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Abstract

Fermat’s zero theorem is stated as follows: It is impossible to separate a square
of a difference of two natural numbers into two squares of differences, or a
cube power of a difference into two cube powers of differences, or a fourth
power of a difference into two fourth powers, or in general, any power higher
than the first, into two like powers of differences.
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Introduction
Around 1637, Fermat wrote his Last Theorem in the margin of his copy of the
Arithmetica next to Diophantus’ sum-of-squares problem:

It is impossible to separate a cube into two cubes, or a fourth power into
two fourth powers, or in general, any power higher than the second, into
two like powers. | have discovered a truly marvelous proof of this, which
this margin is too narrow to contain.

Fermat proofed the case n=4, as described in the section Proofs for specific

exponents.
Andrew Wiles proofed the Fermat last theorem using a 20th-century technique.

Discussion

Fermat’s zero theorem is stated as follows: There are no triple of distinct natural

numbers (a,b,c) with (a<b<c) satisfying (c—a)=(c-b)+(b—a) also satisfying

(c-a)"=(c—h)" +(b—a)" for a natural number n>1.

| discuss proofs for natural numbers n=1,2 and n=3of the equation
(c-a)"=(c-h)"+(b-a)"

where (a,b,c)with (a<b<c) are natural numbers.
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(1) n=1
It is obvious that every triple of natural numbers (a,b,c) with(a<b <c), satisfy
(c—a)'=(c—b)+(b-a)

Cc-a

Natural numbers line

(2) Proof of n=2
We have
(c—a)’=(c—b)?*+(b-a)’
Expanding both sides
c? —2ac+a’ = (c* —2bc+b?) + (b* —2ab + a%)
=¢®-2bc+b? +b* —2ab+a’
=¢* —2bc+ 2b® —2ab + a?
=c’-2(c+a)b+2b° +a’
Cancelling similar terms on both sides and rearranging
2ac—2(c+a)o+2b°=0
Dividing both sides by 2, and rearranging
b’ —(a+c)b+ac=0
It is a quadratic equation which has solutions
b +(a+c)+4/(a+c)’ —4ac
2
_ +(a+c)£~/a? +2ac+c? —4ac
2
_ +(a+c)tva®—2ac+c’?
2
B +(a+c)im
2
_+Ha+c)x(a-c)
2

_+(a+c)+(a—c)_§_a or b_+(a+c)—(a—c)_£_c
2 2 2 2

Forn=2 triples of natural numbers (a,b,c)with (a <b <c)are not distinct.
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Practical example for n=2
It is true that (5)* = (3)° +(4)?, putting (c—a)=5, (c—b)=3 and (b—-a)=4, gives
the result 5=7.

(3) Proof of n=3
We have
(c—a)’=(c-b)’+(b-a)’
Expanding both sides
¢® —3c’a+3ca’—a’ =(c® —3c’b +3cb® —b%) + (b® —3b%*a + 3ba® —a°)
=c®-3c®h +3ch?-b* +b*—3b’a+3ba’ —a’
=c®—-3c’b+3ch*-b®+b® -3b*a+3ba* -a’
=c’-3(c* -a’)b+3(c—a)p’-a’
Cancelling similar terms on both sides and rearranging
3c’a—3ca’ —-3(c* —a’)b+3(c—a)b* =0
3ca(c—a)—-3(c*—a*)b+3(c-a)h’=0
3ca(c—a)-3(c—-a)(c+a)b+3(c-a)’=0
Dividing both sides by 3(c-a), and rearranging
b’ —(c+a)b+ca=0
This is the same as in casen=2. The values of b are either a or c.
Forn=3 triples of natural numbers (a,b,c)with (a <b <c)are not distinct.

(4) Proof for n=4
We have
c* —4c’a+6c%a’* —4ca’ +a* = (¢* —4c’h + 6¢b® —4ch® +b*) + (b* —4b%a + 6b%a* — 4ba® +a’)
=c* —4c’0 +6¢°h® —4chb® +b* +b* —4b’a +6b*a’* —4ba’ + a’
=c* - 4(c® +a’)b+6(c* +a*)b* —4(c+a)b® + 2b* +a*
Cancelling similar terms on both sides and rearranging
4c’a—6c°a’ +4ca’ —4(c® +a’)b+6(c’ +a*)b* —4(c+a)b® +2b* =0
Dividing both sides by 2, and rearranging
b* —2(c+a)b® +3(c* +a’)b* —2(c* +a’)b+ 2c’a—3c%a’ + 2ca’® =0
It is a quartic equation which has same solutions as for the cases of n=2and
n=3 as can be easily checked by direct substitution of b=a or b=cin the

quartic equation above.
All higher powers give the same result.

Conclusion
The differences of natural numbers have interesting properties as the natural
numbers themselves.
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