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Abstract

This article discusses an electric field in complex space-time. Using an orthogonal

paravector transformation that preserves the invariance of the wave equation and does

not belong to the Lorentz group, the Gaussian equation has been transformed to obtain the

relationships corresponding to the Maxwell equations. These equations are analysed for

compliance with classic electrodynamics. Although, the Lorenz gauge condition has been

abandoned and two of the modified Maxwell’s equations are different from the classical

ones, the obtained results are not inconsistent with the experience because they preserve

the classical laws of the theory of electricity and magnetism contained therein. In

conjunction with the previous papers our purpose is to show that space-time of high

velocity has a complex structure that differently orders the laws of classical physics but

does not change them.

Keywords: Alternative special relativity, complex space-time, Maxwell equations,

paravectors, wave equation
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Introduction

The classical special theory of relativity (STR) assumes that space-time is a

4-dimensional real structure, and Lorentz transformation is its automorphism which

preserves the invariance of the wave equation. In the paravector formalism, the Lorentz

transformation has a form X ′ = ΛX Λ∗, where Λ is a complex orthogonal paravector, and the

asterisk means the conjugation [2]. The article [7] shows that transformation X ′ = ΛX

preserves the invariance of the wave equation and also states the hypothesis that space-time

is a complex structure C × C 3, and it is real only locally in the observer’s rest frame. Our

purpose is to show that if from the mathematical side a complex space-time is more natural

for describing relativistic phenomena, then the space-time is complex. We want to show that

what is directly observed by an observer is only a projection of more compound phenomena

on to his local real space-time, and the fact that the carrier of information is a real energy

also confirms to him that the space-time is real.

For the purpose of simplifying the formulas, an universal units (NU) system is chosen

that entails no physical constants are present in the vacuum, and linear velocities are related

to the speed of light or the module of light speed is equal to 1. Since the formalism used in

this article is novel (albeit it is based on a matrix calculus), it is necessary for the reader to be

acquainted with the articles [6] and [7].

In space-time the object is determined by its state, i.e. the coordinates of the position

(X ) and parameters characterizing the movement, e.g. velocity (V ). Both these parameters for

free movement describe a pair of coordinates V −X linked by the operation of multiplication.

This pair is called phase. STR describes objects in motion at speeds comparable to the speed

of light. Movement is a change of position over time, so the concept of phase has no physical

significance, just like a moment (zero time interval). For dynamic phenomena it is important

what happens in the interval of time. The same is with phase that correspond to time, so we
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will deal with the phase interval, which is defined as the phase difference.

∆Θ =V −X=∆t 0 (1)

The phase interval is a non-negative real number and it is equivalent to the universal

time interval ∆t 0. For this reason, it is necessary to emphasize that the real and imaginary

parts of coordinates of the described objects are not independent of each other. The

coordinates t, x, y, z are mutually independent but, their real and imaginary components are

not independent. You have to keep this in mind as it may interfere with understanding the

interpretation of the calculations at the beginning. This note is general but it not relevant to

the calculations in the current article, because to make the discussion clear, the

electromagnetic field was researched at the boundary of real and complex space-time, i.e.

∆t ∈R+, V =
1

p
1− v 2





1

v



 and v ∈R 3.

This article is the fifth in the order of the publications that relating to a complex time-

space, and the whole of our project is to show that it is possible to build a theory alternative

to the valid special theory of relativity. So far, the following articles have been published:

1. Algebra of paravectors [6]

2. Four-divergence as a paravector operator. Invariance of the wave equation under

orthogonal paravector transformation. [7]

3. Does Thomas-Wigner rotation show the fallacy of „Lorentz rotation”? [8]

4. Special relativity in complex space-time. Part 1. A choice of the domain and

transformation preserving the invariance of wave equation. [9]
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1 Wave

It is not difficult to verify1 that the solution of the homogeneous wave equation

(∂ 2/∂ t 2−∇2)A(X ) = 0 is fulfilled by any function:

A(





α

−βββ









t

x



) or A(





t

x









α

−βββ



) (2)

such that A is a paravector function and paravector





α

βββ



 is a singular one.

The argument of wave function are the space-time coordinates combined in pairs

with another paravector. This pair we call the phase. It is invariant under the orthogonal

paravector transformation (complex relativistic transformation).

Conclusion 1.1. In the case when α = 1, βββ = c ∈ R 3 and |c| = 1, vector c is interpreted as the

wave speed or the speed of light in real space-time.

If we talk about a wavefront, then this is equivalent to the condition of identity in phase:




1

−c









t − t0

x−x0



=C −X= 0 (3)

We talk about a plane wave if a vector c is given. If a point with the coordinates x0 is

given and vector c has any direction, then we talk about the spherical wave.

By studying this class of problems, we can use the properties of the singular parallelism

[6], which gives as follows:

Conclusion 1.2. For a periodic function f (C −X) the 4-vector T is a period of the function f if

and only if T is singularly parallel to the paravector C .

Proof.

A function is periodic with the periodT if f (C −(X+T)) = f (C −X)which occurs when 〈C ,T) = 0.

1Use the identities proven in the article [7]
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In this case the order of the paravectors does not matter because if (T, C 〉 = 0 then 〈C ,T) = 0

also.

From the above conclusion we can deduce that if 〈C ,T) =





1

−c









T

p



= 0 then



























T = cp

c= p/T

c×p= 0

where T is the period, and p is the wavelength. The last equations are obvious.

If (2) is a periodic function and if we take out T from the phase then we get another

phase

Θ =





1/T

−c/T









t

x



=





ω

−k









t

x



 (4)

We transform this phase by relativistic transformation

Θ =





ω

−k









t

x



=
1

p
1− v 2





ω

−k









1

−v









t ′

x′



=





ω′

−k′









t ′

x′



 , (5)

where




ω′

−k′



=
1

p
1− v 2





ω+vk

−(k+ωv+ i v×k)



 (6)

We found Doppler law in a paravector notation.

1.1 Spherical wave

Let’s get back to the equation of the wave-front (3) and assume that the coordinates of

the 4-vectors X are real, and that the spatial coordinates of the common beginning point of

these 4-vectors determine the particular point x0 in the rest frame. Now, we will examine how
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the image of the light speed paravector C will be viewed from the frame moving at real velocity

−v or the arguments of the field function entangled in the phase, are transformed according

to the formula:





1

−c









∆t

∆x



= 0 →
1

p
1− v 2





1

−c









1

−v





1
p

1− v 2





1

v









∆t

∆x



= (7)

=
1

p
1− v 2





1+vc

−v− c+ i v× c









∆t ′

∆x′+ i∆y′



= 0

By extracting time and scalar 1 + vc, we obtain the condition that must be satified by the

complex speed of light in relation to the speed of light in the resting frame.





1

− v+c−i v×c
1+vc









1

v′+ i w′



= 0 (8)

By the above we conclude that

c′ = v′+ i w′ where v′ =
v+ c

1+vc
, w′ =

v× c

1+vc
and c ′2 = 1 (9)

The above solution of the equation (8) is trivial. Since the equation (8) is a system of dependent

linear equations, we can guess that there is an infinite number of velocity vectors c’ that satisfiy

this equation. Another question is, which mathematical solution has a physical meaning? In

the equation below we give another velocity vector c’ which satisfies the equation (8) and also

has a physical meaning, as we will see in the next publication.

c′ =
(1+vc)(v+ c)− (v+ c)× (v× c)

(v+ c)2
(10)

Proof.

We assume that vector c’ is real one. Let’s rewrite the equation (8)




1

− v+c
1+vc + i v×c

1+vc









1

c′



= 0 (11)
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In order to simplify the calculation we introduce the auxiliary vectors A and B

A=
v+ c

1+vc
and B=

v× c

1+vc
. (12)

The equation (11) has a form




1

−A+ i B









1

c′



= 0 (13)

After the multiplication of singular paravectors, we get a set of four equations

1−Ac′ = 0 (14)

i Bc′ = 0 (15)

c′−A−B× c′ = 0 (16)

i B− i A× c′ = 0 (17)

We group the equations (15) and (16) into the first pair, and (14) and (17) into second one and

we write them in the form of the paravector equations




i Bc′

c′−B× c′



=





0

A



 and





1

i B



=





Ac′

i A× c′



 , (18)

which we write as the products




1

i B









0

c′



=





0

A



 and





1

i B



=





0

A









0

c′



 . (19)

Since paravectors





0

A



 and





1

i B



 are non-singular ones and A2 = 1+B 2 then from both

equations we get the same result




0

c′



=
1

A2





0

A









1

i B



 (20)

hence

c′ =
(1+vc)(v+ c)− (v+ c)× (v× c)

(v+ c)2
(21)
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Let’s go back to the formula (9). We note that although the real part of the light velocity

vector c′ may be greater than 1, the length of the complex vector is always equal to 1. There is

no conflict with Michelson-Morley’s experiment because it is done in the light source frame

and it tells us only that there is no ether. This contradiction can be explained in the same way

as it was done in the explanation of the experiment in article [9] because the formula (9) is

analogous to the formula (37) [9]. So we can imagine an analogous experience but made with

a lamp in a mirror lab. This explains the apparent deformation and the apparent superluminal

speed.

The problem is how to interpret the imaginary part of the velocity vector. It seems that

on the physical side we should look at the real velocity vector as if it were rotating because the

imaginary vector, perpendicular to the plane defined by the vectors v and c, gives this feature

to the real part of vector c’. Although this real vector does not rotate with respect to the outer

axis, the observer which is not collinear with it gets this impression. The product v× c shows

that this is not just an impression. On the accounting side, the imaginary component of the

vector is an element needed to properly balance the coordinates of the velocity vector so that

its length is equal to 1.

The relativistic transformation considered by us is a four-dimensional orthogonal

transformation of the four-vectors Λ : X −→ X′ that the integrated product (def 2.1 [6]) is

invariant or 〈Γ ,X) = 〈Γ ′,X′). It means that the phase interval is invariant. For physical object

paravectors Γ and X are proper or singular (detΓ and detX ∈ R+). Ideally, if all paravectors are

real. Therefore, we will look for a physically interpretable transformation that would bring a

complex orthogonal paravector Λ to the form of the real paravector of velocity V and the

complex 4-vector X to the real form. On the other hand, we will look for interpretations of

the imaginary coordinates. However, we should not deal with the coordinates of points in

space-time. In physical phenomena the motion is essential i.e. the changes of coordinates

(∆x) in time (∆t ) and valid are only these vectors. Please note that we have not calculated

the coordinates of the points but their differences or the coordinates of vectors.

Mathematically, this means that we are in the vector space, not in the affine one. The field
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disturbance moves in space at light velocity, otherwise: an argument of the field function is

the phase interval which is the concept from vector space. Therefore, we pay attention that

the whole time we are talking about frames, and not about Cartesian coordinate systems,

which is not the same thing.

In order for the components of phase intervals to describe physical phenomena, it

seems obvious that the paravectors representing them are proper (it means that they have

modules). If there were superluminal speed, its paravector would have a negative

determinant, so it would be improper and it could not be represented in the form of an

orthogonal paravector unequivocally. We should stick to this direction because it gives us a

mathematical confirmation of the empirical fact:

Physical objects can not move at a speed faster than the speed of light.

Since it is difficult for us to take up the complex vectors, for convenience we assume

that we can find such a transformation of Λ : X→ X′ that X and X′ ∈ R 1+3. We will examine

how the Maxwell’s and SR theories will change as a result of the adoption of the relativistic

transformation described by the real velocity paravector because such considerations will be

understood. On the other hand, we will develop the knowledge of the transformations on

complex paravectors, because they are complex by their nature. Later, we will try to reconcile

the complex model of mathematical structure with the real physical phenomena.

We just wrote that X ∈ R 1+3 instead of R 4. It is necessary to further separate the scalar

part from the spatial one in the four-vector of position because the scalar part is time, and

time does not run backwards. The time structure together with the + operation should be

a monoid (half-group with zero). The spatial part of the structure is a 3-dimensional vector

space. So we will write X ∈ R+×R 3 (or C ×C 3) and this space will be called space-time. This

is not a strict definition of space-time yet, but only its important feature.
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2 Electric field

The article [7] shows that the wave equation can be transformed in four basic ways:

Table 1

1. ∂ −∂ A(X ) = B (X ) −→ ∂ ′−Λ−Λ∂ ′A(X ′Λ−) = B (X ′Λ−)

2. ∂ ∂ −A(X ) = B (X ) −→ ∂ ′∂ ′−[Λ−A(X ′Λ−)] =Λ−B (X ′Λ−)

3. ∂ −∂ A(X ) = B (X ) −→ ∂ ′−∂ ′[ΛA(Λ−X ′)] =ΛB (Λ−X ′)

4. ∂ ∂ −A(X ) = B (X ) −→ ∂ ′ΛΛ−∂ ′−A(Λ−X ′) = B (Λ−X ′)

This makes further considerations possible in different directions. However, we want

to remain as close as possible to the formulas adopted in the theory of electric field, so we will

deal with cases 1 and 4 because only in this case we obtain a magnetic field as a result of the

transformation of the electric field.

In the paravector notation, the equations of the electrostatics have the form:

∂ ϕ (X−X0) =





0

−E (X−X0)



 and ∂ −





0

−E (X−X0)



=ρ (X −X0) (22)

or

∂ −ϕ (X−X0) =





0

E (X−X0)



 and ∂





0

E (X−X0)



=ρ (X −X0) , (23)

where X0 is the place in space-time at which the source of the field is located, and X is the place

where the field has a specified function value. These coordinates are related to each other:

X= X −X0 =





t − t0

x−x0



=∆t





1

c



 , where |c|= 1 (24)

In other words: X is a singular four-vector. In the formulas (22) and (23) the straight letter

denotes the coordinates of the point that directly affects the function value. In mathematical

terms, it seems that only space-time distance is important, and therefore the difference of

coordinates and the condition that it is a singular 4-vector. The above formulas should be

understood: E(X−X0) is the strength of the field at the point x and at the moment t from the
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charge ρ (X −X0) located at the moment t0 and at the point x0. The equivalence of reasoning

constructed on the equations (22) and (23) is shown in the Appendix. Now we assume that

the electric field is described by the equations (23).

At this moment, for simplicity we assume that the speed is described by the real

paravector which we call the velocity paravector

V =
1

p
1− v 2





1

v



 .

According to the assumptions above for the field (23) we use the transformation X′ = V X by

which we obtain the equivalent equation in a moving frame:




∂
∂ t

∇









0

E (X)



=





ρ (X)

0



 ⇔





∂
∂ t ′

∇′



 (
1

p
1− v 2





1

v









0

E (V −X′)



) =





ρ (V −X′)

0



 , (25)

so

1
p

1− v 2





1

v









0

E



=
1

p
1− v 2





vE

E+ i v×E



=





e ′

E′+ i B′



 , (26)

hence Maxwell’s equations (modified) have a form:




∂
∂ t

∇









e

E+ i B



=





ρ

0



 (27)

which gives

∂ e

∂ t
+∇E=ρ ∇B= 0 (28)

∇×B−
∂ E

∂ t
=∇e ∂ B

∂ t +∇×E= 0 (29)

The size of e we call the scalar induction (by analogy to the vector potential) and this is a

something that does not exist in the obtained theory of electric field in accordance with the

condition of the Lorenz gauge.

In the resting frame, the potential equations have the form:




∂
∂ t

−∇









ϕ (X)

0



=





0

E (X)



 , (30)
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then based on the article [7] Theorem 2.3 identity 2, the formula above in the moving frame

takes the form

1
p

1− v 2





1

−v









∂
∂ t ′

−∇′









ϕ (V −X′)

0



=





0

E (V −X′)



 . (31)

We obtain the same as above the 4-vector of strength-induction

1
p

1− v 2





1

v









0

E



=
1

p
1− v 2





vE

E+ i v×E



=





e ′

E′+ i B′



 . (32)

The potential, strength and induction of the electromagnetic field are interrelated

∂ ϕ′

∂ t ′
= e ′, ∇ϕ′ =−E′− i B′ (33)

In above case, the energy density of the field is

W ′ =
1

2
F′F′∗ =

1

2





e ′

E′+ i B′









e ′

E′− i B′



=





e ′2+E ′2+B ′2

2

e ′E′+E′×B′



 (34)

From the equation above it follows that the boost changes the energy according to the Lorentz

transformation named by W.Baylis the Lorentz rotation [2].

W ′ =
1

2
F′F′∗ =

V F(V F)∗

2
=

V FF∗V ∗

2
=V W V ∗ (35)

The results above are summarized in the table below

Table 2

Rest frame Moving frame

Charge density ρ(X) ∈R invariant

Field strength F(X) ∈ {0}×R 3 F′(V −X′) =V F(V −X′) ∈R ×C 3

Potencial ϕ(X) ∈R invariant

Potential
ϕ(X)ρ(X)

2 ∈R+ invariant
energy density

Field energy
F(X)F∗(X)

2 ∈R+
F′(V −X′)F′∗(V −X′)

2 = V F(V −X′)F∗(V −X′)V
2 ∈R+×R 3

density
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Please note the choice of the field equation (23) and the transformation because the

Maxwell equations (modified!) are not always obtained. In the reasoning above the scalar

induction is a real field but, the value of this function can be complex numbers when boosts

are composed.

Looking at the formulas in Table 2 we can see that they are not completely consistent

with the classical theory because if the equation of the form 1 or 4 is transformed then values

of potential and charge density are invariant. For these cases it is possible to interpret the

magnetic field and there is formed a scalar size which in the classic theory of electric field,

according to the Lorenz gauge condition, is absent.

In cases 2 and 3 the strength of electric field is invariant (the magnetic field does not

have a mathematical explanation!), but we obtain: the current density, vector potential and

justification of the Lorenz’s gauge condition.

To obtain all the classical components of the field and to satisfy the invariance

condition of the wave equation, we would have to multiply the equation (25) on the right

side by Λ, but that would be an artificial solution, because we would get an absurd Maxwell

equation. Moreover, we could do it with any orthogonal paravector and we would get a

correct mathematical expression but with no physical meaning. For example:

∂ (V F ) =ρ / ·V1 hence ∂ (V F V1) =ρV1

Conclusion: In the complex space-time with the assumption that the relativistic

boost has the form of X′ = ΛX (or X′ = XΛ), the concepts of the magnetic field and current

density can not exist together in Maxwell’s equations!

Although, the obtained results are a little different from the textbook formulas, in

practice they do not change anything instead they are differently ordered according to the

laws of Ampere, Gauss, and Faraday in the wave equations. Do not be discouraged! In

practice, we are only conducting mathematical considerations. If scientists contemplate an

existence of the magnetic charges (Dirac) or superluminal speeds then why are we not be
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able to try to modify some classic theories, but sticking to their classical principles. In this

situation, we are abandoning the Lorenz gauge condition. The consequences of this step

are:

• Removal of current density from Maxwell’s equations,

• Resignation of the vector potential,

• Introduction of the scalar element into induction 4-vector.

Although the change is revolutionary, it greatly simplifies and reorganizes the theory. For the

sake of justification let us note that the proposed changes have historical, intuitive and

practical justification:

1. The vector potential was introduced by scientists that had looked for the general

solutions of the wave equation who had not know in what mathematical structure the

equation is, and that it is a purely mathematical rather than in a physical size [5]chap.

6.5. In our work it is assumed that this structure is not known either, but we will define

it in the future.

2. The Lorenz gauge condition is a purely theoretical assumption for the purpose of

refining the abstract concept of the electric field potential so that the field is described

by a wave equation. Since we are coming out of the wave equation, and the Lorenz

gauge bothers us, then we have a legitimate right to ignore it.

3. We chose variants at which the field equations have no vector potential and no current

density either. Looking at the transformation formulas known from STR we come to

the conclusion that it would not be wrong if that was so, since the density of the charge

should be as invariant as the charge, because the shape would be invariant.

4. Experimentally, we have an access only to sizes associated with the transferred energy

because energy is the information carrier. All other sizes are abstract and they are used

to build a clear mathematical model.
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2.1 A field of the point charge

Let X be a four-vector describing the coordinates of an inertial moving object or it

satisfies the equation

X0 =V −X or ∆t 0 =V −(X −X0).

The potential of an electric field with spherical symmetry around a stationary charge placed

at point X0 describes the function

ϕ (X −X0) =
1

r
q (C − (X −X0)) (36)

where C is a singular paravector e.g. C =





1

c



. For wave-front the argument is the same phase

|X|= 0, or

X= X −X0 =





t − t0

x−x0



=





r

r



 , where r = |r| .

The functionϕ(C −(X −X0)) = r −1q (C −(X −X0)) is a scalar function with a value of q/r spread

over the coordinates involved in the phase C −(X −X0). The point X0 is interpreted as time and

space location of the charge q being the source of the field. Same, from the above we have

r= x−x0 = c(t − t0) = c∆t .

For these deliberations we have selected the transformation and the wave equation

which make sure that the potential is an invariant scalar function with respect to this

orthogonal transformation. An argument of the potential function is the space-time

distance from the charge (X). The denominator is r , but keep in mind that it is the length of

the vector r only in the resting frame of the charge. In every other frame r is not the spatial

distance, because the vector r is not invariant. Only an observer stationary to the charge can

treat the value r in the denominator as a distance. In order to have no doubt, it is better to

interpret r as the phase distance r =∆t and the vector c= r/r as the phase direction.

The field strength is not invariant. When transforming a formula (26) describing the

field strength, the value of r remains invariant as the formula of the potential because it is the
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phase distance equal to the distance from the source but, only if the source is at rest (or it is

moving at non-relativistic speed). Otherwise, r is only a factor influencing the value of the

field inversely proportionally than the charge.

For an observer passing to a frame moving at a speed -v the strength is transformed

∂ −





ϕ(C − (X −X0))

0



=





0

E(C − (X −X0))



 −→ (37)

−→ V −∂ ′−





ϕ
�

(V C )−(X ′−X ′0)
�

0



=





0

E
�

(V C )−(X ′−X ′0)
�



 .

In the frame of charge, the electric field at the point X from the charge located at the

point X0 is described by the formula:

E=−∇
1

r
q
�

C − (X −X0)
�

=
r

r 3
q
�

C − (X −X0)
�

=
c

r 2
q
�

C − (X −X0)
�

(38)

From the equation above and based on the relationship (37) the 4-vector of the field

strength in a frame moving at a speed -v becomes:




e

E′



=
1

p
1− v 2





1

v









0

c
r 2 q (C ′−X′)



 , (39)

whereX′ defines a new space-time distance from the source of the field, and the product V C

is replaced by the paravector C ′.

From the last formula anyone can see that:

• The scalar induction, introduced as a result of the rejection of the Lorenz gauge

condition, is equal to

e
�

X′
�

=
vc

r 2
p

1− v 2
q (C ′−X′) (40)

• The electric field strength is

E
�

X′
�

=
c

r 2
p

1− v 2
q (C ′−X′) (41)
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• magnetic induction

B
�

X′
�

=
v× c

r 2
p

1− v 2
q (C ′−X′) (42)

where r is the phase distance and c is the phase direction (unit vector) transferred from the

old system 2. The obtained equations describe the field of a moving point charge.

Let’s now look at the relation between the above equations and Maxwell’s equations.

In complex model, the equations of electrostatics ∂ −F = ρ transformed by relativistic

transformation have the form:

∂ vE

∂ t
+∇E = ρ

p
1− v 2 (43)

∇ (v×E) = 0 (44)

∂ (v×E)
∂ t

= −∇×E (45)

∂ E

∂ t
+∇(vE) = ∇× (v×E) (46)

By introducing B = v× E we can see that the equations (44) and (45) are not different from

the known Maxwell equations. For velocity v � c the equation (43) also takes a familiar form.

However, the formula (46) is not consistent with the obvious theory. Let’s discuss this problem.

2.2 The field in the environment of the wire in which direct current flows

As the first step we calculate the value of the product vE at any point of the space for

the case of field resulting from non-relativistic current flowing in a loop, because with these

currents we have to deal in practice. The consequence of assuming non-relativistic current

velocity is that in an infinitesimal interval of time we can assume that the current in the circuit

is constant and the same in every circuit segment.

2in the new frame the phase direction is a complex vector and its imaginary part is a vector v× c because the

resulting strength vector is in form E′(X′) = E(X′) + i B(X′)
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Figure 1:

Scalar induction from a particular section is

d e (P ) = vd E(P ) = ρ
�

vr/r 3
�

(sd l) , (47)

which gives d e (P ) = ρ
�

vs/r 3
�

(rd l) , (48)

because v ‖ d l or cosinus of an angle between vectors s and d l is the same as between vectors

s and v. Same with the vector r.

Since svρ = J is a current flowing in the circuit, the scalar induction e (P) at any point

P from the circuit is:

e (P ) = J

∮

r

r 3
d l= J

∫∫

∇×
r

r 3
d s= 0 (49)

Conclusion 2.1.

Conclusion 2.2. The field formed by the current flowing in the loop has no scalar induction.

The above result is important because it shows and confirms that in practice we do

not see scalar induction. In macroscopic systems we always deal with closed current circuits.
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Equations (43) - (46) take the form

∇E = ρ
p

1− v 2 (50)

∇B = 0 (51)

∂ B

∂ t
= −∇×E (52)

∂ E

∂ t
= ∇×B (53)

Biot-Savart’s law.

We assume that the wire has a constant cross-section and that the charge density is

constant along the wire.

Figure 2:

Let’s integrate at any point the field from the charges flowing at the relativistic velocity v in the

wire (Fig. 2).




e

E+ i B



=
1

p
1− v 2

+∞
∫

−∞





1

v









0

(l+h)
r 3 ρ (sd l)



 (54)

We get three integrals:

1. e = ρp
1−v 2

+∞
∫

−∞

lv
r 3 sd l

2. E= ρp
1−v 2

+∞
∫

−∞

r
r 3 sd l
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3. B= ρp
1−v 2

+∞
∫

−∞

v×h
r 3 sd l

Since s ‖ v ‖ l⊥h we conclude that

Conclusion 2.3. .

1. e = ρp
1−v 2

+∞
∫

−∞

lv
r 3 sd l= ρp

1−v 2

+∞
∫

−∞

l v
r 3 s d l = Jp

1−v 2

+∞
∫

−∞

l

(
p

l 2+h 2)3
d l = 0

2. In the conductor there are as many negative charges as positive ones, only negative ones

move and thei field is equal to E− =
ρ−p
1−v 2

+∞
∫

−∞

r
r 3 sd l. The field from dissimilar charges

differ in dilatation coefficient E+ = ρ+
+∞
∫

−∞

r
r 3 sd l. In practice, the resultant electric field

around the conductor is zero, because the electrons in the wires move at non-relativistic

speed.

3. B= ρp
1−v 2

+∞
∫

−∞

v×h
r 3 sd l= j×hp

1−v 2

+∞
∫

−∞

1

(
p

l 2+h 2)3
d l = 2j×h

h 2
p

1−v 2 l i m
l→∞

lp
l 2+h 2 =

2j×h
h 2
p

1−v 2

The last equation is Biot-Savart’s law.

2.3 Integral field equations

Starting from the known Gaussian, Stokes and Maxwell integral equations (without the

currents, since they should be consistent with (50) - (53)), we can derive their complex integral

counterparts.

Gauss equation:
�
(f+ i g)d s =

∫∫∫

∇ (f+ i g)dΩ

Stokes law:
∮

(f+ i g)d l =
∫∫

∇× (f+ i g)d s

Maxwell’s equations (ME):
�
(E+ i B)d s =

∫∫∫

ρdΩ

(ME without current):
∮

(E+ i B)d l =
∫∫ �

∂ E
∂ t + i ∂ B

∂ t

�

i d s
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From the equations above we get dependencies:

∫∫

�

∂

∂ t
(E+ i B) + i∇× (E+ i B)

�

i d s= 0 (55)

∫∫∫

�

∇ (E+ i B)−ρ
�

dΩ= 0 (56)

In order to be compatible with our equations, the equation (55) requires the scalar field

gradient∇e is required, and the equation (56) requires the differential of this field over time
∫∫

�

∂

∂ t
(E+ i B)+∇e + i∇× (E+ i B)

�

i d s= 0 (57)

∫∫∫

�

∇ (E+ i B)+
∂ e

∂ t
−ρ

�

dΩ= 0 (58)

Certainly, the conditions
∫∫

∇e d s = 0 and

∫∫∫

∂ e

∂ t
dΩ

are met for the fields around stationary charges as well as currents flowing in the loop, because

scalar induction does not occur in these cases. Based on these results, we can conclude that

Gauss and Stokes theorems are also invariant when integrations take place on a surface or

contour independent of time.

2.4 Ampere’s law

Let’s go back to formula (42). The magnetic field at the point X ′ from the charges

distributed throughout the space can be described by the equation

B
�

X ′−X ′0
�

=

∫

v× c

|V | r 2
q
�

(V C )−
�

X ′−X ′0
��

d 3 x ′0

and since v
|V |q

�

C ′−
�

X ′−X ′0
��

= j
�

C ′−
�

X ′−X ′0
��

, which the current density that flowed in point

x0 at moment t0, then we get the dependence

B
�

X ′−X ′0
�

=

∫

j
�

C ′−
�

X ′−X ′0
��

× c

r 2
d 3 x ′0
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Since the volume integral is invariant, as it was mentioned above, then having the formula

above we can derive Ampere’s law (Jackson [5] (sec. 5.3))

∇×B= j

So we see that Ampere’s law does not have to (and should not!) explicitly appear in Maxwell’s

equations. Using complex relativistic transformations we can derive them from complex

equations of on electric field.

2.5 Potential energy

Since in our model the charge density and the potential are always real scalars (they

have no vector component), then potential energy density is also the invariant real scalar field:

w (X) =
1

2
ρ(X)ϕ(X), (59)

whereX 6= 0 or X 6= X0, andϕ(X) =ϕ (X −X0) is the charge density at point X0 that is distanced

from the point X at which the field is described. We remind that our model is constructed in

vector space rather than affine, and therefore we do not place objects in a coordinate system,

but we do consider their relative positions (X).

2.6 Summary

In summary of the results above, we find that using the paravector calculus in

complex space-time we can create such a theory of electricity and magnetism by starting

with the equations of electrostatics




∂
∂ t

∇









0

E



=





ρ

0



 (60)

and converting them according to the principles of complex relativistic transformations, we

obtain the laws of electrodynamics (Maxwell equations) without the current density
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component which does not require the condition of Lorenz gauge.

∂ e

∂ t
+∇E = ρ (61)

∇B = 0 (62)

∂ B

∂ t
= −∇×E (63)

∂ E

∂ t
+∇e = ∇×B, (64)

where e is the scalar induction of electric field introduced by us.

The equations above in the paravector notation together with the equations of potentials:

∂





e

E+ i B



=





ρ

0



 i ∂ −





ϕ

0



=





e

E+ i B



 (65)

It should be noted that although Maxwell’s paravector equations do not have Ampere’s

law, they are not contradictory to the classical theory - they just order it differently. We also

notice the aesthetic side of the modified equations. Although in the real form the equations

(61) - (64) are not fully symmetrical but in the paravector form (65) there is no doubt about

their elegance. It is evident that the subject of transformation is a strength of electric field

only. The charge density and potential are invariant in complex space-time. Please note that

in the general case, the speed paravector is complex. This means that the scalar induction

introduced by us may be a complex number as well.

On the grounds of such a theory, it would lose the basic premise of the search for a

magnetic monopole and it would be clear why magnetic charge has not been discovered, and

if our reasoning is correct, then it cannot be discovered.

Above are formulas derived of the electric field for a particular case in which velocity

is represented by a real paravector. This was done on purpose, to show that the search at this

direction makes sense, because the calculations are not complicated, and the results are easy

to interpret and most importantly, do not conflict with experimental knowledge. In the

current and in the previous article [9] we have shown that by accepting the real boost
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paravector the obtained imaginary vectors can be interpreted, but still we do not know how

to interpret the results after composed boosts. We come to the basic question:

How to reconcile the theory perfectly white developing complex space-time with real time which

is obvious for every observer?

The hypothesis on this subject will be presented in the next article, where we will discuss the

transformation representing the projection of the complex space-time phenomena on the

local real space-time of the observer.

Appendix

Here again we will show the equivalence of the reasoning based on the

transformation X′ = XV invariant for potential and charge density in the wave equation

∂ −∂ ϕ (X−X0) = ρ (X −X0) and reasoning based no the transformation X′ = V X for the wave

equation ∂ ∂ −ϕ (X−X0) =ρ (X −X0).

Starting from identity 4 in Table 1, the field described by the formulas (22) according

to the transformation X′ =XV is transformed:

Table 3

Rest frame Moving frame

Charge density ρ(X) ∈R invariant

Field strength F(X) ∈ {0}×R 3 F′(X′V −) =V −F(X′V −) ∈R ×C 3

Potential ϕ(X) ∈R invariant

Potential
ϕ(X)ρ(X)

2 ∈R+ invariant
energy density

Field energy
F∗(X)F(X)

2 ∈R+
F′∗(X′V −)F′(X′V −)

2 = F
∗(X′V −)V −V −F(X′V −)

2 ∈R+×R 3

density
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The field strength from the stationary charge is described by the formula (22)

∂ −





0

−E (X′V −)



=





ρ (X′V −)

0





After changing the frame to a moving one, based on [7] Theorem 2.4 it transforms to




∂
∂ t ′

−∇′



 (
1

p
1− v 2





1

−v









0

−E (X′V −)



) =





ρ (X′V −)

0



 ,

where

1
p

1− v 2





1

−v









0

−E



=
1

p
1− v 2





vE

−E+ i v×E



=





e ′

−E′+ i B′



 .

In the paravector form modified Maxwell’s equations would look




∂
∂ t

−∇









e

−E+ i B



=





ρ

0



 , (66)

after splitting into components it gives the same formulas as before

∂ e

∂ t
+∇E=ρ , ∇B= 0

∇×B −
∂ E

∂ t
=∇e ,

∂ B

∂ t
+∇×E= 0

and the energy density

W ′ =
1

2
F∗F=

1

2





e ′

−E′− i B′









e ′

−E′+ i B′



=





e ′2+E ′2+B ′2

2

−e ′E′+E′×B′





In view of the above, it has been confirmed once again that it does not matter whether

in complex time-space the theory of SR is constructed on the transformation ofX′ =XV or of

X′ = XV , because the results from both theories will be equivalent. It is only important that

the wave equation and transformation be compatible, that is

• for the equation ∂ ∂ −ϕ(X) =ρ(X)must be the transformation X′ =ΛX,

• for the equation ∂ −∂ ϕ(X) =ρ(X)must be the transformation X′ =XΛ.
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[9] Radomański J.: Special relativity in complex space-time. Part 1. A choice of the domain and

transformation preserving the invariance of wave equation. viXra:1703.0157

26

http://web4.uwindsor.ca/users/b/baylis/main.nsf/9d019077a3c4f6768525698a00593654/e639e0cdf0d162c985256bb2004c8fde/$FILE/gaworkbook.pdf
http://web4.uwindsor.ca/users/b/baylis/main.nsf/9d019077a3c4f6768525698a00593654/e639e0cdf0d162c985256bb2004c8fde/$FILE/RelEasyPs.pdf
https://arxiv.org/abs/1601.02965
https://arxiv.org/abs/1605.04499
http://vixra.org/abs/1702.0314
http://vixra.org/abs/1703.0157

	Wave
	Spherical wave

	Electric field
	A field of the point charge
	The field in the environment of the wire in which direct current flows
	Integral field equations
	Ampere's law
	Potential energy
	Summary


