THE INFINITY OF TWIN PRIMES

JOSEPH DISE

DEFINITION 1

 $6x \pm 1$ are twin primes where $x = 6nm \pm (n \pm m)$ has no solution for positive integers x, n, and m.

DEFINITION 2

_

Given *n* and *m* are interchangeable,

all solutions for x are
$$x \mod (6n \pm 1) \pm n = 0 \equiv (x \pm n) \mod (6n \pm 1) = 0$$
, for all $n \le \sqrt{\frac{x}{6}}$.

There are four results for each $x, n : (x \pm n) \mod (6n \pm 1)$.

DEFINITION 3

The distribution of x values with no solution is bounded by

$$D(x) \ge x \prod_{n=1}^{\left\lfloor \sqrt{\frac{x}{6}} \right\rfloor} \frac{6n-3}{6n+1}$$

such that $0 < \frac{D(x)}{x} \le 1$ for all x.

DEFINITION 4

The average distribution of x values with no solution in a range defined by $6(n-1)^2 \le x \le 6n^2$, where n > 1, grows by a minimum rate of

$$\left[\frac{6(2n-1)}{6(2(n-1)-1)}\times\frac{6n-3}{6n+1}\right]>1$$

: there will tend to exist more x values with no solution in subsequent ranges of $\langle x \rangle$, where $|\langle x \rangle| = 6(2n - 1)$ and $6(n - 1)^2 \le x \le 6n^2$, as n increases.

 \therefore there will exist twin primes to infinity.