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The principle of equivalence is used to argue that the known law of decreasing acceleration for high
speed motion, in a low acceleration regime, produces the same result as found for a weak gravitational
field, with subsequent implications for stronger fields. This result coincides with Hilbert’s little
explored equation of 1917, regarding the velocity dependence of acceleration under gravity. We
derive this result, from first principles exploiting the principle of equivalence, without need for the
full general theory of relativity.

I. INTRODUCTION

While it is accepted that general relativity provides the
correct theory for macroscopic relativistic motion includ-
ing gravity, nevertheless the special theory remains viable
for describing accelerated motion as well as accelerated
frames in flat space.

For example, Einstein reasoned that light would bend
under gravity based on the principle of equivalence and
acceleration arguments alone. He then calculated the
more precise result using general relativity, taking into
account the effect of curved spacetime. Using a similar
approach we deduce that acceleration under gravity is
velocity dependent using accelerating frames under spe-
cial relativity, which we then confirm with the general
theory, producing a result that coincides with one by
Hilbert. We also find a similar discrepancy of a factor
of two between the result using flat space accelerations
and the full general relativistic analysis.

We can begin by defining a spacetime coordinate dif-
ferential with a four-vector

dxµ = (cdt, dx, dy, dz), (1)

with contribution from three spatial dimensions and t
is the time in a particular reference frame and c is the
invariant speed of light1. In this paper we are able to fo-
cus exclusively on one-dimensional motion and so we can
suppress two of the space dimensions writing a space-
time vector dxµ = (cdt, dx). We have the metric ten-

sor gµν =

(
1 0
0 −1

)
that defines the covariant vector

dxµ = gµνdx
ν = (cdt,−dx). In the co-moving frame we

have dx = 0 and so dxµ = (cdτ, 0), which defines τ the
local proper time. We define the proper velocity

vµ =
dxµ

dτ
=
dt

dτ

dxµ

dt
= (γc, γv), (2)

where v = dx/dt and

γ =
dt

dτ
=

1√
1− v2

c2

. (3)

We then have the magnitude of the spacetime velocity√
vµvµ =

√
γ2c2 − γ2v2 = c (4)

that is a Lorentz invariant, where we have used the Ein-
stein summation convention. We also have the proper
acceleration

aµ =
dvµ

dτ
= (γ4va/c, γ4a), (5)

where we have produced the special case of one-
dimensional motion in which v is parallel to a. We then
find the magnitude of the spacetime acceleration√

aµaµ =
√
γ8v2a2/c2 − γ8a2 = γ3a. (6)

Now, in the momentarily co-moving frame (MCF) we
have v = 0 giving the acceleration vector aµ = (0, α)
and the velocity vµ = (c, 0), which gives

√
aµaµ = α and

the expected orthogonality vµaµ = 0. Hence, comparing
the magnitudes of the proper acceleration in Eq. (6) with
the magnitude in the MCF we find α = γ3a so that in an
alternate non-comoving frame we observe an acceleration

a = α/γ3. (7)

An alternative path to this result is to apply a Lorentz
boost to the MCF proper acceleration aµ = (0, α), with
the transformation t′ = γ(t+ vx/c2) and x′ = γ(x+ vt).
This produces aµ = (γvα/c2, γα) and so comparing this
with Eq. (5) we have γα = γ4a or α = γ3a, confirming
Eq. (7).

We now consider how a rocket’s acceleration appears
when viewed from different inertial reference frames each
with different initial velocities. Then, using the principle
of equivalence, we transfer our results to a gravitational
setting.

A. Thought experiment

Consider a rocket out in space far from the effects of
any gravitational influences. Within this, effectively flat
region of space, we place small frames of reference that
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individually can measure the acceleration of passing ob-
jects. We will call these types of frames PG1 for particle
group 1. The PG1 frames are currently at rest relative to
the rocket and also with respect to each other and they
are spread throughout the space surrounding the rocket.
The rocket also has a hole at the top and bottom so that
the PG1 can pass straight through allowing them to mea-
sure the acceleration of the rocket. The rocket also has
an inbuilt mechanism so that, when the rocket is accel-
erating, it will drop a second group of particles, labeled
PG2, from the top of the rocket, at predetermined fixed
time intervals as measured by the rocket. Thus, PG2 can
also measure the rocket’s acceleration.

Now, for the sake of argument, let the rocket be accel-
erated at 9.8 ms−2 and as specified, PG2 will be drop-
ping from the top of the rocket. The rocket now ac-
celerates away from the PG2 frames with acceleration
α = T/m = 9.8 ms−2, where m is the mass of the rocket
and assuming T is an applied thrust in order to maintain
a constant proper acceleration. The PG2, once released,
comprise inertial objects not partaking in the rocket’s
acceleration. Additionally, as the rocket continues its ac-
celeration it will encounter PG1 lying in its path that
will enter the hole at the top of the rocket and while
passing through measure the acceleration of the rocket.
Now, as the rocket is maintaining a steady acceleration,
clearly the velocity of the rocket will be steadily increas-
ing. Hence the rocket will be encountering the PG1 at
higher and higher relative velocities.

The question we now wish to consider is: Will PG1
and PG2 measure the same acceleration for the rocket?

Based on standard theory, we expect the answer to
be in the negative. This is because special relativity as-
serts that, as viewed by PG1, the rocket’s velocity will
converge to the light speed upper bound, and so the ac-
celeration will appear to decrease. Since, this physical
setting is described by Eq. (7), the one-dimensional rel-
ativistic equation for acceleration a, as measured in the
PG1 frames, can be written as

a =
α

γ3
=
T

m

(
1− v2

c2

)3/2

, (8)

where α is the acceleration measured in the co-moving
frames PG2, v is the velocity of the rocket relative to
PG1.

Now, given this result, we can ask a pivotal question
with respect to the physics of the situation: Given the
principle of equivalence will this result for accelerating
observers be replicated under gravity?

We presume for appropriately small regions of the field,
based on the principle of equivalence, the answer must be
in the affirmative.

B. Gravitational fields

The central role played by the equivalence principle in
the general theory was stated by Einstein in 1907:

we [...] assume the complete physical equivalence of a
gravitational field and a corresponding acceleration of the
reference system.

Einstein’s equivalence principle is based primarily on
the well established equivalence of gravitational and in-
ertial mass, also called the weak equivalence principle,
which has been confirmed by experiment2 to an accuracy
better than 1× 10−15. It is now generally accepted that
the full Einstein equivalence principle requires a curved
spacetime metric theory of gravity in which particles fol-
low geodesics within this space as described by Einstein
in his general theory3.

Hence, incorporating the equivalence principle, our
current proposition is that since Eq. (8) pertains to a ref-
erence frame described above with an accelerating rocket
then we also must have in a gravitational field

a = g

(
1− v2

c2

)3/2

, (9)

where g is the acceleration due to gravity, which when
stationary in gravity is a proper acceleration analogous
to α. This shows that for gravity the rate of acceleration
for free falling observers (equivalent to PG1) is velocity
dependent.

We now confirm this conclusion by deriving a compa-
rable result using the Schwarzschild solution of general
relativity.

II. SCHWARZSCHILD SOLUTION

For a static, non-rotating, spherical mass the field
equations of general relativity give the Schwarzschild so-
lution3 with the metric

c2dτ2 =

(
1− 2µ

r

)
c2dt2 −

(
1− 2µ

r

)−1
dr2 (10)

−r2dθ2 − r2 cos2 θdφ2,

where µ = GM/c2 and r is measured from the center and

outside the mass3. We therefore have grr = −
(
1− 2µ

r

)−1
and gtt =

(
1− 2µ

r

)
. Now, we have the geodesic equation

aα = dvα

dτ = −Γαµνv
µvν that can also be written in an

equivalent form

d

dτ

(
gαν

dxν

dτ

)
=

1

2

∂gµν
∂xα

dxµ

dτ

dxν

dτ
. (11)

This less common form of the geodesic equation can be
convenient as the Christoffel symbols Γαµν do not need to
be explicitly computed. So, setting the index α to the r
coordinate, we produce

d

dτ

(
grr

dr

dτ

)
=

1

2

∂grr
∂r

(
dr

dτ

)2

+
1

2

∂gtt
∂r

(
dt

dτ

)2

, (12)
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utilizing the fact that we have a diagonal metric and the
angular terms are zero for radial motion. We firstly cal-
culate

∂grr
∂r

=

(
1− 2µ

r

)−2
2µ

r2
,
∂gtt
∂r

=
2µ

r2
. (13)

Also, dividing Eq. (10) through by c2dτ2 and removing
the angular terms we have(

1− 2µ

r

)(
dt

dτ

)2

− 1

c2

(
1− 2µ

r

)−1(
dr

dτ

)2

= 1. (14)

Substituting these results into Eq. (12), and after cancel-
lations we find the well known result

d2r

dτ2
= −GM

r2
= a. (15)

An alternate, perhaps more direct derivation of this re-
sult is also shown in Appendix A. Note that a is the
acceleration required to remain at rest at radius r and
corresponds to the magnitude of the four-acceleration α
calculated earlier. This shows a constant acceleration
as assumed for the rocket frame as measured by PG2,
referred to earlier as proper acceleration. This thus cor-
responds with Eq. (8) when v = 0. This implies the
magnitude of the four-acceleration is√

gµνaµaν =
√
grr

GM

r2
=

1√
1− 2µ/r

GM

r2
. (16)

We can write Eq. (15) as

d

dτ

(
1

2

(
dr

dτ

)2

− GM

r

)
= 0 (17)

and so

1

c2

(
dr

dτ

)2

− 2GM

c2r
= constant =

E2
0

m2c4
− 1, (18)

where we assume a particle with initial energy E0. Hence

dr

dτ
= c

√
2µ

r
+

E2
0

m2c4
− 1, (19)

where dr
dτ → γv0 as r →∞, if we assume for large r that

E0 = mc2√
1−v20/c2

.

Now dr
dt = dr

dτ
dτ
dt and so using Eq. (14) we determine

dt

dτ
=

E0

mc2
(
1− 2µ

r

) (20)

and so we find

dr

dt
= c

(
1− 2µ

r

)√
1− m2c4

E2
0

(
1− 2µ

r

)
, (21)

where dr
dt → v0 as r →∞. Differentiating with respect to

coordinate time, using the chain rule, d2r
dt2 = d(dr/dt)

dr
dr
dt ,

we find

d2r

dt2
= −µc

2

r2

(
1− 2µ

r

)(
3

(
1− 2µ

r

)
m2c4

E2
0

− 2

)
.

(22)
For a particle approaching a gravitational potential at a
speed v0 we have

d2r

dt2
= −µc

2

r2

(
1− 2µ

r

)(
3

(
1− 2µ

r

)(
1− v20

c2

)
− 2

)
.

(23)
In the weak field we have 2µ

r → 0 and so

d2r

dt2
= −µc

2

r2

(
1− 3v20

c2

)
, (24)

a result first derived by Hilbert4–6 in 1917, for particles
moving radially in a gravitational potential.

Therefore we can see that the Schwarzschild solution
also gives a velocity dependent acceleration for observers
at rest with respect to the gravitational field coordinates.
This implies an apparent weakening of the field strength
in gravity, for radially moving objects, relative to station-
ary observers in weak gravitational fields. Indeed, to a
first approximation, we have a velocity dependence from

special relativity given in Eq. (8) of 1− 3v2

2c2 . . . compared
with a Schwarzschild dependence, shown in Eq. (23) of

1− 3v2

c2 . This approximate confirmation of the result using
the Schwarzschild solution suggests the basic principle to
be sound enough to warrant experimental testing. This
might be achieved in an earth bound frame, if there are
accurate enough clocks to measure such deviations from
current expected accelerations.

III. EXPERIMENTAL TESTS

Integrating the expression in Eq. (21), we can find the
proper time taken between two heights as

τ =

∫ r

r0

dr

c

√
2µ
r +

E2
0

m2c4 − 1
. (25)

This allows us to calculate the expected time difference
for a falling particle based on velocity dependence v0, and
so allowing an experimental test of this principle7.

Also, due to the rocket’s mild acceleration rate, then
inside the rocket frame itself, there will be extremely mi-
nor time dilation effects. This allows the stationary frame
in gravity, to be the frame of reference to measure fairly
accurately the rates of acceleration of PG1 and PG2. It
is therefore proposed that this should be the reference
frame for an experimental test of the principle. The
maximum effect predicted in Eq. (8) will be for parti-
cles falling in the Earth’s gravitational field at velocities
approaching the speed of light.
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IV. DISCUSSION

We show in this paper that by considering accelerating
objects within the context of special relativity and using
the equivalence principle, the behavior of weak uniform
gravitational fields are predicted. Specifically, we have
shown that acceleration due to gravity, is a function of
radial particle velocity as shown in Eq. (8), a result first
derived by Hilbert. This can also be interpreted as a
weakening of the field. One way to intuitively understand
this effect is that particles moving at high velocities in
a gravitational field have clocks that are slowed and so
effectively spend less time in the gravitational field and so
experience lower acceleration than slow moving objects.

It could be claimed that this result shown in Eq. (24) of
the velocity dependence of gravity is perhaps an artifact
of the particular coordinates chosen, shown in Eq. (10).
However, if we try the other common variants of the
Schwarzschild metric, such as isotropic coordinates, Bril-
louin coordinates or indeed Schwarzschild’s original met-
ric, then the same result as shown in Eq. (24) is found.
Refer to Appendix B for a list of these four common met-
rics.

We have shown there is no violation of the principle of
equivalence since velocity dependance holds under both
flat space accelerations and general relativity. There is
also the issue though of the factor of two discrepancy
between the result using acceleration under special rela-
tivity and that using the full general theory. However
Einstein also found that the bending of starlight was
twice the effect in GR when compared to using accel-
eration and the principle of equivalence. This difference
is because the principle of equivalence holds for local re-
gions of space and time which coincide with accelerating
frames. Hence, for the bending of starlight we need to
take account of the additional effect from the space cur-
vature along the trajectory, which is present under grav-
ity. Whereas, under acceleration the inertial observer ob-
serves the acceleration decreasing because the time over
which the force acts appears to take longer and longer
from his frame, therefore the entire effect is due changes
in time not space. In an attempt confirm this, we redo
our calculations for the Schwarzschild solution but set
the spatial curvature to zero, then we find that we ob-
tain a factor of two as opposed to three, which is much
closer to our result in Eq. (24) and so appears to explain
this discrepancy.

As noted, our result based on accelerating frames, leads
to an expected effect about half that predicted by general
relativity, as shown in Eq. (22). Hence it would make an
interesting experiment to precisely measure this effect,
and to verify the discrepancy between the two types of
analysis and provide further confirmation of general rela-
tivity. This test would also thus allow a further verifica-
tion of the Einstein principle of equivalence and Hilbert’s
equation.

Appendix A: Lagrangian approach to geodesics

A Lagrangian approach can also be used as an alter-
native to the geodesic equation and may be clearer for
those less familiar with tensor algebra. It is also pro-
duces a shorter derivation of Eq. (15).

Now, we can rearrange the metric in Eq. (10) to define
a Lagrangian

L =

(
1− 2µ

r

)
ṫ2 − 1

c2

(
1− 2µ

r

)−1
ṙ2 = 1, (A1)

where ṫ = dt
dτ and ṙ = dr

dτ and for purely radial motion
we have assumed that the angular terms are zero.

We then have the action S =
∫
dτ =

∫
Ldτ and so we

can firstly maximize the action using Lagrange’s equa-
tions for t, namely d

dτ

(
∂L
∂ṫ

)
− ∂L

∂t = 0, giving

d

dτ

((
1− 2µ

r

)
c2ṫ

)
=
dL
dt

= 0. (A2)

Hence we have a constant of the motion(
1− 2µ

r

)
ṫ =

E0

mc2
, (A3)

where E0 can be shown to be the total energy for motion
in a Schwarzschild metric. Substituting Eq. (A3) back
into the metric we find

dr

dτ
= c

√
E2

0

m2c4
−
(

1− 2µ

r

)
, (A4)

in agreement with our previous result in Eq. (19). Also,

d2r

dτ2
=

d

dr

(
dr

dτ

)
dr

dτ
=
−µc2

r2
, (A5)

in agreement with Eq. (15).

Now, multiplying the Lagrangian through by dτ2

dt2 , and

solving for dr
dt we find

dr

dt
= c

(
1− 2µ

r

)√
1− 1

dt2

dτ2

(
1− 2µ

r

) (A6)

Therefore, using Eq. (A3) we find

dr

dt
= c

(
1− 2µ

r

)√
1− m2c4

E2
0

(
1− 2µ

r

)
, (A7)

as shown in Eq. (21). This can be rearranged to give

E0 = mc2
(

1− 2µ

r

) 1
2

(
1−

(
1− 2µ

r

)−2(
dr

cdt

)2
)− 1

2

,

(A8)
for the energy of the particle.
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Now, differentiating Eq. (A7) with respect to time
gives the coordinate acceleration shown in Eq. (22). Sub-
stituting for E0 we find

d2r

dt2
= −µc

2

r2

(
1− 2µ

r

)(
1− 3

c2

(
dr

dt

)2(
1− 2µ

r

)−2)
.

(A9)
Now if a particle at rest slowly enters the field with r →

∞ then the particles’ energy E0 is approximately its rest
energy mc2, however if we wish to inject the particle into

the field with velocity v0 then E0 = γmc2 = mc2√
1−v20/c2

.

This gives

dr

dτ
= c

√
1

1− v20/c2
−
(

1− 2µ

r

)
. (A10)

We can see that as r →∞ then dr
dτ → v0 as required.

Appendix B: Common forms of the Schwarzschild
metric

A general form of the Schwarzschild metric can be writ-
ten as

c2dτ2 =

(
1− 2µ

C

)
c2dt2 − (C ′)2

(
1− 2µ

C

)−1
dr2(B1)

−C2dθ2 − C2 cos2 θdφ2.

The four common variants, which are time indepen-
dent, are: Schwarzschild’s original metric with C =
(r3 + 8µ3)1/3, isotropic coordinates with C = r(1 + µ

2r )2,
Brillouin coordinates with C = r+2µ and the more com-
mon form of the metric with C = r.
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