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Abstract: The vacuum energy density of free scalar quantum field ® in a Rindler
distributional spacetime with distributional Levi-Civita connection is considered.It has
been widely believed that, except in very extreme situations, the influence of
acceleration on quantum fields should amount to just small, sub-dominant
contributions. Here we argue that this belief is wrong by showing that in a Rindler
distributional background spacetime with distributional Levi-Civita connection the
vacuum energy of free quantum fields is forced, by the very same background
distributional spacetime such a Rindler distributional background spacetime, to
become dominant over any classical energy density component. This semiclassical
gravity effect finds its roots in the singular behavior of quantum fields on a Rindler
distributional spacetimes with distributional Levi-Civita connection. In particular we
obtain that the vacuum fluctuations (®?) has a singular behavior at a Rindler horizon
5+ =0 : (D%(5))~67,6 ~ c*/la,a - ».Therefore sufficiently strongly accelerated
observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t
violation of the Einstein equivalence principle.
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1.Introduction

In March 2012, Joseph Polchinski claimed that the following three statements
cannot all be true : (i) Hawking radiation is in a pure state, (ii) the information carried
by the radiation is emitted from the region near the horizon, with low energy effective
field theory valid beyond some microscopic distance from the horizon, (iii) the infalling
observer encounters nothing unusual at the horizon. Joseph Polchinski argue that the
most conservative resolution is that: the infalling observer burns up at the horizon. In
Polchinski’s account, quantum effects would turn the event horizon into a seething
maelstrom of particles. Anyone who fell into it would hit a wall of fire and be burned to
a crisp in an instant. As pointed out by physics community such firewalls would violate
a foundational tenet of contemporary physics known as the equivalence principle, it
states in part that an observer falling in a gravitational field — even the powerful one
inside a black hole — will see exactly the same phenomena as an accelerated
observer floating in empty space.

In this paper we argue that Polchinski not was wrong, but Unruh effect revision is
needed.

1.1.What is Colombeau distributional semi-Riemannian

geometry?

Recall that the classical Cartan’s structural equations show in a compact way the
relation between a connection and its curvature, and reveals their geometric
interpretation in terms of moving frames. In order to study the mathematical properties
of singularities, we need to study the geometry of manifolds endowed on the tangent
bundle with a symmetric bilinear form which is allowed to become degenerate
(singular).

Remark 1.1.1.But if the fundamental tensor is allowed to be degenerate (singular),
there are some obstructions in constructing the geometric objects normally associated
to the fundamental tensor. Also,local orthonormal frames and coframes no longer
exist, as well as the metric connection and its curvature operator.

Remark 1.1.2."Singular Semi-Riemannian Geometry"- the main brunch of
contemporary semi-Riemannian geometry in which have been studied a smooth



manifolds M furnished with a degenerate (singular) on a smooth submanifold M’ & M
metric tensor of arbitrary signature [1].

Remark 1.1.3.In order to solve problems of the gravitational singularity in classical
general relativity the singular semi-Riemannian geometry based on Colombeau
calculas and Colombeau generalized functions was many developed,see [2]-[23].

Remark 1.1.4.Let G(M') be algebra of Colombeau generalized functions on M’ < M
Jlet R be the ring of Colombeau generalized numbers [2]-[5]. Let (g.), be Colombeau
generalized metric tensor on M and let Ric,, (p) be generalized Ricci tensor of the
metric (g:(p)),l,, [21]-[22]. The main properties of such nonclassical manifolds with a
degenerate (singular) metric tensor that is Ric,, (p) € G(M')\C*(M'),i.e. for all
peM : Ric,(p) e R\R.

Definition 1.1.1. . Let G(A/') be algebra of Colombeau generalized functions on
M' < M, and let (g.), be Colombeau generalized metric tensor on M such that (g.), is
the Colombeau solution of the Einstein field equations,(see Remark 1.3.5). We define
now the Colombeau distributional scalar curvature R,,(p) (or distributional Ricci
[21]-[22] scalar) as the trace of Ricy(p) : Ru(p) = tr(Ricy(p)). Assume that
Ry () € GM)N\C*(M').

Then we say that: (i) gravitational field (g.), (or corresponding distributional
spacetime) has a gravitational singularity on a smooth compact submanifold M. ¢ M
iff Ry, (p) € GM)\C*(M.); (i) gravitational field (g.), has a gravitational singularity
with compact support iff Ry, (p) € D'(R3).

Remark 1.1.4.1t turns out that the distributional Schwarzschild spacetime has a
gravitational singularity with compact support at origin {r = 0} [6]-[11] and at
Schwarzschild horizon S? x {r = 2m} [18]-[19].

1.2.Distributional Maller's geometry as Colombeau
extension of the classical Maller’s spacetime.

As importent example of Colombeau extension of the singular semi-Riemannian
geometry mentioned above, we consider now Mdller's uniformly accelerated frame
given by Mdller’s line element [24]:

ds? = —(a + gx)*dt® + dx? + dy* + dz2. (L.2.1)

Of couse Mdller’'s metric (1.2.1) degenerate at Méller horizon x = —(a/g)™'. Note that
formally corresponding to the metric (1.2.1) classical Levi-Civit‘a connection is [1]

Th() = (@+g0),ThE) = THE) = 45 (1.2.2)

and therefore classical Levi-Civit'a connection (1.2.2) of couse is not available at



Meller horizon x}/' = —a . g7'. Recall that fundamental tensor corresponding to the

metric (1.2.1) were obtained in Maller’s paper [24] as a vacuum solution of the
classical Einstein’s field equations

Gk = Rk - %6§R — 0, (1.2.3)

where R¥ is the contracted Riemann-Christoffel tensor formally calculated by canonical
way by using classical Levi-Civit‘a connection (1.2.2) and R = R!. Using Dingle’s
formula [24] in case of the metric (1.2.1) we get
20v) — (B3(v) — 1 "vY —
G) = G3) = 3305 {A ()

A(x) = (a+gx)%,

[A'(0)]? }

2A(x) (1.2.4)

where A'(x) = 0A(x)/ox and all ather components of G vanishes identically. Note that
A'(x) = 2g(a + gx),A"(x) = 2g°. (1.2.5)
Thus for any x # —a - ¢! we get a classical result

2 2
G3(x) = G3(x) = —#@){2g2 —~ %} = 0. (1.2.6)

Let {x.}, ., be a sequence such that lim,.ox, = —a - g',x, # —a - g7',n € N.Then for
any n € N we get

~ _ 2 _ (3 ___ 1 2 _ 4g%(a + gxn)’ _
‘S(xl’l) GZ(xl’l) G3(xn) 2A(xn) {2g ZA(X,,) = 0’ (127)
and therefore lim,» 3(x,) = 0. However
1My T4, G6n) = limyoe T4 (60) = limyoe ﬁgxn = o, (1.2.8)

i.e. classical Levi-Civit‘a connection given by (1.2.2) unavaluble at Maéller horizon.
Remark 1.2.1. In order to avoid difficultness which mentioned above, we consider
now
the regularized Maller’s metric

des? = —Ae(x)dr? + dx? + dy? + dz?,

Ac(x) = [(a+gx)2+82:|,ge (0,17. (1.2.9)
Using now Dingle’s formula [24] in case of (1.2.9) we get
Sre) = Clre) = Gitrey = —— 1 Ly [A@)
3(x;€) = G3(x;€) = Gi(x;¢) = _2Ag(x) {Ag(x) - m}, (1.2.10)

As(x) = [(a+gx)* +&2].

Note that
A, = 2g(1 +gx),A] = 2g° (1.2.11)



and therefore

ey 1 28%(a+gx)* | _
@) =980 {zgz_ As(x) }_
1 2¢°[(a+gx)* + &2 ] — 22> B
280 {Zgz i A:G) i i)
g282
CAW

Remark 1.2.2.Note that (3(x;¢)),,¢ € (0,1] is Colombeau generalized function such
that

c[(3(x;¢)),] € GR) and el[(I(-g;¢)),] = el[(e2) ] € R.
~ 6(a +gx) /
Remark 1.2.3.Note that cl[(3(x;¢)),] ~ N ET- ¢ D'(R).
Remark 1.2.4.Thus Colombeau generalized fundamental tensor (gi(¢)),
corresponding to Colombeau metric

(des?) = —(Ac(x)dt?)  + dx* + dy* + dz?,
(As(x)), = ([(a+gx)° +52])g,g € (0,1]

that is non vacuum Colombeau solution (see [18] section 6 and [19] subsection 2.3
Distributional general relativity) of the Einstein’s field equations

(@), - @), - Lotren, -2 555 ) (1.2.14)

(1.2.13)

For Rindler metrica = 0,g = 1 and we get

(GH(e)), = (REE)), — To4RE@)), = —<g—z> < GR). (1.2.15)

(x2 + £2)*

Definition 1.2.1.Distributional Mdller's geometry that is Colombeau extension of the
classical Moller's spacetime given by Colombeau generalized fundamental tensor
(1.2.13).

1.3.Distributional Schwarzschild geometry as
Colombeau extension of the classical singular

Schwarzschild spacetime.

As another importent example of Colombeau extension of the singular
semi-Riemannian geometry we consider now classical singular Schwarzschild
spacetime given by degenerate and singular Schwarzschild metric

dst = —(1- 2 Yae 4 (1- 2 a2 4 a2 (1.3.1)



Remark 1.3.1.Note that formally corresponding to the metric (1.3.1) classical
Levi-Civit‘a connection given by canonical Christoffel symbols are [25]:

U0 iy 200, iy s =
T8Iy, Zrligln m = o,
50|, =lim L+ =21m T, | =- lirzn (r—2m) = 0,
r2m r—2m
13 :rlgln % =2'm Ty, = - rligln (r —2m)sin®6 = 0, (1.3.2)
F(I)O(r)‘;to 213?8 M = Oor%l(”)hbo :1}?01 ﬁ = 0,
'3, = —sinfcosh,T'3; = %,

i.e. classical Levi-Civita connection given by Eq.(1.3.2) unavaluble at Schwarzschild
horizon.

Remark 1.3.2.Newertheles in classical handbooks ( [25-30]) mistakenly assumed
that classical semi-Riemannian geometry holds on whole Schwarzschild manifold and
therefore canonical formal calculation gives

Rabcd(r)Rade(r) = %7212 (133)

By Eq.(1.3.2) mistakenly pointed out that the Schwarzschild metric has only a
coordinate singularity at » = 2m and there is no gravitational singularity at
Schwarzschild horizon.

Remark 1.3.2.Note that canonical formal calculation gives

Rased P)R!(r) = L62° [ ' 2,71)][;”—5(127"1]
*{WW][ g (12 |

m( 2m> (1 2m>+8mrsm r§$29+

4Tm(1—27m>sm 1

r sinZO(I — 27’")

(1.3.4)




Assume that » # 0 and » + 2m,i.e. 1 — 2’" + 0,sin?0 = 0,then from Eq.(1.3.4) one

obtains
directly

2
RavR4(r) = 180~ v a2 -2 |

2
+4[_%:||:_ﬂ5:|+ 4m? | 16m> | 4m* _ 48m? _ 12ry

7o 7o 7o 7o 7o

(1.3.5)

Remark 1.3.3.Notice that: if » = 2m then RHS of the Eq.(1.3.4) become uncertainty

Rapea(r)R™(r) = 16m +4[ 5 J[—T—SOJ+4[—%Sin20}|:— n 0:|+

75 sin%0
4m m . 29 2m A4m o ein2 m _ 16m?* | 0 1.3.6
02— + 8mrsin-0 + 0sin-0 = + =, (1.3.6)
P Y T Gin2g T (Ssin20)0 0

In order to avoid this difficultness mentioned above one defines R y..(r)R*(r) at
r = 2m by the limit

lim Rasea(r)RW(r) =lim { 16rm +4[ (1_—_}[ m(1-2 )}

ro2m o
|y Fea o)
41”71 (1_ 2;’»”) 5<11n2_m> +8mrsin26r7§i’7:129 + (1.3.7)
r

48m>

r s1n29<1 2m> } 7o

However Eq.(1.3.7) doesn’t holds becouse classical Levi-Civit'a connection (1.3.2)
of couse is not available at Schwarzschild horizon, see Remark 1.3.1.
Remark 1.3.4. Thus from Eq.(1.3.4) for » + 0 and r = 2m we get

Rapea(P)RWed(r) = 1012 s (- 5 0) A (r + 2m), (1.3.8)
r

Am (1 - 2m ) sin%

and we get nothing at Schwarzschild horizon.Therefore semi-Riemannian geometry
break

down at Schwarzschild horizon [18]-[19].

Remark 1.3.5.Recall that canonical derivation of the canonical singular
Schwarzschild



metric in classical handbooks alwais based on assumption that:
Assumption 1.3.1.Classical semi-Riemannian geometry holds on whole
semi-Riemannian manifold, see for example [27].

Let ds? be the metric

ds* = —A(r)de* + B(r)dr? + r?dQ?,
where 4,B - 1 as r -» . Then under Assumption 1.3.1 one obtains [27]:

(i) all T}, are zero except
r(l)o = //2B Fll = //2B,F£2 = —V/B,Fé3 = —(F/B) Sin20
The equations R, = 0,u4,v = 0,1,2,3 are

Roo = Tl = 250181 + T (log /=g ) |

A% A (A4 | B l):
(23) 2AB+2B 24 2B 7
L( //_AB/_A/2+2A/>:0

2B 2B 24 r
and
Ry = —<10g E),l,l +Tqy - (M%) = (T1)* = (T3)* -
~([3)* + T} (log /) | =
1 ( 4, AB A" 2AB/) _
2A(A+2B+2A+rB 0,
and

2
Ry = —<10g ‘/—g> + T =205 = (I3;)" + T, (10g J g >’1 =

dcot9 2 on r 4B)’
( ) cot“0 B( +2AB = 0.

From Eq.(1.3.11)-Eq.(1.3.12) one obtains

2(4B)’

B = 0.

(1.3.9)

(1.3.10)

(1.3.11)

(1.3.12)

(1.3.13)

(1.3.14)

Therefore AB = constant. Since at » - « we have 4 and B - 1 one obtains B = 4~!.

From Eq.(1.3.14) one obtains

(5) -+

and by integration one obtains »/B = r — 2m,where 2m is an integration constant.

Finally one obtains well known classical result

(1.3.15)



Ay = 1- 22 By = (1-2m)7 (1.3.16)

From Eq.(1.3.16) and consideration above (see Remark1.3.4) Assumption 1.3.1
wrong,

otherwise one obtains the contradiction.
Remark 1.3.5.In order avoid this difficultnes:
(i) we have introduced instead a classical Einstein field equations

Ry — S Rgw = —8nGT,, (1.3.17)

[where the sign of the energy-momentum tensor is defined by (p is the energy
density)]

Ty =-To = T) = p, (1.3.18)
apropriate Colombeau generalization of the Eq.(1.3.17)-Eq.(1.3.18) such that
(R(2)), = T (R(&)gu(#)), = —87G(Tin(2)),, (1.3.19)
where the sign of the distributional energy-momentum tensor is defined by
Tu(e) = —Too(e) = TY(e) = p(e) € G(M), (1.3.20)

see [18]-[19].

(i) we have introduced instead Assumption 1.3.1 the following assumption.

Assumption 1.3.2.Distributional semi-Riemannian geometry holds on whole

distributional semi-Riemannian manifold.

Definition 1.3.1.Let 4:(»),¢ € [0,1] and B:(r),¢ € [0, 1] the regularization of the

functions 4*(r) and B*(r) [defined above by Eq.(1.3.16)] such that the followin
conditions

are satisfied:

(i) (4z(r)), € G(R,) and (Bz(r)), € G(R,),& € (0,1] are Colombeau generalizad

functions;

(ii)

A5 = 1- 28 By = (1-2m) 7, (1.3.21)

(iii) (422m)), = F(e), € R,(BE2m)), = +(¢7)_ € K;
-1
(iv) (4%(0)), = 1 - (28—';1 e R,(B(0)), = (1 - (28';4 ) eR.

Let dsZ be the Colombeau metric
(ds?), = —(A5(r)de*), + (B (r)dr®)  + r*dQ?, (1.3.22)
and let (FZv(g))g be the distributional Levi-Civita connection [18]-[19] corresponding

to

Colombeau metric (1.3.22). Then under Assumption 1.3.2 one obtains:
(i) all (F}w(g))g are zero except




(Too(8)), = (42),/2(Bs),, (T11(¢)), = (B:) /2(Bs),.,

(1.3.23)
(T1(e)), = —r/(B:),(Ts(¢)), = —(r/B.), sin*0,

(Rw(2)), = (Tho(8)), = 2(Tho(e)), (81 (&), +
(Tho(e)), (log [~E*€)), ) | =

Uy, \ “d), LMD, (M, B, 2 (1.3.24)
2(B:), 2(4:),(Bs),  2(B:), \ 2(4:), 2(Bs), )

| <(A,,)_<A/>5<B’>g (A;2)8+2(A;>8>’

2(B.), 2B.),  2(4e), r
and
(Ri(e)), = ~(log [g(€)), ) | +Th(), -
()’ = (TheN?) - (ThE)?) -
~(M5@)°), + The),(log (=@, ) | = (1.3.23)
| (_( ary g GDBY, | UD), 2<AS>E<B;>5>’
2(4,), 2B.), = 2(d.),  r(B.),
and

(Ra(e)), = ~(log [~&*(@)), ) ,, + (Tha(e)), -

2L, (@), ~ (1)), +The) (log [~E5@), ) | =

, / (1.3.26)
_dcot@_( r >+ 2 ot <;+(<Ag>g(38>8) )
o\ B),) " @), B, \7 2040, Bo),

Weak distributional limit in D'(R*) of the RHS of the Eq.(1.3.18), i.e. w-lim,o T, (¢) is
calculated in our papers [18]-[19], see also Appendix B.

Remark 1.3.6.1t turns out that the distributional Schwarzschild metric (1.3.22) has a
gravitational singularity with compact support at origin {» = 0} [6]-[11] and at
Schwarzschild horizon S? x {r = 2m} [18]-[19].

1.4.0n the near horizon Colombeau approximation for
the

classical singular Schwarzschild black hole geometry.
Let us perform the following coordinate transformation



i= Fe = /8m(r—2m) + &% ,& € (0,1] (1.4.1)

_t
4m’
to the classical singular Schwarzschild metric

ds? = —(1- 22 )ar2 + (1 2 "y 4 r2ay? (1.4.2)

we get
2\ 72 2 Y
ds§=—7§(1+ = ) d22+(1+168 )d72+4m2(1+ ; )sz. (1.4.3)

16m? m 16m?
In Eq.(1.4.2), m is the central mass, dQ? = df? + sin’0d¢* and G = ¢ = 1.Taking the

limit m — oo, the spherical horizon becomes planar and Eq. (1.4.3) leads to the
Colombeau type metric

(ds3), = —{(72) yd* + (dr}), + 4m*dQ? (1.4.4)
which is distributional Rindler’s spacetime if we neglect the angular contribution.The
condition m — oo is equivalent to the "near horizon approximation” for the exterior

geometry of a black hole : for » » 2m (r > 2m) the line element (1.4.2) appears, indeed,
as

72

2

ds? = —Vgnzqm i + rf’gm dr? + 4m2dQ?2. (1.4.5)

By using simple coordinate transformations it could be shown that (1.4.5) again
becomes the distributional Rindler metric when we take 6,¢ = const. or AO and A¢ are
negligible. We stress that the condition » ~ 2m only is not enough to obtain Rindler's
spacetime which has no spherical symmetry as Schwarzschild.

Remark 1.4.1.At this stage of consideration, it is already clear that near horizon
Schwarzschild black hole geometry has a gravitational singularity at horizon. Notice
that in classical handbooks (see for example [26]-[32]) near horizon Schwarzschild
black hole geometry mistakenly acepted as regular with the Ricci tensor and the Ricci
scalar vanish identically. A.Eddington,D.Finkelstein and G.Lemaitre abnormal papers
[33]-[35] based on misunderstanding and missconception the authors about
fundamental notion of the semi-Riemannian geometry.See also a critico-historical
notes in [36].

1.5. Colombeau distributional semi-Riemannian
geometry.Preliminaries.

1.5.1. The ring of Colombeau generalized numbers R.
We denote by R the ring of real, Colombeau generalized numbers. Recall that [2]-[3]
by definition R = Er(R)/N(R) where



Er(R) = {(x;), € ROD|(3a € R)(Teo € (0,1))(Ve < go)[[re] < 7]},

N[R) = {()Cg)g IS [R(0,1)|(Va e R)(Teo € (0,1))(Ve < &0)[xs| < £91}. (1.5.1)

1.5.2.A real Colombeau vector bundle.

Definition 1.5.1.A real vector bundle consists of:

1.topological spaces X (base space) and E (total space)

2.a continuous surjection 7 : £ - X (bundle projection)

3.for every x in X, the structure of a finite-dimensional vector space over Colombeau
ring

R on the fiber 7! ({x})

where the following compatibility condition is satisfied: for every point in X, there is
an

open neighborhood U, a natural number &, and a homeomorphism

Nk
o : UxR - 77 (U)
such that for all x € U,
Nk
(o ¢)(x,v) = x for all vectors vinR , and

Nk
the map v » ¢(x,v) is a linear isomorphism between the vector spaces R and
7 ({x}).
The open neighborhood U together with the homeomorphism ¢ is called a local
trivialization of the Colombeau vector bundle. The local trivialization shows that locally

Nk
the map « "looks like" the projection of Ux R on U.

The Cartesian product X x @ik , equipped with the projection X x ﬁék - X, is called the
trivial bundle of rank k& over X.

1.5.3.The basic idea of Colombeau’s theory of generalized functions is
regularization by sequences (nets) of smooth functions and the use of asymptotic
estimates in terms of a regularization parameter ¢ € (0,1].Let (u.). € (0,1] with
u, € C*(M) for all ¢ € (0,1] (M a separable, smooth orientable Hausdorff manifold of
dimension n).The algebra of Colombeau generalized functions on M is defined as the
quotient

GM) = Ey(M)/N(M) (1.5.2)
of the space E (M) of sequences of moderate growth modulo the space N(M) of
negligible sequences. More precisely the notions of moderateness resp. negligibility
are defined by the following asymptotic estimates ('5(’@(]\/1) or i(M) denoting the space
of smooth vector fields on M).



Eny(M) = {(u:). € MO (VK cc M)(Vk € No)(3n € N)

(ver e K., ver € X )lsuppeslLe,...Le,us(p)] < OCe™)] b,
NM) = {(u:). € MOI|(VK cc M)(Vk,q € No)(3n € N)

(vgl e X(M),..., V& e i(]VI))[suppeIdLgl...Lg,,ug(p)| < 0(5‘1)]}.

Elements of G(M) are denoted by
a=cl[(u:):] = [(ue)e] = (u:)e + N(M). (1.5.4)

With componentwise operations G(M) is a fine sheaf of differential algebras with

respect to the Lie derivative defined by
L‘gﬂ = d[(qus)e] = [(que)s] (155)

The spaces of moderate resp. negligible sequences and hence the algebra itself may
be characterized locally, i.e., # € G(M) iff woy, € G(yw.(V,)) for all charts (V,,w,),
where on the open set y,(V,) < R” in the respective estimates Lie derivatives are
replaced by partial derivatives. Smooth functions are embedded into G(M) simply by
the “constant” embedding o, i.e., o(f) = cl[(f).], hence C*(M) is a faithful subalgebra
of G(M). On open sets of R” compactly supported distributions are embedded into G
via convolution with a mollifier p € S(R”) with unit integral satisfying _[p(x)x“dx = 0 for
all |a|> 1; more precisely setting p.(x) = (1/e")p(x/e) we have 1(w) = cl[(w * p.).]. In
case supp(w) is not compact one uses a sheaf-theoretical construction.

1.5.4. Letf= c[(7:(x)).] = [(f:(x)).] € G(R"), where f:(x) : R" - R,e € (0,1)isa
differentiable function and let v be a vector in R” . We define the Colombeau
directional derivative in the v direction at a point x € R” by

p§(7) = Dy ([(7:(0)),1) = [D(0)),] =

n (1.5.6)
(o) ]-| (Zve) |

=

(1.5.3)

The Colombeau tangent vector at the point x may then be defined as
verlh = v([(:)),]) = [D:(x)),]. (1.5.7)

Let /= [(f:(x)),.] € GR"),g = [(g:(x)),.] € G(R"),where f;,g. :R" - R,e € (0,1) be
differentiable functions, let v,w be tangent vectors in R” at x e R” and let a,b € R .
Then
1.a-v+b-w(f) =@-v+b-wW([((D)e]) = av([(f):]) + bw([(F)e]) =
— aVCol(?) +bWC01(?);
23l a f+b-g) =v(a-[(f:),]+b-[(g),]) = a-v([(F-):]) +b-v([(€):]) =
a . VCO](;() +ph. VCol(g);




3V (fg) = v([(f - £2),]) = [(-(0),] - v([(&):]) + [(g:(3)),] - v([(f2):

Fovel@) +g v,

1.5.5.Colombeau tangent vector to differentiable manifold M.

Let M be a differentiable manifold and let G(M) be the algebra of real-valued
Colombeau generalized functions on M. Then the tangent vector to M at a point x in

the manifold is given by the derivation D, : G(M) - R which shall be linear - i.e., for
any 7=[(2),1.2 = [(g:),] € G(M) and a,b € R we have

1.05a - f+b-2) = Dy(a+[(f:), ] +b - [(g:),]) = a-Dy([(f:),) + b+ D, ([(g:),]) =

=a -DVC"I(?) +b -DVC"I(Q).

Note that the derivation will by definition have the Leibniz property

2.05!(f+2) = D, (((f; - &:),)) = D, ([(F-),.]) * [(g:(0)) ] + [(/z(x)),] - Dy ([(g:),]) =

= DSU(f) - g+ DS ().

1.5.6.Colombeau vector fields on distributional manifolds.

Colombeau vector field ’i@ (denotin often by X ) on a manifold M is a linear map iﬁ
: G(M) -» G(M) such that for all f,g € G(M):

X2 =7 X0+ Xz (D - 2 (1.5.8)
1.5.7.Colombeau tangent space.

Suppose now that M is a C* manifold. A real-valued Colombeau generalized
function (f;), : M - ﬁi,g € (0,1] is said to belong to G(M) if and only if for every
coordinate chart ¢ : U - R”, the map f: o ¢o~! : p[U] < R” - R is infinitely
differentiable. Note that G(M) is a real associative algebra with respect to the
pointwise product and sum of Colombeau generalized functions. Pick a point x € M. A

derivation at x is defined as alinearmap D : G(M) — R that satisfies the Leibniz
identity:

/=118 = [(ge) ] € GWM) : D(f- g) = D(f) - gx) +fx) - D(g),

which is modeled on the product rule of calculus.

If we define addition and scalar multiplication on the set of derivations at x by

(D +D_2)(/_{)_=f'D1_(/_{) +D2(/_{) and

(4 D)(f) = f+ 4 D(f),

where 1 € @i, then we obtain a real vector space over ﬁlii, which we define as the
Colombeau tangent space 7¢°M of M at x.

1.5.8.We call a separable, smooth Hausdorff manifold A furnished with a gener-

alized pseudo-Riemannian metric (g.), generalized pseudo-Riemannian manifold

or generalized spacetime and denote it by (M, g) [20]-[22].

1.5.9.Colombeau isometric embedding.

Let (M,2) and (N, /) be generalized pseudo-Riemannian manifolds. An isometric

Colombeau embedding is a Colombeau generalized function (f;), : M —» N which




preserves the metric in the sense that (g ), is equal to the pullback of (4.), by (f:).,
i.e. (g¢), = (fihe),. Explicitly, for any two tangent vectors v,w € T,.(M) we have

(gs(v, W), = (holdfe(v),dfe(W))),.

2.Distributional Schwarzschild spacetime.

2.1.Distributional Schwarzschild spacetime as
Colombeau extension of the Lorentzian manifold with

nonregularity conditions on Schwarzschild horizon.

Singular space-times present one of the major challenges in general relativity.

Originally it was believed that their singular nature is due to the high degree of

symmetry of the well-known examples ranging from the Schwarzschild geometry

to the Friedmann-Robertson-Walker cosmological models. However, Penrose and

Hawking [37] have shown in their classical singularity theorems that singularities

are a phenomenon which is inherent to general relativity. Since the standard

approach allows only for smooth space-time metrics, one has to exclude the
socalled

singular regions from the space-time manifold.In a recent work many authors
advocated

the use Colombeau distributional techniques [5]-[23] to calculate the
energy-momentum

tensor of the Schwarzschild geometry.It turns out that it is possible to include the
singular

region (i.e. the space-like line » = 0 with respect to Schwarzschild coordinates) in the

space-time which now no longer is a vacuum geometry, and to identify it with the
support

of the energy-momentum tensor [5],[9],[11]-[13]. The same “physically expected”
result for

the distributional energy momentum tensor of the Schwarzschild geometry was
obtained

in papers [12]-[22], i.e.,

T3 = 87ms (X)), (2.1.1)

in a conceptually satisfactory way.

Remark 2.1.1.The result (2.1.1) can be easily obtained by using apropriate
nonsmooth

regularization of the Schwarzschild singularity at the origin » = 0.

The nonsmooth regularization of the Schwarzschild singularity at the origin » = 0
originally considered by N. R. Pantoja and H. Rago in paper [12]. Such non smooth



regularization of the Schwarzschild singularity is

(he(r)), = —1 + (V—;®g(r—g))g,g e (0,117 < ry. (2.1.2)

Here (O.(u)), is the generalized Heaviside function,where

(), u<o0
O:(u) = % u=20 (2.1.3)
1 u>0

and the limit ¢ —» 0 is understood in a weak distributional sense.The equation
(ds3), = (hs(r)(dD)?), — (h5' (r)(dr)?), + r*[(d)* + sin*0(dg)*],

(2.1.4)
ho(r) = -1+ L=,

with 4.,& € (0,1], as given in (2.1.4) can be considered as Colombeau version of the
Schwarzschild line element in curvature coordinates. From equation (2.1.2), the
calculation of the distributional Einstein tensor
(Gi(r,€)),.(Gi(r,€)),,(G§(r,€)) ., (Go(r,€)),, proceeds in a straighforward manner. By
simple calculation one obtains [12]:

(Gi(r,2)), = (Gi(r,€)), = _(h_lgr)> ~ ( I +:zzg(r) ) _

N 2 . N 2

r r

and

(Gi(r,e)), = (Gh(r,e)), = _( h’g'z(r) ) _ (hgr(zr) ) _

rs(5(r;8) )g‘“(%%‘s(“”)g 300

r r

(2.1.6)

In papers [10],[28] Colombeau distributional techniques were extended to the general
axisymmetric, stationary Kerr and Newman space-time family.This family also
contains the Schwarzschild geometry and its charged extension the
Reissner-Nordstream solution as special cases of spherical symmetry.In the paper [23]
was shown that the solutions will satisfy the Einstein equations everywhere if the
energy-momentum tensor has an appropriate singular addition of nonelectromagnetic
origin. When this addition term is included, the total energy turns out to be finite and
equal to mc?, while the angular momentum for the Kerr and Kerr-Newman solutions is



mca.
Remark 2.1.2. The nonsmooth regularization of the Schwarzschild singularity at the

horizon r = 7y is
wﬂﬂh=—l+c%®40—m%w»gee«ULVZA. (2.1.7)

Here (©:(u)), is the generalized Heaviside function and the limit ¢ - 0 is understood
in a weak distributional sense.The equation

(dsi?), = (hi(r)dn?), = ([hE)] 7 dr)?)  +r2[(d6)? + sin*6(dg)?],

. (2.1.8)
ho(r) = -1 + 2=,

he,e € (0,1], as given in (2.1.8) can be considered as Colombeau version of the
Schwarzschild line element in curvature coordinates above horizon. From equation
(2.1.7), the calculation of the distributional Einstein tensor above horizon
(GI'(r,€)) - (G (r,€)),» (G§(r,€)),. (G4’ (r,€)), proceeds in a straighforward manner.
By simple calculation one obtains

(GH(r,8)), = (G (r8)), = —( hellr—1s) - ) ) - ( el o) o) ) =
=_m(6«r—m)—s)) o Oy

2 7"2

(2.1.9)
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Fig.2.1.1.(a) The picture of a distributional Schwarzschild blackhole,
given by Colombeau generalized object (1.4.3).
Distributional spacetime ends just on the Schwarzschild singularity.
(b) The truncated Schwarzschild distributional geometry,
given by Colombeau generalized object (1.4.12)
Distributional spacetime ends just on the Schwarzschild horizon.

Remark 2.1.3.In a nutshell, there is a widespread but mistaken belief that there exist



true gravitational singularities,for example at origin » = 0 of the Schwarzschild
spacetime, and non principal non gravitational,i.e. purely coordinate singularities, for
example at horizon r = r, of the Schwarzschild spacetime. A coordinate singularity or
coordinate degeneracy occurs when an apparent singularity or degeneracy occurs in
one coordinate frame, which can be removed by choosing a different frame. Classical
example of such mistake is ubnormal deletion of the gravitational singularity,for
example from Schwarzschild spacetime

Sch =(8? x {r > 2m}) xR ,g;(r,0,9), (2.1.10)
originally defined by singular and degenerate Schwarzschild metric [31],
ds® = —h(r)(dx®)? + b7 (r)(dr)* + r*[(dO)? + sin®0(d$)*],h(r) = 1 - VTg. (2.1.11)

by using apropriate singular coordinate change [28]-[36].

Remark 2.1.4.Note that: (i) metric (2.1.11) is singular and degenerate at
Schwarzschild

horizon r = r,, and thus metric (2.1.11) beiond canonical rigorous semi-Riemannian

geometry.

(i) however in physical literature (see for example [29]-[31]) singularity and
degeneracy at

Schwarzschild horizon » = r, acepted as coordinate singularity and coordinate

degeneracy.

Remark 2.1.5. (see [31] section 100,p.296)."In the Schwarzschild metric (97.14), goo

goes to zero and g1 to infinity at » = r, (on the "Schwarzschild sphere"). This could
give

the basis for concluding that there must be a singularity of the space-time metric and
that

it is therefore impossible for bodies to exist that have a "radius" (for a given mass)
that is

less than the gravitational radius. Actually,however, this conclusion would be wrong.
This

is already evident from the fact that the determinant g(r) = —*sin?0 has no
singularity at

r = rq, SO that the condition g < 0 (82.3) is not violated. We shall see that in fact we
are

dealing simply with the impossibility of establishing a suitable reference system for
r<rg"

Remark 2.1.5. Notice that consideration above meant the following definition of the

gravitational singularity.

Definition 2.1.1.There is no gravitational singularity at » = 7 iff the determinant

g(r,0) = det(g;(r,0)) has no singularity at » = 7.

Remark 2.1.6. Notice that at singular point » = r, the determinant g(r,) is well



defined
only by the limit

g(rg) = lim,., det(g;(r,0)) = —r*sin®0. (2.1.12)

however in the limit » — r, = 2m the classical Levi-Civita connection T'j; becomes
infinite

r! —1i —m m _
1), ,ig,lz r(r—2m) r(r—2m)

and therefore the Definition 2.1.1 is not sound and even does not any sense under

canonical semi-Riemannian geometry.

Remark 2.1.7.Notice that:

(i) in order to fixin problem with singularity and degeneracy of the Schwarzschild
metric

(2.1.11) at Schwarzschild horizon r = r, , in physical literature [28]-[36], many years
one

considers the abnormal formal change of coordinates obtained by replacing the
canonical

Schwarzschild time by "retarded time" v(z,r),i.e., Eddington—Finkelstein coordinates,
given

by

= o0,T8,(r)] _, =1i1;n
r—-4m

o0

, (2.1.13)

av(t,r) = dt+ [h(r)] " dr,

h(r) =1- 2%,

(2.1.14)

(ii) the change (2.1.14) of Schwarzschild coordinates is singular at Schwarzschild
horizon

r = rg,as at Schwarzschild horizon 4(r;) = o« and therefore the change (2.1.14) does
not

holds on Schwarzschild horizon [36];

(ii) under the singular change (2.1.14) Schwarzschild metric (2.1.11) becomes to
well

known regular and nondegenerate Eddington-Finkelstein metric [28]-[36]:

dsgp = —(1 = 22 Yav? + 2drdv + r[(db)? + sin®0(dg)*]; (2.1.15)

(iii) in physical literature many years exist abnormal belief that by formal singular
change
(2.1.15) the singular and degenerate Schwarzschild spacetime (S x {r > 2m}) xR
was
immersed in a larger Eddington-Finkelstein spacetime
EF-=(S? x {r > 2m} U{0 < r < 2m}) xR ,ggr.(r,0), (2.1.16)

with regular and non degenerate metric tensor ggr.(,0), and whose manifold is not



covered by the canonical Schwarzschild coordinate with » < 2m,and therefore
singularity

and degeneracy on Schwarzschild horizon » = r, is only coordinate singularity and

coordinate degeneracy;

(iv) from statement (iii) it was mistakenly assumed that there is no gravitational
singularity

at BH horizon.

We remind now canonical definitions.

Definition 2.1.2. Let (M,g) and (N, /) be semi-Riemannian manifolds. An isometric

embedding is a smooth embedding /' : M — N which preserves the metric in the
sense

that g is equal to the pullback of 4 by f, i.e. g = f*h. Explicitly, for any two tangent
vectors

v,w € T (M) we have

g(v,w) = h(df(v),df(w)). (2.1.17)

Remark 2.1.8.Notice that such isometric embedding is a mathematical definition
only

and does not meant the equivalence (M,g) = (f{iM),h) in absolute sense. Thus it is
not

alwais apropriate as equivalence of the Lorentzian manifolds (M, g) and (N, k)

corresponding to the physical frames (Mpn,gpn) @and (Npn, Zpn).

Definition 2.1.3.[32].In general,a Lorentzian manifold (M',h) is said to be an
extension of

a Lorentzian manifold (M, g) if there exists an isometric embedding i : M — M .

Remark 2.1.9.Notice that such extension is a mathematical definition only and
therefore

it is not alwais apropriate as extension of the Lorentzian manifolds (M, g) and (M , h)

corresponding to the physical frames (Mpn,gpn) and (M;,h,hph).

Remark 2.1.10. In order to obtain example for the statement mentioned and Remark

2.1.8 and Remark 2.1.9 we go to prove below that the geometry of Schwarzschild

spacetime Sch. 2 {(S? x {r > 2m}) x R, gsen. » above Schwarzschild horizon,
essantially

cardinally different in comparizon with the geometry of Eddington-Finkelstein
spacetime

EF. 2 {(S* x {r > 2m}) x R, ggr. } above Eddington-Finkelstein horizon.

We remind now canonical definitions.



Fig.2.1.2.Paralel displacement along a closed
contour I' in a curved space.

Definition 2.1.3.Let Ar4; be the change in a vector 4;(x) after parallel displacement
around closed contour I" located in BH spacetime as ploted in Fig.2.1.3. This change

ArAy can clearly be written in the form §6Ak. Substituting in place of 64, the canonical
r

expression 64, = I'i,(%)A4.dx' (see 31],Eq.(85.5)) one obtains
Ardy = 3§5Ak - § T, (3) A’ . (2.1.18)
r r

Black Hole Regions

; P Singularity

Fig.2.1.3.Paralel displacement along a closed
contour I" in BH spacetime.

Definition 2.1.4.(1) Let =5, be Schwarzschild horizon, let I'; be a contour located in
Schwarzschild spacetime as plotted in Fig.2.1.4 and such that (i) x € I';, (ii)
Ysn NT; =%, and let I'¥ be a curve T'* = T';\f.Let A4, be the integral

Aridr = & 64, = § () Axdx! . (2.1.19)
;\x ;\x



(I) Let %y be Eddington-Finkelstein horizon, let I'; be a contour located in
Eddington- Finkelstein spacetime as plotted in Fig.2.1.5 and such that (i) x € T';, (ii)
Tir NI = x,and let T be a curve I'* = T';\x.Let Ap:4; be the integral

Apidp = $ 645 = § (%) Agdx! . (2.1.20)
I\x Ii\x

-

l{
A}

v

L

/f ==
,
I
’
!
!
'.(/7
A

Schwarzschild Horizon

Finkelstein-Eddington Horizon

Fig.2.1.4.Paralel displacement Ap:A4x Fig.2.1.5.Paralel displacement
along a curve IT'* in along a curve IT'* in
Schwarzschild spacetime such that Eddington-Finkelstein spacetime

> NT: = X, then alwais A4y = o, Z3p N = %, then alwais Apsd, < .

T 4
Pl e
w7 H
‘ Region of the classical semi-
Rlemannian geometry

L/7 ,.‘g,‘"—_)
~eeazily

Fig.2.1.6.Paralel displacement along aclosed
contour I' located in region of the classical
semi-Riemannian geometry of the
Schwarzschild spacetime such that
2 N T = J,then alwais Ard; < .
Remark 2.1.11. (I) Note that the geometry of Schwarzschild spacetime Sch.



Sch. 2 {(S? x {r > 2m}) x R, gsen. > (2.1.21)

above Schwarzschild horizon =§,, essantially cardinally different in comparizon with
the
geometry of Eddington-Finkelstein spacetime EF.

EF. 2 {(S* x {r > 2m}) xR, ggr. > (2.1.22)

above Eddington-Finkelstein horizon 2§ ;.

(I1) Note that Schwarzschild spacetime Sch. obviously satisfies a very strong
nonregularity

condition

if 25, NT; = %, then Apsd; = oo (2.1.23)

Thus the geometry of spacetime Sch. that is nonclassical geometry beyond
apparatus of

the classical semi-Riemannian geometry. Ofcourse the geometry any part of
spacetime

Sch. located above some neighborhood of Schwarzschild horizon as plotted in
Fig.2.1.6

that is a classical semi-Riemannian geometry.

Remark 2.1.12.Note that from Remark 2.1.11 it follows that Eddington-Finkelstein

spacetime does not holds in regorous mathematical sense as extension of the

Schwarzschild spacetime Sch.. 2 {(S? x {r > 2m}) x R, gsn. + above Schwarzschild

horizon.

Remark 2.1.13.1t is clear that nonregularity condition (2.1.23) arises not only from

singularity of the function 27! (r) at point r = r, but from degeneracy of the function
h(r)

at point r = r,.

Remark 2.1.14. We remind now that the relations (see [31] p.234,Eq.(84.7))

80a80p

Vap = ~8ap T T gy, (2.1.24)
give the connection between the metric of real space
dl* = y,pdx®dxP (2.1.25)
and the metric of the four-dimensional space-time
ds? = gapdx®dxP + 2g0adx’dx® + goo(dx°)’. (2.1.26)
For Eddington-Finkelstein metric (2.1.15) metric of the corresponding real space is
iy = ld%m T 12[(d)? + sin?6(d$)?]. 2.1.27)

r

Remark 2.1.15. Notice that the Eddington-Finkelstein metric (2.1.15) is regular at
the



horizon and therefore the infalling observer encounters nothing unusual at the
horizon.

However from Eq.(2.1.17) it follows that the infalling observer encounters singularity
on

horizon.But this is a contradiction.

Remark 2.1.16.Note that in order dealing with singular Schwarzschild metric
(2.1.11) using mathematically and logically soundness approach, one applies
contemporary distributional geometry based on Colombeau generalized functions
[2]-[4].Distributional Schwarzschild geometry and distributional BHs geometry by using
Colombeau generalized functions [2]-[4] many developed in papers [4]-[23].By
aproporiate regularization g .(r,0,¢),¢ € (0, 1] of the singular Schwarzschild
metricg;;(r,0,¢) such that:

(i) gio(r,0,9) = gi(r,0,¢) and

(if) for any ¢ € (0,1] metric tensor g;;.(r,0,¢) is regular and nondegenerate,one
obtains Colombeau generalized object [(g;:(,0,4)),] € G(R*) with an representative
(gi(r,0,9)),,for a more detailed explanation see [11],[18],[19].Using rigorous
Colombeau approach one obtains mathematically and logically soundness notion of
singularity in Distributional Schwarzschild spacetime.

Remark 2.1.14. Note that in the case of Schwarzschild spacetime the conditions (i)
and (ii) mentioned above (see Remark 2.1.13) are satisfied only by using non smooth
regularization of the singular and degenerate Schwarzschild metric g;(7,6,¢) via
Schwarzschild horizon [18]-[19].

By apriporiate nonsmooth regularization one obtain Colombeau generalized object

modeling the singular Schwarzschild metric above and below horizon [18]-[19]:

dst?), = ~(hi(de?), + ([ ()] "'dr?)  +r2dQ?,
(ds:?), = (he(di?), = ([hz(N]™'dr?) +r2dQ2,

B0 Ou((r—ry) — &) Jr—re)* +&2 (2.1.24)
e\r) = -

7r2rg7

g e (0,1].
Remark 2.1.6. Let us rewrite now the metric (2.1.24) (above horizon) in the form
(dsg?), = —(hi(r)de?), + ([h; ()] dr?) +1r2(d6* + sin*0de?) =
1 -’ (2.1.25)
—(ht (), ([de =[] dr ][ dt + [hE ()] dr])g +7r2(d0? + sin0dg?),

and define a new generalized Colombeau coordinates ((z.),,7,0,¢), where
(7:(t,7)), € G(R?), by formula



(dre(t,r)), = dt+ ([hi ()] 'ar) ,

r=r.

(2.1.26)

Remark 2.1.15. Notice that:

(i) Colombeau generalized coordinates (2.1.26) are the Colombeau extension of the

canonical Eddington-Finkelstein coordinates (2.1.14) by Colombeau generalized
function.

(i) In contrast with canonical Eddington-Finkelstein coordinates (2.1.14) (see
Remark

2.1.7), Colombeau generalized coordinates (2.1.26) holds at Schwarzschild horizon
r=rg

as at Schwarzschild horizon Colombeau generalized function ([hg(r)]‘l)g become
well

defined Colombeau generalized number [/} (r,)]" € R.

Rewriting now the metric (2.1.25) in terms of the Colombeau generalized
coordinates

((z¢),,7,0,9), it then above horizon takes the form

(ds?), =
~((hi ), ([dre - 20ht(H)] 7 dr ]dz, ) +72(d6? + sin*0dg?) = (2.1.27)
—((hz (7)) )(dr?), + 2dr(dr, ), + 72(d6? + sin*Odyp?).
We rewrite now Colombeau metric (2.1.27) in the equivalent form

(dsi?), =

(2.1.28)
—(hE(r)de?), + 2drdt + r*(d0* + sin*0dg?).
Colombeau metric (2.1.28) define the distributional Eddington-Finkelstein
space-time

EF: 2 {(§2 x {F > 2m}> x @,gEFE} (2.1.29)
above the Eddington-Finkelstein horizon r = 2m.
Remark 2.1.16. Notice that

HOol,y, = @ (@I, | = e ™), €K,
(@r5), ., = de+((&7),) <, 0.1.30)

(drd),|_ =di+2((e"),) « reddr+ ((¢72),)radr?,
g€ (0,1].

Of course at horizon (h(t,r¢)), = 0, becaurse at horizon hj(t,r,) = 0,however it



follows from (2.1.24) at horizon the quantities ((h;(r¢)),)(dri(t,rg)), = ((e71),)rodr?
and (dr.), = ((¢7"),)rqdr are infinite large Colombeau quantities,i.e.,the differential
(dr.), is not classical but it is Colombeau differential.

Remark 2.1.17. Note that:

(i) ander coordinate change (2.1.26) distributional curvature

scalars of the distributional Schwarzschild space-time given by metric (2.1.24), does
not

changes because these scalars depend only on variable r = 7,
(i) in contrast with classical Eddington-Finkelstein space-time

EF-=(S* x {r > 2m} U {0 < r < 2m}) xR , ggr.(7,0),
distributional Eddington-Finkelstein space-time has a gravitational singularity at
horizon.

Remark 2.1.18. Note that for the case of the distributional space-time the relations
(2.1.24) obviously takes the form

(Yap(e)), = (—gaﬁ(S) + %) (2.1.30)

where (2.1.30) give the connection between the Colombeau metric of the
distributional

real space
d2), = ((yap(e)dx®dxP)), (2.1.31)
and the Colombeau metric of the four-dimensional distributional space-time
(ds?), =
(2.1.32)

(gap(&)dx®dxl)  +2(goa(e)dxdx®), + (goo(e)(dx®)”) .

For distributional Eddington-Finkelstein metric (2.1.25) metric (above horizon) of the
corresponding distributional real space is

(dl;fEFQg = (hi(dr?), + r*[(d0)* + sin®0(d¢)?]. (2.1.27)

2.2 .Distributional Schwarzschild spacetime and
distributional Rindler spacetime with distributional
Levi-Civita connection. Generalized Einstein equivalence
principle.

2.2.1.Distributional Schwarzschild spacetime with



distributional Levi-Civita connection.

Remark 2.2.1.Note that due to the degeneracy of the metric (2.1.11) on

Schwarzschild horizon, the classical Levi-Civit‘a connection on whole Schwarzschild
spacetime is not available [19],[18],[19] as classical Levi-Civit'a connection on
Schwarzschild horizon becomes infinity

(), =lim ,,(,,:—"Em) = ~0,I01 ()], =lim ﬁ = oo, (2.2.1)

Remark 2.2.2.In order to avoid difficultness with classical Levi-Civit‘a connection

mentioned above in Remark 2.2.1, in papers [18],[19] we have applied the non smooth
regularization via Schwarzschild horizon, see Remark 2.1.5 and
Eq.(2.1.6).Corresponding Colombeau distributional connections (F@-’(e))g and (F;j(s))

Obviously déﬂidbet&rnbbeww@nimnarﬁéxf‘mw] hgo(ilzgfhaﬂeg[d:B]F{diﬁ]es, in distributional sense, with

the corresponding classical Levi-Civita connections on R3\{r = 2m}, since

(h)e = i, (hz)e = hy, and (g3™), = g™, (gz™), = gy there. Clearly, connections
H(€), T/ (e),€ € (0,1] in respect the regularized metric gf,e € (0,1],i.e., (g);x = 0.

Proceeding in this manner, we obtain the nonstandard result [23]-[24]:

[, ] = [(Re),] = ~4em SC=2m

r
(2.2.3)

[(RAD ] = [(R1D), ] = 4nm O =2

r

Remark 2.2.3. As axpected, the distributional Ricci tensor as well as the distributional

Ricci scalar vanish identically on R3\{r = 2m},since supp(6(r — 2m)) = {r = 2m}.This
result in a good agrement with canonical result [25]-[31] on R3\{r = 2m} since
distributional connections (2.2.2) coincides with the corresponding classical Levi-Civita
connections on R3\{r = 2m} at least in distributional sense.We obtain for » < 2m the
nonstandard result [18]-[19]:



(R#(2)Rj(2)), = ( 16m*[ (r oy +e?] ) o
: (2.2.4)

(Rirpcmv((C,‘)RI,J—;WV(S))5 = ( 16m2|:(,. _C;m)z +82:| ) +...,

where ci,co = 0(1).
2.2.2.Distributional Rindler spacetime with distributional

Levi-Civita connection.

We remind now that 2D Rindler spacetime is a patch of Minkowski spacetime. In
2D, the Rindler metric is

ds® = dR® — R%dn>. (2.2.5)

’ | < | < i
S \ o | o .
A \
D \ \
o \ \ ]{
™\ _\
N \
N i
23 £ = oo

)

Fig.2.1.Hyperbolic motion in the right Rindler wedge.

x2 —c?? = (c*/a)>.

Remark 2.1.Due to the degeneracy of the metric (2.2.5) at Rindler gorizon R = 0,
the classical Levi-Civita connection is not available on whole R?,e.g.,

[y =RTIY =T =R, (2.2.6)
and all other components being zero.
Remark 2.2.4 Note that in order to avoid this difficultnes, the origin in classical

cGshidtatiod & RIRagsRixcluded from the space R gd2we) afelloorikigdvimil & [24Dwe
get
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Gi=Gl=—l [gr - Gu) | _ 1 f, ( =0, 2.2.8
2 3 2 |:g44 2em R R ( )

where the accents indicate differentiation with respect variable R, and all other
components of G¥ vanish identically. Thus Rindler metrical tensor satisfy on R31\{0}

the G £Rf - 18R =0. (2.2.9)

Remark 2.2.5. By calculations mentioned above, from Mdller’'s times until
nowdays,Rindler metrical tensor was mistakenly considered in physical literature as an
vacuum solution of the Einstein’s field equations,e.g.,solution for empty space,see
Moller [24].

Remark 2.2.6.Note that Levi-Civita connection on whole space R3! is available only
in Colombeau sense under smooth regularization R> - R? + £2,¢ € (0,1] and therefore
we forced to change metric (2.5) by Colombeau object

[(ds?),] = dR* = [(R* + &%) Jd1* = dR? - [(gas.e), Jdr?

(2.2.10)
[(gasz),] = [(R* + &%), 1,6 € (0,1].
Then for Einstein distributional tensor [18]-[19],[21]:
(Gf), = RE), — 365R),. (Re), = R}, (2.2.11)

we get

! 2
(G2, = (GLR)), = —(ﬁ[gia,g - L) D - —(ﬁ) @21

Thus

[(G3.(0), ] = [(G3.(0)),] = [(¢D),], (2.2.13)

where [(8_2)5] e R is infinite Colombeau generalized numbers, and therefore
(Gﬁ,g(R))g and (Gé,g(R))‘g is nontrivial Colombeau generalized functions and

distributional Rindler metric tensor given by (2.2.12) that is non vacuum Colombeau
solution of the Einstein field equations.

2.2.3. Generalized Einstein equivalence principle.

We remind that originally Einstein’s gravity was formulated by using classical
pseudo Riemannian geometry with classical Levi-Civit‘a connection.In classical
pseudo Riemannian geometry, the Levi-Civita connection is a specific connection on
the tangent bundle of a manifold. More specifically, it is the torsion-free metric
connection, i.e., the torsion-free connection on the tangent bundle (an affine
connection) preserving a given (pseudo-Riemannian) Riemannian metric.The
fundamental theorem of classical Riemannian geometry states that there is a unique
connection which satisfies these properties.

Remark 2.3.1.Note that classical Einstein "Equivalence Principle" asserts the



equivalence between inertial and gravitational forces of acceleration. The classical
Einstein equivalence principle is the heart and soul of gravitational theory, for it is
possible to argue convincingly that if EEP is valid, then gravitation must be a “curved
spacetime” phenomenon, in other words, gravity must be governed by a “metric theory
of gravity”, whose postulates are:

1. Spacetime is endowed with a symmetric Lorentzian metric.

2. The trajectories of freely falling test bodies are geodesics of that metric.

3. In local freely falling reference frames, the non-gravitational laws of physics are
those

written in the language of special relativity.

In order to obtain appropriate generalization of EEP based on distributional
Colombeau

geometry [4]-[7] we claim the following generalized equivalence principle (GEEP):

1. Spacetime in general case is endowed with a symmetric distributional Lorentzian

metric.

2. The trajectories of freely falling test bodies are geodesics of that distributional
metric.

3. In local freely falling distributional reference frames, the non-gravitational laws of

physics are those written in the language of special relativity.

3. Quantum scalar field in curved distributional
spacetime. Unruh effect revisited.

3.1.Canonical quantization in curved distributional
spacetime

In a recent work [19] the authors advocated the use De Witt-Schwinger approach
[31]-[33] in order to establish QFT in general ditributional curved spacetime. The
vacuum energy density of free scalar quantum field ® with a distributional background
spacetime is considered successfully. It has been widely believed that, except in very
extreme situations, the influence of gravity on quantum fields should amount to just
small, sub-dominant contributions. Here we argue that this belief is false by showing
that there exist well-behaved spacetime evolutions where the vacuum energy density
of free quantum fields is forced, by the very same background distributional spacetime
such BHs, to become dominant over any classical energydensity component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on
curved distributional spacetimes. In particular we obtain that the vacuum fluctuations
(®?) has a singular behavior on BHs horizon r, : (®2(r))~r — r.| ™.

Much of formalism can be explained with Colombeau generalized scalar field



[19].The basic concepts and methods extend straightforwardly to distributional tensor
and distributional spinor fields. To being with let's take a spacetime of arbitrary
dimension D, with a metric g, of signature(+ —...—). The action for the Colombeau
generalized scalar field (¢.), € G(M) is

(Se), = (j dDX%\/@(géwau(Psav(Pg) ~ (m? +§R5)(p§> . (3.1.1)

M €

Here £ is a coupling constant (see [41] chapter 3). The corresponding equation of
motion is

(e +m? + ER.19e) € € (0,1]. (3.1.2)
Here
Tex0s), = (IgsI " 0ulge| et 0upps) . (3.1.3)

With 7 explicit, the mass m should be replaced by m/h. Separating out a time
coordinate x°, x* = (x° x%),i = 1,2,3 we can write the action as

(S.), = (jdeLg) J(Ls), = (J.dD‘lx;B,g) . (.1.4)
The canonical momentum at a time x° is given by
(7:(x)), = (6L:/5(B09:(x))), = (hs] *n"8,0.(x)) (3.1.5)

where x labels a point on a surface of constant x°, the x° argument of (¢.), is
suppressed, n* is the unit normal to the surface, and (|4.|), is the determinant of the
induced spatial metric (;(¢)),. In order to quantize, the Colombeau generalized field
(p¢), and its conjugate momentum (z.(x)), are now promoted to hermitian operators
and required to satisfy the canonical commutation relation,

([p:(x), 7], = ih6" ' (x,y).€ € (0,1]. 3.1.6)

Here di‘1y5D‘1()_c,)_;)f(;_z) = f{x) for any scalar function f € D(R?), without the use of a

metric volume element. We form now a conserved bracket from two complex
Colombeau solutions to the scalar wave equation (3.1.2) by [19]:

(@eae)), = (j dzu‘é> e e (0,1 (3.1.7)
z €

where
GE(9er9e)), = i) (|g| "¢ (@009 — 0:0v9,)) . (3.1.8)

Using equation of motion Eq.(3.1.2) one obtains corresponding Colombeau
generalization of the canonical Green functions equations. In particular for the
Colombeau distributional propagator

i(G3(x,x")), = (0|T(pz ()9 (x"))]0)),.& € (0,1], (3.1.9)



one obtains directly
([Oox + m? + ER*(x,6)1GE(x,x")), = —([-g*(x.8)] ) 5"(x—x").  (3.1.10)

We obtan now an adiabatic expansion of (G;(x,x")), [19]. Introducing Riemann normal
coordinates y* for the point x, with origin at the point x' one obtans

(g (), = Mo + 5 [ Riap(@)), I = <[ Ry (), Py +

{ 5 (3.1.11)
+ 35 Riwprs (), + 25 [ Réup (@), JRG @), Ppyhny +...
where 1, is the Minkowski metric tensor, and the coefficients are all evaluated at
y = 0. Defining now
(i), = [ (Cghan'™) |G, (3.1.12)
and its Colombeau-Fourier transform (£ (k)), by
(L:0ra), = o) ([ dke L2 (e)) (3.13)

where k - y = n%k,yp, one can work in a sort of localized momentum space.
Expanding (3.1.10) in normal coordinates and converting to k-space, (£;(k)), can

readily be solved by iteration to any adiabatic order. The result to adiabatic order four
(i.e., four derivatives of the metric) is

(L0, = | =m) " = (L =)@ - m) ?REe)), +
(- 6)on e - m) REe)), -
—3[atp(e, JouoP (k2 — m*) 2 +
[(L-8) ®2e), + 2 (a%@), [0 -m),
where 0, = 0/0k”,
(atp(e)), = (3 - &) Rip(@), + 15 Rin(®)), - 1oy (Ra' @) -
| (R @) [®ipen, + 25| (R @) R, + (3.1.15)
v (R@) | Riupe)),,

(3.1.14)

and we are using the symbol = to indicate that this is an asymptotic expansion. One
ensures that Eq.(3.1.13) represents a time-ordered product by performing the &°
integral along the appropriate contour in Fig.3.1.1.This is equivalent to replacing m? by
m? — ie. Similarly, the adiabatic expansions of other Green functions can be obtained
by using the other contours in Fig.3.1.1.Substituting Eq.(3.1.14) into Eq.(3.1.13) gives
[19]



(Li(xx")), =
@) x ([drke (2 = ) ') + i’z (-

o (),
where (a5(x,x";¢)), = 1 and, to adiabatic order 4,
(ai(x,x;€)), =
(L-9)®:@), - L(+ - )IREE), I - L[ @), v 31
(@30252)), = (L) R2(@)), + L (@),

with all geometric quantities on the right-hand side of Eq.(3.1.17) evaluated at x'.

mz) * (3.1.16)

Fig.3.1.1.The contour in the complex k° plane C
to be used in the evaluation of the integral
giving £". The cross indicates the pole at

KO = (k> +m2)"?,

in Eq.(3.16), then the d"k integration may be interchanged with the ds integration, and
performed explicitly to yield (dropping the ic)

(Lz(x,x"), = —i(4m)™"? (J. ids(is) ™" exp|:—im2s + — (x x) :|37+(x x'; zs)>
2is (3.1.18)

0
o(x,x') = %yay".

The function o(x,x") which is one-half of the square of the proper distance between x
and x', while the function (¥ .(x,x";is)), has the following asymptotic adiabatic
expansion

(Fzlx,x'sis)), = (ap(x,x';8)), +is(ai(x,x';€)), + (is)z(af(x,x’;s))g +... (3.1.19)



Using Eq.(3.1.12), equation (3.1.18) gives a representation of (G (x,x")), :

(Gz(x,x")), =

—i(4m)™"? ([ (Ai/z(x,x’; s)) . J J. ids(is) ™" exp[—im% N G(;C_;:/) :|é7:g(x,x/; is)> (3.1.20)

0
where (A:+(x,x';¢))_ is the distributional Van Vleck determinant
(Ax(x,x';)), = —det[ﬁyﬁvo(x,x’)]([gi(x,g)gi(x/,g)]_l/2>g. (3.1.21)

In the normal coordinates about x" that we are currently using, (A+(x,x’;¢)), reduces
to ([—gi(x,g)]‘”z)g.The full asymptotic expansion of (F%(x,x';is)) . to all adiabatic
orders are

(File,xsis)), = D (is) (@i(x,x';)), (3.1.22)
j=0

with (a5(x,x";¢)), = 1, the other (a; (x,x;¢)) being given by canonical recursion
relations which enable their adiabatic expansions to be obtained.

Remark 3.1.1.Note that the expansions (3.1.19) and (3.1.22) are, however, only
asymptotic approximations in the limit of large adiabatic parameter T.

If (3.1.22) is substituted into (3.1.20) the integral can be performed to give the
adiabatic expansion of the Feynman propagator in coordinate space:

(Ge(x,x")), = —(47Ti)"/2<Al/2(x,x/;8)iq;(x,x’;g)(— 0 )j x
=0

om?
2\ L
() (o))

which, strictly, a small imaginary part ie should be subtracted from o.
Remark 3.1.2.Since we have not imposed global boundary conditions on the
distributional Green function Colombeau solution of (3.1.10), the expansion (3.1.23)

does not determine the particular vacuum state in (3.1.9). In particular, the "ic" in the
expansion of (G;(x,x"))_ only ensures that (3.1.23) represents the expectation value,

in some set of states, of a time-ordered product of fields. Under some circumstances

the use of "ie" in the exact representation (3.1.20) may give additional information
concerning the global nature of the states.

3.2.Effective action for the quantum matter fields in

curved distributional spcetime

As in classical case one can obtain Colombeau generalized quantity (#;)_, called
the effective action for the quantum matter fields in curved distributional spcetime,

(3.1.23)



which, when functionally differentiated,yields

2 sW. )
((—g(s))% 6g"" (&) )g = (&), (3.2.1)

Note that the generating functional
(Z:[3:]) (j D[, exp{sz(8)+z [3:)0:@)d"x }) (3.2.2)

was interpreted physically as the vacuum persistence amplitude ((out.,0[0,in;)),. The
presence of the external distributional current density (J.), can cause the initial
vacuum state (|0,in,)), to be unstable, i.e., it can bring about the production of
particles.

Following canonical calculation one obtains [19]

(ZH0D), o ([det-GE(ex' )17 ) (3.2.3)

where the proportionality constant is metric-independent and can be ignored. Thus we
obtain

(WE), = —i(InZ£[0]), = -+ (tr[ln( G, (3.2.4)

In (3.2.4) (Gf)g is to be interpreted as an Colombeau generalized operator which acts
on an linear space 3 of generalized vectors |x,¢),¢ € (0,1] normalized by

(el ), = - ([-g*we)] ) (3.2.5)
in such a way that
(GE(x,x")), = ((x.6lGER',6)) . (3.2.6)

Remark 3.2.1.Note that the trace (tr[-]), of an Colombeau generalized operator
(R:), which acts on a linear space J,is defined by

(tr{R,]), = (j dx[-gt(x,€)]7 ) (j d"x[-g*(x, )] (x|9%xx;g|x/>)g. (3.2.7)
Writing now the Colombeau generalized operator (G%) as
(Gt), =—~(Ft"), = ZO dsexp[szrg]> , (3.2.8)
0 :
by Eq.(3.1.20) we obtain
((x|exp[-sF s Ix")) =
i(4r) "/2[(A1/2(xx 8)) :Iexp|: —im?s + ———% (xx) :|37§(x,x’;is)(is)_”/2. (3.2.9)

Proceeding in standard manner we get [19]



w3), = ﬂ(j d”x[—g+(x,8)]%)g:|<lirr/1 T Gg(x,x';mz)dm2> . (3.2.10)

&

Interchanging now the order of integration and taking the limit x —» x’ one obtains

wz), = %O dm2jd"x[—g+(x,g)]%G;(x,x;m2)> : (3.2.11)
Colombeau generalized quantity (77;), is colled as the one-loop effective action. In the
case of fermion effective actions, there would be a remaining trace over spinorial

indices. From Eq.(3.2.11) we may define an effective Lagrangian density (Lgeff(x))g

by
W2, = (Jaxl-g" o)) L)) (3.2.12)

whence one get

(L:@), = (g5 9)] 7 Liaw(x)) = <hm [ am* G m2)> (3.2.13)

m

3.3. Stress-tensor renormalization

Note that (Lz(x)), diverges at the lower end of the s integral because the o/2s
damping factor in the exponent vanishes in the limit x —» x'. (Convergence at the upper
end is guaranteed by the —ie that is implicitly added to m? in the De Witt-Schwinger
representation of (L;(x)),. In four dimensions, the potentially divergent terms in the

DeWitt- Schwinger expansion of (L;(x)), are

(LS le(x))g =
—(3272)" <hm [(APase) ] j %exp[—imzs+ G(;‘;.;“/) J x (3.3.1)
0

x[ag(x,x's€) +isat(x,x';€) + (is)*a3(x,x'; €) ])g

where the coefficients aj, a7 and a3 are given by Eq.(3.1.17).The remaining terms in
this asymptotic expansion, involving a3 and higher, are finite in the limit x - x'.

Let us determine now the precise form of the geometrical (L;;, (x)), terms, to
compare them with the distributional generalization of the gravitational Lagrangian that
appears in [19]. This is a delicate matter because (3.3.1) is, of course, infinite. What
we require is to display the divergent terms in the form « x [geometrical object]. This
can be done in a variety of ways. For example, in » dimensions, the asymptotic
(adiabatic) expansion of (L: et (X)) is



(Lg;eff(x))g =

21 (4n)™"? (lim I: (Ai/z(x,x/; s)) g:l i a;(x,x';€) x
x-x' =0

L e Nj—1-n/2 ) o(x,x")
XIldS(lS) exp|: im"s + —5-—

0

(3.3.2)

of which the first n/2 + 1 terms are divergent as ¢ — 0. If n is treated as a variable
which can be analytically continued throughout the complex plane, then we may take
the x —» x' limit

(L)), = 27 (4m) ™" (Z aj(x;¢) [ idsisy ™ exp[—imﬂ) -

7 0 (3.3.3)

2-1(4n)™"? j_zoaj(x;s)(mz)"/z_jl“(j— %),aj(x;s) = a;(x,x;¢€).

From Eq.(3.3.3) follows we shall wish to retain the units of L (x) as (length)™, even

when n # 4. It is therefore necessary to introduce an arbitrary mass scale u and to
rewrite Eq.(3.3.3) as

(Le (X)), = 2‘(47r)”/2(%)"4<Za,-(x;g)(m2)“fr(j— %)) : (3.3.4)
=0

&

If n — 4, the first three terms of Eq.(3.3.4) diverge because of poles in the I'- functions:
_n)y___4 2 B
r( 4) n(n—2)(4—n y>+0(” 4),
_n)y__4 2 _ B
FO 2) 2 —n) (4_n 7>+0(ﬂ 4), (3.3.5)

F<2—%> = ﬁ—y+0(n—4).

Denoting these first three terms by (Li;div(x))g, we have

(L-St;div(x))s - (477)_"/2{ 7’114 + %|:V " ln(’Z_22> :|} *

([t - 2050 vt ])

(3.3.6)

The functions ao(x;¢€),a1(x; &) and ax(x; &) are given by taking the coincidence limits of
(3.1.17)



(aa(x-e» = 1,(ai(x9)), = i—s)(R%s))
(a3(x;€)), = 180 (R (v, R (x,)) | = T (R (x,2)REp(x,6)), = (3.3.7)
L&) OLRie)), + L (L - )R,

Finally one obtains [19]

(Lgren(x)), = — 6471 (J ldsln(ls) X [f*(x x;is)e i’ :|> . (3.3.8)

&

Remark 3.3.1.All the higher order (j > 2) terms in the DeWitt-Schwinger expansion
of the effective Lagrangian (3.3.4) are infrared divergent at » = 4 as m — 0, we can still
use this expansion to yield the ultraviolet divergent terms arising from j = 0,1, and 2 in
the four-dimensional case. We may put m = 0 immediately in the j = 0 and 1 terms in
the expansion, because they are of positive power for n ~ 4. These terms therefore
vanish. The only nonvanishing potentially ultraviolet divergent term is therefore j = 2 :

2‘1(47r)_”/2(%)n%az(x,g)lﬂ(Z - g) (3.3.9)

which must be handled carefully. Substituting for a,(x) with & = £(n) from (3.3.7), and
rearranging terms, we may write the divergent term in the effective action arising from
(3.3.9) as follows

Wea), =2 @02 () T (2= 2)(Jant-gwaltare) -
2—1(47:)—"/2(%) r(z - g) « (3.3.10)
(Jart-g* .ot [@Fi0 + BGi()]) +0(n-4),
where

(Fa(x), = (R (x,e)RGp5(x,€)), — 2(R* (x,£)R5p(x, ), + %(Rﬁ(x,g))g,

(GE()), = (R*(x,e)REg,(x,8)) (3.3.11)
~ 1 =% 1
7= 10P = 360"

Finally we obtain [19]

(Th(x,8))n), = —(1/2880m2)[ @ (Fo(x) - 200 R*(x,6))  + B(GEWX)), | =
—(1/288072) x (3.3.12)
[(Rip6(x,0)RE(x,6)) — (Rip(x,e ) R*(x,6)) - (0..R*(x,8)), .

Therefore for the case of the distributional Schwarzchild spesetime using Eq.(2.2.4)



and Eq.(3.3.12) for » - 2m we obtain

<<Tﬁ(”»5)>ren>g =~ —(2880 - 7r2)_1|:<|:16‘1m2(r—2m)2 + 82]_1>g +... :| ~
~ —0(1)(2880 « 16 - %) ' m=2(r — 2m) 2.

(3.3.13)

Remark 3.2.2.Thus QFT in ditributional curved spacetime predict that the infalling

observer burns up at the BH horizon.

Remark 3.2.3.In order avoid singularity at horizon » = 2m in Eq.(3.3.13) one have
applied

the Loop Quantum Gravity approach [45].The first one concerns the requirement of

selfadjointness to the metric components. For instance, the classical quantity

"

o = — (D) Ky — (3.3.14)
2JEY |1+ K2 — =M
/'

defined as an evolving constant (i.e. a Dirac observable), must correspond to a
selfadjoint operator at the quantum level. Classically, K, and E* are pure gauge, and
g« is just a function of the observable m.In the interior of the horizon, if g, is a
selfadjoint operator, a necessary condition will be [46]

1+Ké—%20. (3.3.15)
PR

At the singularity, i.e. j = 1, and owing to the bounded nature of K2 < o,

2Gm
Ji > —2Gm__ . 3.3.16
LTtk ( )

Therefore, this argument strongly suggests that the classical singularity will be
resolved at the quantum level since k; must be a non-vanishing integer.

3.4. Unruh effect revisited

We remind now that a black holes have an approximate Rindler region near the
Schwarzschild horizon. For the the distributional Schwarzschild solution (2.1.8) by
coordinate transformation

r=2m(l+(5*+¢€?)),e € (0,1], (3.4.1)
where ¢ < €, we obtain
(ds?), = —((8% + €2),_)dt* + 16m*ds? + 4m2dQ3 + O(g*/e?). . (3.4.2)

The (¢,0) piece of this metric (3.4.2) is Rindler space (we can rescale 7,6 and € to
make it look exactly like (2.2.10) for ¢ - 0. Thus from (3.3.13) using (3.4.1) we obtain
directly for 6 =< 0



(Ti6,6))yen), = 67 (3.4.3)

Therefore sufficiently strongly accelerated observer burns up near the Rindler
horizon. Thus Polchinski’'s account doesn’t violation of the Einstein equivalence
principle.

Remark 3.4.1.Note that by using Eq.(A.8) and Eq.(A.9) (see appendix A) one
obtains

Eq.(3.4.3) directly from distributionel Rindler metric.

4.Conclusion

On a Riemannian or a semi-Riemannian manifold, the metric determines invariants
like the Levi-Civita connection and the Riemann curvature. If the metric becomes
degenerate (as in singular semi-Riemannian geometry), these constructions no longer
work, because they are based on the inverse of the metric, and on related operations
like the contraction between covariant indices. In order to avoid these difficultnes
distribytional geometry by using Colombeau generalized functions [2]-[10].In authors
papers [23]-[24] appropriate generalization of classical GR based on Colombeau
generalized functions is proposed.

Such generalization of classical GR based on appropriate generalization of the
Einstein equivalence principle (GEEP) mentioned above in subsection 2.3. Under this
GEEP Unruh effect revisited. We pointed out that GEEP avoid the contradiction
mentioned by Z.Merali in paper [36].

Appendix A.
Let us introduce now Colombeau generalized metric which has the form
(dse), = —(Ae(r)(@x°)?), = 2(De(r)dx’dr)  + ((Be(r) + Ce(r))(dr)?), A
+(Be(r)r?[(d0)* + sin®0(d$)*]), . '
Expressions for the Colombeau quantities (R(r,€)) ., (R*(7,(€))Ru (7, (€))), and
(RP# (7, (€))R oy (r,(€)) ) _ in terms of (4e),, (Be),,(Ce), and (De),.€ € (0,1] are:
The Colombeau scalars (R(7,¢€))., (R*(r,€)Ru(€)), and (R (r,€)R pouv(r,€)) , IN
terms of Colombeau generalized functions (4.(r)) ., (Be(r)).,(Ce(r)).,(De(r)), are
expressed as
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The distributional Maoller’'s metric is
(des?), = —(A:(x)dt*) + dx* + dy* + dz?,

A:(x) = [(a+gx)*+&2 ], € (0,1].

In spherical coordinates we get

(4.3)



(des?), = —(Ae(r)dt?) +dr? +r?dQ?,
A:(r) = [(a +gr)? +&2 ], € (0,1],

(4.4)
Ap(r) = 2g(a +gr), 4:(r) = 2g°.
We choose now B.(r) + C:(r) = 1,B.(r) = 2,C:(r) = -1, and rewrite Eq.(A.3) in the
following equivalent form
dss?) = —(A:(r)dt*) +dr* +r*dQ"?,
(des®), = —(Ae(r)dt?), (4.5)
Q' =0)2.
Note that
A = A:(B: + C;) = A.. (4.6)
From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get
_ (A 2( pA4c 3B [ A\ 2 ACo+ D A; 5 B;
(R(r,¢)), = (Ag |: r( 2148 338 + A, + 2 A.B. A, 238
L1 (BLY _,ABr, (14r, BLYALTY _
2\ B; A:B: \24: B, )A: |)
(_;A_Q_L_ A; +LA?) _
A, 2 A, 242 -
r Az /s 4.7
_ A4g(a+gr) 1 2g? N 2¢%(a + gr)? _
Ma+g)’+22] 7 (a+egn’+&  [(a+gr)’+e]
, (a +gr)2 +e2—-¢2 A —2g2€2

|:(a+gr)2+32:|2 S [(a+gr)2+82:|2'

From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get
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We assume now that a + gr < 0, then from (A.8) we get

4g*0(1)
[(a+gr)’+&2]"
From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get

(R¥(r,&)Ruw(€)), = (4.9)



(R7"(r,&)Rpoyv(r,€)), =

1 (BN 1 BAT (4.10)
2 Bg) 2 B.A, a
)

2g° _ 2g%a+gr)’ 2 L1 8ga+gr)’
(a+gr)’+¢? [(a+gr)2+82:|2 . ! [(a+gr)2+82:|2 g.

We assume now that a + gr < 0, then from (A.9) we get

4g*o(1)

R (7, &)R pouv (7, = .
( (r,&)Rpopuy (r 3))€ [(a+gr)2+82:|2

(4.11)

Appendix B.

We calculate now the distributional curvature at Schwarzschild horizon. In the usual
Schwarzschild coordinates (¢,7 > 0,0,¢),r + 2m the metric is

ds? = h(r)dt> — h(r)'dr? + r*dQ)?,

h(r) = —1 + 2, (51

Metric takes the form above horizon r > 2m and below horizon » < 2m correspondingly

- .
above horizon r > 2m

ds*2 = h*(r)dt* — [h*(r)] ' dr? + r2dQ2,

W) = -1+ 2m _ _r—2m

< o’ r (B.2)
below horizon r < 2m :

ds™ = h=(r)dt* — h=(r)"'dr* + r?dQ?,

h(r) = -1+ 2;11 _ 2mr—r

Remark A.1. Following the above discussion we consider the metric coefficients



(), [h* ()] h~(r),and [h~(r)]"" as an element of D'(R?) and embed it into D(@J) by

replacement above horizon » > 2m and below horizon » < 2m correspondingly

r=2m:r—2mw— J(r—2m)2+62,
(B.3)

r<2m:2m-r— J(2m—r)2+€2.

Note that, accordingly, we have fixed the differentiable structure of the manifold: the
Cartesian coordinates associated with the spherical Schwarzschild coordinates in
(B.1) are extended

_r—=2m ; _ )
h(r){ F if r > 2m }H(hZ(r))€<—J(V 2111) +€ ) ’
0ifr <2m .

where (h{(r)), € G(R?,B*(2m,R)),B*(2m,R) = {x € R32m < ||x| < R}.

L r>2m

B = r—2m — (h¥)™'(r) =

oo, r = 2m

_r=2m i, <9
() = P S EL ) = (B.4)
0ifr>2m

VI
(«/(2’" r”) te ) e G(R3,B-(0,2m)),

€

where B=(0,2m) = {x € R3|0 < ||x| < 2m}

' r<2m
roam — (b)) =

w©,r = 2m

— (J r — ) e G(R3,B7(0,2m))
(r—=2m)° +e .

Inserting (B.4) into (B.2) we obtain a generalized object modeling the singular
Schwarzschild metric above (below) gorizon, i.e.,

ds?), = (hi(rydt), - (k)] dr?) +r2dQ2,
(ds?), = (he(dr?) = ([he (] 'dr?) _+r2dQ?

(B.5)

The generalized Ricci tensor above horizon [R+]§ may now be calculated



componentwise using the classical formulae

(RY), = (R, = 5 (e + 50),)
h{ hf
<[RZ]§>€ _ <[Rz]g>€ _ ( r)g n 1+(2 )e )

r

(B.6)

From (B.4) by differentiation we obtain
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Investigating the weak limit of the angular components of the Ricci tensor (using the
abbreviation

T

2
() = j sin0do j dpO () (B.8)
0 0

and let ®(¥) be the function @) € S,,(R?,B*(2m,Ro)), where by S,,,(R3,B*(2m,Ry))
we denote the class of the functions ®(¥’) with compact support such that:

(i) supp(®(X)) < B*(2m,Ro) < {X|Ro > |X|| = 2m} (i) B(r) € C*(R).

Then for any function ®(X) € S,,(R3,B*(2m,R,)) we get:

J (R @@ = | (R @G =

R
_ j (r(h?), + 1+ (h) )D(r)dr = (B.9)

2m

R R
- J{_[ r—2m = }(i)(r)dr+ J O(r)dr.

(r—2m)* +€2:| o

2m

By replacement » — 2m = u, from (B.9) we obtain

j K([R:]g)p(x)d3x - j K([RZB)GCD(x)ch _
R-2m R-2m (B.10)

_ u®(u + 2m)du =
- it [ ®@+2m)au

0

By replacement u = en, from (B.10) we obtain the expression

50 = | (R 0@ =Ti(e) = | (R:3) OF)d’x =
K K

R-2m R-2m
< ~ € (B.11)
D(en +2)d ~
ul (2 ul 1)/2 n_ J ®(en + 2m)dn
(mn°+1) 0

From Eq.(B.11) we get



R-2m
€

: : ®(2
13(6) = Iz(E) = —€ (O'm) 0 |:(172++)1/2 - 1:|d77+

‘/(R 2m )7 - R 2m:|+

Tt @‘T’“)@”"”’

where we have expressed the function 5(617 +2m) as

(B.12)

—GCD(Zm

_€e
1

Bien + 2m) = ) L7 eyt

L (e o)
E20en+2m, 1>0>0, n=1

with @O (&) 2 d'd/dE!. Equations (B. 12)-(3.13) gives

(B.13)

lim I3(e) = lim I5(¢) =

-0 -0

lig; {—E&D(Zm)[‘/(R 2””) +1-1-R=2m 2m :|}+

(B.14)
R-2m

. 2 .
1im 4 € j[ﬁ—@@m(é)ndn -0
-0 0 77

Since S5,,(B*(2m,R)) < D'(R*),where B*(2m,R) = {x € R3|2m < ||x|| < R} from

w—lim [R{]] = lim I§(e) = 0,
-0 ) -0 (B 15)
w—lim [R{]3 = lim I}(e) = 0.

-0 -0

For ([R{1}) . ([RE15), we get:



2 IK<[R§]1>E®(x)d3x =2 j (R 0@ =

R
[, + 20 B =

2m

R
_ 3 7 r(r—2m)? H(d
I{ [(r—Zm)2+€2:|1/2 + |:(r—2m)2+€2:|3/2} (r)dr.

2m

(B.16)

where use is made of the relation

. S n*dn S dn _
El—g.} |:.[ (n2+ 1)32 J W+ 1)12 :| = -1 (B.17)

0 0

- lim [R{]] Fingtyliwe Bothire —m®(Q2m). (B.18) The

-0 -0
Colombeau generalized Ricci tensor below horizon [Rg]g = [Rg]g may now be
calculated componentwise using the classical formulae

(RZ1D), = (R, = () + 20DH,),

e - (B.19)
(RT3, = (R, = e 4 -0

72

From (B.4) we obtain

A 2
he(r) = ~E=2 s () = (J(zm e ) — (), < 2m.

~ [ (r—2m)? +€2:|1/2

2 b

B (r) = =hi () = e
r[(r—2m)2+€2:|1/2 r

r(h) + 1+ (he), = —r(hd) +1-(hE), =

r—2m +1.
[(r—2m)?+e2]" (B.20)

he'(r) = —he'(r) =
2[ (r—2m)* +€2:|1/2

. r—2m
rz[(r—Zm)2+€2:|1/2 r?
P, + 2, = (), =2 (), =
r r(r—2m)?

|:(r—2m)2+€2:|1/2 |:(r—2m)2+€2:|3/2.



Investigating the weak limit of the angular components of the Ricci tensor (using the

T

abbreviation ®(r) = Ism@d@ f d¢®(¥) and let ®(x) be the function

the classbgfthe mmhm*@(’fmwah compact support
K < B(0,2m),B~(0,2m) = {0 < [|¥|| < 2m} such that:

(i) supp(®(¥)) = {¥0 < [|X]| <2m} (i) D(r) € C*(R).

| (Re3) 0@ = | (R3) 0G)d =
2m
Then for any functio&%%’?egrslz,:([&@i?f?)(%,(ﬁ)ncqlg):we get (B.21) By

2m om
J.{ V—fm 12 }(i)(l”)dr+ J. &)(I")d}’.
0 0

|:(r—2m) +€2:|

replacement » — 2m = u, from Eq.(B.21) we obtain

J (R o@adx = | (R3) @00dx =

0 . 0 (B.22)
I u(I)(zu Al 22ml)g’u + J. O (u + 2m)du.
—2m (u te ) —2m
By replacement u = en, from (B.22) we obtain
G = [ (R 0@ = 15(e) = [ (RE), 0@ =
. 0 (B.23)
€ X nPlen + Zriagdn + _[ O(en +2m)dn |,
2 (D) o

which is calculated to give



. 0
15(6) = 15(0) = 25 [(ﬁfnm*4JM+

€

0
j [ T :|&)(1)(§)Tld77 =
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0
| g — -

where we have expressed the function 5(617 +2m) as

5(en+2m) =" 1 ©0Qm)

Ly~ (en)! + (e o)

E£0en+2m, 1>6>0,

n=1
with @ £ g'd/dr!. Equation (B.25) gives
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-0 -0
lim {6&)(2m)|:1 — (221) +1 + 2m :|} +
< -0

2 ~
+ lim < & [#+1}D(”( Yyndn » = 0.
-0 2 _'L (m*+ 1" S
\ €

Since S5,,(B7(0,2m)) < D'(R3?),where B=(0,2m) = {x € R3|0

w—lim [R;]3 = lim I5(e) = 0.

-0 -0

w—lim [R;]% = lim Iz(e) = 0.
-0 -0
For ([Rg]})e, ([Rg]ﬁ)E we get:

< ||x|| < 2m} from

(B.24)

(B.25)

(B.26)

(B.27)



2IK<[RQ]}>€(D(x)d3x - 2JK<[R;]8>€CD(x)d3x -
2m

2m
= v _ r(r—2m)2 (i) .,

By replacement » — 2m = u, from (B.28) we obtain

1©) = 2[(R:1}) @) = I3(e) = 2 [(R:10) @)’
2m

= [0, +20) Yd(r)r = (B.29)

W+ Wr+er)?

— }{ w+2m __ uu+2m) }(T)(u+2m)du.
2

By replacement u = en, from (B.29) we obtain

2 jK([R;]})p(x)d3x =2f (R o) =

[ 2+ 200 YO =
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€

0
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172 3/2

0
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which is calculated to give

~ 0
_ _ D2 2
15(6) = 1360 = 2m PG | -

_2m
€

(B.31)
2

40| Gy~ Gt [ 0o

€
1

O'—-.ml'g’

where we have expressed the function 5(61} +2m) as

_ ap(l)
O(en +2m) = 27;01 @l—!(2m)(€n), + %(Eﬂ)"d)aﬂ(")(é) 5 (B.32)

E20en+2m, 1>60>0, n=1
with @O (&) 2 d'd/dE! Equation (B.32) gives

lim Ij(e) = lim Ij(e) =

-0 -0

~ 0
. @ (2m) 1 n? :|
2m | —= = dn > =
T o M[W+w0(¢ﬂw2”

(B.33)

€

5 ~ ¢ dy 0 _ n’dn
2m®(2m) lim |:JS T D —JLS CEE =

= 2md(2m).

s—0

where use is made of the relation

0 0
. dn n’dn
o [I @D A gEene |TF (5:39)
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