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!!!!!!
    We set the following notation. 
K       a global field 
Ko     a local field, completion of K at the place o of K 
AK     the adele ring of K 
CK     the idele class group GL1(AK)/K 

* 

    the dual group of CK. 

!!!!!!!!!
0. 

!!!
    We will summarize the spectral interpretation of critical zeros of L(|, s)  associat-

ed | of CK  by Alain Connes.  Let h be a test function.  The Weil explicit formula says 
!

� . 

!
Suppose that there exists a representation U of CK, and that 
!

tr U(h) = !  

!
is satisfied.  We see that !

tr U(h) =  

KĈ

h(µ−1)
1− µ

d  *µ
Kν

  *

'
∫  

ν
∑ =  ĥ(0)+ ĥ(1)− ĥ(χ,ρ)

L(χ , ρ ) = 0
∑

h(µ−1)
1− µ

d  *µ
Kν

*

'
∫

ν
∑

ĥ(0)+ ĥ(1)− ĥ(χ,ρ)
L(χ ,ρ )  =  0
∑
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holds.  We can say that critical zeros of L(|, s) appear as the spectra  of  the  opera-
tor U.  It is just the spectral interpretation of critical zeros of L(|, s). 
    Let !

X = AK/K 
*. 

!
The left regular representation U of CK on L2

d 
(X) which is a weighted  L2  space  can 

be used to accomplish our task.  Namely, it holds that !
trU(h) =  - + . 

!
However we will not try to treat the representation (U, L2

d 
(X)) directly.   Instead  of 

the representation (U, L2
d 
(X)), we will think of the operator QKU where U is the left 

regular representation of CK on L2
 
(X).  Because, firstly there is a possibility of using 

some results to compute Trace QKU, secondly we can eliminate the parameter d  of 
L2

d 
(X).  Now, we can show that 

!
         Trace QKU(h) =       K$3 

!!for the function h which belongs to Bruhat-Shwartz space S (CK) of functions on CK. 

    We try to compute Trace QKU(h).  This has the relationship to the validity  of  the 
Riemann Hypothesis.  Suppose that we can compute as follows; !

�  

!
where � .  We obtain a trace formula: 

!
 =  

                                                                                                            K$3 . !
The left side is spectral and the right side is geometrical.  From the Weil explicit  for-
mula, we have seen that !

� . 

!
Therefore, one obtains that !

ĥ(0)+ ĥ(1) ĥ(χ ,ρ)
L(χ , ρ ) = 0
 Reρ  = 1/2

∑ ∞h(1)

ĥ(0)+ ĥ(1)− ĥ(χ,ρ)
L(χ ,ρ )  =  0
 Reρ=1/2

∑ +∞h(1)

Trace  QKU(h) = 2h(1)lo ′g K + h(µ−1)
1− µ

d  *µ + o(1)
Kν

*

'
∫

ν
∑         K→∞

2 lo ′g Λ = d  *λ
λ∈CK , λ∈[Λ−1, Λ ]∫

ĥ(0)+ ĥ(1)− ĥ(χ,ρ)
L(χ ,ρ )  =  0
 Reρ=1/2

∑ +∞h(1) 2h(1)lo ′g Λ + h(µ−1)
1− µ

 

Kν
*

'

∫
ν
∑ d  *µ + o(1)

h(µ−1)
1− µ

d  *µ
Kν

  *

'
∫  

ν
∑ =  ĥ(0)+ ĥ(1)− ĥ(χ,ρ)

L(χ , ρ ) = 0
∑
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� . 

!
It means the validity of  the  Riemann  Hypothesis.   Conversely,  the  validity  of  the 
Riemann Hypothesis implies that !

� . 

!!!

ĥ(χ,ρ)
L(χ , ρ ) = 0
∑  =  ĥ(χ,ρ)

L(χ , ρ ) = 0
 Reρ  = 1/2

∑

Trace  QKU(h) = 2h(1)lo ′g K + h(µ−1)
1− µ

d  *µ + o(1)
Kν

*

'
∫

ν
∑         K→∞
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1. 
!!!
    We try to characterize L-functions from the view of the representation theory. 
     
    We will begin with the local case.  Denote the  set  of  the  irreducible  representa-
tions of Ko

* by Irr(Ko
*).  Let (ro, Vro) be an irreducible representation of Ko

*.  Put 
!

                   ro( f )y = ,      f !S (Ko). 

!
Suppose that trro( f ) can be defined, namely ro( f ) is a trace class operator.  So  we 
may think that there exists a character trro of Ko

*, and 
!

trro( f ) = . 

!
Define the local zeta function as !

Z(s, |, U) = . 

!
Here s ! C, | is a character of Ko

* and U ! S (Ko).  The integral converges at Re(s) > 

0.  The L-factor L(s, |) is defined as Z(s, |, U)/L(s, |) being entire.  We will see that 
the local zeta function associated with ro can be !

Z(s, trro, U) = . 

!
The L-factor L(s, ro) is defined as Z(s, trro, U)/L(s, ro) being entire. 
    Next, we will think of the global case.  It is performed on the adele ring of K.  Set 
!

r = ,        Vr = . 

!
We can obtain an irreducible representation (r, Vr) of AK

*.  Denote the set of the ir-

reducible representations of AK
* by Irr(AK

*).  Suppose that r( f ) where  f ! S (AK)  is 

a trace class operator.  Then trr is given as a character of AK
*.  We  also  obtain  the 

global zeta function !
Z(s, trr, U) = � . 

!
Here U ! S (AK).  We define the L-function associated with r as follows; 

!
L(s, r) = ! . 

!

 f (g)πν (g)y  d  *g
Kν

*∫

  f (g)trπν (g) d  *g
Kν

*∫

 U(g)χ(g) g s d  *g
Kν

*∫

U(g)trπν (g) g s d  *g
Kν

*∫

⊗
ν
πν ⊗

ν
Vπν

Z(s,  trπν ,  U)
ν
∏

L(s,  πν )
ν
∏
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Each L-factor L(s, ro) gives the Euler factor of L(s, r), namely L(s, r) has  the  Euler 
product.  The L(s, r) satisfies the functional equation  which  is  given  by  the  func-
tional equation of the global zeta function.  Thus, L(s, r) is analytically continued to 

the function which is meromorphic in the whole plain C. 

        
    We shall consider an irreducible representation (r, Vr) of CK.  Let  H r  be  a  suit-

able completion of Vr with a certain inner product.  One obtains a  unitary  represen-
tation (r, H r), which is a left regular representation of CK on H r.  We may say  that 

if r ! Irr(CK) then r ! .  Thus, 

!
                       H = ,     H r = . 

!
We know that trr is a character of CK.  We frequently use |  to  denote  a  character 
of CK.  Then, trr = |.  Correspondingly, L(s, r) = L(s, |). 
!
    Lastly we will mention trace formulae.  The trace formula which is given by a  zeta 
function: !

�  

!
is a prototype.  Selberg’s trace formula is that !

� . 

!
There exists an operator M�such that it is commutative with the Laplacian of H. The 
operator is the integral operator which has k(z, w) as an integral kernel 
!

   M( f )(z) = � . 

!
The Selberg’s trace formula gives the explicit formula of Selberg’s zeta function. 
     The trace formula given by Connes is the same type as Selberg’s.  It is that !

� . 

!
Here U(h): Cc

3(X ) $ Cc
3(X ) !

(U(h)p)(x) = ! . 

!
The operator U(h) is the integral operator which has kh(x, y) as an integral kernel 

(U(h)p)(x) = ! .  

KĈ

⊕
π∈ĈK
Hπ  ξ   ξ(g−1x) = π (g)ξ(x),∀g∈CK  { }

   !   
Zero points
"#$ =    !   

Geometrical side
"#$

   !   
Eigenvalues of Laplacian
"#$ =    !   

Geometrical side
"#$

 k(z,  w) f (w)dµ(w)
H∫

   !   
Characters
"#$ =    !   

Geometrical side
"#$

h(g)(U(g)ξ )(x) d  *g
CK∫

kh (x,  y)ξ(y) d  *y
CK∫
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2. 
!!!
    The space S (AK)0 is given as the codimension 2 subspace of S (AK) such that 

!
� . 

!
Let L2(X)0 be the completion of S (AK)0.��We obtain an exact sequence: 

!
�  

!
where , L2(X)/L2(X)0. 

!
[Remark]    is a trivial CK module:	

               T(g)m = m    g!CK , m! .	
� is Tate twist:	

               T(g)m = m  g!CK , m! . !
!
    Here we have to give one’s attention to the space X.  The  space  X  is  a  delicate 

quotient space.  It must be non-compact.  It must be also questionable to think  that  
X contains CK  as a subspace.  However, considering the  construction  of  L2(CK),  if 
we restrict the function in L2(X) to CK then it can be a function on CK.  We  can  also 
obtain the following exact sequence: !

�  

  
where H , L2(CK)/Im(T).  Let U be a left regular representation of CK on  L2(X, dx) 

and V be a left regular representation of CK on L2(CK, d*x).  For  f (x)! L2(X, dx), let 

(Tf )(a) be the restriction of  f (x) to CK.  Then, 
!

(Tf )(a) = uau
1/2

 f (a)     6a!CK . !
Since  dx = , we will understand that (Tf )(a)! L2(CK, d*x).  Set 

!
 (U(g) f )(x) = f (g-1x)     6g!CK, x!X. !

It turns out that !
T(U(g) f )(a) = the restriction of  f (g-1x) 

                                                  = ugu
1/2

(V(g)Tf )(a)           6a, g!CK. !

f (0) = 0,      f (x)dx = 0
X∫

0→ L2 (X)0 → L2 (X)→!⊕!(1)→ 0

!⊕!(1)

!
!

!(1)
g !

0→ L2 (X)0→
T
L2 (CK )→H→ 0

x d  *x
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From this equation, it is that � T(U(g) f )(a) = V(g)(Tf )(a).  For (Tf )(a), 

!
V(g)(Tf )(a) = the restriction of  f (g-1x) 

 = f (g-1a). 

!
From  f !S (AK), we will see that f (x)!L2(X)0,  and  that  f (g-1x)!L2(X)0.  

Thus V(Im(T)) 3 Im(T),  namely Im(T) is an invariant subspace for V.  Now, we  have  
to turn one’s attention to using L2(CK).  Because CK  is abelian locally  compact,  we 
can’t always decompose L2(CK) in the direct sum of  finite  dimensional  subspaces.   
This fact, L2(CK) having no finite dimensional subrepresentation,  is  an  obstacle  to 
our attempt computing the trace of U. 
!
    “The second subtle point is that since CK is abelian and  non  compact,  its  regular 
representation does not contain any finite dimensional  subrepresentation so  that  the 
Polya-Hilbert space cannot be a subrepresentation (or unitary quotient)  of  V.  There 
is an easy way out  which  is  to  replace  L2(CK)  by  L2

d (CK)  using  the  polynominal 
weight (log2 )d/2, i.e. the norm  .”  in A. Connes [2]. 

!Because L2
d 
(CK) is a weighted L2 space, we can decompose it in  the  direct  sum  of 

finite dimensional subspaces.  Let the Hilbert space L2
d 
(X) (d21)  be  the  space  of 

functions on X with the square norm 
!

� . 

!
The Hilbert space L2

d 
(CK ) is obtained from the space of functions  with  the  square 

norm !
�  

!
where we normalize the Haar measure of the multiplicative group CK  
!

� . 

!
We understand that the representation (V, L2

d 
(CK ))  isn’t  unitary  because  of  the 

suffix  (1+(log )2)d/2.  However 

!
               = O((log )d/2)       $ 3. 

!
It is also satisfied that !

             = O((log )d/2)       $ 0. 

g −1/2

g −1/2

a 1/2 g −1/2

g −1/2 g −1/2

a  ξ  

2

δ =  ξ(a) 

2 (1+ log2
 a  )δ /2d  *a

CK∫

 f  δ
2

 =    f (x) 

2 (1+ (log x  )2 )δ /2 dx
X∫

 f  δ
2

 =    f (g) 

2 (1+ (log g  )2 )δ /2d  *g
CK∫

d  *g
g∈[1, Λ]∫ ∼ logΛ          Λ→ +∞

g  

 V (a) δ a a

 V (a) δ a a
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!!
[Remark]      It holds that	

 # (c.(1+(log )2)
d/2

)
1/2.	

Here we may say that � $ 0.  We can compute as follows;	
 # c . (1+(log )2)

d/2
 

moreover,	
 # c

4/d . (1+(log )2).	
Thus,	

 # c
4/d . .	

It turns out that	

# c
4/d

    $ 3  and    # c
4/d

     $ 0.	

We can show that	

 = 
.
	

Therefore,	
!  

 # c    $ 3  and    # c    $ 0.	

!!
!
    We have a following decomposition: !

CK , CK,1 # N. 
!
Here CK,1 is the maximal compact subgroup: { g ! CK | ugu = 1 }  and  N = R*

>0 .  Let 

|
0 be a character of CK,1.  We use  to denote an extension of |0  as a character of 

CK.  Namely, (g) = |0(g); 6g !CK,1.  Here  has  the  form   = |0u .
 u
t
, t!iR.  

Restrict V to CK,1, one decompose L2
d 
(CK ) in the direct sum of the finite dimension-

al subspaces, !
L2

d, |0
 = . 

!
The dual space (L2

d(CK ))
* of  L2

d 
(CK ) can be identified with  L2

-d 
(CK ).  It is also de-

composed in the direct sum of the subspaces, !
L2

-d, |0
 = . 

!
Here, we use the transposed of V 
!

 V (a) δ a
 V (a) δ

 V (a) δ
2 a

 V (a) δ
4/δ a

 V (a) δ
4/δ

(log a )2
1+ (log a )2

(log a )2

 V (a) δ
4/δ

(log a )2 a
 V (a) δ

4/δ

(log a )2 a

 V (a) δ
4/δ

(log a )2

 V (a) δ

 (log a )δ /2
 

⎛

⎝
⎜

⎞

⎠
⎟

4/δ

 V (a) δ

 (log a )δ /2
 

a  V (a) δ

 (log a )δ /2
 

a

!χ0
!χ0 !χ0 !χ0

 ξ ∈L2
δ (CK )  ξ(a−1g) = χ0 (a)ξ(g)   ∀g∈CK  ∀a∈CK , 1{ }

 ξ ∈L2
−δ (CK )  ξ(ag) = χ0 (a)ξ(g)   ∀g∈CK  ∀a∈CK , 1{ }
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(V 
x
(a)h)(x) = h(ax);    h(x) ! (L2

d(CK))*. 

!!
    The pairing between L2

d 
(CK) and its dual (L2

d 
(CK))* = L2

-d 
(CK ) is given by 

!
G f, h H = ! . 

!
We can obtain the following exact sequences: !

 . 

!
Let !

Im(T)0 = . 

!
It holds that !

                          h(x) ! Im(T)0  ,  = 0,  6f ! S (AK)0 . 

!
For h(x) ! L2

-d, |0 
, we may think that it has the form: 

!
h(x) = (x) W(uxu). 

!
Now !

W(uxu) =  

!
where �  = ! .  Thus, 

!
h(x) = ! ;     h(x; t) = ! . 

!
Then, !
                     h(x) ! Im(T)0 , G Tf, h H = 0 

                   , !  = 0 

   ,  = 0,  6f ! S (AK)0 . 

!!
As the consequence of Tate’s work, !!!

f (x)η(x) d  *x
CK∫

0→ Lδ
2 (X)0→

T
Lδ
2 (CK )→H→ 0

 η ∈(L2
δ (CK ))*   〈Tf ,  η〉 = 0,    ∀f ∈S (AK )0  { }

Tf (a)η(a) d  *a
CK∫

!χ0

Ŵ(t) x it d t
−  ∞

∞

∫
Ŵ(t) W(a) a it d  *a

CK∫

η(x;  t)d t
−  ∞

∞

∫ !χ0 (x)  x  

it
Ŵ(t)

Tf (a) !χ0 (a)  a  

it
Ŵ(t)d t

−  ∞

∞

∫  d  *a
CK∫

Tf (a) !χ0 (a)  a  

it
Ŵ(t) d  *a

CK∫−  ∞

∞

∫  dt
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!!!
Lemma 2.1.           For Re(s)>0, and any character |0

 of CK, 

,   6 f ! S (AK)0.	

Here, D’ S ( f ) is a holomorphic function of s ( Re(s)>0 ). 

!!!
From this lemma, we can say that !

h(x)! Im(T)0  ,  L( , 1/2 + t) = 0;  t ! i R. 

!
    Here H , L2

d(CK)/Im(T).  Think of the left regular representation W of CK on H : 

(W , H), where one deduces W from V .  Restrict W to CK,1, one decompose H in the 

direct sum of the subspaces, !
                   H =       d(|0)13    

!
where H |

0
 =  and we denote the dimension of H |

0
  by 

d(|0).  We will also consider its dual.  We obtain the transposition  W 
x
 of  CK  on  H*: 

(W 
x , H*), where one deduces W 

x from  V 
x.  Now, let h be a test function on  CK   and 

set !
W(h) = ! . 

!
Denote h’s Fourier transform by : !

� . 

!
Recall !

H* , (L2
d(CK)/Im(T))* , Im(T)0, 

!
moreover !

trW = trW 
x. 

!
We can compute !
                     �  = !  

                                                       = !  

Tf (a)χ0 (a) a s−1/2 d  *a =  L(χ0,  s) ′Ds (  f  )
CK∫

!χ0

⊕
χ0∈ĈK , 1

d(χ0 )Hχ0

 ξ   W (a)ξ = χ0 (a)ξ,   ∀a∈CK , 1{ }

h(g)W (g) d  *g
CK∫

ĥ

ĥ(χ,  z) = h(µ)χ(µ) µ z d  *µ
CK∫

h(g)(V τ (g)η)(x) d  *g
CK∫ h(g)(V τ (g) η( ;  t)d t)(x)

−  ∞

∞

∫  d  *g
CK∫

h(g) !χ0 (g)  g  

it !χ0 (x)  x  

it
Ŵ(t)d t d  *g

−  ∞

∞

∫CK∫
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                               = ! , 

thus !
G Tf, (V 

x
(h)h)(x) H =  

                            = ! . 

!
If h(x)! Im(T)0 then G Tf, (V 

x
(h)h)(x) H = 0, 6f ! S (AK)0.  Therefore, (V 

x
(h)h)(x)! 

Im(T)0.  The above computation shows that 
!

              L( , 1/2 + t) = 0;  t !  iR. 

!
So, we see that !

trW(h) = ! . 

!
Let  |0! .  Recall  = |0u .

 u 
t
 (t ! C).  The action of CK on H |

0
 can be W(g)p = 

(g)p, and it turns out that W(g)p =u gu
t
p; g ! N.  So it is satisfied that 

!
             # ,    g ! CK. 

!
Let W|

0
 = WuH|0

  and  et = g (g ! N).  We will rewrite the action of N on H|
0
 as  

!
W|

0
(et):  R  $  H|

0
. 

!
The following things 
  
   (a)        W|

0
(e0) = 1, 

   (b)       W|
0
(et+s) = W|

0
(et)W|

0
(es) 

!
are satisfied.   Thus W|

0
(et) is a semi-group.   From the theory of semi-group, we can 

say that !
W|

0
(et) = etD|0 

where 

                    D|
0
p =             p!H|

0
. 

!
The operator D|

0
 has discrete spectra.  We may think that the discrete  spectrum  is 

given by the element p which belongs to Im(T)0. 

ĥ( !χ0,  it) !χ0 (x)  x  

it
Ŵ(t)d t

−  ∞

∞

∫

Tf (a) ĥ( !χ0,  it) !χ0 (a)  a  

it
Ŵ(t)d t

−  ∞

∞

∫  d  *a
CK∫

Tf (a) !χ0 (a)  a  

it ĥ( !χ0,  it)Ŵ(t)d  *a
CK∫−  ∞

∞

∫  dt

ĥ( !χ0,  ρ) !χ0

ĥ( !χ0,  ρ)
L( !χ0 , 1/2+ρ )  =  0
            ρ∈iR

∑

ĈK , 1
!χ0

!χ0

g  

Re(ρ )
 W (g) δ

lim
t → 0+

Wχ0
(et )ξ −Wχ0

(e0 )ξ
t

�11



    Let  be the unique extension of |0! to CK  which is equal  to  1  on  N.   We 

see that  | = u .
 u

it0
 (t0 ! R) for | ! .  Then  L(|, 1/2+it) = L( , 1/2+i(t0+t)). 

Thus, as the extension of |0, we will use the above unique extension . 

!!!
Theorem 2.1.       |0! , d >1.  Then D|

0
 has discrete spectra, spD|

0
 1 iR is the 

set of imaginary parts of zeros of  the  L  function  with  Grossencharacter  which 
have real part equal to 1/2; !

         t ! spD  ,  L( , 1/2+t) = 0 and t ! iR, where  is the unique  
                    extension of |0

 to CK  which is equal to 1 on N. 

Moreover the multiplicity of t in spD is equal to the largest  integer  of  ,  n # 

multiplicity of 1/2+ t as a zero of L. !!!
The action of N is that 
!

W|
0
(et)p = uet

u
t
p =  ettp. 

!
Then, !

� . 

!
Therefore, t is the spectrum of D|

0
.  Consider 

!
�   (a > 0)  and  �     (a < 0). 

!
Because  # ; g ! CK,  if  Re(t) > 0  or  Re(t) < 0  then  each  of  them 

conflicts with !
                      = O((log )d/2)       $ 3 

or 

                      = O((log )d/2)       $ 0 

!
Therefore, it is that t = it (t ! R).  Thus,   

!
 =  |0u .

 u
it         t ! R. 

!

!χ0 ĈK , 1

!χ0 ĈK
!χ0
!χ0

ĈK , 1

!χ0

!χ0 !χ0

n < 1+δ2

Dχ0
ξ  =  dWχ0

(et )ξ
dt

 
t =  0

 =  ρξ

lim
g→∞

g α

log g
= ∞ lim

g→0

g α

log g
= ∞

g  

Re(ρ )
 W (g) δ

 V (a) δ a a

 V (a) δ a a

!χ0
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We  see  that  D|
0
 has  a  purely  imaginary  spectrum,   so  we  obtain  the  following 

corollary. !!!
Corollary 2.2.   For any Shwarzt function h!S (CK) the operator  

in H is of trace class, and its trace is given by !!
trW(h) = !  

where the multiplicity is counted as in Theorem 2.1. and where Fourier transform �  

of h is defined by � . !!!
    We can obtain the following exact sequences: !

�  

and 

� . 

!
We will compute trU(h) for (U, L2

d 
(X)) from spectral side.  From the above first se-

quence, considering Lefchetz  formula, we will see that 
!

A = trUO L2
d(X)0

 - trUO L2
d(X) + trUO . 

!
From the second sequence, we will obtain !

A’ = trUO L2
d(X)0

 - trUOL2
d(CK) + trUOH. 

!
Therefore, it is satisfied that !

trUO L2
d(X)  =  trUO - trUOH + trUOL2

d(CK)  + A’ - A. 

!
We try to compute trU (h) spectrally.  Here, 
!

U (h) = ! . 

!
The first term  trUO  gives 

!
� . 

!

h(g)W (g) d  *g
CK∫

ĥ( !χ0,  ρ)
L( !χ0 , 1/2+ρ )  =  0
           ρ∈iR

∑

ĥ
ĥ(χ,  z) = h(µ)χ(µ) µ z d  *µ

CK∫

0→ Lδ
2 (X)0 → Lδ

2 (X)→!⊕!(1)→ 0

0→ Lδ
2 (X)0→

T
Lδ
2 (CK )→H→ 0

!⊕!(1)

!⊕!(1)

h(g)U(g) d  *g
CK∫

!⊕!(1)

ĥ(0)+ ĥ(1)

�13



Considering that T(U(g)p)(a) = ugu
1/2(V(g)Tp)(a), 

!
UOL2

d(CK) is (u・u
1/2V, L2

d 
(CK)) and  UOH is (u・u

1/2V, Im(T)0). 

!
So we will understand that the second term gives !

� � . 

!
Finally, the term trUOL2

d(CK) + A’ - A gives .  Thus, 

!
trU(h) =  - + . 

!!!

ĥ( !χ0,ρ)
L( !χ0 , ρ )  =  0
  Reρ  =  1/2

∑

∞h(1)

ĥ(0)+ ĥ(1) ĥ( !χ0,ρ)
L( !χ0 , ρ )  =  0
  Reρ  =  1/2

∑ ∞h(1)
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3. 
!
!!
    We try to compute trU geometrically. 
!
    Let S be a finite set of places of K containing all infinite places.  Set 
!

AS = #  and  JS = #  

!
where Ro is the ring of integers of Ko.  The S-units of K is given by 
!

O 
*
S = JS+K 

*. 

!
The idele class CK is embedded in CS = JS/O 

*
S  and  XS = AS/O 

*
S plays the same roll 

as X.  We will think of L2
 
(XS) which is obtained by a completion of S (AS).  Let 

!
                RK = K PK,            K ! R+ . 

!
Here PK is the orthogonal projection onto the subspace, 
!

PK =  

!
while K = F PK F 

-1
 where F is the Fourier transform. 

!!!
Theorem 3.1.       For any h!S C (CS), one has 

�  

where � . 

!!!
    Let |0  be  a  character  of  CS,1  which  is  the  subgroup: { g ! CS | ugu = 1 }.   The  

Hilbert space L2
 
(XS) is decomposed in the subspace, 

!
L2

 
|0 = . 

!
Let US be the image in CS of the open subgroup  PRo

*.  Fix a character | of  US,  and 

think of |0 whose restriction to US is equal to |.  Set 

Kν
ν∈S
∏ Rν

ν∉S
∏ Kν

*

ν∈S
∏ Rν

*

ν∉S
∏

P̂

 ξ ∈L2 (XS )  ξ(x) = 0,   ∀x,   x  > Λ  { }
P̂

Trace(RΛU(h)) =  2 lo ′g (Λ)h(1) +  h(µ−1)
1− µ

d  *µ  
Kν

*

'
∫

ν∈S
∑ +  o(1)      Λ→∞

2 lo ′g (Λ) =  d  *λ
λ∈CS ,  λ  ∈[Λ−1,  Λ]∫

 ξ ∈L2 (XS )  ξ(a−1x) = χ0 (a)ξ(x)   ∀x ∈XS,  a∈CS, 1{ }

�15



!
L2(XS)| = . 

!
We can find h| !S (CS) such that !

Supp(h|) = US      h|(x) = m (x)  6x ! US 

!
where the constant m  is  determined  by  corresponding  normalization  of  the  Haar 
measure on CS. 

    Let  BK = Im(PK)+Im( K ) be the intersection of the ranges of the projection PK 

and K.  We will think of BK
| which is the intersection of  BK with  L2(XS)|.   For each 

character | of US, we can find a vector h| ! L2(XS)| such that 

!
                               U(g)(h|) ! BK       g ! CS , K

-1
 #ugu# K. 

!
Then BK

| is given as the linear span of U(g)(h|): !
                 BK

| =      DS = CS/US. 

!
Set !

                 (BK
|)0 = The whole of  . 

!
It turns out that  (BK

|)0 3 BK
| 3 L2(XS)|.  We may say  that  (BK

|)0  is  dense  in  BK
|.  

So, from the compactness of  ,  we  can  consider  that  BK
|  is  a 

vector space which has a countable basis at  most.  It  must  be  hard  to  show  that 

 BK
| = L2(XS)|  for sufficient large K.  We will replace RK by  the  orthogonal  projec-

tion QK on  Im(PK)+Im( K ).  Suppose  that  BK
| = L2(XS)|  for  sufficient  large  K.   

Then we can identify trRKU with trQKU of (U, L2
 
(XS)).  From the  Theorem 3.1.,  we 

can show the following. !!
Corollary.   Let QK be the orthogonal projection on the subspace of L2

 
(XS) spann-

ed by the  f !S  (AS), which vanish as well as Fourier transform for u xu >K.  Let  h!
S  (CS) have compact support.  Then when K $ 3, one has 

Trace(QKU(h)) =  

where � . 

!!

 ξ ∈L2 (XS )  ξ(a−1x) = χ(a)ξ(x)   ∀x ∈XS ,  a∈US{ }

χ

P̂

P̂

  λgU(g)(ηχ )
      g∈DS  g∈ [Λ−1, Λ]

∑

 λgU(g)(ηχ )
g∈DS  g∈ [Λ−1 , Λ] : finite sum

∑

g∈CS   Λ−1 ≤  g  ≤ Λ{ }

P̂

2h(1)lo ′g (Λ) +  h(µ−1)
1− µ

d  *µ
Kν

*

'
∫

ν∈S
∑  +  o(1)

2 lo ′g (Λ) =  d  *λ
λ∈CS ,  λ  ∈[Λ−1,  Λ]∫
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!
We can get from the above corollary an S-independent global formulation: 
!

  �  

!
where QKU is a trace class operator for (U, L2(X)). 
!
    In order to obtain the identification of trQKU with trRKU,  we  have  to  show  that 

BK
| = L2(XS)|  for sufficient large K.  If CS  is compact then  the  compactness  must 

be sufficient for us to show the equation.  If CK were compact,  we  could  show  the 
validity of the  Riemann hypothesis. !!
    So it must be interesting to think of the compactification of  CK.  With  this  inter-
est, we will examine the space Y = AK /K.  As the same way in the case of X, we  can 

obtain L2(Y ) and L2(Y )0.  We will think of the case K = Q.  It holds that 

  
AQ  = # [0, 1) + Q  and  AQ 

* = ( # R*
>0) $ Q* . 

!
Thus, it turns out that !

Y = AQ /Q  , # [0, 1]  and  CQ = AQ
*

 / Q* , # R*
>0 . 

!
Think of r 7 2/r tan(r)-1; r!R*

>0, it must be allowed to say that 

!
R*

>0 is embedded in [0, 1]. 

!
Thus, 

CQ is embedded in # [0, 1]. 

!
It may be allowed to say that !

Y = ! j  

!
and that �  consists of the boundary of Y.  Denote it by 2Y.  It must cor-

respond to # {1}.  Let 

!
CQ = # (0, 1]. 

!
We will think that CQ is the compactification of CQ.  We expect that CQ fills the same 

role of CQ. 

Trace  QKU(h) = 2h(1)lo ′g K + h(µ−1)
1− µ

d  *µ + o(1)
Kν

*

'
∫

ν
∑         K→∞

Z p
p  < ∞
∏ Z p

*

p  < ∞
∏

Z p
p  < ∞
∏ Z p

*

p  < ∞
∏

Z p
*

p  < ∞
∏

 x ∈Y    x  <1 { }  x ∈Y    x  = 1 { }

 x ∈Y    x  = 1 { }
Z p

*

p  < ∞
∏

Z p
*

p  < ∞
∏
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    We can obtain an exact sequence: !
� �  

!
where H , L2(CQ)/Im(T).  Let U be a left regular representation of CQ  on  L2(Y, dx) 

and V be a left regular representation of CQ on  L2(CQ , d
*x).   One  deduces  the  left 

regular representation W of CQ on H from V.  One may be allowed to say  that  CQ  is 

compact because it must be complete and totally bounded.  So one can decompose 
L2(CQ ) in the direct sum of 1-dimensional subspaces, 

!
L2

|0
 = . 

!
The dual space (L2(CQ ))

* of L2(CQ ) can be identified with L2(CQ ). 

!!!
[Remark]    The left regular representation U of CQ on L2(Y, dx) isn’t unitary.  But the left regular 
representation T of Y on L2(Y, dx): !

              (T(g)p)(x) = p(-g+x)    g, x ! Y !
is unitary.  Because Y is abelian and compact, we obtain the following decomposition:	!!

�               � 	!
where T| is 1- dimensional representation.	!!!
Here Y is compact.  Thus the following formula: 
!

trUO L2(Y)0  
= trUOL2(CQ) - trUOH + A 

!
becomes meaningful. !
    Now, our problem is to compute trUO L2(Y)0

.  Basically, we may think that this prob-

lem is how to construct L2(Y )0.  Set 
!

D = !  

!
which is a differential operator on Y.  We shall think of the eigenvalue problems: 
!

Dp - mp = 0,   p(x) = 0 on 2Y 

!
on the analogy of Sturm-Liouville problem.  Recall that the action of CQ on the  func-

tions on Y is 

0→ L2 (Y )0→
T
L2 (CQ )→H→ 0

 ξ ∈L2 (CQ )  ξ(a−1g) = χ0 (a)ξ(g)   ∀g,  a∈CQ  { }

L2 (Y ) = ⊕
χ∈Ŷ

Lχ
2 (Y ) Tχ =T Lχ

2 (Y )

 x  

2 d  2

dx2
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!
 (U(g)z)(x) = z(g-1x)     6g!CQ, x!Y. 

!
It turns out that U(g) and D are commutative.  Hence they shares the same eigen-

space.  We try to construct the L2(Y )0 space as the space of eigenfunctions of D. 

!!!
[Remark]      One computes	!

(U(g) z)(x) = (U(g) )(x) = (g-1x). !
It holds that dgx = ugud x, so	!

(U(g)z)(x) = z(g-1x) =  z(g-1x) 

                                       = (g-1x). !!
[Remark]          The D becomes a differential operator on X.  Since dg-1x = ug-1udx, if one restricts U 

to CK,1 then = .   Namely,  is invariant  under  the  action  U(g); 6g!CK,1.  Thus,  the 
Laplacian  is CK,1 — invariant.	

    If we can show that the Laplacian  is CK — invariant then we can say that U(g); 6g!CK is  iso-

metry, namely unitary.  On the other hand it does not always mean that U(g);6g!CK is unitary.       !!!
Considering = , it turns out that 

!
� = �  +!  = ! +! . 

!
One compute !

�  + !  = ! . 

!
We can write that !  = ! .  From the boundary condition, it holds  that 

!
! = 0. 

!
Therefore, we obtain !

 = - . 

 x  

2 d  2

dx2  ⋅  

2 ′′z  g−1x  

2
′′z

 x  

2 d  2

dx2  x  

2 d  2

dx2   x  

2 d  2g−1x
dx2

d  2

d g−1x( )2

 g−1x  

2
′′z

d(g−1x)  dx   dx  

d  2

dx2

d  2

dx2

′′ξ λ ξ
 x  

2

′ξ  ξ( )′ ′′ξ  ξ ′ξ  ′ξ λ ξ  ξ
 x  

2 ′ξ  ′ξ

′ξ ′ξ dx
Y∫ λ ξ  ξ

 x  

2Y∫  dx ′ξ ξ( )
Y∫

′dx

′ξ ξ( )
Y∫

′dx ′ξ ξ dx
∂Y∫

′ξ ξ dx
∂Y∫

′ξ ′ξ dx
Y∫ λ ξ  ξ

 x  

2Y∫  dx
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!
Here � , �  $ 0.  Thus, m # 0.  Write a function p(x) on Y 

!
             p(x) = p(ut)     u! , t![0, 1]. 

!
We will compute as follows. !
(a)                                                               � x = t. 

(b)                                                p(x) = p(x) = t p’(x). 

!!!!!
[Remark]      From the definition, the following things are satisfied.	!
(a)                                                            dx = du dt, so  = dt.	

(b)                                                       p(x) = p(x) = p’(x)dt. 

!!!
It holds that  = t2 , so we see that  uuu

2  = uuu
2 t2 = uxu

2 .   Thus,  we  

can identify D with ! .  We will think of the eigenvalue problems: 

!
p(x) - mp(x) = 0. 

!
Let !

h(u) = 
.
 

!
Then we can interpret the eigenvalue problems as the following problem; !

           h(u) - mh(u) = 0,    h(u) = 0 on . 

!
Here we will identify  with 2Y. 

!!

′ξ ′ξ dx
Y∫

ξ  ξ
 x  

2Y∫  dx

Z p
p  < ∞
∏

∂
∂u

∂
∂u

∂x
∂u

∂
∂x

dx
du

d
du

dx
du

d
dx

∂2

∂u2
d 2

dx2
∂2

∂u2
d 2

dx2
d 2

dx2

u 2 ∂2

∂u2

u 2 ∂2

∂u2

ξ(u0)  i i i    u ∈ Z p
*

p<∞
∏

ξ(u1)   i i i      otherweise

⎧

⎨
⎪

⎩
⎪

u 2 ∂2

∂u2
Z p

*

p  < ∞
∏

Z p
*

p  < ∞
∏
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[Remark]          Here,	!
p(x) = uuu

2
utu

2 p’’(ut).	

From the above definition of h(u), let  	
h’’(u) = u0u

2p’’(u0)  6u!   and   h’’(u) = u1u
2 p’’(u1)  6ug .	

Then we can say that p(x) gives h(u).	!!!!
We can show that m # 0.  Here, think of the heat equation: 
!

. 

!
Let hm(u) be an eigenfunction of  with eigenvalue m.  Then, e-mt hm(u) is a par-

ticular solution.  We obtain general solutions !
p(x) = ! . 

Here, cm is the constant.  There exists some  function,  called  heat  kernel,  p(t, n, o) 

on Y 
2 and we can say that 

!
p(ut) = ! . 

!
From the theory of semi-group, it holds that  !

!  = ! . 

!!
    We can say that such a function h(u) associated with uxus  
!

u・u
s(u) =  

!
is an eigenfunction of D with eigenvalue m = s(s-1) # 0.  It must be allowed that 

!
L2(Y ) is decomposed in the subspace {cu・u

s | c!C}. 

!

u 2 ∂2

∂u2

Z p
*

p<∞
∏ Z p

*

p<∞
∏

u 2 ∂2

∂u2
u 2 ∂2

∂u2

∂
∂t
ξ(ut) = u 2 ∂2

∂u2 ξ(ut)

η(u) = ξ(u0) = 0     on Zp
*

p  <  ∞
∏

⎧

⎨
⎪⎪

⎩
⎪
⎪

u 2 ∂2

∂u2

cλ ⋅e−λtηλ (u)
λ
∑

 p(t,u,v)η(v)dv
Y∫

e− tλ

λ
∑  p(t,u,u)du

Y∫

u0 s  ...  u ∈ Z p
*

p<∞
∏

u1 s  ...  oherweise

⎧

⎨
⎪

⎩
⎪
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Here u0us = 0, so we can say that u・u
s
!L2(Y )0.  Moreover,  since  L2(Y )  is  a  Hilbert 

space, {u・u
s} is discrete.  Now 

!
                      (U(g)u・u

s)(x) = ug-1xu
s = ug-1u

s
 uxu

s         6g!CQ, x!Y. 

!
We shall think that ug-1u

s = ugu
-s  is extended as a quasi-character of CQ.  We may be 

allowed to think that the quasi-character ugu
-s is equivalent to a quasi-character ugu

s.  

We may say that !
 trUO L2(Y)0

 extends over {uau
s |  s(s-1) = m} . 

!
Moreover, !

trUO L2(CQ) extends over {|(a)uau
1/2 |  | is a character of CQ } 

!and !      trUOH extends over  

{r(a)uau
1/2 |  r is the character of CQ which is given by h(x)! Im(T)0

 }. 

!
Recall T(U(g)p)(a) = ugu

1/2(V(g)Tp)(a), 
  

T(U(g)u・u
s)(a) = ugu

1/2(V(g)Tu・u
s)(a) 

                            = ugu
1/2(V(g)u・u

1/2+s)(a) 

            = ugu
-s

uau
1/2+s 

  ugu
-s  being equivalent to ugu

s 

            = ugu
s
uau

1/2+s. 
!
Thus we see that trUO L2(CQ) contains trUO L2(Y)0

 and it also expands over such a quasi-

character as uau
s. 

!
    The compactness of Y guarantees to compute 
!

tr U(h) = ! . 

!
Thus we can say that !

� . 

!!!!

h(µ−1)
1− µ

 d  *µ
Qp

*

'
∫

p
∑

ĥ(χ,ρ)
L(χ , ρ ) = 0
∑  =  ĥ(χ,ρ)

L(χ , ρ ) = 0
 Reρ  = 1/2

∑
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[Remark]       In order to obtain an expected formula like Theorem 3.1., we need the evaluation of a 	!certain error term.  We shall compare (U, L2(Y )) with (U, L2
d(X)).  For the latter, U is also trace-class 	!

so that we formally get trU(h) = .  However, since L2
d(X) is a weighted space L2, we	

can’t always obtain the expected formula.  On the other hand, in the case of L2(Y ), we can expect to 
obtain the desired formula.	!!!
On the other hand, the compactness must also guarantee m # -1/4.  So, we will  see 

a certain relationship between the validity of the Riemann  hypothesis  and  the  fact 
that m # -1/4.  We shall suppose that the compactification of CQ is equivalent to the 

fact that m # -1/4 for the eigenvalue m of D on X.  Then, we may say that the validi-

ty of the Riemann hypothesis is equivalent to showing m # -1/4. 

!!

h(µ−1)
1− µKν

*

'
∫  d  *µ

ν
∑
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!
    4. 

!!!
    We will think of the case GL2(Q)=GL2(AQ). 

!
    Let  (r, V )  be  an  irreducible  admissible  infinite  dimensional  representation  of 

GL2(AQ) with central character ~.  Here, ~ is a quasi-character of  GL2(AQ)  defined 

by !
                   = ~(a) idV       a!AQ

*. 

!
Suppose that W(r, }) is the }-Whittaker model.  Let  |  be  a  character  of  AQ

*/Q*.  

The Jacquet-Langlands zeta integrals are defined by 
!

Z(s, W, |; g) =  

and 

         Z 
0
(s, W, |; g) = . 

!
There exists s0!R such that  Z(s, W, |; g)  and  Z 

0
(s, W, |; g)  absolutely  converge 

whenever Re(s)>s0 for all g!GL2(AQ) and  W!W(r, }).   There  exists  a  unique  L-

function L(s, r7|) ( (r7|)(g) = r(g)|(detg) ) such that 
!

               z(s, W, |; g) = Z(s, W, |; g)/L(s, r7|) 

!
is entire in s for all g!GL2(AQ) and W!W(r, }).  Therefore, we may say 

!
    Z(s, W, |; g) = 0 , L(s, r7|) = 0. 

!
Moreover, we will see that !

Z(s, W, |; ) = 0 , L(s, r7|) = 0. 

!
    It must be instructive to compare the  Jacquet-Langlands zeta integral  with  the 
Tate integral.  The Tate integral is defined by 
!

Z(s, |, U) =  

!
where | is a character of AQ

* and U!S(AQ).  We will see that  U(x)  corresponds  to 

uxu
-1/2W( g). 

π a 0
0 a

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

W a 0
0 1

⎛
⎝⎜

⎞
⎠⎟
g

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ χ(a) a s−1/2 d  *a

AQ
*∫

W a 0
0 1

⎛
⎝⎜

⎞
⎠⎟
g

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ χ(a) a s−1/2ω −1(a) d  *a

AQ
*∫

1 0
0 1

⎛
⎝⎜

⎞
⎠⎟

U(a)χ(a) a s d  *a
AQ

*∫

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟
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!!
[Remark]          We may say that W( g)!L2(AQ

*
/Q

*
, d 

*x).  Thus we see that	!
uxu

-1/2W( g)!L2(AQ/Q
*
, d x).	!The Jacquet-Langlands zeta integral is defined by	!

Z(s, |, uxu
-1/2W( g)) = .	!!!

Considering z(s, W; g) = Z(s, W; g)/L(s, r), of which | is trivial, we  will  understand 

that the L-function L(s, r) is determined associated with  uxu
-1/2W( g).   In  GL1 

case, we may similarly think that there exists a unique L-function L(s, r) which is de-
termined associated with a certain U!S(AQ),  and  that  an  L-function  L(s, r7|)  is 

given by Z(s, |, U). 
    Set !

                      z0
(s, W, |-1; g) = Z 

0
(s, W, |-1; g)/L(s, r

0
7|-1). 

!
Here r0 is the contragredient representation of r  and  r0 = ~(det)-1r.   Then  there 
exists a unique exponential function f(s, r, |, }) such that 
!

   z0
(1 - s, W, |-1; g) = f(s, r, |, }) z(s, W, |; g). 

!!!
    We shall think of the cuspidal automorphic representation  of  GL2(AQ).   We  may 

think that a right regular representation (V, L2(GL2(Q)=GL2(AQ), d 
*g)) is given. 

!!!
Theorem 4.1.      Let r be a cuspidal automorphic representation of GL2(AQ).  One 
obtains r - .  We will think of the case where | is trivial. 

!
(1)    The L-function L(s, r) has the Euler product: !

L(s, r) = Pp L(s, rp). !
(2)    There exists a exponential function f(s, r, }), and the functional equation: ! L(s, r) = f(s, r, })L(1 - s, r0) !
is satisfied. !!!

a 0
0 1

⎛
⎝⎜

⎞
⎠⎟

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟

a −1/2W ( a 0
0 1

⎛
⎝⎜

⎞
⎠⎟
g)χ(a) a s d  *a

AQ
*∫

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟

0 1
−1 0

⎛
⎝⎜

⎞
⎠⎟

⊗pπ p
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Proposition 4.2.      Let r be a cuspidal automorphic representation of GL2(AQ).  It 

has its Whittaker model. !!!
Recall the sequence !

� . 

!
We may say that !

uxu
-1/2W( g)!L2(X, d x)0. 

!
Think of the pairing  GTf, hH for  f !L2(X, d x)0 and h!(L2(CQ ))

*.  Then, 

!
GTf, h H = GW( g), h H = . 

!
This computation makes us to say that !

         h! Im(T)0 , Z(1/2+it, W, |; g) = 0 , L(1/2+it, r) = 0   t!R. 

!
Therefore, also in GL2 case, we can give the same spectral interpretation  of  critical 
zeros of L(s, r).  
!
    Expect that {uxu

-1/2W( g) | W!W(r, })} are  dense  in  L2(X, d x)0.  Then  we 

may say that GL2(Q)=GL2(AQ) has  no  complementary series  representation,  so  if 

Z(s, W, |; g) = 0 then s = 1/2+it.  This must accomplish the spectral  interpretation 
of critical zeros of L(|, s), and we can confirm the Riemann hypothesis. 
!!!

0→ L2 (X)0→
T
L2 (CQ )→H→ 0

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟

a 0
0 1

⎛
⎝⎜

⎞
⎠⎟

W ( a 0
0 1

⎛
⎝⎜

⎞
⎠⎟
g)χ(a) a itΨ̂ (t)d  *a

AQ
*∫−  ∞

∞

∫  dt

x 0
0 1

⎛
⎝⎜

⎞
⎠⎟
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