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Abstract6

The Stirling thermodynamic heat engine cycle is modified, where instead of an ideal gas,7

a real, supercritical, monatomic working fluid subjected to intermolecular attractive forces8

is used. The potential energy of real gases is redefined to show it decreasing with tem-9

perature as a result of the attractive Keesom forces, which are temperature dependent.10

This new definition of potential energy is used to thermodynamically design a Stirling cycle11

heat engine with supercritical xenon gas, and an engine efficiency that exceeds the Carnot12

efficiency is demonstrated. The change in internal energy predicted is compared to ex-13

perimental measurements of condensing steam, xenon, argon, krypton, nitrogen, methane,14

ethane, propane, normal butane, and iso-butane, and the close match validates this new def-15

inition of temperature-dependent real gas potential energy, as well as the thermodynamic16

feasibility of the modified supercritical Stirling cycle heat engine.17
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1 Introduction18

From well before recorded human history, man has quested for different sources of energy19

for survival and comfort. Today, the need for useful energy plays a role in almost all aspects20

of society. Certainly, there is a benefit to having an efficient source of mechanical energy.21

When designing an engine, heat pump, or other thermodynamic cycle, one can not get22

around the laws of thermodynamics. Prevalent is the first law [1–4], which stipulates the23

conservation of energy; no energy can be created or destroyed. The second law is a result24

of the fact that heat can only flow from hot to cold, and not cold to hot; as a result, heat25

transfer processes ultimately result in thermodynamic disorder known as entropy throughout26

the universe [1–4]. These two natural limitations have to be recognized in the design of a27

thermodynamic machine to achieve a net mechanical work output.28

2 Existing Definition of Internal Energy Model29

The kinetic model of an ideal gas [3, 5] is a well-established model to predict the kinetic30

energy of an ideal gas. Internal energy, by definition, is the summation of the kinetic energy31

from all of the random molecular motion within a fluid, as well as any potential energy from32

intermolecular forces. In the kinetic model, the gas is assumed to be ideal, where there is33

no potential energy, and the equation of state is [1–4,6]34

P ·v = R·T, (1)

where P (Pa) is the pressure, v (m3/kg) is the specific volume, T (K) is the absolute35

temperature, and R (J/kg·K) is the specific gas constant, where36

R =
Ru
Mm

, (2)
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where Mm (kg/M) is the molar mass, and Ru is the universal gas constant (8.314 J/M·K)37

defined as38

Ru = A·κ, (3)

where A is Avogadro’s Number 6.02214·1023, and κ is Boltzman’s Constant 1.38·10−2339

(J/K). For the kinetic model to be applicable, the gas must be ideal, where all of the40

molecules are moving independent of each other, and there is no interaction between different41

gas molecules, either by collision or intermolecular forces [3].42

The internal energy of an ideal gas is comprised solely of the kinetic energy and is only43

affected by the temperature. For a real gas, however, the intermolecular forces affect the44

behavior of the molecules [1–4, 7]. The impacts of these forces increase as the molecules45

move closer together, and as the specific volume v (m3/kg) of the fluid decreases. The46

current equation for the change in specific internal energy u (J/kg) for a real gas is based47

on the assumptions of entropy [1, 2]48

δu = CV ·δT + {T ·(∂P
∂T

)
V
− P}·δv, (4)

where CV (J/kg·K) is the specific heat capacity at a constant volume. For a monatomic49

fluid, the specific heat capacity is50

CV =
3

2
·R.

The derivation of equation 4 originates from the first law of thermodynamics. The first law51

of thermodynamics states that energy can not be created or destroyed, and that the change52

in internal energy equals the heat and work input into the working fluid [1–4]53

δu = q − δw, (5)

where δu (J/kg) is the change in specific internal energy, q (J/kg) is the specific heat54
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transfered, and w (J/kg) is the specific work applied across the boundary [1–4]55

δw = P ·δv. (6)

The change in entropy δs (J/kg·K) is defined as [1–4]56

δs =
q

T
, (7)

where T (K) is the absolute temperature, and q (J/kg) represent the heat transfered per57

unit mass. This equation is the basis for the second law of thermodynamics, as it represents58

the disorder generated by a heat transfer process. It is a fundamental law of the universe59

that heat always flows from a hot source to a cold sink, and never from the cold to the hot60

object. The simple reason for this is the fact that due to kinetic theory [2, 3], the square61

root of the temperature is proportional to average velocity of a particle vm (m/s)62

vm =

√
3·κ·T
mm

, (8)

where κ represents the Boltzman’s Constant and mm (kg) is the mass of a molecule. When63

there is heat transfer, the higher velocity particle from the hotter matter transmits energy64

when it impacts the lower velocity molecule. The significance of equation 7 is that it defines65

the idealized Carnot efficiency ηC of a heat engine [2]66

ηC =
Wout

Qin
=
Qin −Qout

Qin
= 1− TL

TH
, (9)

where Wout (J/kg) is the net work output, Qin (J/kg) and Qout (J/kg) are the heat input67

and output at the hot TH (K) and cold TL (K) temperatures, and ηC represents the efficiency68

of a heat engine where there is no increase in entropy δs = 0,69

δs =
Qin
TH
− Qout

TL
= 0,

Qout
Qin

=
TL
TH

,
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and thus70

ηC =
Qin −Qout

Qin
= 1− Qout

Qin
= 1− TL

TH
.

A Carnot heat pump is simply a Carnot heat engine in reverse, and thus the Coefficient of71

Performance (COP) where δs=0 is72

COPC =
1

ηC
=
Qout
Win

=
1

1− TL

TH

. (10)

If a heat pump were designed so that the heat output would entirely supply the heat input73

of a heat engine, and then the work output of the heat engine would supply the work input74

of a heat pump, this system would run indefinitely provided that75

ηHE ≥ 1

COPHP
, (11)

and if equation 11 does not hold true (as has been consistently observed to date), then a76

work input will be constantly needed to keep the heat-pump-heat-engine system running.77

Since heat always flows from hot to cold, for this system to be possible the temperate range78

of the heat pump must be equal or greater than that of the heat engine79

TH,HE ≤ TH,HP ,

TL,HE ≥ TL,HP ,

and therefore if both the heat pump and heat engine maintained the ideal Carnot COP80

and efficiency, and the temperature difference was minimized so that TH,HE = TH,HP and81

TL,HE = TL,HP , then ηHE = 1/COPHP . If the heat pump or the heat engine ever exceeded82

the Carnot efficiency, then ηHE>1/COPHP and the system could obtain useful work from83

the ambient temperature, without the need for a temperature differential. In practice, as84

the efficiency of all heat engines and the COP of all heat pumps built to date are less than85

the ideal Carnot, ηHE<1/COPHP , and a work input is needed to continually operate the86
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system.87

Using equation 7, the first law can then be written as88

δu = T ·δs− P ·δv. (12)

Expanding the partial derivatives of the entropy yields89

δs = (
∂s

∂T
)V ·δT + (

∂s

∂V
)T ·δv, (13)

and due to the symmetry of the second derivative of the Helmholtz free energy [2, 3]90

(
∂s

∂V
)T = (

∂P

∂T
)V . (14)

By plugging equation 14 into equation 13, and then plugging equation 13 into equation 12,91

and then defining the specific heat capacity92

T ·( ∂s
∂T

)V ·δT = (
q

T
)V ·δT = CV ·T , (15)

one can get equation 4.93

One of the earliest equations of state is Van der Waals (VDW) equation [1–3,8, 9]94

(P +
a

v2
)·(v − b) = R·T, (16)

where P (Pa) is the pressure, v (m3/kg) is the specific volume, R (J/kg·K) is the specific95

gas constant, T (K) is the absolute temperature, and a (Pa·m6/kg2) and b (m3/kg) are the96

gas specifics VDW constants, where97

a =
27·R2·Tc2

64·Pc
= 3·v2c ·Pc, (17)

b =
R·Tc
8·Pc

=
vc
3
,

where Pc (Pa), Tc (K), and vc (m3/kg) are the critical pressure, temperature, and specific98
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volume, where the first and second derivative of the pressure as a function of volume are99

zero100

(
∂P

∂v
)
T

= (
∂2P

∂v2
)
T

= 0,

and at temperatures greater than Tc, gas is the only possible phase of the fluid.101

If the VDW equation of state were plugged into equation 4 to find the change in internal102

energy [1, 2]103

δu = CV ·δT +
a

v2
·δv. (18)

This equation represents the change in kinetic energy as a function of temperature CV ·δT ,104

and potential energy as a function of volume a
v2 ·δv, for the total change in internal energy105

∆u (J/kg)106

∆u =

∫ T2

T1

CV ·δT +

∫ v2

v1

a

v2
·δv., (19)

= CV ·(T2 − T1) + a·( 1

v1
− 1

v2
).

The first term represents the kinetic portion of the internal energy, whereas the second term107

represents the potential energy.108

3 Supercritical Stirling Cycle Heat Engine109

The ideal Stirling heat engine, with an ideal gas as its working fluid, is as efficient as110

the Carnot efficiency. A Stirling engine cycle is defined by isothermal compression at the111

cold sink (stage 1-2), isochoric heating from the cold to the hot temperature (stage 2-3),112

isothermal expansion at the hot source (stage 3-4), and isochoric cooling back from the hot113

temperature to the cold temperature (stage 4-1). In order that the ideal gas Stirling Engine114

achieve the same efficiency as the Carnot efficiency, there must be perfect regeneration from115

the isochoric cooling to the isochoric heating. This is thermodynamically possible (though116
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difficult in practice) as the specific heat of an ideal gas is constant regardless of volume,117

and thus Q23 = Q41 over the same temperature range. Provided there is this perfect118

regeneration, Qin = Q34 and Qout = Q12. For an ideal gas subject to the equation of state119

defined in equation 1 undergoing isothermal expansion [2], the heat input qδT=0 (J/kg)120

qδT=0 = R·T ·log(
V2
V1

), (20)

and thus the efficiency of an ideal gas Stirling Engine is121

η = 1–(
Qout
Qin

) = 1–(
Q12

Q34
) = 1–(

R·TL·log(V2

V1
)

R·TH ·log(V2

V1
)
) = 1–(

TL
TH

),

which is the Carnot efficiency defined in equation 9.122

Equation 20 no longer applies when a working fluid is no longer an ideal gas (equation123

1) but a real fluid subjected to intermolecular forces such as the Van der Waal forces. In124

addition to the Van der Waal equation of state (equation 16), there are several empirical125

equations of states for real gases that are far more accurate, including the Redlich-Kwong126

[10], Peng–Robinson [11, 12], and Benedict–Webb–Rubin [2, 13, 14]. One of these equations127

of state, or preferably direct experimental measurements, is necessary in order to properly128

design a real-life heat engine utilizing a real working fluid subjected to intermolecular forces.129

The author proposes a hypothetical, novel definition of the change in internal energy130

for a real fluid undergoing isothermal compression and expansion, very different from the131

currently accepted definition defined in equation 4, and applied to the Van der Waal equation132

of state in equation 18-19. One contribution to the Van der Waal intermolecular forces is due133

to electrostatic interactions between charges in molecular ions, dipoles for polar molecules,134

quadrupoles for all molecules with symmetry lower than cubic, and permanent multipoles [7].135

These forces are referred to as the Keesom force, named after Willem Hendrik Keesom [15].136

These forces are inversely proportional to the temperature of the fluid, and thus it stands137

to reason that the total attractive component of the intermolecular forces can be defined as138

a ≈ a′√
T
. (21)

8



If equation 21 were plugged into equation 19 for the change in internal energy, for isothermal139

(∆T = 0) compression and expansion140

∆u =
a′√
T
·( 1

v1
− 1

v2
), (22)

a′ =
R2·T 2.5

c

9·(2 1
3 − 1)·Pc

.

It must be noted that a′ is the exact same equation for the attractive component of the141

intermolecular forces defined with the Redlich-Kwong [10] equation of state. Just like gravity142

has been observed to be an entropic force [16–21], it can be expected that this temperature-143

sensitive attractive intermolecular force can impact the entropy generated as a result of144

thermodynamic processes involving real working fluids, and possibly improve the efficiency145

of a thermodynamic cycle.146

The author proposes a Stirling engine, using supercritical xenon gas as the working147

fluid. The reduced specific volume at top and bottom dead center are VR = 0.83701 and148

VR = 8.3701, whereas the reduced specific temperatures are TR = 1.029 and TR = 1.7193149

at the low and hot temperature range. Xenon has a molar mass of 131.3 g/mole, a critical150

pressure of 5.84 MPa, a critical temperature of 289.734 K, and a critical specific volume151

of 0.91 cm3/g [22]; therefore the temperature of this Stirling engine ranges between 25◦C152

and 225◦C, and the specific volume ranges between 0.76161 cm3/g and 7.6161 cm3/g. The153

intermolecular attractive parameter a’ defined in equation 22 (and also in the Redlich-154

Kwong [10] equation of state) is thus 419.3652 Pa·K0.5·m6·kg−2 for xenon. Using referenced155

experimental P ·v·T data from 1951 tabulated in Table 1 [22, 23], the pressures can be156

obtained, and are both plotted on Figure 1 and the values at each stage is tabulated in157

Table 2.158

By integrating the pressure and the change in volume during the isothermal stage 1-2159

and stage 3-4, the work (equation 6) input Win (J/kg) and output Wout (J/kg) can be160
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determined161

Win = 27, 135,

Wout = 67, 152,

and by using the proposed equation 22 for the change in internal energy during isothermal162

compression δu12 (J/kg) and isothermal expansion δu34 (J/kg)163

δu12 = 28, 700,

δu34 = 22, 203,

the isothermal heat output Q12 (J/kg) and input Q34 (J/kg) can be determined164

Q12 = Win + δu12 = 55, 835,

Q34 = Wout + δu34 = 89, 355,

This engine assumes perfect regeneration, where all of the heat output from isochoric cooling165

Q41 (J/kg) is used for isochoric heating Q23 (J/kg). This is extremely difficult to practically166

implement, but absolutely possible thermodynamically. For an ideal gas Q23 = Q41; for a167

real gas this is not the case. In order to determine the difference in heat needed from the168

hot source169

δQ23 = Q23 −Q41 = Q12 −Q34 +Wout −Win = 6, 497,

and this additional heating requirement can be used to find the heat input Qin (J/kg) and170

output Qout (J/kg) of this engine171

Qin = Q34 + δQ23 = 95, 852,

Qout = Q12 = 55, 835.
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The heat input and output can be used to find the thermodynamic efficiency of this heat172

engine173

ηHE = 1− Qout
Qin

= 1− 55, 835

95, 852
= 41.749%,

which exceeds by 4% the theoretical Carnot efficiency defined in equation 9174

ηC = 1− TL
TH

= 1− 1.029

1.7193
= 40.149%.

This Stirling cycle example demonstrates that, provided the theoretical description for175

the change in internal energy of a real fluid during isothermal compression or expansion176

defined in equation 22 is valid, a heat engine that exceeds the Carnot efficiency defined in177

equation 9 is possible. An engine that exceeds the Carnot efficiency would, by definition,178

reduce the net entropy of the universe δsu < 0. If equation 22 held true, it would mean that179

the intermolecular Van der Waal forces, in-particular the temperature-sensitive attractive180

Keesom forces [7, 15] can reduce the net global thermodynamic entropy.181

4 Experimental Verification182

The author claims that equation 22 is in fact a valid description of the change in internal183

energy of a real fluid during isothermal compression or expansion, based on an abundance184

of experimental data available within the literature, specifically due to experimental mea-185

surements of the enthalpy of vaporization for a variety of fluids. One limitation of all of the186

existing equation of state functions are that they cannot be used to represent the change in187

the fluid from liquid to gas. For example, following the van der waal equation of state, for188

a constant temperature, the pressure will increase with decreasing volume, but decreasing189

in the rate of increase until eventually the pressure will decrease with decreasing volume,190

until it reaches an inflection point, and eventually the decreasing pressure stops, and the191

pressure increases dramatically with decreasing volume; this fluid is a liquid at this point.192

It is physically impossible for a stable pressure decrease with decreasing volume, and this193
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is not observed experimentally. Once the gas is compressed isothermally to the point it is194

saturated, further isothermal compression will maintain a constant pressure, and the fluid195

will exist as two stable states of liquid and gas. The internal energy u (J/kg), enthalpy h196

(J/kg), entropy s (J/kg·K), and specific volume v (m3/kg) are proportional to the quality197

of the liquid [1, 2]198

u = (1− χ)·uliquid + χ·ugas, (23)

h = (1− χ)·hliquid + χ·hgas,

s = (1− χ)·sliquid + χ·sgas,

v = (1− χ)·vliquid + χ·vgas,

where χ is the quality, the mass ratio of the gas in the mixture199

χ =
massgas

massliquid +massgas
. (24)

This sudden change in the equation of state at the point of phase change from liquid to200

gas is explained with Maxwell’s Construction. For two phases of a fluid to remain stable201

together, the Gibbs Free energy G (J/kg) remains constant for both the liquid and gas state202

of the fluid. The Gibbs Free energy is defined as [1–4]203

G = u+ P ·v − T ·s, (25)

= A+ P ·v,

= h− T ·s,

where A (J/kg) is the Helmholtz free energy. Another feature of Maxwell’s Construction is204

that the total work applied from the liquid to gas phase equals the value of the equation of205

state [1, 2]206

∫ vgas

vliquid

PEoS ·dv = PV ·(vgas − vliquid),
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where PEoS (Pa) is the pressure as defined by the equation of state of the fluid, and PV (Pa)207

is the constant pressure of condensation and vaporization, and therefore measurements of208

the enthalpy of vaporization can be used as a valid measurement for the change in internal209

energy of a real fluid, simply by subtracting the work applied on the fluid210

δu = HV − PV ·(vgas − vliquid) (26)

In 1938, an effort by the National Bureau of Standards was made to experimentally211

measure the enthalpy of vaporization of water, ranging from 0◦C to 200◦C [24]212

HV = 2500.5− 2.3233·(T − 273.15)− 10χ, (27)

χ = 5.1463− 1540/T .

The saturated pressure was obtained with the Goff Gratch equation from 1946 [25], and213

specific volumes for saturated liquid water and saturated gaseous steam were obtained by214

using published data [26–28].215

Steam has a critical pressure of 22.064 MPa, a critical temperature of 647.14 K, a molar216

mass of 18.02 g/mole, and a critical density of 322 kg/m3 [29]. The intermolecular attractive217

parameter a’ defined in equation 22 (and also in the Redlich-Kwong [10] equation of state) is218

thus 4.3971·104 Pa·K0.5·m6·kg−2. The functions of both the experimental change in specific219

internal energy from equation 26 utilizing the empirical equation 27 for the value of HV , and220

the calculated change in specific internal energy defined in equation 22, is plotted in Figure221

2. The mean error between these two data functions is 4.6472%; the maximum error of all222

the data points is 10.7343%. The coefficient of determination value of these two functions223

is R2 = 0.99691, demonstrating that these two functions match remarkably, and providing224

experimental validation to equation 22.225

In addition to water, experimental measurements of the enthalpy of vaporization for226

argon, krypton, and xenon [30,31] have been published, along with the pressure and specific227

volumes measured during evaporation. Utilizing the published critical properties for these228
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noble gases [2, 14, 32–34] to solve equation 22, the results have been tabulated in Table229

3, and a remarkable match has been observed for all three noble gases, providing further230

experimental validation to demonstrate that equation 22 is applicable for real fluids in231

general, and not just steam.232

Finally, thermodynamic tables based on existing experimental measurements were previ-233

ously published for xenon [22], argon [14], nitrogen [35], methane, ethane, propane, normal234

butane, and iso-butane [36], to realize the equation of state and enthalpy of vaporization of235

these fluids. In all of these fluids, the change in internal energy closely matches with the236

predicted change in internal energy for isothermal expansion as defined by equation 22. The237

results are plotted in figure 3, and tabulated in Table 4. All of the results show little error,238

and the error is overwhelmingly near the triple point when the fluid is about to solidify.239

The error is close to negligible for hotter temperatures. This demonstration experimentally240

validated equation 22 as an accurate representation of the isothermal change in internal241

energy for ten different fluids.242

5 Conclusion243

This effort has demonstrated that the change in internal energy of a real fluid undergo-244

ing isothermal compression or expansion will be inverse proportional to the square root245

of the temperature, as defined in equation 22. This is validated by significant experimen-246

tal data available in the literature regarding the enthalpy of vaporization of ten different247

fluids, including steam, xenon, argon, krypton, nitrogen, methane, ethane, propane, and248

both normal and iso-butane. It can reasonably be assumed that equation 22 is applicable249

for super-critical fluids, and it was used to find the change in internal energy during the250

isothermal compression and expansion of a Stirling cycle heat engine utilizing supercritical251

xenon gas as a working fluid. This heat engine, which used actual experimental measure-252

ments for the pressure, rather than an equation of state, was predicted to have a theoretical253

efficiency that exceeded the Carnot efficiency by 4%. With this redefined change in internal254

energy, it can be inferred that the temperature-dependent Keesom intermolecular attrac-255
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tive force can have the effect of limiting the random possible states of fluid molecules and256

reducing the net thermodynamic entropy in the universe.257
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v (cm3/g) 25◦C 225◦C

7.6161 2.1727 3.9934
5.0774 3.0438 5.8897
3.8081 3.7861 7.7319
3.0465 4.4114 9.5302
2.5387 4.9315 11.295
2.1760 5.3573 13.0388
1.9040 5.7028 14.7664
1.6925 5.9782 16.4967
1.5232 6.195 18.2369
1.2694 6.497 21.8082
1.0880 6.6844 25.5886
0.9520 6.8212 29.7186
0.8462 6.9509 34.3188
0.7616 7.1313 39.7052

Table 1: Experimental pressure data (in MPa) of supercritical xenon gas as a function of
specific volume v (cm3/g), for both a constant temperatures of 25◦C and 225◦C collected
in 1951 [22,23].

Stage P (MPa) v (cm3/g) T (◦C) PR vR TR
1 2.1727 7.6161 25 0.37204 8.3701 1.029
2 7.1313 0.76161 25 1.2211 0.83701 1.029
3 39.7052 0.76161 225 6.7988 0.83701 1.7193
4 3.9934 7.6161 225 0.6838 8.3701 1.7193

Table 2: Pressure, Specific Volume, and Temperature for the Stirling cycle heat engine
utilizing supercritical xenon gas as the working fluid, and the referenced experimental P ·v·T
data from 1951 [22,23] tabulated in Table 1.

Fluid Argon Argon Argon Argon Krypton Xenon

T (K) 129.4 139.833 145.372 87.29 119.93 165.13
P (bar) 19.68 31.44 39.28 1.01 1.03 0.39

Vl (cm3/g) 0.93 1.06 1.18 0.72 0.41 0.34
Vg (cm3/g) 9.97 5.65 3.99 173.42 113.51 100.05

Exp Hv (kJ/kg) 110.55 85.27 64.08 163.126 107.748 96.24
P*dV (kJ/kg) 17.79 14.43 11.07 17.475 11.609 3.852

Exp δu (kJ/kg) 92.765 70.84 53.01 145.65 96.14 92.39
Theory δu (kJ/kg) 90.95 69.07 52.43 157.98 106.66 95.67

Error (%) 1.99 2.56 1.10 7.80 9.86 3.43
Reference [30] [30] [30] [31] [31] [31]

Table 3: Comparison of the predicted change in internal energy δu (kJ/kg) with equation
22 with the experimentally measured enthalpy of vaporization of monatomic fluids argon,
krypton, and xenon [30,31].
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Fluid Mean % Error Max % Error R2 Reference
Steam 4.6471 10.7326 0.99692 [24,26]
Xenon 3.2529 10.767 0.98877 [22]
Argon 3.2749 10.4469 0.98952 [14]

Nitrogen 4.9127 9.1253 0.98538 [35]
Methane 4.9672 16.3029 0.97713 [36]
Ethane 7.9522 20.4914 0.95352 [36]
Propane 8.8375 16.0174 0.96625 [36]

Iso-Butane 10.9058 16.8838 0.96608 [36]
Normal Butane 10.9574 17.111 0.96377 [36]

Table 4: Tabulated percent error and coefficient of determination R2 between the pre-
dicted change in internal energy δu (kJ/kg) with equation 22 with the empirically de-
rived thermodynamic tables to determine the enthalpy of vaporization of ten different flu-
ids [22,24,26,35,36].

Figure 1: Pressure vs Specific Volume for the Stirling cycle heat engine utilizing supercritical
xenon gas as the working fluid, and the referenced experimental P ·v·T data from 1951
[22,23]. The diamonds represent experimental data points tabulated in Table 1.
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Figure 2: Change in internal energy δu (kJ/kg) during vaporization of steam, both the
calculated internal energy change with equation 22, as well as the experimental data that
forms the basis of empirical equation 27. The change in internal energy was found from the
enthalpy using equation 26.
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Figure 3: Change in internal energy δu (kJ/kg) of (a) xenon [22], (b) argon [14], (c) nitrogen
[35], (d) methane, (e) ethane, (f) propane, (g) normal butane, and (h) iso-butane [36],
during vaporization, both the calculated internal energy change with equation 22, as well
as published empirical equations for the enthalpy of vaporization.
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