Fermat's theorem. Proof by 2 operations

<u>The essence of the contradiction</u>. The hypothetical Fermat's equality is contradictory between the second digits of the factors of the number *A*.

All calculations are done with numbers in base n, a prime number greater than 2. <u>The notations</u> that are used in the proofs: A', A'' – the first, the second digit from the end of the number A; A_2 is the two-digit ending of the number A (i.e. $A_2=A \mod n^2$);

Consider the Fermat's equality in the base case (its properties $2^{\circ}-3^{\circ}$ are proved here: <u>http://vixra.org/abs/1707.0410</u>) for co-primes positive *A*, *B*, *C*; *A*' \neq 0, prime n, n>2:

1°) $A^n = C^n - B^n$ [=(C-B)P], where (as is known)

2°) *A*′≠0, *C*-*B*=*a*^{*n*}, *P*=*p*^{*n*}, *A*=*ap*, *p*′=1, *a*′≠0, *a*^{*n*}′=*a*′, *a*′^{*n*-1}′=1 (Fermat's small theorem);

3°) (*A*+*B*-*C*)₂=0, from here

 $(ap)_2 = a^{n_2}$ and therefore

3b°) $p_2 = a^{n-1}_2$.

4°) If *p*′′=0, then we multiply term by term equality 1° by such g^{nn} , that p''≠0.

Properties 2°-3° are preserved, and we leave the notation of the numbers as before.

And now **the proof itself FLT**.

We represent the endings a a_2 and p_2 in the form: $a_2=(xn+a^m)_2$ and $p_2=p''n+1$, where x and y are digits. First we substitute these values of the endings in the left-hand side of the equality $3a^\circ$:

5°) $[(xn+a^m)(p''n+1)]_2=a^m_2$, from here

 $5a^{\circ}$) $(a^{m}p^{m}n+xn)_{2}=0$, or (see 2°) $a^{n}p^{m}+x=0 \pmod{n}$.

Now, we substitute the value of a_2 in the right-hand side of the equality $3b^\circ$:

6°) $(xn+a^{n})^{n-1} = [(n-1)xna^{n-2}+1]_2 = (-nxa^{n-2}+1)_2 = (-nxa^{n-1}/a^{n-1}/a^{n-1}/a^{n-1})_2$. From 3b° we have:

6a°) $-xa'^{n-1}/a' + p'' = 0 \pmod{n}$, or $-xa'^{n-1} + a'p'' = 0 \pmod{n}$, or $-x + a'p'' = 0 \pmod{n}$,

It follows from $5a^\circ$ and $6a^\circ$ that x=y=0, which contradicts to 2° and 4° . From this contradiction follows the truth of the FLT.

(Mezos, France. 4 September 2017)