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Abstract:The vacuum energy density of free scalar quantum field Φ in a Rindler

distributional spacetime with distributional Levi-Cività connection is considered.It has
been widely believed that, except in very extreme situations, the influence of
acceleration on quantum fields should amount to just small, sub-dominant
contributions. Here we argue that this belief is wrong by showing that in a Rindler
distributional background spacetime with distributional Levi-Cività connection the
vacuum energy of free quantum fields is forced, by the very same background
distributional spacetime such a Rindler distributional background spacetime, to
become dominant over any classical energy density component. This semiclassical
gravity effect finds its roots in the singular behavior of quantum fields on a Rindler
distributional spacetimes with distributional Levi-Cività connection. In particular we
obtain that the vacuum fluctuations 〈2  has a singular behavior at a Rindler horizon
  0 : 〈2~−4, ≈ c2/a,a → .Therefore sufficiently strongly accelerated
observer burns up near the Rindler horizon. Thus Polchinski’s account doesn’t
violation of the Einstein equivalence principle.
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1.Introduction
In March 2012, Joseph Polchinski claimed that the following three statements

cannot all be true : (i) Hawking radiation is in a pure state, (ii) the information carried
by the radiation is emitted from the region near the horizon, with low energy effective
field theory valid beyond some microscopic distance from the horizon, (iii) the infalling
observer encounters nothing unusual at the horizon. Joseph Polchinski argue that the
most conservative resolution is that: the infalling observer burns up at the horizon. In
Polchinski’s account, quantum effects would turn the event horizon into a seething
maelstrom of particles. Anyone who fell into it would hit a wall of fire and be burned to
a crisp in an instant. As pointed out by physics community such firewalls would violate
a foundational tenet of contemporary physics known as the equivalence principle, it
states in part that an observer falling in a gravitational field — even the powerful one
inside a black hole — will see exactly the same phenomena as an accelerated
observer floating in empty space.
In this paper we argue that Polchinski not was wrong, but Unruh effect revision is

needed.

1.1.What is Colombeau distributional semi-Riemannian
geometry?
Recall that the classical Cartan’s structural equations show in a compact way the

relation between a connection and its curvature, and reveals their geometric
interpretation in terms of moving frames. In order to study the mathematical properties
of singularities, we need to study the geometry of manifolds endowed on the tangent
bundle with a symmetric bilinear form which is allowed to become degenerate
(singular).
Remark 1.1.1.But if the fundamental tensor is allowed to be degenerate (singular),

there are some obstructions in constructing the geometric objects normally associated
to the fundamental tensor. Also,local orthonormal frames and coframes no longer
exist, as well as the metric connection and its curvature operator.
Remark 1.1.2."Singular Semi-Riemannian Geometry"- the main brunch of

contemporary semi-Riemannian geometry in which have been studied a smooth



manifolds M furnished with a degenerate (singular) on a smooth submanifold M′  M
metric tensor of arbitrary signature [1].
Remark 1.1.3.In order to solve problems of the gravitational singularity in classical

general relativity the singular semi-Riemannian geometry based on Colombeau
calculas and Colombeau generalized functions was many developed,see [2]-[23].
Remark 1.1.4.Let GM′ be algebra of Colombeau generalized functions on M′ ⊂ M

,let  be the ring of Colombeau generalized numbers [2]-[5]. Let g be Colombeau
generalized metric tensor on M and let RicM′p be generalized Ricci tensor of the
metric gp |M′ [21]-[22].The main properties of such nonclassical manifolds with a

degenerate (singular) metric tensor that is RicM′p ∈ GM′\CM′, i.e. for all

p ∈ M′ : RicM′p ∈ \.
Definition 1.1.1. . Let GM′ be algebra of Colombeau generalized functions on

M′ ⊂ M, and let g be Colombeau generalized metric tensor on M such that g is
the Colombeau solution of the Einstein field equations,(see Remark 1.3.5). We define
now the Colombeau distributional scalar curvature RMp (or distributional Ricci
[21]-[22] scalar) as the trace of RicMp : RMp  trRicMp.Assume that
RM′p ∈ GM′\CM′.
Then we say that: (i) gravitational field g (or corresponding distributional

spacetime) has a gravitational singularity on a smooth compact submanifold Mc ⊂ M
iff RMcp ∈ GMc\CMc; (ii) gravitational field g has a gravitational singularity
with compact support iff RMcp ∈ D′3.
Remark 1.1.4.It turns out that the distributional Schwarzschild spacetime has a

gravitational singularity with compact support at origin r  0 [6]-[11] and at
Schwarzschild horizon S2  r  2m [18]-[19].

1.2.Distributional Mo̸ller’s geometry as Colombeau
extension of the classical Mo̸ller’s spacetime.
As importent example of Colombeau extension of the singular semi-Riemannian

geometry mentioned above, we consider now Mo̸ller’s uniformly accelerated frame
given by Mo̸ller’s line element [24]:

ds2  −a  gx2dt2  dx2  dy2  dz2. 1.2.1

Of couse Mo̸ller’s metric (1.2.1) degenerate at Mo̸ller horizon xhor
Mo̸l  −a/g−1.Note that

formally corresponding to the metric (1.2.1) classical Levi-Civit‘a connection is [1]

Γ44
1 x  a  gx,Γ14

4 x  Γ41
4 x  1

a  gx 1.2.2

and therefore classical Levi-Civit‘a connection (1.2.2) of couse is not available at



Mo̸ller horizon xhor
Mo̸l  −a  g−1.Recall that fundamental tensor corresponding to the

metric (1.2.1) were obtained in Mo̸ller’s paper [24] as a vacuum solution of the
classical Einstein’s field equations

Gik  Rik − 1
2
 ikR  0, 1.2.3

where Rik is the contracted Riemann-Christoffel tensor formally calculated by canonical
way by using classical Levi-Civit‘a connection (1.2.2) and R  Rii. Using Dingle’s
formula [24] in case of the metric (1.2.1) we get

G2
2x  G3

3x  − 1
2Δx

Δ′′x −
Δ′x2

2Δx
,

Δx  a  gx2,

1.2.4

where Δ′x  ∂Δx/∂x and all ather components of Gik vanishes identically. Note that

Δ′x  2ga  gx,Δ′′x  2g2. 1.2.5

Thus for any x ≠ −a  g−1 we get a classical result

G2
2x  G3

3x  − 1
2Δx

2g2 − 4g2a  gx2

2Δx
≡ 0. 1.2.6

Let xnn∈ℕ be a sequence such that limn→ xn  −a  g−1,xn ≠ −a  g−1,n ∈ ℕ.Then for
any n ∈ ℕ we get

ℑxn  G2
2xn  G3

3xn  − 1
2Δxn

2g2 − 4g2a  gxn2

2Δxn
≡ 0, 1.2.7

and therefore limn→ℑxn ≡ 0.However

limn→Γ14
4 xn  limn→Γ41

4 xn  limn→
1

a  gxn  , 1.2.8

i.e. classical Levi-Civit‘a connection given by (1.2.2) unavaluble at Mo̸ller horizon.
Remark 1.2.1. In order to avoid difficultness which mentioned above, we consider

now
the regularized Mo̸ller’s metric

ds2  −Δxdt2  dx2  dy2  dz2,

Δx  a  gx2  2 , ∈ 0,1.
1.2.9

Using now Dingle’s formula [24] in case of (1.2.9) we get

ℑx;  G2
2x;  G3

3x;  − 1
2Δx

Δ
′′x −

Δ
′ x2

2Δx
,

Δx  a  gx2  2 .

1.2.10

Note that

Δ
′  2g1  gx,Δ

′′  2g2 1.2.11



and therefore

ℑx;  − 1
2Δx

2g2 − 2g2a  gx2

Δx


− 1
2Δx

2g2 −
2g2 a  gx2  2 − 2g22

Δx


 − g
22

Δ
2x

.

1.2.12

Remark 1.2.2.Note that ℑx;, ∈ 0,1 is Colombeau generalized function such
that

clℑx;  ∈ G and clℑ−g
−1;   cl−2  ∈ .

Remark 1.2.3.Note that clℑx;  
a  gx
a  gx ∉ D′.

Remark 1.2.4.Thus Colombeau generalized fundamental tensor gik
corresponding to Colombeau metric

ds2  −Δxdt2  dx
2  dy2  dz2,

Δx  a  gx2  2

, ∈ 0,1

1.2.13

that is non vacuum Colombeau solution (see [18] section 6 and [19] subsection 2.3
Distributional general relativity) of the Einstein’s field equations

Gik  Ri
k −

1
2
 ikR  −g

2 2
Δ
2x 

. 1.2.14

For Rindler metric a  0,g  1 and we get

Gik  Ri
k −

1
2
 ikR  −

2

x2  22 

∈ G. 1.2.15

Definition 1.2.1.Distributional Mo̸ller’s geometry that is Colombeau extension of the
classical Mo̸ller’s spacetime given by Colombeau generalized fundamental tensor
(1.2.13).

1.3.Distributional Schwarzschild geometry as
Colombeau extension of the classical singular
Schwarzschild spacetime.
As another importent example of Colombeau extension of the singular

semi-Riemannian geometry we consider now classical singular Schwarzschild
spacetime given by degenerate and singular Schwarzschild metric

ds2  − 1 − 2m
r dt2  1 − 2m

r
−1
dr2  r2d2 1.3.1



Remark 1.3.1.Note that formally corresponding to the metric (1.3.1) classical
Levi-Civit‘a connection given by canonical Christoffel symbols are [25]:

Γ00
1 r|r2m 

r→2m
lim

mr − 2m
r3

 0,Γ11
1 r|r2m 

r→2m
lim −m

rr − 2m
 ,

Γ01
0 r|r2m 

r→2m
lim m

rr − 2m
 ,

Γ12
2 r|r2m 

r→2m
lim 1

r  2−1m−1,Γ22
1 |r2m  −

r→2m
lim r − 2m  0,

Γ13
3 |r2m 

r→2m
lim 1

r  2−1m−1,Γ33
1 |r2m  −

r→2m
lim r − 2m sin2  0,

Γ00
1 r|r0 

r→0
lim

mr − 2m
r3

 Γ11
1 r|r0 

r→0
lim −m

rr − 2m
 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ33
2  − sincos,Γ23

3  cos
sin .

1.3.2

i.e. classical Levi-Civita connection given by Eq.(1.3.2) unavaluble at Schwarzschild
horizon.
Remark 1.3.2.Newertheles in classical handbooks ( [25-30]) mistakenly assumed

that classical semi-Riemannian geometry holds on whole Schwarzschild manifold and
therefore canonical formal calculation gives

RabcdrRabcdr  16m2

r6
. 1.3.3

By Eq.(1.3.2) mistakenly pointed out that the Schwarzschild metric has only a
coordinate singularity at r  2m and there is no gravitational singularity at
Schwarzschild horizon.
Remark 1.3.2.Note that canonical formal calculation gives

RabcdrRabcdr  16m2

r6
 4 − m

r 1 − 2m
r

− m
r5

1 − 2m
r

4 − m
r 1 − 2m

r
sin2 − m

r5 sin2
1 − 2m

r 

4m
r 1 − 2m

r
m

r5 1 − 2m
r

 8mr sin2 2m
r7 sin2



4m
r 1 − 2m

r sin2 m
r5 sin2 1 − 2m

r

1.3.4



Assume that r ≠ 0 and r ≠ 2m, i.e. 1 − 2m
r ≠ 0, sin2 ≠ 0, then from Eq.(1.3.4) one

obtains
directly

RabcdrRabcdr  16m2

r6
 4 − mr − m

r5

4 − mr − m
r5

 4m2

r6
 16m2

r6
 4m2

r6
 48m2

r6
 12rs2

r6
.

1.3.5

Remark 1.3.3.Notice that: if r  2m then RHS of the Eq.(1.3.4) become uncertainty

RabcdrRabcdr  16m2

r6
 4 − m

r0
− m
r5
0  4 − m

r0
sin2 − m

r5 sin2
0 

4m
r 0 m

r50
 8mr sin2 2m

r7 sin2
 4m
r 0sin2 m

r5 sin20
 16m2

r6
 0
0
. 1.3.6

In order to avoid this difficultness mentioned above one defines RabcdrRabcdr at
r  2m by the limit

r→2m
lim RabcdrRabcdr 

r→2m
lim 16m2

r6
 4 − m

r 1 − 2m
r

− m
r5

1 − 2m
r

4 − m
r 1 − 2m

r
sin2 − m

r5 sin2
1 − 2m

r 

4m
r 1 − 2m

r
m

r5 1 − 2m
r

 8mr sin2 2m
r7 sin2



4m
r 1 − 2m

r sin2 m
r5 sin2 1 − 2m

r
 48m2

r6

1.3.7

However Eq.(1.3.7) doesn’t holds becouse classical Levi-Civit‘a connection (1.3.2)
of couse is not available at Schwarzschild horizon, see Remark 1.3.1.
Remark 1.3.4. Thus from Eq.(1.3.4) for r ≠ 0 and r ≠ 2m we get

RabcdrRabcdr  16m2

r6
 r ≠ 0 ∧ r ≠ 2m, 1.3.8

and we get nothing at Schwarzschild horizon.Therefore semi-Riemannian geometry
break
down at Schwarzschild horizon [18]-[19].
Remark 1.3.5.Recall that canonical derivation of the canonical singular

Schwarzschild



metric in classical handbooks alwais based on assumption that:
Assumption 1.3.1.Classical semi-Riemannian geometry holds on whole
semi-Riemannian manifold, see for example [27].
Let ds2 be the metric

ds2  −Ardt2  Brdr2  r2d2, 1.3.9

where A,B → 1 as r → .Then under Assumption 1.3.1 one obtains [27]:

(i) all Γμν1 are zero except

Γ00
1  A ′/2B,Γ11

1  B ′/2B,Γ22
1  −r/B,Γ33

1  −r/B sin2, 1.3.10

The equations Rμν  0,μ,ν  0,1,2,3 are

R00  Γ00,1
1 − 2Γ00

1 Γ01
0  Γ00

1 log −g
,1


A ′
2B

′
− A ′2
2AB

 A ′
2B

A ′
2A

 B ′
2B

 2
r 

1
2B

A ′′ − A
′B ′
2B

− A
′2

2A
 2A ′

r  0,

1.3.11

and

R11  − log −g
,1,1

 Γ11,1
1 − Γ10

0 2 − Γ11
1 2 − Γ21

2 2 −

−Γ31
3 2  Γ11

1 log −g
,1


1
2A

−A ′′  A
′B ′
2B

 A
′2

2A
 2AB ′

rB
 0,

1.3.12

and

R22  − log −g
,2,2

 Γ22,1
1 − 2Γ22

1 Γ21
2 − Γ23

3 2  Γ22
1 log −g

,1


− dcot
d

− r
B

′
 2
B
− cot2 − r

B
2
r  AB ′

2AB
 0. 1.3.13

From Eq.(1.3.11)-Eq.(1.3.12) one obtains

2AB ′

rB
 0. 1.3.14

Therefore AB  constant. Since at r →  we have A and B → 1 one obtains B  A−1.
From Eq.(1.3.14) one obtains

r
B

′
 1, 1.3.15

and by integration one obtains r/B  r − 2m,where 2m is an integration constant.
Finally one obtains well known classical result



Ar  1 − 2m
r ,Br  1 − 2m

r
−1
. 1.3.16

From Eq.(1.3.16) and consideration above (see Remark1.3.4) Assumption 1.3.1
wrong,
otherwise one obtains the contradiction.
Remark 1.3.5.In order avoid this difficultnes:
(i) we have introduced instead a classical Einstein field equations

Rμν − 1
2 Rgμν  −8GTμν, 1.3.17

[where the sign of the energy-momentum tensor is defined by (ρ is the energy
density)]

T44  −T00  T00  , 1.3.18

apropriate Colombeau generalization of the Eq.(1.3.17)-Eq.(1.3.18) such that

Rμν −
1
2 Rgμν  −8GTμν, 1.3.19

where the sign of the distributional energy-momentum tensor is defined by

T44  −T00  T00   ∈ GM, 1.3.20

see [18]-[19].
(ii) we have introduced instead Assumption 1.3.1 the following assumption.
Assumption 1.3.2.Distributional semi-Riemannian geometry holds on whole
distributional semi-Riemannian manifold.
Definition 1.3.1.Let Ar, ∈ 0,1 and Br, ∈ 0,1 the regularization of the
functions Ar and Br [defined above by Eq.(1.3.16)] such that the followin

conditions
are satisfied:
(i) Ar ∈ G and Br ∈ G, ∈ 0,1 are Colombeau generalizad
functions;
(ii)

A0
r  1 − 2m

r ,B0
r  1 − 2m

r
−1
; 1.3.21

(iii) A2m  ∓ ∈ , B
2m  −1 ∈ ;

(iv) A0  1 − 2m


∈ , B0  1 − 2m


−1

∈ .

Let ds2 be the Colombeau metric

ds2  −A
rdt2  B

rdr2  r
2d2, 1.3.22

and let Γμν  be the distributional Levi-Civita connection [18]-[19] corresponding
to
Colombeau metric (1.3.22). Then under Assumption 1.3.2 one obtains:
(i) all Γμν1  are zero except



Γ00
1   A

′ /2B, Γ11
1   B

′ /2B,

Γ22
1   −r/B, Γ33

1   −r/B sin
2,

1.3.23

R00  Γ00,1
1  − 2Γ00

1 Γ01
0  

Γ00
1  log −g ,1



A′ 
2B

′

−
A′2

2AB


A′ 
2B

A′ 
2A


B′ 
2B

 2
r 

1
2B

A ′′ −
A ′B

′
2B

−
A′2
2A


2A′ 
r ,

1.3.24

and

R11  − log −g ,1,1
 Γ11,1

1  −

Γ10
0 2 − Γ11

1 2

− Γ21

2 2

−

− Γ31
3 2


 Γ11

1  log −g ,1


1
2A

−A′′ 
A′ B

′ 
2B


A′2
2A


2AB

′ 
rB

,

1.3.25

and

R22  − log −g ,2,2
 Γ22,1

1  −

2Γ22
1 Γ21

2  − Γ23
3 2


 Γ22

1  log −g ,1


− dcot
d

− r
B

′

 2
B

− cot2 − r
B

2
r 

AB
′

2AB
.

1.3.26

Weak distributional limit in D′3 of the RHS of the Eq.(1.3.18), i.e. w-lim→0 Tμν is
calculated in our papers [18]-[19], see also Appendix B.
Remark 1.3.6.It turns out that the distributional Schwarzschild metric (1.3.22) has a
gravitational singularity with compact support at origin r  0 [6]-[11] and at
Schwarzschild horizon S2  r  2m [18]-[19].

1.4.On the near horizon Colombeau approximation for
the

classical singular Schwarzschild black hole geometry.
Let us perform the following coordinate transformation



t̄  t
4m

, r̄  8mr − 2m  2 , ∈ 0,1 1.4.1

to the classical singular Schwarzschild metric

ds2  − 1 − 2m
r dt2  1 − 2m

r
−1
dr2  r2d2 1.4.2

we get

ds2  −r̄2 1  r̄2

16m2

−1
dt̄2  1  r̄2

16m2 dr̄2  4m2 1  r̄2

16m2

2

d2. 1.4.3

In Eq.(1.4.2), m is the central mass, d2  d2  sin2d2 and G  c  1.Taking the
limit m →  , the spherical horizon becomes planar and Eq. (1.4.3) leads to the
Colombeau type metric

ds2  −r̄
2dt̄

2  dr̄2  4m
2d2 1.4.4

which is distributional Rindler’s spacetime if we neglect the angular contribution.The
condition m →  is equivalent to the ”near horizon approximation” for the exterior
geometry of a black hole : for r ≈ 2m r  2m the line element (1.4.2) appears, indeed,
as

ds2  − r − 2m
2m

dt2  2m
r − 2m dr

2  4m2d2. 1.4.5

By using simple coordinate transformations it could be shown that (1.4.5) again
becomes the distributional Rindler metric when we take ,  const. or Δ and Δ are
negligible. We stress that the condition r ≈ 2m only is not enough to obtain Rindler’s
spacetime which has no spherical symmetry as Schwarzschild.
Remark 1.4.1.At this stage of consideration, it is already clear that near horizon

Schwarzschild black hole geometry has a gravitational singularity at horizon. Notice
that in classical handbooks (see for example [26]-[32]) near horizon Schwarzschild
black hole geometry mistakenly acepted as regular with the Ricci tensor and the Ricci
scalar vanish identically. A.Eddington,D.Finkelstein and G.Lemaïtre abnormal papers
[33]-[35] based on misunderstanding and missconception the authors about
fundamental notion of the semi-Riemannian geometry.See also a critico-historical
notes in [36].

1.5. Colombeau distributional semi-Riemannian
geometry.Preliminaries.
1.5.1. The ring of Colombeau generalized numbers .
We denote by  the ring of real, Colombeau generalized numbers. Recall that [2]-[3]

by definition   E/N where



E  x ∈ 0,1 |∃a ∈ ∃0 ∈ 0,1∀ ≤ 0|x | ≤ −a ,

N  x ∈ 0,1 |∀a ∈ ∃0 ∈ 0,1∀ ≤ 0|x | ≤ a .
1.5.1

1.5.2.A real Colombeau vector bundle.
Definition 1.5.1.A real vector bundle consists of:
1.topological spaces X (base space) and E (total space)
2.a continuous surjection π : E → X (bundle projection)
3.for every x in X, the structure of a finite-dimensional vector space over Colombeau

ring

 on the fiber π−1x
where the following compatibility condition is satisfied: for every point in X, there is

an
open neighborhood U, a natural number k, and a homeomorphism

φ : U  
k
→ π−1U

such that for all x ∈ U,

π ∘ φx,v  x for all vectors v in 
k
, and

the map v  φx,v is a linear isomorphism between the vector spaces 
k
and

π−1x.
The open neighborhood U together with the homeomorphism φ is called a local

trivialization of the Colombeau vector bundle. The local trivialization shows that locally

the map π "looks like" the projection of U  
k
on U.

The Cartesian product X  
k
, equipped with the projection X  

k
→ X, is called the

trivial bundle of rank k over X.
1.5.3.The basic idea of Colombeau’s theory of generalized functions is

regularization by sequences (nets) of smooth functions and the use of asymptotic
estimates in terms of a regularization parameter  ∈ 0,1.Let uεε ∈ 0,1 with
uε ∈ CM for all ε ∈ 0,1 (M a separable, smooth orientable Hausdorff manifold of
dimension n).The algebra of Colombeau generalized functions on M is defined as the
quotient

GM  EMM/NM 1.5.2

of the space EMM of sequences of moderate growth modulo the space NM of
negligible sequences. More precisely the notions of moderateness resp. negligibility

are defined by the following asymptotic estimates (XM or XM denoting the space

of smooth vector fields on M).



EMM  uεε ∈ M0,1 |∀K ⊂⊂ M∀k ∈ ℕ0∃n ∈ ℕ

∀1 ∈ XM, . . . ,∀k ∈ XM supp∈K|L1 . . .Lnuεp| ≤ O−n ,

NM  uεε ∈ M0,1 |∀K ⊂⊂ M∀k,q ∈ ℕ0∃n ∈ ℕ

∀1 ∈ XM, . . . ,∀k ∈ XM supp∈K|L1 . . .Lnuεp| ≤ Oq .

1.5.3

Elements of GM are denoted by

u  cluεε  uεε  uεε  NM. 1.5.4

With componentwise operations GM is a fine sheaf of differential algebras with
respect to the Lie derivative defined by

Lξu : clLξuεε  Lξuεε. 1.5.5

The spaces of moderate resp. negligible sequences and hence the algebra itself may
be characterized locally, i.e., u ∈ GM iff uψα ∈ GψαVα for all charts Vα,ψα,
where on the open set ψαVα ⊂ n in the respective estimates Lie derivatives are
replaced by partial derivatives. Smooth functions are embedded into GM simply by
the “constant” embedding σ, i.e., σf : clfε, hence CM is a faithful subalgebra
of GM. On open sets of n compactly supported distributions are embedded into G
via convolution with a mollifier ρ ∈ Sn with unit integral satisfying  ρxxαdx  0 for

all |α|≥ 1; more precisely setting ρεx  1/εnρx/ε we have w : clw ∗ ρεε. In
case suppw is not compact one uses a sheaf-theoretical construction.
1.5.4. Let f̄  clfx   fx  ∈ G

n, where fx : n → , ∈ 0,1 is a
differentiable function and let v be a vector in n . We define the Colombeau
directional derivative in the v direction at a point x ∈ n by

Dv
Colf̄  Dv fx   Dvfx  

d
dt
fx tv|t0


 ∑

i1

n

vi
∂fx
∂xi



.
1.5.6

The Colombeau tangent vector at the point x may then be defined as

vColf̄  v fx   Dvfx . 1.5.7

Let f̄  fx  ∈ G
n, ḡ  gx  ∈ G

n,where f,g : n → , ∈ 0,1 be

differentiable functions, let v,w be tangent vectors in n at x ∈ n and let a,b ∈  .
Then
1.a  v  b  wCol f̄  a  v  b  w f   av f   bw f  
 avColf̄  bwColf̄;

2.vCola  f̄  b  ḡ  va  f   b  g   a  v f   b  v g  
a  vColf̄  b  vColḡ;



3.vColf̄  ḡ  vf  g   fx   v g   gx   vf  
f̄  vColḡ  ḡ  vColf̄.
1.5.5.Colombeau tangent vector to differentiable manifold M.
Let M be a differentiable manifold and let GM be the algebra of real-valued

Colombeau generalized functions on M. Then the tangent vector to M at a point x in

the manifold is given by the derivation Dv : GM →  which shall be linear - i.e., for

any f̄  f , ḡ  g  ∈ GM and a,b ∈  we have

1.Dv
Cola  f̄  b  ḡ  Dva  f   b  g   a  Dvf   b  Dv g  

 a  Dv
Colf̄  b  Dv

Colḡ.

Note that the derivation will by definition have the Leibniz property
2.Dv

Col f̄  ḡ  Dv f  g   Dv f   gx   fx   Dv g  

 Dv
Colf̄  ḡ  f̄  Dv

Colḡ.

1.5.6.Colombeau vector fields on distributional manifolds.

Colombeau vector field X (denotin often by X ) on a manifold M is a linear map X

: GM → GM such that for all f̄, ḡ ∈ GM:

Xf̄  ḡ  f̄  Xf̄  ḡ  Xf̄  ḡ. 1.5.8

1.5.7.Colombeau tangent space.
Suppose now that M is a C manifold. A real-valued Colombeau generalized

function f : M → , ∈ 0,1 is said to belong to GM if and only if for every
coordinate chart φ : U → n, the map f ∘ φ−1 : φU ⊆ n →  is infinitely
differentiable. Note that GM is a real associative algebra with respect to the
pointwise product and sum of Colombeau generalized functions. Pick a point x ∈ M. A

derivation at x is defined as a linear map D : GM →  that satisfies the Leibniz
identity:
f̄  f , ḡ  g  ∈ GM : Df̄  ḡ  Df̄  ḡx  f̄x  Dḡ,
which is modeled on the product rule of calculus.
If we define addition and scalar multiplication on the set of derivations at x by
D1  D2f̄  f  D1f̄  D2f̄ and
λ  Df̄  f̄  λ  Df̄,

where  ∈ , then we obtain a real vector space over , which we define as the
Colombeau tangent space TxColM of M at x.
1.5.8.We call a separable, smooth Hausdorff manifold M furnished with a gener-
alized pseudo-Riemannian metric g generalized pseudo-Riemannian manifold
or generalized spacetime and denote it by M,g [20]-[22].
1.5.9.Colombeau isometric embedding.
Let M,g and N,h be generalized pseudo-Riemannian manifolds. An isometric
Colombeau embedding is a Colombeau generalized function f : M → N which



preserves the metric in the sense that g is equal to the pullback of h by f,
i.e. g  f

∗h. Explicitly, for any two tangent vectors v,w ∈ TxM we have
gv , w 

 hdfv,dfw.

2.Distributional Schwarzschild spacetime.

2.1.Distributional Schwarzschild spacetime as
Colombeau extension of the Lorentzian manifold with
nonregularity conditions on Schwarzschild horizon.
Singular space-times present one of the major challenges in general relativity.
Originally it was believed that their singular nature is due to the high degree of
symmetry of the well-known examples ranging from the Schwarzschild geometry
to the Friedmann-Robertson-Walker cosmological models. However, Penrose and
Hawking [37] have shown in their classical singularity theorems that singularities
are a phenomenon which is inherent to general relativity. Since the standard
approach allows only for smooth space-time metrics, one has to exclude the

socalled
singular regions from the space-time manifold.In a recent work many authors

advocated
the use Colombeau distributional techniques [5]-[23] to calculate the

energy-momentum
tensor of the Schwarzschild geometry.It turns out that it is possible to include the

singular
region (i.e. the space-like line r  0 with respect to Schwarzschild coordinates) in the
space-time which now no longer is a vacuum geometry, and to identify it with the

support
of the energy-momentum tensor [5],[9],[11]-[13]. The same “physically expected”

result for
the distributional energy momentum tensor of the Schwarzschild geometry was

obtained
in papers [12]-[22], i.e.,

T0
0  8m x , 2.1.1

in a conceptually satisfactory way.
Remark 2.1.1.The result (2.1.1) can be easily obtained by using apropriate

nonsmooth
regularization of the Schwarzschild singularity at the origin r  0.
The nonsmooth regularization of the Schwarzschild singularity at the origin r  0

originally considered by N. R. Pantoja and H. Rago in paper [12]. Such non smooth



regularization of the Schwarzschild singularity is

hr  −1 
rs
r Θr − 


, ∈ 0,1, r  rs. 2.1.2

Here Θu is the generalized Heaviside function,where

Θu 

 u  0
1
2 u  0

1 u  0

2.1.3

and the limit  → 0 is understood in a weak distributional sense.The equation

ds2  hrdt
2 − h

−1rdr2  r
2d2  sin2d2 ,

h0r  −1  rsr ,
2.1.4

with h, ∈ 0,1, as given in (2.1.4) can be considered as Colombeau version of the
Schwarzschild line element in curvature coordinates. From equation (2.1.2), the
calculation of the distributional Einstein tensor
Gttr,, Gr

rr,, G
r,, G

r, proceeds in a straighforward manner. By
simple calculation one obtains [12]:

Gttr,  Gr
rr,  −

h′ r
r


− 1  hr

r2 


 −rs
r − 
r2 

 −rs
r
r2

2.1.5

and

G
r,  G

r,  −
h′′r
2 

− hr
r2 



rs
r − 
r2 

− rs 
r2

d
dr
r − 


≈ −rs

r
r2

.
2.1.6

In papers [10],[28] Colombeau distributional techniques were extended to the general
axisymmetric, stationary Kerr and Newman space-time family.This family also
contains the Schwarzschild geometry and its charged extension the
Reissner-Nordstrøm solution as special cases of spherical symmetry.In the paper [23]
was shown that the solutions will satisfy the Einstein equations everywhere if the
energy-momentum tensor has an appropriate singular addition of nonelectromagnetic
origin. When this addition term is included, the total energy turns out to be finite and
equal to mc2, while the angular momentum for the Kerr and Kerr-Newman solutions is



mca.
Remark 2.1.2. The nonsmooth regularization of the Schwarzschild singularity at the

horizon r  rs is

hr  −1 
rs
r Θr − rs − 


, ∈ 0,1, r ≥ rs. 2.1.7

Here Θu is the generalized Heaviside function and the limit  → 0 is understood
in a weak distributional sense.The equation

ds2  h
rdt2 − hr

−1dr2

 r2d2  sin2d2 ,

h0r  −1  rsr ,
2.1.8

h, ∈ 0,1, as given in (2.1.8) can be considered as Colombeau version of the
Schwarzschild line element in curvature coordinates above horizon. From equation
(2.1.7), the calculation of the distributional Einstein tensor above horizon
Gttr,, Gr

rr,, G
r,, G

r, proceeds in a straighforward manner.
By simple calculation one obtains

Gttr,  Gr
rr,  −

h′ r − rs − 
r


− 1  hr − rs − 

r2 


 −rs
r − rs − 

r2 
≈ −rs

r − rs
r2

.
2.1.9

Fig.2.1.1.(a) The picture of a distributional Schwarzschild blackhole,

given by Colombeau generalized object (1.4.3).

Distributional spacetime ends just on the Schwarzschild singularity.

(b) The truncated Schwarzschild distributional geometry,

given by Colombeau generalized object (1.4.12)

Distributional spacetime ends just on the Schwarzschild horizon.

Remark 2.1.3.In a nutshell, there is a widespread but mistaken belief that there exist



true gravitational singularities,for example at origin r  0 of the Schwarzschild
spacetime, and non principal non gravitational,i.e. purely coordinate singularities, for
example at horizon r  rg of the Schwarzschild spacetime. A coordinate singularity or
coordinate degeneracy occurs when an apparent singularity or degeneracy occurs in
one coordinate frame, which can be removed by choosing a different frame. Classical
example of such mistake is ubnormal deletion of the gravitational singularity,for
example from Schwarzschild spacetime

Sch S2  r ≥ 2m   ,gijr,,, 2.1.10

originally defined by singular and degenerate Schwarzschild metric [31],

ds2  −hrdx02  h−1rdr2  r2d2  sin2d2 ,hr  1 −
rg
r . 2.1.11

by using apropriate singular coordinate change [28]-[36].
Remark 2.1.4.Note that: (i) metric (2.1.11) is singular and degenerate at

Schwarzschild
horizon r  rg, and thus metric (2.1.11) beiond canonical rigorous semi-Riemannian
geometry.
(ii) however in physical literature (see for example [29]-[31]) singularity and

degeneracy at
Schwarzschild horizon r  rg acepted as coordinate singularity and coordinate
degeneracy.
Remark 2.1.5. (see [31] section 100,p.296)."In the Schwarzschild metric (97.14), g00
goes to zero and g11 to infinity at r  rg (on the "Schwarzschild sphere"). This could

give
the basis for concluding that there must be a singularity of the space-time metric and

that
it is therefore impossible for bodies to exist that have a "radius" (for a given mass)

that is
less than the gravitational radius. Actually,however, this conclusion would be wrong.

This
is already evident from the fact that the determinant gr  −r4 sin2 has no

singularity at
r  rg, so that the condition g  0 (82.3) is not violated. We shall see that in fact we

are
dealing simply with the impossibility of establishing a suitable reference system for

r  rg. "
Remark 2.1.5. Notice that consideration above meant the following definition of the
gravitational singularity.
Definition 2.1.1.There is no gravitational singularity at r  r iff the determinant
gr,  detgijr, has no singularity at r  r.
Remark 2.1.6. Notice that at singular point r  rg the determinant grg is well



defined
only by the limit

grg  limr→rg detgijr,  −r4 sin2. 2.1.12

however in the limit r → rg  2m the classical Levi-Civitá connection Γkjl becomes
infinite

Γ11
1 r|r2m 

r→2m
lim −m

rr − 2m
 ,Γ01

0 r|r2m 
r→2m
lim m

rr − 2m
 , 2.1.13

and therefore the Definition 2.1.1 is not sound and even does not any sense under
canonical semi-Riemannian geometry.
Remark 2.1.7.Notice that:
(i) in order to fixin problem with singularity and degeneracy of the Schwarzschild

metric
(2.1.11) at Schwarzschild horizon r  rg , in physical literature [28]-[36], many years

one
considers the abnormal formal change of coordinates obtained by replacing the

canonical
Schwarzschild time by "retarded time" t, r, i.e., Eddington–Finkelstein coordinates,

given
by

dt, r  dt  hr−1dr,

hr  1 −
rg
r ;

2.1.14

(ii) the change (2.1.14) of Schwarzschild coordinates is singular at Schwarzschild
horizon
r  rg,as at Schwarzschild horizon hrg   and therefore the change (2.1.14) does

not
holds on Schwarzschild horizon [36];
(ii) under the singular change (2.1.14) Schwarzschild metric (2.1.11) becomes to

well
known regular and nondegenerate Eddington-Finkelstein metric [28]-[36]:

dsEF
2  − 1 − 2m

r dv2  2drdv  r2d2  sin2d2 ; 2.1.15

(iii) in physical literature many years exist abnormal belief that by formal singular
change
(2.1.15) the singular and degenerate Schwarzschild spacetime S2  r  2m  

was
immersed in a larger Eddington-Finkelstein spacetime

EF≥S2  r ≥ 2m  0  r ≤ 2m   ,gEF≥r,, 2.1.16

with regular and non degenerate metric tensor gEF≥r,, and whose manifold is not



covered by the canonical Schwarzschild coordinate with r ≤ 2m,and therefore
singularity
and degeneracy on Schwarzschild horizon r  rg is only coordinate singularity and
coordinate degeneracy;
(iv) from statement (iii) it was mistakenly assumed that there is no gravitational

singularity
at BH horizon.
We remind now canonical definitions.
Definition 2.1.2. Let M,g and N,h be semi-Riemannian manifolds. An isometric
embedding is a smooth embedding f : M → N which preserves the metric in the

sense
that g is equal to the pullback of h by f, i.e. g  f ∗h. Explicitly, for any two tangent

vectors
v,w ∈ TxM we have

gv,w  hdfv,dfw. 2.1.17

Remark 2.1.8.Notice that such isometric embedding is a mathematical definition
only
and does not meant the equivalence M,g ≡ fM,h in absolute sense. Thus it is

not
alwais apropriate as equivalence of the Lorentzian manifolds M,g and N,h
corresponding to the physical frames Mph,gph and Nph,hph.
Definition 2.1.3.[32].In general,a Lorentzian manifold M

′
,h is said to be an

extension of
a Lorentzian manifold M,g if there exists an isometric embedding i : M  M

′
.

Remark 2.1.9.Notice that such extension is a mathematical definition only and
therefore
it is not alwais apropriate as extension of the Lorentzian manifolds M,g and M ′

,h
corresponding to the physical frames Mph,gph and Mph

′
,hph.

Remark 2.1.10. In order to obtain example for the statement mentioned and Remark
2.1.8 and Remark 2.1.9 we go to prove below that the geometry of Schwarzschild
spacetime Sch  S2  r  2m  ,gSch above Schwarzschild horizon,

essantially
cardinally different in comparizon with the geometry of Eddington-Finkelstein

spacetime
EF  S2  r  2m  ,gEF above Eddington-Finkelstein horizon.
We remind now canonical definitions.



Fig.2.1.2.Paralel displacement along a closed

contour Γ in a curved space.

Definition 2.1.3.Let ΔΓAk be the change in a vector Aix̂ after parallel displacement
around closed contour Γ located in BH spacetime as ploted in Fig.2.1.3. This change

ΔΓAk can clearly be written in the form 
Γ

Ak. Substituting in place of Ak the canonical

expression Ak  Γkli x̂Akdxl (see 31],Eq.(85.5)) one obtains

ΔΓAk  
Γ

Ak  
Γ

Γkli x̂Akdxl . 2.1.18

Fig.2.1.3.Paralel displacement along a closed

contour Γ in BH spacetime.

Definition 2.1.4.(I) Let Sh
g be Schwarzschild horizon, let Γ x̂ be a contour located in

Schwarzschild spacetime as plotted in Fig.2.1.4 and such that (i) x̂ ∈ Γ x̂, (ii)
Sch
g ∩ Γ x̂  x̂, and let Γ x̂ be a curve Γ x̂  Γ x̂ \x̂.Let ΔΓ x̂Ak be the integral

ΔΓ x̂Ak  
Γ x̂ \x̂

Ak  
Γ x̂ \x̂

Γkli x̂Akdxl . 2.1.19



(II) Let EF
g be Eddington-Finkelstein horizon, let Γ x̂ be a contour located in

Eddington- Finkelstein spacetime as plotted in Fig.2.1.5 and such that (i) x̂ ∈ Γ x̂, (ii)
EF
g ∩ Γ x̂  x̂,and let Γ x̂ be a curve Γ x̂  Γ x̂ \x̂.Let ΔΓ x̂Ak be the integral

ΔΓ x̂Ak  
Γ x̂ \x̂

Ak  
Γ x̂ \x̂

Γkli x̂Akdxl . 2.1.20

Fig.2.1.4.Paralel displacement ΔΓ x̂Ak

along a curve Γ x̂ in

Schwarzschild spacetime such that

Sch
g ∩ Γ x̂  x̂, then alwais ΔΓ x̂Ak  .

Fig.2.1.5.Paralel displacement

along a curve Γ x̂ in

Eddington-Finkelstein spacetime

EF
g ∩ Γ x̂  x̂, then alwais ΔΓ x̂Ak  .

Fig.2.1.6.Paralel displacement along aclosed

contour Γ located in region of the classical

semi-Riemannian geometry of the

Schwarzschild spacetime such that

Sh
g ∩ Γ  , then alwais ΔΓAk  .

Remark 2.1.11. (I) Note that the geometry of Schwarzschild spacetime Sch



Sch  S2  r  2m  ,gSch 2.1.21

above Schwarzschild horizon Sch
g ,essantially cardinally different in comparizon with

the
geometry of Eddington-Finkelstein spacetime EF

EF  S2  r  2m  ,gEF 2.1.22

above Eddington-Finkelstein horizon EF
g .

(II) Note that Schwarzschild spacetime Sch obviously satisfies a very strong
nonregularity
condition

if Sch
g ∩ Γ x̂  x̂, then ΔΓ x̂Ak  . 2.1.23

Thus the geometry of spacetime Sch that is nonclassical geometry beyond
apparatus of
the classical semi-Riemannian geometry. Ofcourse the geometry any part of

spacetime
Sch located above some neighborhood of Schwarzschild horizon as plotted in

Fig.2.1.6
that is a classical semi-Riemannian geometry.
Remark 2.1.12.Note that from Remark 2.1.11 it follows that Eddington-Finkelstein
spacetime does not holds in regorous mathematical sense as extension of the
Schwarzschild spacetime Sch  S2  r  2m  ,gSch above Schwarzschild
horizon.
Remark 2.1.13.It is clear that nonregularity condition (2.1.23) arises not only from
singularity of the function h−1r at point r  rg but from degeneracy of the function

hr
at point r  rg.
Remark 2.1.14. We remind now that the relations (see [31] p.234,Eq.(84.7))

  −g 
g0g0
g00 2.1.24

give the connection between the metric of real space

dl2  dxdx 2.1.25

and the metric of the four-dimensional space-time

ds2  gdxdx  2g0dx0dx  g00dx0
2. 2.1.26

For Eddington-Finkelstein metric (2.1.15) metric of the corresponding real space is

dlEF
2  dr2

1 − 2m
r

 r2d2  sin2d2 . 2.1.27

Remark 2.1.15. Notice that the Eddington-Finkelstein metric (2.1.15) is regular at
the



horizon and therefore the infalling observer encounters nothing unusual at the
horizon.
However from Eq.(2.1.17) it follows that the infalling observer encounters singularity

on
horizon.But this is a contradiction.
Remark 2.1.16.Note that in order dealing with singular Schwarzschild metric

(2.1.11) using mathematically and logically soundness approach, one applies
contemporary distributional geometry based on Colombeau generalized functions
[2]-[4].Distributional Schwarzschild geometry and distributional BHs geometry by using
Colombeau generalized functions [2]-[4] many developed in papers [4]-[23].By
aproporiate regularization gij,r,,, ∈ 0,1 of the singular Schwarzschild
metricgijr,, such that:
(i) gij,0r,,  gijr,, and
(ii) for any  ∈ 0,1 metric tensor gij,r,, is regular and nondegenerate,one

obtains Colombeau generalized object gij,r,,  ∈ G
3 with an representative

gij,r,,, for a more detailed explanation see [11],[18],[19].Using rigorous
Colombeau approach one obtains mathematically and logically soundness notion of
singularity in Distributional Schwarzschild spacetime.
Remark 2.1.14. Note that in the case of Schwarzschild spacetime the conditions (i)

and (ii) mentioned above (see Remark 2.1.13) are satisfied only by using non smooth
regularization of the singular and degenerate Schwarzschild metric gijr,, via
Schwarzschild horizon [18]-[19].
By apriporiate nonsmooth regularization one obtain Colombeau generalized object
modeling the singular Schwarzschild metric above and below horizon [18]-[19]:

ds2  −h
rdt2  hr

−1dr2

 r2d2 ,

ds−2  h
−rdt2 − h−r

−1dr2

 r2d2,

hr 
Θr − rs −  r − rg2  2

r , r ≥ rg,

 ∈ 0,1.

2.1.24

Remark 2.1.6. Let us rewrite now the metric (2.1.24) (above horizon) in the form

ds2  −h
rdt2  hr

−1dr2

 r2d2  sin2d2 

−hr dt − hr−1dr dt  hr
−1dr


 r2d2  sin2d2,

2.1.25

and define a new generalized Colombeau coordinates , r,,, where
t, r ∈ G

2, by formula



dt, r  dt  hr
−1dr


,

r  r.
2.1.26

Remark 2.1.15. Notice that:
(i) Colombeau generalized coordinates (2.1.26) are the Colombeau extension of the
canonical Eddington-Finkelstein coordinates (2.1.14) by Colombeau generalized

function.
(ii) In contrast with canonical Eddington-Finkelstein coordinates (2.1.14) (see

Remark
2.1.7), Colombeau generalized coordinates (2.1.26) holds at Schwarzschild horizon

r  rg
as at Schwarzschild horizon Colombeau generalized function hr

−1

become

well

defined Colombeau generalized number hrg
−1 ∈ .

Rewriting now the metric (2.1.25) in terms of the Colombeau generalized
coordinates
, r,,, it then above horizon takes the form

ds2 

−hr d − 2hr−1dr d 
 r2d2  sin2d2 

−hrd
2  2drd  r

2d2  sin2d2.

2.1.27

We rewrite now Colombeau metric (2.1.27) in the equivalent form

ds2 

−hrd2  2drd  r
2d2  sin2d2.

2.1.28

Colombeau metric (2.1.28) define the distributional Eddington-Finkelstein
space-time

EF≥ 

S
2
 r ≥ 2m  ,gEF≥

 2.1.29

above the Eddington-Finkelstein horizon r  2m.
Remark 2.1.16. Notice that

hr |rrg  rg
−1, hr

−1
 rrg

 rg  −1 ∈ ,

d |rrg  dt  
−1  rgdr,

d2 rrg
 dt2  2−1  rgdtdr  

−2rg
2dr2,

 ∈ 0,1.

2.1.30

Of course at horizon ht, rg ≈ 0, becaurse at horizon h0
t, rg  0,however it



follows from (2.1.24) at horizon the quantities hrgd
2t, rg ≈ 

−1rgdr
2

and d ≈ 
−1rgdr are infinite large Colombeau quantities,i.e.,the differential

d is not classical but it is Colombeau differential.
Remark 2.1.17. Note that:
(i) ander coordinate change (2.1.26) distributional curvature
scalars of the distributional Schwarzschild space-time given by metric (2.1.24), does

not
changes because these scalars depend only on variable r  r,
(ii) in contrast with classical Eddington-Finkelstein space-time

EF≥S2  r ≥ 2m  0  r ≤ 2m   ,gEF≥r,,

distributional Eddington-Finkelstein space-time has a gravitational singularity at
horizon.
Remark 2.1.18. Note that for the case of the distributional space-time the relations
(2.1.24) obviously takes the form

  −g 
g0g0
g00 

2.1.30

where (2.1.30) give the connection between the Colombeau metric of the
distributional
real space

dl2  dx
dx 2.1.31

and the Colombeau metric of the four-dimensional distributional space-time

ds2 

gdxdx  2g0dx
0dx  g00dx0

2


.

2.1.32

For distributional Eddington-Finkelstein metric (2.1.25) metric (above horizon) of the
corresponding distributional real space is

dl,EF≥
2


 hrdr2  r

2d2  sin2d2 . 2.1.27

2.2.Distributional Schwarzschild spacetime and
distributional Rindler spacetime with distributional
Levi-Cività connection. Generalized Einstein equivalence
principle.

2.2.1.Distributional Schwarzschild spacetime with



distributional Levi-Cività connection.

Remark 2.2.1.Note that due to the degeneracy of the metric (2.1.11) on

Schwarzschild horizon, the classical Levi-Civit‘a connection on whole Schwarzschild
spacetime is not available [19],[18],[19] as classical Levi-Civit‘a connection on
Schwarzschild horizon becomes infinity

Γ11
1 r|r2m 

r→2m
lim −m

rr − 2m
 −,Γ01

0 r|r2m 
r→2m
lim m

rr − 2m
 , 2.2.1

Remark 2.2.2.In order to avoid difficultness with classical Levi-Civit‘a connection

mentioned above in Remark 2.2.1, in papers [18],[19] we have applied the non smooth
regularization via Schwarzschild horizon, see Remark 2.1.5 and
Eq.(2.1.6).Corresponding Colombeau distributional connections Γkjl and Γkj−l

above and below Schwarzschild horizon are [18]-[19]:Obviously distributional connections Γkjlh , Γkj
−lh  coincides, in distributional sense, with

the corresponding classical Levi-Cività connections on 3\r  2m, since
h  h0, h−  h0−, and glm  g0

lm, g−lm  g0
−lm there. Clearly, connections

Γkjl,Γkj−l, ∈ 0,1 in respect the regularized metric g, ∈ 0,1, i.e., gij;k  0.

Proceeding in this manner, we obtain the nonstandard result [23]-[24]:

R 1
1


 R 0

0


 −4m r − 2m
r2

,

R− 1
1


 R− 0

0


 4m r − 2m
r2

.

2.2.3

Remark 2.2.3. As axpected, the distributional Ricci tensor as well as the distributional

Ricci scalar vanish identically on 3\r  2m,since suppr − 2m  r  2m.This
result in a good agrement with canonical result [25]-[31] on 3\r  2m since
distributional connections (2.2.2) coincides with the corresponding classical Levi-Cività
connections on 3\r  2m at least in distributional sense.We obtain for r  2m the
nonstandard result [18]-[19]:



RR
  

c1
16m2 r − 2m2  2



. . . ,

RR
  

c2
16m2 r − 2m2  2



. . . ,

2.2.4

where c1,c2  O1 .

2.2.2.Distributional Rindler spacetime with distributional
Levi-Cività connection.
We remind now that 2D Rindler spacetime is a patch of Minkowski spacetime. In

2D, the Rindler metric is

ds2  dR2 − R2d2. 2.2.5

Fig.2.1.Hyperbolic motion in the right Rindler wedge.

x2 − c2t2  c2/a2.

Remark 2.1.Due to the degeneracy of the metric (2.2.5) at Rindler gorizon R  0,
the classical Levi-Cività connection is not available on whole 2,e.g.,

Γ44
1  R,Γ14

4  Γ41
4  R−1, 2.2.6

and all other components being zero.
Remark 2.2.4.Note that in order to avoid this difficultnes, the origin in classical

consideration is always excluded from the space 3.1 and we are working on 3.1 \03,1Gi
k  Rik − 1

2  i
kR,R  Rii 2.2.7 following Mo̸ller [24] we

get



G2
2  G3

3  − 1
2g44

g44
′′ −

g44′ 
2

2g44
 − 1

2R2 2 − 2R2

2R2 ≡ 0, 2.2.8

where the accents indicate differentiation with respect variable R, and all other
components of Gi

k vanish identically. Thus Rindler metrical tensor satisfy on 3.1 \0

the Gi
k  Rik − 1

2  i
kR  0. 2.2.9

Remark 2.2.5. By calculations mentioned above, from Mo̸ller’s times until
nowdays,Rindler metrical tensor was mistakenly considered in physical literature as an
vacuum solution of the Einstein’s field equations,e.g.,solution for empty space,see
Mo̸ller [24].
Remark 2.2.6.Note that Levi-Cività connection on whole space 3.1 is available only

in Colombeau sense under smooth regularization R2 → R2  2, ∈ 0,1 and therefore
we forced to change metric (2.5) by Colombeau object

ds2   dR
2 − R2  2 dt

2  dR2 − g44, dt
2

g44,   R
2  2 , ∈ 0,1.

2.2.10

Then for Einstein distributional tensor [18]-[19],[21]:

Gi,
k 


 Ri,k  −

1
2  i

kR, R  Ri,
i 2.2.11

we get

G2,
2 R


 G3,

3 R

 − 1

2g44,
g44,
′′ −

g44,′ 2

2g44,


 − 2

R2  22 

. 2.2.12

Thus

G2,
2 0


 G3,

3 0


 −2 , 2.2.13

where −2  ∈  is infinite Colombeau generalized numbers, and therefore

G2,
2 R


and G3,

3 R

is nontrivial Colombeau generalized functions and

distributional Rindler metric tensor given by (2.2.12) that is non vacuum Colombeau
solution of the Einstein field equations.

2.2.3. Generalized Einstein equivalence principle.
We remind that originally Einstein’s gravity was formulated by using classical

pseudo Riemannian geometry with classical Levi-Civit‘a connection.In classical
pseudo Riemannian geometry, the Levi-Civita connection is a specific connection on
the tangent bundle of a manifold. More specifically, it is the torsion-free metric
connection, i.e., the torsion-free connection on the tangent bundle (an affine
connection) preserving a given (pseudo-Riemannian) Riemannian metric.The
fundamental theorem of classical Riemannian geometry states that there is a unique
connection which satisfies these properties.
Remark 2.3.1.Note that classical Einstein "Equivalence Principle" asserts the



equivalence between inertial and gravitational forces of acceleration. The classical
Einstein equivalence principle is the heart and soul of gravitational theory, for it is
possible to argue convincingly that if EEP is valid, then gravitation must be a “curved
spacetime” phenomenon, in other words, gravity must be governed by a “metric theory
of gravity”, whose postulates are:
1. Spacetime is endowed with a symmetric Lorentzian metric.
2. The trajectories of freely falling test bodies are geodesics of that metric.
3. In local freely falling reference frames, the non-gravitational laws of physics are

those
written in the language of special relativity.
In order to obtain appropriate generalization of EEP based on distributional

Colombeau
geometry [4]-[7] we claim the following generalized equivalence principle (GEEP):
1. Spacetime in general case is endowed with a symmetric distributional Lorentzian
metric.
2. The trajectories of freely falling test bodies are geodesics of that distributional

metric.
3. In local freely falling distributional reference frames, the non-gravitational laws of
physics are those written in the language of special relativity.

3. Quantum scalar field in curved distributional
spacetime. Unruh effect revisited.

3.1.Canonical quantization in curved distributional
spacetime

In a recent work [19] the authors advocated the use De Witt-Schwinger approach
[31]-[33] in order to establish QFT in general ditributional curved spacetime. The
vacuum energy density of free scalar quantum field  with a distributional background
spacetime is considered successfully. It has been widely believed that, except in very
extreme situations, the influence of gravity on quantum fields should amount to just
small, sub-dominant contributions. Here we argue that this belief is false by showing
that there exist well-behaved spacetime evolutions where the vacuum energy density
of free quantum fields is forced, by the very same background distributional spacetime
such BHs, to become dominant over any classical energydensity component. This
semiclassical gravity effect finds its roots in the singular behavior of quantum fields on
curved distributional spacetimes. In particular we obtain that the vacuum fluctuations
〈2  has a singular behavior on BHs horizon r : 〈2r~|r − r |−2.
Much of formalism can be explained with Colombeau generalized scalar field



[19].The basic concepts and methods extend straightforwardly to distributional tensor
and distributional spinor fields. To being with let’s take a spacetime of arbitrary
dimension D, with a metric gµν of signature −. . .−. The action for the Colombeau
generalized scalar field  ∈ GM is

S  
M

dDx 1
2

|g | g
∂∂ − m2  R

2



. 3.1.1

Here  is a coupling constant (see [41] chapter 3). The corresponding equation of
motion is

,x  m2  R , ∈ 0,1. 3.1.2

Here

,x  |g |−1/2∂|g |1/2g
∂ 

. 3.1.3

With  explicit, the mass m should be replaced by m/.Separating out a time
coordinate x0, xµ  x0,xi, i  1,2,3 we can write the action as

S   dx0L

, L   dD−1xℒ


. 3.1.4

The canonical momentum at a time x0 is given by

x  L /∂0x  |h |
1/2n∂x, 3.1.5

where x labels a point on a surface of constant x0, the x0 argument of  is
suppressed, nµ is the unit normal to the surface, and |h | is the determinant of the
induced spatial metric hij. In order to quantize, the Colombeau generalized field
 and its conjugate momentum x are now promoted to hermitian operators
and required to satisfy the canonical commutation relation,

x,y  i
D−1x,y, ∈ 0,1. 3.1.6

Here dD−1yD−1x,yfy  fx for any scalar function f ∈ D3, without the use of a

metric volume element. We form now a conserved bracket from two complex
Colombeau solutions to the scalar wave equation (3.1.2) by [19]:

〈,   


dj




, ∈ 0,1, 3.1.7

where

j,  i/ |g |1/2g
∂ − ∂ 

. 3.1.8

Using equation of motion Eq.(3.1.2) one obtains corresponding Colombeau
generalization of the canonical Green functions equations. In particular for the
Colombeau distributional propagator

iG
x,x ′  〈0|T

x
x ′|0, ∈ 0,1, 3.1.9



one obtains directly

,x  m2  Rx,G
x,x ′  − −gx,−1/2


nx − x ′. 3.1.10

We obtan now an adiabatic expansion of G
x,x ′ [19]. Introducing Riemann normal

coordinates y for the point x, with origin at the point x׳ one obtans

g x,    1
3

R
  y

y − 1
6

R;
 


yyy 

 1
20

R;
 


 2
45

R
  Rv

 

yyyy . . .

3.1.11

where  is the Minkowski metric tensor, and the coefficients are all evaluated at
y  0. Defining now

ℒ
x,x ′  −g x,

1/4


G

x,x ′ 3.1.12

and its Colombeau-Fourier transform ℒ
k by

ℒ
x,x ′  2

−n  dnke−ikyℒ
k


3.13

where k  y  ky, one can work in a sort of localized momentum space.
Expanding (3.1.10) in normal coordinates and converting to k-space, ℒ

k can
readily be solved by iteration to any adiabatic order. The result to adiabatic order four
(i.e., four derivatives of the metric) is

ℒ
k  k

2 − m2−1 − 1
6
−  k2 − m2−2R 

 i
2

1
6
−  ∂k2 − m2−2R;

  −

− 1
3

a  ∂
∂k2 − m2−2 

1
6
− 

2
R2 

2
3
a 



k2 − m2−3,

3.1.14

where ∂  ∂/∂k,

a  
1
2
−  R;

  
1
120

R;
  −

1
140

R;
 


−

− 1
30

R
 


R

  
1
60

R  
  


R

  

 1
60

R 
  


R

 ,

3.1.15

and we are using the symbol  to indicate that this is an asymptotic expansion. One
ensures that Eq.(3.1.13) represents a time-ordered product by performing the k0

integral along the appropriate contour in Fig.3.1.1.This is equivalent to replacing m2 by
m2 − i. Similarly, the adiabatic expansions of other Green functions can be obtained
by using the other contours in Fig.3.1.1.Substituting Eq.(3.1.14) into Eq.(3.1.13) gives
[19]



ℒ
x,x ′ 

2−n   dnke−ikyk2 − m2−1 a0x,x ′;  a1x,x ′; − ∂
∂m2 

a2
x,x ′; ∂

∂m2

2


,

3.1.16

where a0x,x ′;  1 and, to adiabatic order 4,

a1x,x ′; 

1
6
−  R −

i
2

1
6
−  R;

  y
 − 1

3
a  y

y

a2x,x ′; 
1
2

1
6
−  R2 

1
3
a 




3.1.17

with all geometric quantities on the right-hand side of Eq.(3.1.17) evaluated at x ′.

Fig.3.1.1.The contour in the complex k0 plane ℂ

to be used in the evaluation of the integral

giving ℒ
.The cross indicates the pole at

k0  |k|2  m2
1/2
.

in Eq.(3.16), then the dnk integration may be interchanged with the ds integration, and
performed explicitly to yield (dropping the i)

ℒ
x,x ′  −i4

−n/2 
0



idsis−n/2 exp −im2s 
x,x ′
2is

ℱ
x,x ′; is



x,x ′  1
2
yy.

3.1.18

The function x,x ′ which is one-half of the square of the proper distance between x
and x ′, while the function ℱx,x ′; is has the following asymptotic adiabatic
expansion

ℱ
x,x ′; is  a0

x,x ′;  isa1
x,x ′;  is

2a2x,x ′; . . . 3.1.19



Using Eq.(3.1.12), equation (3.1.18) gives a representation of G
x,x ′ :

G
x,x ′ 

−i4−n/2 Δ
1/2x,x ′;



0



idsis−n/2 exp −im2s 
x,x ′
2is

ℱx,x ′; is


3.1.20

where Δx,x ′; is the distributional Van Vleck determinant

Δx,x ′;  −det∂∂x,x
′ gx,gx ′,−1/2


. 3.1.21

In the normal coordinates about x ′ that we are currently using, Δx,x ′; reduces
to −gx,−1/2


.The full asymptotic expansion of ℱ

x,x ′; is to all adiabatic

orders are

ℱ
x,x ′; is  ∑

j0



isja2x,x ′; 3.1.22

with a0x,x ′;  1, the other ajx,x ′; being given by canonical recursion
relations which enable their adiabatic expansions to be obtained.
Remark 3.1.1.Note that the expansions (3.1.19) and (3.1.22) are, however, only

asymptotic approximations in the limit of large adiabatic parameter T.
If (3.1.22) is substituted into (3.1.20) the integral can be performed to give the

adiabatic expansion of the Feynman propagator in coordinate space:

G
x,x ′  −4i

−n/2 Δ
1/2x,x ′;∑

j0



ajx,x ′; − ∂
∂m2

j



 − 2m
2



n−2
4
Hn−2/2
2 2m2

1
2



3.1.23

which, strictly, a small imaginary part i should be subtracted from .
Remark 3.1.2.Since we have not imposed global boundary conditions on the

distributional Green function Colombeau solution of (3.1.10), the expansion (3.1.23)
does not determine the particular vacuum state in (3.1.9). In particular, the "i" in the
expansion of G

x,x ′ only ensures that (3.1.23) represents the expectation value,
in some set of states, of a time-ordered product of fields. Under some circumstances
the use of "i" in the exact representation (3.1.20) may give additional information
concerning the global nature of the states.

3.2.Effective action for the quantum matter fields in
curved distributional spcetime
As in classical case one can obtain Colombeau generalized quantity W, called

the effective action for the quantum matter fields in curved distributional spcetime,



which, when functionally differentiated,yields

2
−g

1
2

W

g


 〈T 3.2.1

Note that the generating functional

ZJ   D exp iSm  i  Jxxdnx


3.2.2

was interpreted physically as the vacuum persistence amplitude 〈out, 0|0, in . The
presence of the external distributional current density J can cause the initial
vacuum state |0, in  to be unstable, i.e., it can bring about the production of
particles.
Following canonical calculation one obtains [19]

Z0  det−G
x,x ′

1
2


3.2.3

where the proportionality constant is metric-independent and can be ignored. Thus we
obtain

W
  −ilnZ

0  −
i
2

tr ln −Ĝ



. 3.2.4

In (3.2.4) Ĝ



is to be interpreted as an Colombeau generalized operator which acts

on an linear space ℑ of generalized vectors |x,, ∈ 0,1 normalized by

〈x,|x ′,  x − x ′ −gx,−
1
2


3.2.5

in such a way that

G
x,x ′  〈x,|Ĝ

|x ′,

. 3.2.6

Remark 3.2.1.Note that the trace tr of an Colombeau generalized operator
 which acts on a linear space ℑ, is defined by

tr    dnx−gx,
1
2 xx;


  dnx−gx, 1

2 〈x|xx;|x ′ 

. 3.2.7

Writing now the Colombeau generalized operator Ĝ



as

Ĝ



 −ℱ

−1  −i 
0



dsexp−sℱ
 



, 3.2.8

by Eq.(3.1.20) we obtain

〈x| exp−sℱ
 |x ′  

i4−n/2 Δ
1/2x,x ′;


exp −im2s 

x,x ′
2is

ℱ
x,x ′; isis−n/2.

3.2.9

Proceeding in standard manner we get [19]



W
 

i
2  dnx−gx, 1

2

 x→x′
lim 

m2



G
x,x ′;m2dm2



. 3.2.10

Interchanging now the order of integration and taking the limit x → x ′ one obtains

W
 

i
2 

m2



dm2  dnx−gx, 1
2 G

x,x;m2



. 3.2.11

Colombeau generalized quantity W
 is colled as the one-loop effective action. In the

case of fermion effective actions, there would be a remaining trace over spinorial
indices. From Eq.(3.2.11) we may define an effective Lagrangian density L;eff

 x


by

W
   dnx−gx,

1
2 L;eff

 x


3.2.12

whence one get

Lx  −gx,
1
2 ℒ;eff

 x

 i

2
x→x′
lim 

m2



dm2G
x,x ′;m2



. 3.2.13

3.3. Stress-tensor renormalization
Note that Lx diverges at the lower end of the s integral because the /2s

damping factor in the exponent vanishes in the limit x → x ′. (Convergence at the upper
end is guaranteed by the −i that is implicitly added to m2 in the De Witt-Schwinger
representation of Lx. In four dimensions, the potentially divergent terms in the
DeWitt- Schwinger expansion of Lx are

L;div x 

−322−1

x→x′
lim Δ

1/2x,x ′;


0


ds
s3

exp −im2s 
x,x ′
2is



 a0x,x ′;  isa1x,x ′;  is
2a2

x,x ′;


3.3.1

where the coefficients a0
, a1

 and a2
 are given by Eq.(3.1.17).The remaining terms in

this asymptotic expansion, involving a3
 and higher, are finite in the limit x → x ′.

Let us determine now the precise form of the geometrical L;div x terms, to

compare them with the distributional generalization of the gravitational Lagrangian that
appears in [19]. This is a delicate matter because (3.3.1) is, of course, infinite. What
we require is to display the divergent terms in the form   geometrical object. This
can be done in a variety of ways. For example, in n dimensions, the asymptotic
(adiabatic) expansion of L;eff

 x

is



L;eff
 x




2−14−n/2
x→x′
lim Δ

1/2x,x ′;

∑
j0



ajx,x ′; 


0



idsisj−1−n/2 exp −im2s 
x,x ′
2is



3.3.2

of which the first n/2  1 terms are divergent as  → 0. If n is treated as a variable
which can be analytically continued throughout the complex plane, then we may take
the x → x ′ limit

L;eff
 x


 2−14−n/2 ∑

j0



ajx; 
0



idsisj−1−n/2 exp−im2s




2−14−n/2∑
j0



ajx;m2n/2−jΓ j − n
2

,ajx;  ajx,x;.

3.3.3

From Eq.(3.3.3) follows we shall wish to retain the units of L;eff
 x as (length)−4, even

when n ≠ 4. It is therefore necessary to introduce an arbitrary mass scale  and to
rewrite Eq.(3.3.3) as

L;eff
 x


 2−14−n/2 m


n−4 ∑

j0



ajx;m24−2jΓ j − n
2



. 3.3.4

If n → 4, the first three terms of Eq.(3.3.4) diverge because of poles in the Γ- functions:

Γ − n
4

 4
nn − 2

2
4 − n −   On − 4,

Γ 1 − n
2

 4
2 − n

2
4 − n −   On − 4,

Γ 2 − n
2

 2
4 − n −   On − 4.

3.3.5

Denoting these first three terms by L;div
 x, we have

L;div
 x  4

−n/2 1
n − 4  1

2
  ln m2

2 

4m4a0x;
nn − 2

− 2m2a1x;
n − 2  a2x;


.

3.3.6

The functions a0x;,a1x; and a2x; are given by taking the coincidence limits of
(3.1.17)



a0x;  1, a1x; 
1
6
−  R,

a2x; 
1
180

R
 x,Rx,


− 1
180

Rx,R
 x, −

− 1
6

1
5
−  ,xRx, 

1
2

1
6
−  R2x,.

3.3.7

Finally one obtains [19]

L;ren x  −
1

642 
0



ids lnis ∂3
∂is3

ℱ
x,x; ise−ism2



. 3.3.8

Remark 3.3.1.All the higher order j  2 terms in the DeWitt-Schwinger expansion
of the effective Lagrangian (3.3.4) are infrared divergent at n  4 as m → 0, we can still
use this expansion to yield the ultraviolet divergent terms arising from j  0,1, and 2 in
the four-dimensional case. We may put m  0 immediately in the j  0 and 1 terms in
the expansion, because they are of positive power for n  4. These terms therefore
vanish. The only nonvanishing potentially ultraviolet divergent term is therefore j  2 :

2−14−n/2 m


n−4
a2x,Γ 2 − n

2
, 3.3.9

which must be handled carefully. Substituting for a2x with   n from (3.3.7), and
rearranging terms, we may write the divergent term in the effective action arising from
(3.3.9) as follows

W,div
   2−14−n/2 m


n−4
Γ 2 − n

2  dnx−gx, 1
2 a2x,




2−14−n/2 m


n−4
Γ 2 − n

2


 dnx−gx, 1
2
x 


G

x

 On − 4,

3.3.10

where

x  R
x,R

 x,

− 2Rx,R

 x, 
1
3
R2x,,

G
x  R

x,R
 x,


,

  1
120

,

  − 1

360
.

3.3.11

Finally we obtain [19]

〈Tx,ren 
 −1/28802  x − 2

3 ,xRx,



G

x 

−1/28802 

R
 x,Rx,


− R

 x,Rx, − ,xRx, .

3.3.12

Therefore for the case of the distributional Schwarzchild spesetime using Eq.(2.2.4)



and Eq.(3.3.12) for r → 2m we obtain

〈Tr,ren 
 −2880  2−1 16−1m2r − 2m2  2 −1


. . . ≈

≈ −O12880  16  2−1m−2r − 2m−2.
3.3.13

Remark 3.2.2.Thus QFT in ditributional curved spacetime predict that the infalling
observer burns up at the BH horizon.
Remark 3.2.3.In order avoid singularity at horizon r  2m in Eq.(3.3.13) one have

applied
the Loop Quantum Gravity approach [45].The first one concerns the requirement of

selfadjointness to the metric components. For instance, the classical quantity

gtx  −
Ex ′K

2 Ex 1  K
2 − 2Gm

Ex

, 3.3.14

defined as an evolving constant (i.e. a Dirac observable), must correspond to a
selfadjoint operator at the quantum level. Classically, K and Ex are pure gauge, and
gtx is just a function of the observable m. In the interior of the horizon, if

gtx is a
selfadjoint operator, a necessary condition will be [46]

1  K
2 − 2Gm

lP kj
≥ 0. 3.3.15

At the singularity, i.e. j  1, and owing to the bounded nature of K
2  ,

k1 ≥ 2Gm
lP1  K

2 
 0. 3.3.16

Therefore, this argument strongly suggests that the classical singularity will be
resolved at the quantum level since k1 must be a non-vanishing integer.

3.4. Unruh effect revisited
We remind now that a black holes have an approximate Rindler region near the

Schwarzschild horizon. For the the distributional Schwarzschild solution (2.1.8) by
coordinate transformation

r  2m1  2  2, ∈ 0,1, 3.4.1

where   ,we obtain

ds2  − 2  2 dt
2  16m2d2  4m2d2

2  O2/2. . . 3.4.2

The t, piece of this metric (3.4.2) is Rindler space (we can rescale t , and  to
make it look exactly like (2.2.10) for  → 0. Thus from (3.3.13) using (3.4.1) we obtain
directly for   0



〈T,ren 
 −4. 3.4.3

Therefore sufficiently strongly accelerated observer burns up near the Rindler
horizon. Thus Polchinski’s account doesn’t violation of the Einstein equivalence
principle.
Remark 3.4.1.Note that by using Eq.(A.8) and Eq.(A.9) (see appendix A) one

obtains
Eq.(3.4.3) directly from distributionel Rindler metric.

4.Conclusion
On a Riemannian or a semi-Riemannian manifold, the metric determines invariants

like the Levi-Civita connection and the Riemann curvature. If the metric becomes
degenerate (as in singular semi-Riemannian geometry), these constructions no longer
work, because they are based on the inverse of the metric, and on related operations
like the contraction between covariant indices. In order to avoid these difficultnes
distribytional geometry by using Colombeau generalized functions [2]-[10].In authors
papers [23]-[24] appropriate generalization of classical GR based on Colombeau
generalized functions is proposed.
Such generalization of classical GR based on appropriate generalization of the

Einstein equivalence principle (GEEP) mentioned above in subsection 2.3. Under this
GEEP Unruh effect revisited. We pointed out that GEEP avoid the contradiction
mentioned by Z.Merali in paper [36].

Appendix A.
Let us introduce now Colombeau generalized metric which has the form

ds2  −Ardx
02 − 2Drdx0dr  Br  Crdr2

Brr2d2  sin2d2  .
A. 1

Expressions for the Colombeau quantities Rr,, R
r, Rr,  and

Rr, Rr,  
in terms of A, B, C and D, ∈ 0,1 are:

The Colombeau scalars Rr,, R
r,R and R

r,Rr,, in
terms of Colombeau generalized functions Ar, Br, Cr, Dr are
expressed as
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A
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′
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′
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Δ  AB  C  D
2

A. 2

The distributional Mo̸ller’s metric is

ds2  −Axdt
2  dx

2  dy2  dz2,

Ax  a  gx2  2 , ∈ 0,1.
A. 3

In spherical coordinates we get



ds2  −Ardt
2  dr

2  r2d2,

Ar  a  gr2  2 , ∈ 0,1,

A′ r  2ga  gr,A′′r  2g2.
A. 4

We choose now Br  Cr  1,Br  2,Cr  −1, and rewrite Eq.(A.3) in the
following equivalent form

ds2  −Ardt
2  dr

2  r2d′2,

′   2 .
A. 5

Note that

Δ  AB  C  A. A. 6

From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get

Rr, 
A
Δ

2
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A
− 2 B

′′
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′
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′
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A
 1
2
A′2

A2 


− 4ga  gr
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a  gr2  2
2 

2g2
a  gr2  2 − 2

a  gr2  2
2  2g2  −2g22

a  gr2  2
2 .

A. 7

From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get
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A. 8

We assume now that a  gr  0, then from (A.8) we get

Rr,R 
4g4O1

a  gr2  2
2 . A. 9

From Eq.(A.4)-Eq.(A.6) by formulae (A.2) we get
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A. 10

We assume now that a  gr  0, then from (A.9) we get

Rr,Rr, 
4g4O1

a  gr2  2
2 . A. 11

Appendix B.
We calculate now the distributional curvature at Schwarzschild horizon. In the usual

Schwarzschild coordinates t, r  0,,, r ≠ 2m the metric is

ds2  hrdt2 − hr−1dr2  r2d2,

hr  −1  2m
r .

B. 1

Metric takes the form above horizon r  2m and below horizon r  2m correspondingly

above horizon r  2m :

ds2  hrdt2 − hr−1dr2  r2d2,

hr  −1  2m
r  − r − 2mr

below horizon r  2m :

ds−2  h−rdt2 − h−r−1dr2  r2d2,

h−r  −1  2m
r  2m − r

r

B. 2

Remark A.1. Following the above discussion we consider the metric coefficients



hr, hr−1 h−r,and h−r−1 as an element of D′3 and embed it into D 
3

by

replacement above horizon r  2m and below horizon r  2m correspondingly

r  2m : r − 2m  r − 2m2  2 ,

r  2m : 2m − r  2m − r2  2 .
B. 3

Note that, accordingly, we have fixed the differentiable structure of the manifold: the
Cartesian coordinates associated with the spherical Schwarzschild coordinates in
(B.1) are extended

hr 
− r − 2mr if r  2m

0 if r  2m
 hr  −

r − 2m2  2
r



,

where hr ∈ G
3,B2m,R,B2m,R  x ∈ 3|2m  ‖x‖  R.

h−1r 
− r
r − 2m , r  2m

, r  2m
 h

−1r 

h−r 
− r − 2mr if r  2m

0 if r ≥ 2m
 h−r 


2m − r2  2

r


∈ G3,B−0,2m ,

where B−0,2m  x ∈ 3|0  ‖x‖  2m

− r
r − 2m , r  2m

, r  2m
 h−

−1r 

 r

r − 2m2  2


∈ G3,B−0,2m

B. 4

Inserting (B.4) into (B.2) we obtain a generalized object modeling the singular
Schwarzschild metric above (below) gorizon, i.e.,

ds2  h
rdt2 − hr

−1dr2

 r2d2 ,

ds−2  h
−rdt2 − h−r

−1dr2

 r2d2

B. 5

The generalized Ricci tensor above horizon R 
 may now be calculated



componentwise using the classical formulae

R
 0

0

 R

 1
1


 1

2
h′′ 

2
r h

′

R
 2

2

 R

 3
3



h′
r 

1  h
r2

.
B. 6

From (B.4) by differentiation we obtain



h′r  − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2
,

rh′  1  h
 

r − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2
 1 −

r − 2m2  2
r 

− r − 2m
r − 2m2  2 1/2


r − 2m2  2 1/2

r  1 −
r − 2m2  2

r 

− r − 2m
r − 2m2  2 1/2

 1.

h′′r  − r − 2m
r r − 2m2  2 1/2

′


r − 2m2  2 1/2

r2

′



 − 1
r r − 2m2  2 1/2

 r − 2m2

r r − 2m2  2 3/2
 r − 2m
r2 r − 2m2  2 1/2



 r − 2m
r2 r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r3
.

r2h′′  2rh
′ 

r2 − 1
r r − 2m2  2 1/2

 r − 2m2

r r − 2m2  2 3/2
 r − 2m
r2 r − 2m2  2 1/2



 r − 2m
r2 r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r3


2r − r − 2m
r r − 2m2  2 1/2


r − 2m2  2 1/2

r2


− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
 r − 2m

r − 2m2  2 1/2


 r − 2m
r − 2m2  2 1/2

−
2 r − 2m2  2 1/2

r 

− 2r − 2m

r − 2m2  2 1/2

2 r − 2m2  2 1/2

r 

− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
.

B. 7



Investigating the weak limit of the angular components of the Ricci tensor (using the
abbreviation

̃r  
0



sind 
0

2

dx B. 8

and let x be the function x ∈ S2m3,B2m,R0, where by S2m3,B2m,R0
we denote the class of the functions x  with compact support such that:
(i) supp x  ⊂ B2m,R0 ⊂ x |R0 ≥ ‖x ‖ ≥ 2m (ii) ̃r ∈ C.
Then for any function x ∈ S2m3,B2m,R0 we get:


K
R

 2
2


xd3x  

K
R

 3
3


xd3x 

 
2m

R

rh′  1  h
̃rdr 

 
2m

R

− r − 2m
r − 2m2  2 1/2

̃rdr  
2m

R

̃rdr.

B. 9

By replacement r − 2m  u, from (B.9) we obtain


K
R

 2
2


xd3x  

K
R

 3
3


xd3x 

 − 
0

R−2m
ũu  2mdu
u2  21/2

 
0

R−2m

̃u  2mdu.
B. 10

By replacement u  , from (B.10) we obtain the expression

I3
  

K
R

 3
3


xd3x  I2

  
K
R

 2
2


xd3x 

 −  
0

R−2m


̃  2d
2  11/2

− 
0

R−2m


̃  2md .
B. 11

From Eq.(B.11) we get



I3
  I2

  − ̃2m
0! 

0

R−2m



2  11/2

− 1 d 

− 
2

1! 
0

R−2m



2  11/2

− 1 ̃1d 

−̃2m R − 2m


2
 1 − 1 − R − 2m 

− 
2

1 
0

R−2m



2  11/2

− 1 ̃1d,

B. 12

where we have expressed the function   2m as

  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
B. 13

with ̃l  dl̃/d l. Equations (B.12)-(3.13) gives

→0
lim I3

 
→0
lim I2

 

→0
lim −̃2m R − 2m


2
 1 − 1 − R − 2m 


→0
lim − 

2

1 
0

R−2m



2  11/2

− 1 ̃1d  0.

B. 14

Since S2m
′ B2m,R ⊂ D′3,where B2m,R  x ∈ 3|2m  ‖x‖  R from

w −
→0
lim R

 3
3 

→0
lim I3

  0,

w −
→0
lim R

 2
2 

→0
lim I2

  0.
B. 15

For R
 1

1

, R

 0
0


we get:



2 
K
R

 1
1


xd3x  2 

K
R

 0
0


xd3x 


2m

R

r2h′′  2rh
′̃rdr 

 
2m

R

− r
r − 2m2  2 1/2


rr − 2m2

r − 2m2  2 3/2
̃rdr.

B. 16

where use is made of the relation

s→
lim 

0

s
2d

2  13/2
− 

0

s
d

u2  11/2
 −1 B. 17

Finally we obtain-
→0
lim R

 1
1  w -

→0
lim R

 0
0  −m̃2m. B. 18 The

Colombeau generalized Ricci tensor below horizon R
− 

  R
− 

 may now be
calculated componentwise using the classical formulae

R
− 0

0

 R

− 1
1


 1

2
h−′′ 

2
r h

−′ ,

R
− 2

2

 R

− 3
3



h−′
r 

1  h−
r2

.
B. 19

From (B.4) we obtain

h−r  − r − 2mr  h−r 
2m − r2  2

r  −hr, r  2m.

h−′r  −h′r  r − 2m
r r − 2m2  2 1/2

−
r − 2m2  2 1/2

r2
,

rh−′  1  h
−  −rh

′  1 − h
 

r − 2m
r − 2m2  2 1/2

 1.

h−′′r  −h′′r 

− r − 2m
r2 r − 2m2  2 1/2


2 r − 2m2  2 1/2

r3
.

r2h−′′  2rh
−′  −r

2h′′ − 2rh
′ 

r
r − 2m2  2 1/2

− rr − 2m2

r − 2m2  2 3/2
.

B. 20



Investigating the weak limit of the angular components of the Ricci tensor (using the

abbreviation ̃r  
0



sind 
0

2

dx and let x be the function

x ∈ S2m− 3,B−0,2m,the class of the functions x  with compact support
K ⊂ B−0,2m,B−0,2m  x |0 ≤ ‖x ‖ ≤ 2m such that:

(i) suppx ⊂ x |0 ≤ ‖x ‖ ≤ 2m (ii) ̃r ∈ C.

Then for any function x  ∈ S2m− 3,B−0,2m we get


K
R
− 2

2

xd3x  

K
R
− 3

3

xd3x 


0

2m

rh−′  1  h
−̃rdr 


0

2m

r − 2m
r − 2m2  2 1/2

̃rdr  
0

2m

̃rdr.

B. 21 By

replacement r − 2m  u, from Eq.(B.21) we obtain


K
R
− 2

2

xd3x  

K
R
− 3

3

xd3x 


−2m

0
ũu  2mdu
u2  21/2

 
−2m

0

̃u  2mdu.
B. 22

By replacement u  , from (B.22) we obtain

I3
−  

K
R
− 3

3

xd3x  I2

−  
K
R
− 2

2

xd3x 

  
− 2m



0
̃  2md
2  11/2

 
− 2m



0

̃  2md ,
B. 23

which is calculated to give



I3
−  I2

−   ̃2m
0! 

− 2m


0


2  11/2
 1 d 

 
2

1! 
− 2m



0


2  11/2
 1 ̃1d 

̃2m 1 − 2m


2
 1  2m

 

 
2

1 
− 2m



0


2  11/2
 1 ̃1d,

B. 24

where we have expressed the function   2m as

  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
B. 25

with ̃l  dl̃/drl. Equation (B.25) gives

→0
lim I3

− 
→0
lim I2

− 

→0
lim ̃2m 1 − 2m


2
 1  2m

 


→0
lim 2

2 
− 2m



0


2  11/2
 1 ̃1d  0.

B. 26

Since S2m
′ B−0,2m ⊂ D′3,where B−0,2m  x ∈ 3|0  ‖x‖  2m from

w −
→0
lim R

− 3
3 

→0
lim I3

−  0.

w −
→0
lim R

− 2
2 

→0
lim I2

−  0.
B. 27

For R
− 1

1

, R

− 0
0


we get:



2 
K
R
− 1

1

xd3x  2 

K
R
− 0

0

xd3x 


0

2m

r2h−′′  2rh
−′̃rdr 

 
0

2m

r
r − 2m2  2 1/2

− rr − 2m2

r − 2m2  2 3/2
̃rdr.

B. 28

By replacement r − 2m  u, from (B.28) we obtain

I1
  2  R

− 1
1


xd3x  I2  2  R

− 0
0


xd3x

 
0

2m

r2h−′′  2rh
−′̃rdr 

 
−2m

0

u  2m
u2  21/2

− u
2u  2m
u2  23/2

̃u  2mdu.

B. 29

By replacement u  , from (B.29) we obtain

2 
K
R
− 1

1

xd3x  2 

K
R
− 0

0

xd3x 


− 2m



0

r2h−′′  2rh
−′̃rdr 

  
− 2m



0
  2m

22  21/2
− 22  2m
22  23/2

̃  2md 


− 2m



0
2̃  2md
22  21/2

 2m 
− 2m



0
̃  2md
22  21/2

−

− 
− 2m



0
43̃  2md
22  23/2

− 2m 
− 2m



0
32̃  2md
22  23/2



 
− 2m



0
̃  2md
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− 2m



0
3̃  2md
2  13/2



2m 
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0
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− 2m



0
2̃  2md
2  13/2

.

B. 30



which is calculated to give

I0
−  I1

−  2m
̃2m
0!

l 
− 2m



0

1
2  11/2

− 2

2  13/2
d 

 
1! 

0

2m


̃1 1
2  11/2

− 2

2  13/2
d  O2.

B. 31

where we have expressed the function   2m as

  2m  ∑ l0
n−1 l2m

l!
l  1

n!
nn ,

    2m , 1    0 , n  1
B. 32

with ̃l  dl̃/d l.Equation (B.32) gives

→0
lim I0

− 
→0
lim I1

− 

2m
→0
lim

̃2m
0! 

− 2m


0

1
2  11/2

− 2

2  13/2
d 

2m̃2m
s→0
lim 

−s

0 d
2  11/2

− 
−s

0 2d
2  13/2



 2m̃2m.

B. 33

where use is made of the relation

s→
lim 

−s

0
d

u2  11/2
− 
−s

0
2d

2  13/2
 1. B. 34
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