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ABSTRACT 

 

It is known to experts, that in the nonlinear regression analysis, because numerous curve 
fitting methods exist, which allow the statistician to cook up the data according to what 
he/she wants to see. Such a deep problem in nonlinear regression methods will be 
discussed in particular in the context of analyzing Hubble diagram from various existing 
data. It is our aim to distinguish the raw data and foregone conclusions, in order to arrive 
at a model-independent conclusion. As a preliminary remark, we deem that it remains 
possible that the Hubble law exhibits nonlinearity, just like proposed by Segal & Nicoll 
long time ago.  More researches are needed to verify our proposition. 
   

 
1. Introduction: finding the best way for nonlinear regression 

Modern measurement techniques allow researchers to gather ever more data in less time. 

In many cases, however, the primary or raw data have to be further analyzed, be it for the 

verification of a quantitative model (theory or hypothesis) thought to describe 

experimental data, quantitative comparison with other data, better visualization or simply 

data reduction. To this end, a wealth of information collected during a measurement or a 

series of measurements has to be reduced to a few characteristic parameters. This can be 

done by regression analysis, a statistical tool to find the set of parameter values that best 

describes the experimental data by assuming a certain relationship between two or more 

variables.[3] 
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But we should always remember the saying of Mark Twain in Chapters from My 

Autobiography, published in the North American Review in 1906. "Figures often beguile 

me," he wrote, "particularly when I have the arranging of them myself; in which case the 

remark attributed to Disraeli would often apply with justice and force: 'There are three 

kinds of lies: lies, damned lies, and statistics.'"[1] 

The above saying seems to be quite relevant in the nonlinear regression analysis, because 

numerous curve fitting methods exist, which allow the statistician to cook up the data 

according to what he/she wants to see. 

Two of the sources of such a problem especially in nonlinear curve fitting, are namely: 

Gauss-Newton method and also model indeterminacy. Yes, there are new methods such 

as Levenberg-Marquardt algorithm for nonlinear regression, but it seems such an 

algorithm will not be free from problems arising from model indeterminacy. 

Such a deep problem in nonlinear regression methods will be discussed in particular in 

the context of analyzing Hubble diagram from various existing data. It is our aim to 

distinguish the raw data and foregone conclusions, in order to arrive at a model-

independent conclusion. As a preliminary remark, we deem that it remains possible that 

the Hubble law exhibits nonlinearity, just like proposed by Segal & Nichols long time 

ago. 

Nonetheless, this is only an early investigation. More researches and observations are 

recommended to verify our propositions. 

  
2. Neutrosophic regression and fundamentals of regression analysis 

Quantitative experiments aim at characterizing a relationship between an independent 

variable (x), which is varied throughout a measurement, and a dependent variable (yobs), 
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which is observed/measured as a function of the former. The fitting method presented in 

this protocol requires that the independent variable can be measured with much greater 

precision than the dependent variable1. In other words, experimental errors 

(uncertainties) in the independent variable are small compared with errors in the 

dependent variable (see below). This is usually the case with experiments in which the 

value of the independent variable follows a predetermined trajectory and the 

experimental readout reports on the value of the dependent variable. The primary output 

of a measurement is a set of conjugated independent and dependent variables, which is 

called data or dataset. In addition to an experimental dataset, regression analysis requires 

a regression equation (also termed fitting function). This is a mathematical relationship 

describing the dependence of the dependent variable on the independent variable using 

one or more parameters. These parameters (also called adjustable parameters, fitting 

parameters or coefficients) are the same for every data point, i (i.e., every combination of 

xi and yi). In the simplest example of a proportionality (y = a × x), the only parameter, a, 

is the slope of a straight line through zero.[3]  

According to FS [2], the Neutrosophic Least-Squares Lines that approximates the 

neutrosophic bivariate data ( 1, 1),( 2, 2),… ,( 𝑛, 𝑛) has the same formula as in 

classical statistics  

̂= + x                                                                                                                        (1) 

where the slope  

=Σ −[(Σ )(Σ )/𝑛]Σ 2−[(Σ )2/𝑛]                                                             (2) 

and the y – intercept  

 = ̅− ̅                                                                                                         (3) 



4 | P a g e  

 

with ̅ the neutrosophic average of x, and ̅ the neutrosophic average of y.[2] 

While Smarandache meant his approach can be used for analyzing neutrosophic sets, in 

this paper we consider it is possible to use this approach of neutrosophic regression for 

analyzing astronomical data, such as Hubble data. 

To include error and indeterminacy in our linear regression model we can rewrite 

equation (1) as follows: 

 ̂= +( +ε+i x                                                                                                    4  

Where ε and i represent error and indeterminacy in the data. 

Of course, this simple linear regression will be more complicated when we start to 

analyze nonlinear data. The problems is seemingly more acute if we want to 

determine purely from data, when they start to become nonlinear. 

We should keep in mind that for nonlinear data, there are a number of methods we 

can use: 
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Many software exist for least square fitting of both linear and nonlinear data, 

including NLREG and also Solver function in MS Excel. Besides, there are other ways 

such as Python and also Mathematica. Nonlinear pattern recognition may also be 

done by employing more modern approaches such as neural network technique.[7] 

Now we will discuss how such a nonlinear least square may be useful in analyzing 

astronomical data, such as Hubble diagram. 
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3. Possible nonlinearity of Hubble law 

Although traditionally the so-called Hubble law is assumed to be linear, there are some 

grounds to let go that assumption. For instance, Segal and Nicoll have argued in favor of 

nonlinearity of Hubble law.[10] 

Here we include the abstract section of Segal and Nicoll’s paper: 
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We do not want to enter into arguments or interpretations whether Hubble law represents 

cosmological redshift or not, but we wish to extract the conclusion in a model-

independent way. (There is rigorous algorithm aiming at such tests, called PEST: model 

independent parameter estimation.[11]) 

More careful data analysis seems to point to possible nonlinearity in Hubble datasets, 

although more observations are necessary, both at low redshift data and also for high 

redshift data. See some figures below and also Appendix I. 

 

From Cattoen & Visser [13]. 
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From Cattoen & Visser [13]. 

 

Figure 3. from Jianbo Lu [12] 
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Figure 4: from Sanejouand [14] 

 

 

Figure 5. Ostermann argues in favor of Steady State Universe [16] 
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While the above data analysis of Hubble law vary depending on different authors’ 

preferences, apparently we can agree with Segal & Nicoll that Chronometric cosmology 

(CC) or Steady-State Universe cannot be ruled out. Does it mean that we should 

reconsider quasi-steady state models of Hoyle-Narlikar and perhaps also Conrad 

Ranzan’s Dynamic Steady State (DSSU)? 

 

4. Concluding Remarks  

Although traditionally the so-called Hubble law is assumed to be linear, there are some 

grounds to let go that assumption. For instance, Segal and Nicoll have argued in favor of 

nonlinearity of Hubble law. More robust methods are advised to analyze astronomical 

data in a model-independent way, including the so-called Excel Solver and also Neural 

Networks method (Wolfram Mathematica). 

Moreover, Neutrosophic Regression may offer a new perspective in developing nonlinear 

least square methods by including model error and indeterminacy. We reserve this for 

future work. 

Nonetheless, this is only an early investigation. More researches and observations are 

recommended to verify our propositions. 
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Appendix I:  

 

 

182 Gold SNe Ia 

data 

   No. z mu 

1 0.478 42.48 

2 0.425 41.69 

3 0.62 43.11 

4 0.57 42.8 

5 0.3 41.01 

6 0.38 42.02 

7 0.43 42.33 

8 0.508 42.19 

9 0.518 42.83 

10 0.334 40.92 

11 0.44 42.07 

12 0.5 42.73 

13 0.46 41.81 

14 0.63 43.26 

15 0.828 43.59 

16 0.459 42.67 

17 0.511 42.83 

18 0.474 42.81 

19 0.537 42.85 

20 0.477 42.38 

21 0.455 42.29 

22 0.815 43.75 

23 0.949 44 

24 1.056 44.35 

25 0.278 41.01 

26 1.199 44.19 

27 0.47 42.76 

28 0.5 42.74 

29 0.54 41.96 

30 0.47 42.73 

31 0.49 42.4 

32 0.884 44.22 

33 0.882 43.89 

34 0.57 42.87 

35 0.528 42.76 

36 0.771 43.12 
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37 0.832 43.55 

38 0.798 43.88 

39 0.811 43.97 

40 0.815 44.09 

41 0.977 43.91 

42 0.4 42.04 

43 0.615 42.85 

44 0.48 42.37 

45 0.45 42.13 

46 0.388 42.07 

47 0.495 42.25 

48 0.828 43.96 

49 0.538 42.66 

50 0.86 44.03 

51 0.778 43.81 

52 0.58 43.04 

53 0.526 42.56 

54 0.172 39.79 

55 0.18 39.98 

56 0.472 42.46 

57 0.43 41.99 

58 0.657 43.27 

59 0.32 41.45 

60 0.579 42.86 

61 0.45 42.1 

62 0.581 42.63 

63 0.416 42.1 

64 0.83 43.85 

65 0.43 42.36 

66 0.74 43.35 

67 0.543 42.67 

68 0.04 36.38 

69 0.033 35.53 

70 0.056 37.31 

71 0.036 36.17 

72 0.058 37.13 

73 0.046 36.35 

74 0.061 37.31 

75 0.028 35.53 

76 0.029 35.7 

77 0.032 36.08 

78 0.038 36.67 

79 0.025 35.4 
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80 0.026 35.35 

81 0.03 35.9 

82 0.05 36.84 

83 0.026 35.63 

84 0.075 37.77 

85 0.101 38.7 

86 0.045 36.99 

87 0.043 36.52 

88 0.079 37.94 

89 0.088 38.07 

90 0.063 37.67 

91 0.071 37.78 

92 0.025 35.09 

93 0.052 37.16 

94 0.05 37.07 

95 0.024 35.09 

96 0.036 36.01 

97 0.049 36.55 

98 0.027 35.9 

99 0.124 39.19 

100 0.034 36.19 

101 0.029 36.13 

102 0.053 36.95 

103 0.031 35.84 

104 0.026 35.57 

105 0.036 36.39 

106 1.755 45.35 

107 0.475 42.24 

108 0.95 43.98 

109 0.84 43.67 

110 0.954 44.3 

111 0.9 43.64 

112 0.935 43.97 

113 0.67 43.19 

114 0.735 43.14 

115 0.64 43.01 

116 1.34 44.92 

117 1.14 44.71 

118 1.305 44.51 

119 1.3 45.06 

120 0.97 44.67 

121 1.37 45.23 

122 1.02 43.99 
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123 1.23 45.17 

124 1.14 44.44 

125 0.975 44.21 

126 1.23 44.97 

127 0.954 43.85 

128 0.74 43.38 

129 0.46 42.23 

130 0.854 43.96 

131 0.839 43.45 

132 1.02 44.52 

133 1.12 44.67 

134 1.01 44.77 

135 1.39 44.9 

136 0.504 42.61 

137 0.582 43.07 

138 0.496 42.36 

139 0.679 43.58 

140 0.331 41.13 

141 0.688 43.23 

142 0.8 43.67 

143 0.532 42.78 

144 0.449 42.05 

145 0.371 41.67 

146 0.463 42.27 

147 0.461 42.22 

148 0.285 40.92 

149 0.633 43.32 

150 0.949 43.69 

151 0.695 43.21 

152 0.627 42.93 

153 0.905 43.89 

154 0.604 42.7 

155 0.791 43.54 

156 0.592 42.75 

157 0.415 41.96 

158 0.357 41.63 

159 0.43 41.96 

160 0.62 43.21 

161 0.643 43.21 

162 0.47 42.45 

163 0.61 42.98 

164 0.263 40.87 

165 0.358 41.66 
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166 0.73 43.47 

167 0.552 42.65 

168 0.337 41.44 

169 0.822 43.73 

170 0.95 44.14 

171 0.34 41.51 

172 0.613 43.15 

173 0.55 42.67 

174 0.87 44.28 

175 0.249 40.76 

176 0.571 42.65 

177 0.557 42.7 

178 0.369 41.67 

179 0.707 43.42 

180 0.756 43.64 

181 0.811 44.13 

182 0.961 44.18 
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