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Abstract:  
I constructed a Lagrangian functional and equation of motion of a classical 
particle in a potential that is proportional to square of second derivative of its 
position with respect to time. Solution of equation of motion is identical to the 
solution of the equation of motion of the conventional simple harmonic 
oscillator in a potential that is proportional to square of its position. 
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(1) Introduction: 
(1.1) Definition of a harmonic oscillator 
In classical mechanics, a harmonic oscillator is a system that, when displaced 
from its equilibrium position, experiences a restoring force, F  proportional to 
the displacement x :  

F k x 
 

 
where k  is a positive constant.  
 
If F is the only force acting on the system, the system is called a simple 
harmonic oscillator, and it undergoes simple harmonic motion: sinusoidal 
oscillations about the equilibrium point, with constant amplitude and a constant 
frequency (which does not depend on the amplitude). 
 
Mechanical examples include pendulums (with small angles of displacement), 
masses connected to springs, and acoustical systems. Other analogous systems 
include electrical harmonic oscillators such as RLC circuits. The harmonic 
oscillator model is very important in physics, because any mass subject to a 
force in stable equilibrium acts as a harmonic oscillator for small vibrations. 
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Harmonic oscillators occur widely in nature and are exploited in many 
manmade devices, such as clocks and radio circuits. They are the source of 
virtually all sinusoidal vibrations and waves. 
 
(1.2) Simple harmonic oscillator 
A simple harmonic oscillator is an oscillator consists of a mass m , which 
experiences a single force, F  which pulls the mass in the direction of the point  

0x   and depends only on the mass's position x  and a constant k . Balance of 
forces (Newton's second law) for the system is 

2

2

d xF ma m mx kx
dt

      

Solving this differential equation, we find that the motion is described by the 
function 

0 0( ) cos( ),x t x t    

where 0 0 0
2( ), kx x t t

m T


     

The motion is periodic, repeating itself in a sinusoidal fashion with constant 
amplitude 0x . In addition to its amplitude, the motion of a simple harmonic 
oscillator is characterized by its periodT , the time for a single oscillation or its 
frequency 1f T , the number of cycles per unit time. The position at a given 
time t  also depends on the phase,  which determines the starting point on the 
sine wave. The period and frequency are determined by the size of the mass m  
and the force constant k , while the amplitude and phase are determined by the 
starting position and velocity. 
 
The velocity and acceleration of a simple harmonic oscillator oscillate with the 
same frequency as the position but with shifted phases. The velocity is 
maximum for zero displacement, while the acceleration is in the opposite 
direction as the displacement. 
 
The potential energy stored in a simple harmonic oscillator at position x  is 

21( )
2

U x kx  

(1.3) Equivalent systems 
Simple harmonic oscillators occurring in a number of areas of engineering are 
equivalent in the sense that their mathematical models are identical. Below is a 
table showing analogous quantities in four simple harmonic oscillator systems 
in mechanics and electronics. If analogous parameters on the same line in the 
table are given numerically equal values, the behaviors of the oscillators - their 
output waveform, resonant frequency - are the same. 
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Translational Mechanical Rotational Mechanical Series LC Circuit Parallel LC Circuit 

Position x   Angle   Charge q  Flux linkage   

Velocity 
dx
dt

 Angular velocity 
d
dt


 Current 
dq
dt

 Voltage 
d
dt


 

Mass m  Moment of inertia I  Inductance L  Capacitance C  

Spring constant k  Torsion constant   Elastance 1 C  
Magnetic reluctance 
1 L  

Differential equation: 

0mx kx   0I    0Lq q C   0C L    

 
(1.4) Application to a conservative force 
The problem of the simple harmonic oscillator occurs frequently in physics, 
because a mass at equilibrium under the influence of any conservative force, in 
the limit of small motions, behaves as a simple harmonic oscillator. 
 
A conservative force is one that has a potential energy function. The potential 
energy function of a harmonic oscillator is: 

21( )
2

U x kx  

Given an arbitrary potential energy function ( )U x , one can do a Taylor 
expansion in terms of ( )U x  around an energy minimum 0( )x x  to model the 
behavior of small perturbations from equilibrium. 

2 3
0 0 0 0 0 0

1( ) ( ) ( ) ( ) ( ) ( ) ( )
2

U x U x x x U x x x U x O x x         

Because 0( )U x  is a minimum, the first derivative evaluated at 0x  must be zero, 
so the linear term drops out: 

2 3
0 0 0 0

1( ) ( ) ( ) ( ) ( )
2

U x U x x x U x O x x      

The constant term 0( )U x  is arbitrary and thus may be dropped, and a coordinate 
transformation allows the form of the simple harmonic oscillator to be retrieved: 

21 1( ) (0)
2 2

U x x U kx   

Thus, given an arbitrary potential energy function ( )U x  with a non-vanishing 
second derivative, one can use the solution to the simple harmonic oscillator to 
provide an approximate solution for small perturbations around the equilibrium 
point. 
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(1.5) Examples:  
(i) Simple pendulum 
The differential equation governing a simple pendulum is 

2

2 sin 0.d g
dt l
    

If the maximum displacement of the pendulum is small, we can use the 
approximation sin( )   and instead consider the equation 

2

2 0.d g
dt l
      

The solution to this equation is given by:  

0( ) cos lt t
g

 
 

   
 

 

where 0  is the largest angle attained by the pendulum. The period, the time for 
one complete oscillation, is given by the expression  

0 2 ,
lT
g

  

which is a good approximation of the actual period when 0  is small. 
 
(ii) Spring-mass system 
When a spring is stretched or compressed by a mass, the spring develops a 
restoring force. Hooke's law gives the relationship of the force exerted by the 
spring when the spring is compressed or stretched a certain length: 

( ) ( )F t kx t   
where F  is the force, k  is the spring constant, and x  is the displacement of the 
mass with respect to the equilibrium position. The minus sign in the equation 
indicates that the force exerted by the spring always acts in a direction that is 
opposite to the displacement (i.e. the force always acts towards the zero 
position), and so prevents the mass from flying off to infinity. 
 
By using either force balance or an energy method, it can be readily shown that 
the motion of this system is given by the following differential equation: 

2

2( ) ( ) ( ) .dF t kx t m x t ma
dt

     

...the latter being Newton's second law of motion. 
 
If the initial displacement is 0x , and there is no initial velocity, the solution of 
this equation is given by: 

0( ) cos .kx t x t
m

 
   

 
 

Given an ideal mass-less spring, m  is the mass on the end of the spring. If the 
spring itself has mass, its effective mass must be included in m . 
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(1.6) Energy variation in the spring system 
In terms of energy, all systems have two types of energy, potential energy and 
kinetic energy. When a spring is stretched or compressed, it stores elastic 
potential energy, which then is transferred into kinetic energy. The potential 
energy within a spring is determined by the equation 21( )

2
U x kx  

 
When the spring is stretched or compressed, kinetic energy of the mass gets 
converted into potential energy of the spring. By conservation of energy, 
assuming the datum is defined at the equilibrium position, when the spring 
reaches its maximum potential energy, the kinetic energy of the mass is zero.  
When the spring is released, it tries to return to equilibrium, and all its potential 
energy converts to kinetic energy of the mass. 
 
(2) Discussion 
(2.1) Second Variations of Calculus of Variations of scalar functions 
It is well known that the Euler-Lagrange equation resulting from applying the 
second variations of the Calculus of Variations of a Lagrangian functional 

( , ( ), ( ), ( ))L t q t q t q t   of a single independent variable ( )q t , its first and second 
derivatives of the following action  
    [ ( )] ( , ( ), ( ), ( ))I q t L t q t q t q t dt          

when varied with respect to the arguments of integrand and the variation are set 
to zero, i.e. 

0 [ ( )] ( , ( ), ( ), ( ))

[ ( , ( ), ( ), ( ))]

I q t L t q t q t q t dt

L t q t q t q t dt

 



 






 

 
   

- and assuming the Lagrangian functional doesn’t depend on time explicitly 

(i.e. ( ( ), ( ), ( ))L L q t q t q t   ), then 0
L
t





 and assume that the variations 0, 0q q   , 

at the end points of integration - then, the Euler-Lagrange equation is given by 
     

2

2 0
L d L d L
q dt q dt q
  

  
   

     

 
(2.2) The Lagrangian of the simple harmonic oscillator 
The Lagrangian of the conventional harmonic oscillator in one dimension may 
be written as  

2 21 1
2 2

L m x k x   
In which the potential is proportional to the square of the position x  . 
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The equation of motion is obtain from the Euler-Lagrange equation  
     0L d L

x dt x
 

 
 

  

 
is given by

 0kx mx  
  

(2.3) A Lagrangian of a particle in a potential that is proportional to square  
         of second derivative of its position with respect to time  
When a Lagrangian of a particle moving in one dimension is given by 

2 21 1
2 2

L m x J x    

- where m  ([ ]m kg ) is the mass of the particle which is assumed to be constant 
and J  ( 2[ ]J kg s )  is unknown constant ,where both constants are positive and 
have finite real values, and none have zero value (i.e. 0, 0; ,m J m J      ) - 
then the equation as derived from Euler-Lagrange equation by performing the 
partial derivatives on the Lagrangian functional:   

2

2 0L d L d L
x dt x dt x
  

  
   

 

may be given by   
2

2( ) ( ) 0d dmx J x
dt dt

   
 

Then, the equation of motion may be written as 
0mx J x     

We assume a solution of the form 
( )

0
i tx x e     

where 0x a constant measured in [m], 1i    is the imaginary unit,   is a 
constant measured in [Hz], t  is the time measured in [s] and is a phase factor 
measured in [radians]. 
Substituting in the equation of motion, we get 

2 4

2 4

( ) ( ) 0
[ ( ) ( )] 0

m x J x
m J x

 

 

   

   
    

Since, 0x   then, we must have  
2 4

2 4

2 4

[ ( ) ( )] 0
( ) ( ) 0

0

m J
m J
m J

 

 

 

   

   

  

 

 

This has four solutions, using the general method for determining roots of a 
quadratic equation ( 2 0, 0.ax bx c a    ), they are: 
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2 4 ; ; ; 0
2

b b acx a J b m c
a

  
       

The roots of the equation 2 4 0m J    are, 
2 2

2 2
0 2( ) 2 2 2

m m m m m m m m
J J J J

  

       
    

     

Then, the values of 0  are  

0 0  , m
J

   

(3) Conclusion:   
The result above is remarkable. It tells us that the equation of motion of a 
particle in a potential that is proportional to the square of its position is exactly 
the same as in a potential that is proportional to the square of its acceleration.  
The Lagrangian functional of a simple harmonic oscillator is ambiguous in this 
formulation as long as the potential energy is concerned.  
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