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1 – Introduction  

 In [1] we showed that the three-dimensional Euler (𝜈 = 0) and Navier-Stokes 

equations in rectangular coordinates need to be adopted as 

(1) 
𝜕𝑝

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖,   

for 𝑖 = 1,2,3, where 𝛼𝑗 =
𝑑𝑥𝑗

𝑑𝑡
 is the velocity in Lagrangian description and 𝑢𝑖  and the 

partial derivatives of 𝑢𝑖  are in Eulerian description, as well as the scalar pressure 𝑝 and 

density of external force 𝑓𝑖. The coefficient of viscosity is 𝜈 and by ease we prefer to 

use the mass density 𝜌 = 1 (otherwise substitute 𝑝 by 𝑝/𝜌 and 𝜈 by ν/𝜌). 

 An alternative equation is 

(2) 
𝜕𝑝𝑖

𝜕𝑥𝑖
+

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 = 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖, 

thus making the pressure a vector: 𝑝 = (𝑝1, 𝑝2, 𝑝3). In both equations is valid 

(3) 
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝑢𝑖
𝐸

𝐷𝑡
=

𝐷𝑢𝑖
𝐿

𝐷𝑡
= (

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 ) |𝐿, 

where the upper letter 𝐸 refers to Eulerian velocity (𝑢) and 𝐿 to Lagrangian velocity 

(𝛼) . The symbol |𝐿  means the respective calculation in Lagrangian description, 

substituting each 𝑥𝑖  as a function of time, initial value and eventually some 

parameters. With the notation 
𝐷

𝐷𝑡
 we want, in principle, to make explicit that we are 

calculating a total derivative in relation to time, and the result is a function exclusively 

of time (and possibly a set of parameters), without the spatial coordinates 𝑥, 𝑦, 𝑧, but 

when for some reason we need to leave the result as a function of the spatial 

coordinates we can also do it. 
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 A condition indicated by us in [1] were 

(4) {

𝜕𝑢𝑖

𝜕𝑥𝑗
= 0, 𝑖 ≠ 𝑗,

𝜕𝑥𝑖 = 𝑢𝑖𝜕𝑡
 

because we have, by definition, 

(5) 𝑢𝑖 =
𝑑𝑥𝑖

𝑑𝑡
, 

in Lagrangian description, and for this reason the velocity 𝑢𝑖, a priori, is not dependent 

of others variables 𝑥𝑗, with 𝑥𝑗 ≠ 𝑥𝑖. More than a rigorous mathematical proof, this is a 

practical approach, which simplifies the original system.   

 It is very easy to accept the first equation of (4) when there is no link between 

the spatial coordinates during the movement of the fluid over time, but in a circular 

motion, for example, it seems to be no longer valid. In order to show how it is possible 

to describe a motion with a single independent spatial variable by rectangular 

coordinate, 𝑢𝑖 = 𝜑𝑖(𝑥𝑖, 𝑡), we will describe in section 2 a circular motion and in section 

3 a quite general movement.  

 The section 4 will be our Conclusion, concluding on the breakdown solutions 

and the necessity of use of vector pressure. 

 

2 – Circular Motion 

 Let a circular motion of radius 𝑅, centered at (𝑥𝐶 , 𝑦𝐶) and with constant 

angular velocity 𝜔 > 0 described by the equations: 

(6) {
𝑥 = 𝑥𝐶 + 𝑅 cos(𝜃0 +𝜔𝑡)
𝑦 = 𝑦𝐶 + 𝑅 sin(𝜃0 +𝜔𝑡)

 

and consequently 

(7) (𝑥− 𝑥𝐶)2 + (𝑦− 𝑦𝐶)
2
= 𝑅2. 

 Then the velocity components are 

(8) {
𝛼1 = 𝑢1

𝐿 = 𝑥̇ = −𝜔𝑅 sin(𝜃0 +𝜔𝑡) = −𝜔(𝑦 − 𝑦𝐶) = 𝑢1
𝐸

𝛼2 = 𝑢2
𝐿 = 𝑦̇ = +𝜔𝑅 cos(𝜃0 +𝜔𝑡) = +𝜔(𝑥 − 𝑥𝐶) = 𝑢2

𝐸  

and the acceleration components are    
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(9) {

𝐷𝑢1
𝐿

𝐷𝑡
= 𝑥̈ = −𝜔2𝑅 cos(𝜃0 +𝜔𝑡) = −𝜔

2(𝑥 − 𝑥𝐶) =
𝐷𝑢1

𝐸

𝐷𝑡

𝐷𝑢2
𝐿

𝐷𝑡
= 𝑦̈ = −𝜔2𝑅 sin(𝜃0 +𝜔𝑡) = −𝜔

2(𝑦 − 𝑦𝐶) =
𝐷𝑢2

𝐸

𝐷𝑡

   

 Supposing that the particles of fluid obey the motion described by (6) to (9), we 

have 

(10) {

𝜕𝑢1
𝜕𝑦
= −𝜔,    

𝜕𝑢1
𝜕𝑥
= 0

𝜕𝑢2
𝜕𝑥
= +𝜔,    

𝜕𝑢2
𝜕𝑦
= 0

 

apparently in disagree with (4) if 𝜔 ≠ 0. But, as 𝑥 is a function of 𝑦 and reciprocally, in 

this circular motion according (7), again (4) turns valid, for any signal of 𝑥 and 𝑦. For to 

complete a three-dimensional description, we define 𝑧 = 𝑧0, without dependence of 

time, and 𝑢3 = 0. 

 This is a motion of velocity without potential, because 
𝜕𝑢𝑖

𝜕𝑥𝑗
≠

𝜕𝑢𝑗

𝜕𝑥𝑖
 for some 

𝑖 ≠ 𝑗, but if 𝑓 = (𝑓1, 𝑓2, 𝑓3) has potential we have 
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
 for all 𝑖, 𝑗 = 1,2,3, with  

(11) 𝑆𝑖 = −
𝜕𝑢𝑖

𝜕𝑡
− ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 + 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖,        

then the system (1) has solution. 

 A calculation for the scalar pressure of this motion is 

(12) 𝑝 = ∫ (𝑆1, 𝑆2, 𝑆3) ∙ 𝑑𝑙𝐿
= ∫ (−

𝐷𝑢

𝐷𝑡
+ 𝑓) ∙ 𝑑𝑙

𝐿
 

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) |𝑥0

𝑥 + (
𝑦2

2
− 𝑦𝐶𝑦) |𝑦0

𝑦
] + 𝑈 − 𝑈0 + 𝜃(𝑡)   

 = 𝜔2 [(
𝑥2

2
− 𝑥𝐶𝑥) − (

𝑥0
2

2
− 𝑥𝐶𝑥0) + (

𝑦2

2
− 𝑦𝐶𝑦) − (

𝑦0
2

2
− 𝑦𝐶𝑦0)] + 

      𝑈 − 𝑈0 + 𝜃(𝑡), 

where 𝑓 = ∇𝑈, 𝑈0 = 𝑈(𝑥0, 𝑦0, 𝑧0, 𝑡)  and 𝐿  is any smooth path linking a point 

(𝑥0, 𝑦0, 𝑧0) to (𝑥, 𝑦, 𝑧). We can ignore the use of 𝑥0, 𝑦0, 𝑧0 and  𝑈0, and use only the 

free function for time, 𝜃(𝑡), which on the other hand can include the terms in 𝑥0, 𝑦0 

and 𝑧0, and nevertheless this solution shows us that the pressure is not uniquely well 

determined, therefore we get to the negative answer to Smale's 15th problem, 

according already seen in [2] and [3], even if we assign the velocity value on some 

surface that we wish and even if 𝜃(𝑡) and 𝑈 does not depend explicitly on the variable 

time 𝑡. In this motion the pressure is dependent, besides of 𝑥, 𝑦 and 𝑈, without any 

problematic question, and 𝑥𝐶 , 𝑦𝐶  and 𝜔,  specific parameters of the movement 
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conditions of a particle, of 𝜃(𝑡), 𝑈0 and more three parameters, 𝑥0, 𝑦0 and 𝑧0, then 

there is not uniqueness of solution. 

 Another calculation for pressure is possible due to fact that we can describe the 

acceleration 
𝐷𝑢

𝐷𝑡
 of a particle of fluid as a function only of time, 

𝐷𝛼

𝐷𝑡
, without the 

variables 𝑥, 𝑦, 𝑧, and then 

(13) 𝑝 = −
𝐷𝛼

𝐷𝑡
∙ ∫ 𝑑𝑙
𝐿

+ 𝑈 − 𝑈0 + 𝜃(𝑡) 

       = +𝜔2𝑅[cos(𝜃0 + 𝜔𝑡) (𝑥 − 𝑥0) + sin(𝜃0 +𝜔𝑡) (𝑦 − 𝑦0)] 

          + 𝑈 − 𝑈0 + 𝜃(𝑡), 

with 

(14) 

{
 
 

 
 
𝜕𝑝

𝜕𝑥
= +𝜔2𝑅 cos(𝜃0 +𝜔𝑡) + 𝑓1 = +𝜔

2(𝑥 − 𝑥𝐶) + 𝑓1
𝜕𝑝

𝜕𝑦
= +𝜔2𝑅 sin(𝜃0 +𝜔𝑡) + 𝑓2 = +𝜔

2(𝑦 − 𝑦𝐶) + 𝑓2

𝜕𝑝

𝜕𝑧
= 𝑓3

 

in fact derivatives such as can be obtained from (12). 

 Note that in order to continue using the traditional form of the Euler and 

Navier-Stokes equations we will have non-linear equations, which can make it difficult 

to obtain the solutions and bring all the difficulties that we know. To make sense to 

use the velocity in Eulerian description rather than the Lagrangian description in  𝛼𝑗 it 

is necessary that, for all 𝑡 ≥ 0,  

(15) 𝑢𝐸(𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡), 𝑡) = 𝛼(𝑡) = (
𝑑𝑥

𝑑𝑡
,
𝑑𝑦

𝑑𝑡
,
𝑑𝑧

𝑑𝑡
) = 𝑢𝐿(𝑡),  

omitting the use of possible parameters of motion, then nothing more natural than the 

definitive substitution of the terms 
𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1 , as well as 

𝜕𝑢𝑖

𝜕𝑡
+ ∑ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

3
𝑗=1  

in the traditional form, by  
𝐷𝑢𝑖

𝐿

𝐷𝑡
  or  

𝐷𝛼𝑖

𝐷𝑡
. This brings a great and important simplification 

in the equations, and to return to having the position as reference it is enough to use 

the conversion or definition adopted for 𝑥(𝑡), 𝑦(𝑡) and 𝑧(𝑡), including the possible 

additional parameters, for example, substituting initial positions in function of position 

and time, etc. 

 Thus, more appropriate Euler (𝜈 = 0) and Navier-Stokes equations with scalar 

pressure are, in index notation,  

(16) 
𝜕𝑝

𝜕𝑥𝑖
+
𝐷𝛼𝑖

𝐷𝑡
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖. 
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3 – Generic three-dimensional motion  

 Suppose that a particle of fluid moves according to equation 

(17) 𝑥𝑖 = 𝐴𝑖(𝑡)𝑥𝑖
0 + 𝐵𝑖(𝑡), 

𝐴𝑖(0) = 1, 𝐵𝑖(0) = 0, 𝐴𝑖 , 𝐵𝑖 ∈ 𝐶
∞([0,∞)), 𝑖 = 1,2,3, (𝑥1, 𝑥2, 𝑥3) ≡ (𝑥, 𝑦, 𝑧), where   

(𝑥1
0, 𝑥2

0, 𝑥3
0) ≡ (𝑥0, 𝑦0, 𝑧0) is the initial position of this particle in relation to three-

orthogonal system of reference considered at rest. 

 Your velocity in relation to this system is, for 𝑖 = 1,2,3, 

(18) 𝑥̇𝑖 =
𝑑

𝑑𝑡
𝑥𝑖 = 𝑢𝑖

𝐿 = 𝛼𝑖 = 𝐴𝑖
′(𝑡)𝑥𝑖

0 + 𝐵𝑖
′(𝑡), 

with acceleration 

(19) 𝑥̈𝑖 =
𝑑

𝑑𝑡
𝑥̇𝑖 =

𝐷

𝐷𝑡
𝑢𝑖
𝐿 =

𝐷

𝐷𝑡
𝛼𝑖 = 𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡). 

We are using both the superior point (𝑥̇) and the prime mark (𝐴′), and respective 

repetitions, for indicate differentiations in relation to time.  

 We are going to transform Lagrangian velocity into Eulerian velocity through 

transformation 

(20) 𝑥𝑖
0 =

𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
, 

which results in  

(21) 𝑢𝑖
𝐸 = 𝐴𝑖

′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′(𝑡) = 𝐴𝑖
′(𝑡)

𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′(𝑡) 

        =
𝐴𝑖
′(𝑡)

𝐴𝑖(𝑡)
𝑥𝑖 −

𝐴𝑖
′(𝑡)𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′(𝑡) 

and  

(22) 
𝐷𝑢𝑖

𝐸

𝐷𝑡
= 𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡) = 𝐴𝑖
′′(𝑡)

𝑥𝑖−𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′′(𝑡) 

                      =
𝐴𝑖
′′(𝑡)

𝐴𝑖(𝑡)
𝑥𝑖 −

𝐴𝑖
′′(𝑡)𝐵𝑖(𝑡)

𝐴𝑖(𝑡)
+ 𝐵𝑖

′′(𝑡). 

 We see that both 𝑢𝑖
𝐸 and 

𝐷𝑢𝑖
𝐸

𝐷𝑡
 are linear functions in 𝑥𝑖  or only functions of time 

if 𝐴𝑖(𝑡) ≡ 1. We still want the limits lim
𝐴𝑖
′
(𝑡)

𝐴𝑖(𝑡)
 and lim

𝐴𝑖
′′
(𝑡)

𝐴𝑖(𝑡)
 to be finite for all 𝑡 ≥ 0, 

otherwise we will have infinite velocities or accelerations in these instants of infinity if 

the corresponding values in Lagrangian description also are. When 𝐴𝑖(𝑡) = 0 the    
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values respect to Eulerian description are equal to the corresponding Lagrangian 

description. 

 The expression (22) is also obtained through the chain rule 

(23) 
𝐷𝑢𝑖

𝐸

𝐷𝑡
=

𝜕𝑢𝑖
𝐸

𝜕𝑡
+ ∑ 𝛼𝑗

𝜕𝑢𝑖
𝐸

𝜕𝑥𝑗

3
𝑗=1 , 

being 

(24) 
𝜕𝑢𝑖

𝐸

𝜕𝑡
=

𝐴𝑖
′′𝐴𝑖−(𝐴𝑖

′)
2

𝐴𝑖
2 𝑥𝑖 − (

𝐴𝑖
′𝐵𝑖

𝐴𝑖
)
′

+ 𝐵𝑖
′′, 

(25) (
𝐴𝑖
′𝐵𝑖

𝐴𝑖
)
′

=
𝐴𝑖
′′𝐵𝑖+𝐴𝑖

′𝐵𝑖
′

𝐴𝑖
− (

𝐴𝑖
′

𝐴𝑖
)
2

𝐵𝑖  

and 

(26) ∑ 𝛼𝑗
𝜕𝑢𝑖

𝐸

𝜕𝑥𝑗

3
𝑗=1 = 𝛼𝑖

𝜕𝑢𝑖
𝐸

𝜕𝑥𝑖
= (𝐴𝑖

′𝑥𝑖
0 + 𝐵𝑖

′)
𝐴𝑖
′

𝐴𝑖
. 

 With movements where there is some linear relation between the spatial 

coordinates, as 

(27) 𝑥𝑖 = 𝐴𝑖1(𝑡)𝑥1
0 + 𝐴𝑖2(𝑡)𝑥2

0 + 𝐴𝑖3(𝑡)𝑥3
0 + 𝐵𝑖(𝑡), 

𝐴𝑖𝑗(𝑡), 𝐵𝑖(𝑡) ∈ 𝐶
∞([0,∞)) for 𝑖, 𝑗 = 1,2,3, we can transform 

(28.1) 𝐴𝑖(𝑡) ↦ 𝐴𝑖𝑖(𝑡)𝑥𝑖
0 

(28.2) 𝐵𝑖(𝑡) ↦ 𝐴𝑖𝑗(𝑡)𝑥𝑗
0 + 𝐴𝑖𝑘(𝑡)𝑥𝑘

0 + 𝐵𝑖(𝑡) 

into the previous equations (17) to (26), with 𝑗 < 𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑖, 𝑗, 𝑘 = 1,2,3, and we 

will arrive at results similar to those already obtained. 

 If the relation between the coordinates is more complicated, not just linear, for 

example when the particles need follow a specific family of surfaces of type 

𝑧 = 𝑔(𝑥, 𝑦) (omitting other possible parameters), for 𝑔 smooth function, then we can 

abandon the dependency of position, at least in one coordinate, as  

(29) 𝑧 = 𝑔(𝑥, 𝑦) = 𝑔(𝑥(𝑡), 𝑦(𝑡)) = ℎ(𝑡), 

and therefore 

(30) {

𝑢1 = 𝜑1(𝑥, 𝑡)
𝑢2 = 𝜑2(𝑦, 𝑡)

𝑢3 = 𝜑3(𝑧, 𝑡) = 𝜑3(ℎ(𝑡), 𝑡) = 𝛼3(𝑡)
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Thus, (4) holds in an infinity of cases and the Euler and Navier-Stokes equations has 

solution in this way (if 𝑓 is conservative).  

 Note that in both examples, sections 2 and 3, the solutions for velocity are at 

most linear in relation to spatial coordinates, and then there is no necessity of 

calculation of second derivatives of velocity, i.e., ∇2𝑢 = 0 for any viscosity coefficient 

and the Navier-Stokes equations are reduced to the  Euler equations. In general terms 

we have, from (21),  

(31) 𝑢𝑖
0 =

𝐴𝑖
′(0)

𝐴𝑖(0)
𝑥𝑖 −

𝐴𝑖
′(0)𝐵𝑖(0)

𝐴𝑖(0)
+ 𝐵𝑖

′(0), 

where we suppose that lim𝑡→0
𝐴𝑖
′(𝑡)

𝐴𝑖(𝑡)
 is finite for 𝑖 = 1,2,3. If it is necessary that 

∇ ∙ 𝑢 = ∇ ∙ 𝑢0 = 0 (incompressible fluids) then it must be valid, for all 𝑡 ≥ 0, the 

relation 

(32) 
𝐴1
′ (𝑡)

𝐴1(𝑡)
+
𝐴2
′ (𝑡)

𝐴2(𝑡)
+
𝐴3
′ (𝑡)

𝐴3(𝑡)
= 0. 

 In all functions of time 𝐴𝑖(𝑡), 𝐴𝑖𝑗(𝑡) and 𝐵𝑖(𝑡) are implicit the inclusion of 

constant parameters of movement, as 𝑅, 𝜃0, 𝜔, 𝑥𝐶 , 𝑦𝐶 , etc. 

 The scalar pressure is equal to 

(33) 𝑝 = ∫ (𝑆1, 𝑆2, 𝑆3) ∙ 𝑑𝑙𝐿
= ∫ (−

𝐷𝑢

𝐷𝑡
+ 𝑓) ∙ 𝑑𝑙

𝐿
 

 = ∑ ∫ (−
𝐷𝑢𝑖

𝐷𝑡
)

𝑥𝑖
𝑥𝑖
0 𝑑𝑥𝑖

3
𝑖=1 + 𝑈 − 𝑈𝑜 + 𝜃(𝑡), 

if 𝑓 is a conservative external force, 𝑓 = ∇𝑈, with 

(34) 𝑆𝑖 = −
𝐷𝑢𝑖

𝐷𝑡
+ 𝑓𝑖    

and  

(35) 
𝜕𝑆𝑖

𝜕𝑥𝑗
=

𝜕𝑆𝑗

𝜕𝑥𝑖
,  for 𝑖, 𝑗 = 1,2,3, i.e., 

𝜕𝑓𝑖

𝜕𝑥𝑗
=

𝜕𝑓𝑗

𝜕𝑥𝑖
,  

and then there is solution for Euler equations in this case. 

 As we have seen previously, the calculation of pressure is not unique and we 

can use 
𝐷𝑢𝑖

𝐷𝑡
 as a function of 𝑥𝑖  and 𝑡 or only of 𝑡. The simpler calculation gives 

(36) 𝑝 = −∑ [𝐴𝑖
′′(𝑡)𝑥𝑖

0 + 𝐵𝑖
′′(𝑡)](𝑥𝑖 − 𝑥𝑖

0)3
𝑖=1 + 𝑈 − 𝑈𝑜 + 𝜃(𝑡), 

using 
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(37) 
𝐷𝑢𝑖

𝐷𝑡
=

𝐷𝛼𝑖

𝐷𝑡
= 𝐴𝑖

′′(𝑡)𝑥𝑖
0 + 𝐵𝑖

′′(𝑡),  

according (19). The pressure is not dependent only of position and time, but also initial 

position, although there is a one-to-one correspondence between initial position with 

time and position, according (17) and (20). 

 See that we use 𝐴𝑖(𝑡) ≢ 0 because any particle start from some position and it 

is not possible all particles start from the same position, but if 𝐴𝑖(𝑡) = 0 for some 

𝑡 > 0 use for (18) to (37) the results equivalents to 𝐴𝑖
′(𝑡) = 𝐴𝑖

′′(𝑡) = 0 and 𝐴𝑖(𝑡) = 1, 

except (20) which is no sense in this case, and (17) will be 𝑥𝑖 = 𝐵𝑖(𝑡). 

 Another calculation for scalar pressure gives, from (33) and using 

(38) 
𝐷𝑢𝑖

𝐷𝑡
𝑑𝑥𝑖 =

𝑑𝑥𝑖

𝑑𝑡
𝑑𝑢𝑖 = 𝑢𝑖𝑑𝑢𝑖, 

the interesting result 

(39) 𝑝 = −∑
1

2
(𝑢𝑖

2 − 𝑢𝑖
0 2)3

𝑖=1 + 𝑈 − 𝑈𝑜 + 𝜃(𝑡) 

               = −
1

2
(𝑢2 − 𝑢0 2 ) + 𝑈 − 𝑈𝑜 + 𝜃(𝑡), 

as the Bernoulli’s law with 
𝜕𝜙

𝜕𝑡
= 0, 𝑢 = ∇𝜙.  

 

4 – Conclusion  

 From equation (16), 

(40) 
𝜕𝑝

𝜕𝑥𝑖
+
𝐷𝛼𝑖

𝐷𝑡
= 𝜈∇2𝑢𝑖 +

1

3
𝜈

𝜕

𝜕𝑥𝑖
(∇ ∙ 𝑢) + 𝑓𝑖, 

we realize that if 𝜈 = 0 and 𝑓 is not conservative then there is no solution for Euler 

equations, as well as if 𝑢 is conservative and 𝑓 is not conservative there is no solution 

for Navier-Stokes equations, which now it is very clear to see and it is complementing 

[4]. More specifically, if 𝑢0, the initial velocity, is conservative (irrotational or potential 

flow) and 𝑓 is not conservative then there is no solution for Navier-Stokes equations, 

because it is impossible to obtain the pressure. This then solve [5] for the cases (C) and 

(D), the breakdown of solutions, for both 𝑢0 and 𝑓 belonging to Schwartz Space in case 

(C), and smooth functions with period 1 in the three orthogonal directions 𝑒1, 𝑒2, 𝑒3 in 

case (D). As 𝑢0  need obey to the incompressibility condition, ∇ ∙ 𝑢0 = 0 , with 

∇ × 𝑢0 = 0 and 𝑢0 = ∇𝜑0, where 𝜑0 is the potential of 𝑢0, we have ∇2𝑢0 = 0 and 

∇2𝜑0 = 0, i.e., 𝑢0  and 𝜑0  are harmonic functions, unlimited functions except the 

constants, including zero. As 𝑢0 need be limited, we choose 𝑢0 = 0 for case (C) (where 
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it is necessary that ∫ |𝑢0|2𝑑𝑥 𝑑𝑦 𝑑𝑧
ℝ3

 is finite) and any constant for case (D), of 

spatially periodic solutions. In case (D) the external force need belonging to Schwartz 

Space with relation to time.  

 Note that the application of a non conservative force in fluid is naturally 

possible and there will always be some movement, even starting from rest. So that this 

is not a paradoxical situation it seems certain that the pressure in this case cannot be 

scalar, but rather vector, and thus the equation returns to solution in all cases 

(assuming all derivatives are possible, etc.). It is as indicated in (2), or substituting 𝑝 by 

𝑝𝑖 in (16). 

 According to what we saw in this article, solve the Navier-Stokes equations can 

be synonymous to solve the Euler equations and we can take advantage of this facility. 

For the time being, I do not know any reason for having to a more complicated 

solution than the one described here, when the use of ∇2𝑢 ≠ 0 is necessary, except if 

the compromise with the motion of particles is forgotten or we intend to describe a 

spatially periodic solution in Fourier series or the pressure is given and is not ∇𝑝 = 𝑓 

or, the worst, the velocity is not smooth (𝐶∞) and there are boundary conditions. 

Nevertheless, even in the most complicated cases, the movement of particles can be 

transformed into functions exclusively of time. Perhaps naval or aeronautical 

engineers have other motives, but with a greater rigor, involving temperature and the 

collision of particles, other equations must be constructed.            

 

September-05,11,19-2017 
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