \log'(A) + \sum_{v \in S} \int_{K_v}^1 \frac{h(\mu^{-1})}{|1 - \mu|} d^* \mu + o(1)
$$

where $2\log'(A) = \int_{\Delta}^{\Delta} f(x) dx$ $d^* \lambda$. $\int_{\lambda \in C_{\mathrm{S}} \, , \, \mid \lambda \mid \in \left[\, \Lambda^{-1} \, , \, \Lambda \right]}$

We can get from the above corollary an S-independent global formulation:

$$
TraceQ_{A}U(h) = 2h(1)\log^{2} A + \sum_{v} \int_{K_{v}}^{t} \frac{h(\mu^{-1})}{|1 - \mu|} d^{*}\mu + o(1) \qquad A \to \infty
$$

where $\mathsf{Q}_{A}U$ is a trace class operator for $(U,L^{2}(X)).$

In order to obtain the identification of trQ_AU with trR_AU , we have to show that $B_A{}^\chi = L^2(X_{\rm S})_\chi$ for sufficient large \varLambda . If $C_{\rm S}$ is compact then the compactness must be sufficient for us to show the equation. If C_K were compact, we could show the validity of the Riemann hypothesis.

So it must be interesting to think of the compactification of C_K . With this interest, we will examine the space $Y = A_K/K$. As the same way in the case of X, we can obtain $L^2(Y)$ and $L^2(Y)_0$. We will think of the case $K = \mathbb{Q}$. It holds that

$$
A_{\mathbb{Q}} = \prod_{p \leq \infty} \mathbb{Z}_p \times [0, 1) + \mathbb{Q} \text{ and } A_{\mathbb{Q}}^* = (\prod_{p \leq \infty} \mathbb{Z}_p^* \times \mathbb{R}_{>0}^*) \cdot \mathbb{Q}^*.
$$

Thus, it turns out that

$$
Y = A_{\mathbb{Q}}/\mathbb{Q} \cong \prod_{p \leq \infty} \mathbb{Z}_p \times [0, 1] \text{ and } C_{\mathbb{Q}} = A_{\mathbb{Q}}^* / \mathbb{Q}^* \cong \prod_{p \leq \infty} \mathbb{Z}_p^* \times \mathbb{R}^*_{>0}.
$$

Think of $r \mapsto 2/\pi\tan(r)^{-1};$ $r {\in {\mathbb{R}}^*_{>0}}$, it must be allowed to say that

 $\mathbb{R}^*_{\geq 0}$ *is embedded in* [0, 1].

Thus,

$$
C_{\mathbb{Q}} \text{ is embedded in } \prod_{p<\infty} \mathbb{Z}_p^* \times [0, 1].
$$

It may be allowed to say that

$$
Y = \{ x \in Y | |x| < 1 \} \cup \{ x \in Y | |x| = 1 \}
$$

and that $\{x \in Y | |x| = 1\}$ consists of the boundary of Y . Denote it by ∂Y . It must correspond to $\prod \mathbb{Z}_p^*{\times}\{1\}.$ Let $\prod\limits_{p<\infty}$

$$
C_{\mathbb{Q}} = \prod_{p \lt \infty} \mathbb{Z}_p^* \times (0, 1].
$$

We will think that C_{Q} is the compactification of C_{Q} . We expect that C_{Q} fills the same role of C_{Ω} .

We can obtain an exact sequence:

$$
0 \to L^2(Y)_0 \stackrel{\mathrm{T}}{\to} L^2(\mathcal{C}_\mathbb{Q}) \to \mathcal{H} \to 0
$$

where ${\cal H} \cong L^2(\mathcal{C}_\mathbb{Q})/\mathrm{Im}(\mathrm{T})$. Let U be a left regular representation of $\mathcal{C}_\mathbb{Q}$ on $\,L^2(Y,\,d\mathrm{x})$ and V be a left regular representation of $\mathcal{C}_{\mathbb{Q}}$ on $\ L^2(\mathcal{C}_{\mathbb{Q}},\ d^*x).$ One deduces the left regular representation *W* of C_0 on H from *V*. One may be allowed to say that C_0 is compact because it must be complete and totally bounded. So one can decompose $L^2(\mathcal{C}_{\mathbb Q})$ in the direct sum of $1-$ dimensional subspaces,

$$
L^2 \chi_0 = \left\{ \xi \in L^2(\mathcal{C}_Q) \middle| \xi(a^{-1}g) = \chi_0(a)\xi(g) \quad \forall g, a \in \mathcal{C}_Q \right\}.
$$

The dual space $(L^2(\mathcal{C}_{\mathbb{Q}}))^*$ of $L^2(\mathcal{C}_{\mathbb{Q}})$ can be identified with $L^2(\mathcal{C}_{\mathbb{Q}})$.

[Remark] The left regular representation *U* of C_0 on $L^2(Y, dx)$ isn't unitary. But the left regular representation *T* of *Y* on $L^2(Y, dx)$:

$$
(T(g)\xi)(x) = \xi(-g+x) \qquad g, x \in Y
$$

is unitary. Because *Y* is abelian and compact, we obtain the following decomposition:

$$
L^2(Y) = \bigoplus_{\chi \in \hat{Y}} L^2_{\chi}(Y) \qquad T_{\chi} = T|_{L^2_{\chi}(Y)}
$$

where T_{χ} is 1-dimensional representation.

Here *Y* is compact. Thus the following formula:

$$
\left.\text{tr}U\right|_{L^2(Y)_0} = \left.\text{tr}U\right|_{L^2(\mathcal{C}_Q)} - \left.\text{tr}U\right|_{\mathcal{H}} + \mathbf{A}
$$

becomes meaningful.

Now, our problem is to compute $\mathrm{tr}U\vert_{L^2(Y)_0}.$ Basically, we may think that this problem is how to construct $L^2(Y)_0$. Set

$$
\Delta = |x|^2 \frac{d^2}{dx^2}
$$

which is a differential operator on *Y*. We shall think of the eigenvalue problems:

$$
\Delta \xi - \lambda \xi = 0, \ \xi(x) = 0 \text{ on } \partial Y
$$

on the analogy of Sturm-Liouville problem. Recall that the action of $C_{\mathbb{Q}}$ on the functions on *Y* is

$$
(U(g)\phi)(x) = \phi(g^{-1}x) \quad \forall g \in C_0, x \in Y.
$$

It turns out that $U(g)$ and Δ are commutative. Hence they shares the same eigenspace. We try to construct the $L^2(Y)_0$ space as the space of eigenfunctions of $\Delta.$

[Remark] One computes

$$
(U(g)|x|^2 \frac{d^2}{dx^2} \phi)(x) = (U(g)|\cdot|^2 \phi'')(x) = |g^{-1}x|^2 \phi''(g^{-1}x).
$$

It holds that $dgx = |g|dx$, so

$$
|x|^2 \frac{d^2}{dx^2} (U(g)\phi)(x) = |x|^2 \frac{d^2}{dx^2} \phi(g^{-1}x) = |x|^2 \frac{d^2 g^{-1}x}{dx^2} \frac{d^2}{d(g^{-1}x)^2} \phi(g^{-1}x)
$$

= $|g^{-1}x|^2 \phi''(g^{-1}x)$.

[Remark] The \triangle becomes a differential operator on *X*. Since $dg^{-1}x = |g^{-1}|dx$, if one restricts *U* to $C_{K,1}$ then $|d(g^{-1}x)| = |dx|$. Namely, $|dx|$ is invariant under the action $U(g)$; $\forall g \in C_{K,1}$. Thus, the Laplacian $\frac{d^2}{dt^2}$ is $C_{K,1}$ – invariant. dx^2

If we can show that the Laplacian $\frac{d^2}{dx^2}$ is C_K – invariant then we can say that $U(g)$; $\forall g \in C_K$ is isometry, namely unitary. On the other hand it does not always mean that $U(g)$; $\forall g \in C_K$ is unitary. dx^2

Considering $\xi'' = \lambda \frac{\xi}{\ln^2}$, it turns out that $\left| x \right|^{2}$

$$
(\xi'\overline{\xi})' = \xi''\overline{\xi} + \xi'\overline{\xi'} = \lambda \frac{\xi\overline{\xi}}{|x|^2} + \xi'\overline{\xi'}.
$$

One compute

$$
\int_Y \xi' \overline{\xi'} dx + \lambda \int_Y \frac{\xi \overline{\xi}}{|x|^2} dx = \int_Y (\xi' \overline{\xi})' dx.
$$

We can write that $\int_Y(\xi'\overline{\xi})^{\prime}dx=\int_{\partial Y}\xi'\overline{\xi}\,dx$. From the boundary condition, it holds $\,$ that

$$
\int_{\partial Y} \xi' \overline{\xi} \, dx = 0.
$$

Therefore, we obtain

$$
\int_Y \xi' \overline{\xi'} dx = -\lambda \int_Y \frac{\xi \overline{\xi}}{|x|^2} dx.
$$

Here $\int_Y \xi' \overline{\xi'} dx$, $\int_Y \frac{\xi \xi}{|x|^2} dx \ge 0$. Thus, $\lambda \le 0$. Write a function $\xi(x)$ on Y

$$
\xi(x) = \xi(ut) \qquad u \in \prod_{p \lt \infty} \mathbb{Z}_p, t \in [0, 1].
$$

We will compute as follows.

(a)
$$
\frac{\partial}{\partial u}x = t.
$$

(b)
$$
\frac{\partial}{\partial u}\xi(x) = \frac{\partial x}{\partial u}\frac{\partial}{\partial x}\xi(x) = t\xi'(x).
$$

[Remark] From the definition, the following things are satisfied.

(a)
$$
dx = du dt
$$
, so $\frac{dx}{du} = dt$.

(b)
$$
\frac{d}{du}\xi(x) = \frac{dx}{du}\frac{d}{dx}\xi(x) = \xi'(x)dt.
$$

It holds that $\frac{\partial u}{\partial u^2} = t^2 \frac{\partial^2 u}{\partial x^2}$, so we see that $|u|^2 \frac{\partial u}{\partial u^2} = |u|^2 t^2 \frac{\partial^2 u}{\partial x^2} = |x|^2 \frac{\partial^2 u}{\partial x^2}$. Thus, we can identify Δ with $|u|^2 \frac{\sigma}{\sigma^2}$. We will think of the eigenvalue problems: ∂^2 ∂u^2 d^2 dx^2 ∂^2 ∂u^2 d^2 dx^2 d^2 dx^2 ² ∂u^2

$$
|u|^2 \frac{\partial^2}{\partial u^2} \xi(x) - \lambda \xi(x) = 0.
$$

Let

$$
\eta(u) = \begin{cases} \xi(u0) & \dots & u \in \prod_{p < \infty} \mathbb{Z}_p^* \\ \xi(u1) & \dots & \text{otherwise} \end{cases}
$$

Then we can interpret the eigenvalue problems as the following problem;

$$
|u|^2\frac{\partial^2}{\partial u^2}\eta(u)-\lambda\eta(u)=0,\quad \eta(u)=0\text{ on }\prod_{p<\infty}\mathbb{Z}_p^*.
$$

Here we will identify $\prod \mathbb{Z}_{\scriptscriptstyle \rho}^*$ with ∂Y . $\prod\limits_{p<\infty}$

[Remark] Here,

$$
|u|^2 \frac{\partial^2}{\partial u^2} \xi(x) = |u|^2 |t|^2 \xi''(ut).
$$

From the above definition of $n(u)$, let

 $\eta''(u) = |0|^2 \xi''(u0) \quad \forall u \in \prod \mathbb{Z}_p^* \quad \text{and} \quad \eta''(u) = |1|^2 \xi''(u1) \quad \forall u \notin \prod \mathbb{Z}_p^*$. Then we can say that $|u|^2 \frac{\partial}{\partial u^2} \xi(x)$ gives $|u|^2 \frac{\partial}{\partial u^2} \eta(u)$. \mathbb{Z}_p^* $\prod_{p<\infty} \mathbb{Z}_p^*$ and $\eta''(u) = |1|^2 \xi''(u) \quad \forall u \notin \prod_{p<\infty} \mathbb{Z}_p^*$ *p*<∞ ∏ $|u|^2 \frac{\partial^2}{\partial u^2} \xi(x)$ gives $|u|^2 \frac{\partial^2}{\partial u^2}$

We can show that $\lambda \leq 0$. Here, think of *the heat equation*:

$$
\begin{cases}\n\frac{\partial}{\partial t} \xi(u t) = |u|^2 \frac{\partial^2}{\partial u^2} \xi(u t) \\
\eta(u) = \xi(u 0) = 0 \quad \text{on } \prod_{p < \infty} Z_p^*\n\end{cases}
$$

.

Let $\eta_\lambda(u)$ be an eigenfunction of $|u|^2\frac{\partial}{\partial u^2}$ with eigenvalue λ . Then, $e^{-\lambda t}\,\eta_\lambda(u)$ is a particular solution. We obtain general solutions ² ∂u^2

$$
\xi(x) = \sum_{\lambda} c_{\lambda} \cdot e^{-\lambda t} \eta_{\lambda}(u).
$$

Here, c_{λ} is the constant. There exists some function, called *heat kernel*, $p(t, \mu, \nu)$ on Y^2 and we can say that

$$
\xi(ut) = \int_Y p(t, u, v) \eta(v) dv.
$$

From the theory of semi-group, it holds that

$$
\sum_{\lambda}e^{-t\lambda}=\int_{Y}p(t,u,u)du.
$$

We can say that such a function $\eta(u)$ associated with $|x|^s$

$$
|\cdot|^s(u) = \begin{cases} |u0|^s & \text{if } u \in \prod_{p < \infty} \mathbb{Z}_p^* \\ |u1|^s & \text{if } u \text{ is } u
$$

is an eigenfunction of Δ with eigenvalue $\lambda = s(s-1) \leq 0$. It must be allowed that

 $L^2(Y)$ is decomposed in the subspace $\{c \, | \cdot |^s \, | \, c{\in}\mathbb{C}\}.$

Here $|0|^s=0$, so we can say that $|\cdot|^s {\in} L^2(Y)_0.$ Moreover, since $L^2(Y)$ is a Hilbert space, $\{|\cdot|^s\}$ is discrete. Now

$$
(U(g)|\cdot|^s)(x)=|g^{-1}x|^s=|g^{-1}|^s|x|^s \quad \forall g\in \mathcal{C}_Q, x\in Y.
$$

We shall think that $|g^{-1}|^s = |g|^{-s}$ is extended as a quasi-character of $\mathcal{C}_{\mathbb{Q}}.$ We may be allowed to think that the quasi-character $|g|^{-s}$ is equivalent to a quasi-character $|g|^{s}.$ We may say that

$$
\text{tr}U|_{L^2(Y)_0} \text{ extends over } \{|a|^s | s(s-1) = \lambda\}.
$$

Moreover,

trU|_{L²(C_Q)} extends over
$$
\{\chi(a)|a|^{1/2} | \chi \text{ is a character of } C_{\mathbb{Q}}\}
$$

and

tr $U|_{\mathcal{H}}$ extends over

 $\{\pi(a)|a|^{1/2} \mid \pi \text{ is the character of } C_{\mathbb{Q}} \text{ which is given by } \eta(x) \in \text{Im}(T)^{0} \}.$

Recall $T(U(g)\xi)(a) = |g|^{1/2}(V(g)T\xi)(a),$ $T(U(g)|\cdot|^s)(a) = |g|^{1/2}(V(g)T|\cdot|^s)(a)$ $= |g|^{1/2}(V(g)) \cdot |^{1/2+s}(a)$ $= |g|^{-s} |a|^{1/2+s}$ $\int g$ ^{$-s$} being equivalent to $|g|^{s}$ $= |g|^{s} |a|^{1/2+s}.$

Thus we see that $\mathrm{tr}U\vert_{L^2(\mathcal{C}_\mathbb{Q})}$ contains $\mathrm{tr}U\vert_{L^2(Y)_0}$ and it also expands over such a quasicharacter as $|a|^s$.

The compactness of *Y* guarantees to compute

$$
\mathrm{tr}\, U(h) = \sum_{p} \int_{\mathbb{Q}_p} \int_{h}^{h} \frac{h(\mu^{-1})}{|1-\mu|} \, d^*\mu \, .
$$

Thus we can say that

$$
\sum_{L(\chi,\rho)=0}\hat{h}(\chi,\rho)=\sum_{\substack{L(\chi,\rho)=0\\ \text{Re}\rho=1/2}}\hat{h}(\chi,\rho).
$$

[Remark] In order to obtain an expected formula like Theorem 3.1, we need the evaluation of a certain *error term*. We shall compare $(U, L^2(Y))$ with $(U, L^2_{\delta}(X))$. For the latter, *U* is also trace-class so that we formally get tr $U(h) = \sum_{k=1}^{\infty} \int_{\mathbb{R}^+} \frac{h(\mu^{-1})}{|h-\mu|} d^*\mu$. However, since $L^2_{\delta}(X)$ is a weighted space L^2 , we can't always obtain the expected formula. On the other hand, in the case of $L^2(Y)$, we can expect to obtain the desired formula. K_v^* 1 – μ $\sum_{v} \int_{K_{v}}^{1} \frac{h(\mu^{-1})}{|1-\mu|} d^{*} \mu$

On the other hand, the compactness must also guarantee $\lambda \le -1/4$. So, we will see a certain relationship between the validity of the Riemann hypothesis and the fact that $\lambda \le -1/4$. We shall suppose that the compactification of $C_{\mathbb{Q}}$ is equivalent to the fact that $\lambda \le -1/4$ for the eigenvalue λ of Δ on X. Then, we may say that the validity of the Riemann hypothesis is equivalent to showing $\lambda \le -1/4$.

We will think of the case $GL_2(\mathbb{Q})\backslash GL_2(A_{\mathbb{Q}}).$

Let (π, V) be an irreducible admissible infinite dimensional representation of $GL_2(A_0)$ with central character ω . Here, ω is a quasi-character of $GL_2(A_0)$ defined by

$$
\pi\left(\left(\begin{array}{cc}a&0\\0&a\end{array}\right)\right)=\omega(a)_{\mathrm{id}}V\qquad a\in A_{\mathbb{Q}}^*.
$$

Suppose that $W(\pi, \, \psi)$ is the ψ -Whittaker model. Let $\,\chi\,$ be <code>a character of $\mathrm{A_{\mathbb{Q}}}^*\!/\mathbb{Q}^*.$ </code> The *Jacquet-Langlands zeta integrals* are defined by

$$
Z(s, W, \chi; g) = \int_{A_{Q}} W\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g\right) \chi(a) |a|^{s-1/2} d^* a
$$

and

$$
Z^{\vee}(s, W, \chi; g) = \int_{A_{\mathbb{Q}}} W\left(\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) g\right) \chi(a) |a|^{s-1/2} \omega^{-1}(a) d^*a.
$$

There exists $s_0{\in}\mathbb{R}$ such that $Z(s,\,W,\,\pmb{\chi};\,g)$ and $Z^\vee\!(s,\,W,\,\pmb{\chi};\,g)$ absolutely converge whenever $\text{Re}(s) > s_0$ for all $g \in GL_2(A_0)$ and $W \in W(\pi, \psi)$. There exists a unique Lfunction $L(s, \pi \otimes \chi)$ ($(\pi \otimes \chi)(g) = \pi(g)\chi(\text{det}g)$) such that

$$
\phi(s, W, \chi; g) = Z(s, W, \chi; g) / L(s, \pi \otimes \chi)
$$

is entire in *s* for all $g \in GL_2(A_0)$ and $W \in W(\pi, \psi)$. Therefore, we may say

$$
Z(s, W, \chi; g) = 0 \Longleftrightarrow L(s, \pi \otimes \chi) = 0.
$$

Moreover, we will see that

$$
Z(s, W, \chi; \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)) = 0 \Longleftrightarrow L(s, \pi \otimes \chi) = 0.
$$

 It must be instructive to compare the *Jacquet-Langlands zeta integral* with the *Tate integral*. The *Tate integral* is defined by

$$
Z(s, \chi, \Phi) = \int_{A_{\mathbb{Q}}} \Phi(a) \chi(a) |a|^{s} d^{*} a
$$

where χ is a character of ${{\rm A}_{{\mathbb Q}}}^*$ and $\varPhi {\in} {\mathcal S}({{\rm A}_{{\mathbb Q}}}).$ We will see that $\varPhi(x)$ corresponds <code>to</code> $|x|^{-1/2}W(\begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix}g).$ 0 1 ⎛ $\left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array}\right)$ ⎠ ⎟

[Remark] We may say that $W(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g) \in L^2(A_0^*/Q^*, d^*x)$. Thus we see that ⎛ $\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right)$ ⎠ ⎟

$$
|x|^{-1/2}W(\begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix}g) \in L^2(A_0/\mathbb{Q}^*, dx).
$$

The *Jacquet-Langlands zeta integral* is defined by

 $Z(s,\,\mathcal{X},\,\,|x|^{-1/2}W(\left[\begin{smallmatrix} x & 0 \ 0 & 1 \end{smallmatrix}\right)g)) = \int_{A\circ} |a|^{-1/2} \, W(\left[\begin{smallmatrix} a & 0 \ 0 & 1 \end{smallmatrix}\right] g) \chi(a) |a|^{s} \, d^{\ast}a \, .$ ⎛ $\left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array}\right)$ $\int_{\rm A\circledcirc}^{\ast}\!|a|^{-1/2}\,W(\tiny\left(\begin{array}{cc}a&0\0&1\end{array}\right)$ ⎛ $\left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right)$ $\int_{{\rm A}^{-}_{\rm Q}}\!\!\!|a|^{-1/2}\,W(\left(\begin{array}{cc}a & 0 \ 0 & 1\end{array}\right)\!g)\boldsymbol{\chi}(a)|a|^{s}\,d^{*}a$

Considering $\phi(s, W; g) = Z(s, W; g) / L(s, \pi)$, of which χ is trivial, we will understand that the L-function $L(s, \, \pi)$ is determined associated with $\;|x|^{-1/2}W(\left[\begin{smallmatrix} x & 0 \ 0 & 1 \end{smallmatrix}\right]g). \;\;$ In $\rm GL_{1}$ case, we may similarly think that there exists a unique L-function $L(s, \pi)$ which is determined associated with a certain $\Phi \in S(A_0)$, and that an L-function $L(s, \pi \otimes \chi)$ is given by $Z(s, \chi, \phi)$. 0 1 ⎛ $\left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array}\right)$ \overline{a}

Set

$$
\phi^{\vee}(s, W, \chi^{-1}; g) = Z^{\vee}(s, W, \chi^{-1}; g) / L(s, \pi^{\vee} \otimes \chi^{-1}).
$$

Here π^\vee is the contragredient representation of π and $\pi^\vee = \omega(\det)^{-1} \pi.$ Then there exists a unique exponential function $\mathcal{E}(s, \pi, \chi, \psi)$ such that

$$
\phi^{\vee}(1-s, W, \chi^{-1}; \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)g) = \varepsilon(s, \pi, \chi, \psi) \phi(s, W, \chi; g).
$$

We shall think of the cuspidal automorphic representation of $GL_2(A_0)$. We may think that a right regular representation (*V*, $L^2(\mathrm{GL}_2({\mathbb Q})\backslash \mathrm{GL}_2(\mathrm{A}_{\mathbb Q}),$ d^*g)) is given.

Theorem 4.1. Let π be a cuspidal automorphic representation of $GL_2(A_0)$. One obtains $\pi \simeq \otimes_{p} \pi_{p}$. We will think of the case where χ is trivial.

(1) The L-function $L(s, \pi)$ has the Euler product:

$$
L(s, \pi) = \prod_p L(s, \pi_p).
$$

(2) There exists a exponential function $\varepsilon(s, \pi, \psi)$, and the functional equation: $L(s, \pi) = \varepsilon(s, \pi, \psi)L(1 - s, \pi^{\vee})$

is satisfied.

Proposition 4.2. Let π be a cuspidal automorphic representation of $GL_2(A_0)$. It has its Whittaker model.

Recall the sequence

$$
0 \to L^2(X)_0 \stackrel{\mathrm{T}}{\to} L^2(C_{\mathbb{Q}}) \to \mathcal{H} \to 0.
$$

We may say that

$$
|x|^{-1/2}W(\left(\begin{array}{cc}x & 0\\ 0 & 1\end{array}\right)g) \in L^2(X, dx)_0.
$$

Think of the pairing $\langle Tf, \eta \rangle$ for $f \in L^2(X, dx)_0$ and $\eta \in (L^2(C_{\mathbb Q}))^*$. Then,

$$
\langle Tf, \eta \rangle = \langle W(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g), \eta \rangle = \int_{-\infty}^{\infty} \int_{A_{Q}^*} W(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g) \chi(a) |a|^{it} \hat{\Psi}(t) d^* a \, dt.
$$

This computation makes us to say that

$$
\eta \in \text{Im}(T)^0 \Longleftrightarrow Z(1/2+it, W, \chi; g) = 0 \Longleftrightarrow L(1/2+it, \pi) = 0 \quad t \in \mathbb{R}.
$$

Therefore, also in GL_2 case, we can give the same spectral interpretation of critical zeros of $L(s, \pi)$.

Expect that $\{|x|^{-1/2}W(\begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} | g) | W \in W(\pi, \psi)\}$ are dense in $L^2(X, dx)_0$. Then we may say that $GL_2(\mathbb{Q})\backslash GL_2(A_{\mathbb{Q}})$ has no complementary series representation, so if $Z(s, W, \chi; g) = 0$ then $s = 1/2 + it$. This must accomplish the spectral interpretation of critical zeros of $L(\mathcal{X}, s)$, and we can confirm the Riemann hypothesis. 0 1 ⎛ $\left(\begin{array}{cc} x & 0 \\ 0 & 1 \end{array}\right)$ ⎠ ⎟

Reference

- [1] A. Connes, Trace Formula in Noncommutative Geometry and the Zeros of the Riemann Zeta Function, *www.math.osu.edu/lectures/connes/zeta.ps*.
- [2] A. Connes, Noncommutative Geometry and Riemann Zeta Function, *www.alainconnes.org/docs/imufinal.pdf*.
- [3] A. Connes, Trace Formula on the Adele Class Space and Weil Positivity, *infolab.stanford.edu/~wangz/project/OLD/hejhal/RH/paper.pdf*.
- [4] Jacquet Langlands, Automorphic Forms on GL2, *sunsite.ubc.ca/DigitalMathArchive/Langlands/pdf/jl-ps.pdf* .

[5] Tasho Statev Kaletha, Automorphic Forms on GL2(A) and their Connection to the Classical Theory, *www.math.uni-bonn.de/people/ag/ga/teaching/seminare/.../gl2.pdf*.

[6] Takeshi Kawazoe, Harmonic Analysis on Groups, *Asakura-shoten, Tokyo, 2000*.

[7] Fiona Murnagham, Representations of locally compact groups-Fall 2013, *www.math.toronto.edu/murnaghan/courses/mat1196/rnotes.pdf*.

[8] Kouichi Takase, Zeta Functions and Trace Formulae, *Mathematical Sciences, Number 429 March 1999*.

[9] J.T. Tate, Fourier Analysis in Number Fields and Hecke's Zeta-Functions, *Trans. Lecture Notes Tohoku Univ. 2004*.

[10] Denis Trotabas, Modular Forms and Automorphic Representations, *math.stanford.edu/~conrad/modseminar/pdf/L10.pdf*.

[11] Hiroyuki Matumoto, The Path Integral and the Trace Formula, *Mathematical Sciences, Number 429 March 1999*.

[12] Masato Wakayama, The Duality of Matter and Wave: an introduction to trace formulae, *Mathematical Sciences, Number 429 March 1999*.

[13] Kouji Shiga, 30 lectures of the eigenvalue problem, *Asakura-shoten, Tokyo, 1999*.

[14] Keiichi Gunji, Automorphic forms and the representation theory, *www.sci.kumamoto-u.ac.jp/~narita/1_Gunji_pre-sumer_school.pd*.

[15] Hilbert Spaces, [www.math.washington.edu/~burke/crs/555/555_notes/](http://www.math.washington.edu/~burke/crs/555/555_notes/hilbert) hilbert*.pdf*.

[16] Touru Nishiyama, The method and thought of the representation theory, *rtweb.math.kyoto-u.ac.jp/preprint/nagoya.pdf*.

[17] Takuya Konno, Automorphic forms on GL2 and L-functions, *www2.math.kyushu-u.ac.jp/~takuya/papers/JLnote.pdf.*