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      This book proposes a new formulation of the main concepts of Theoretical Physics. Rather than 
offering an interpretation based on exotic physical assumptions (additional dimension, new particle, 
cosmological phenomenon,…) or a brand new abstract mathematical formalism, it proceeds to a 
systematic review of the main concepts of Physics, as Physicists have always understood them: 
space, time, material body, force fields, momentum, energy… and propose the right mathematical 
objects to deal with them, chosen among well-grounded mathematical theories. Proceeding this way, 
the reader will have a comprehensive, consistent and rigorous understanding of the main topics of 
the Physics of the XXI° century, together with many tools to do practical computations. 
    After a short introduction about the meaning of Theories in Physics, a new interpretation of the 
main axioms of Quantum Mechanics is proposed. It is proven that these axioms come actually from 
the way mathematical models are expressed, and this leads to theorems which validate most of the 
usual computations and provide safe and clear conditions for their use, as it is shown in the rest of 
the book. 
    Relativity is introduced through the construct of the Geometry of General Relativity, from 5 
propositions and the use of tetrads and fiber bundles, which provide tools to deal with practical 
problems, such as deformable solids. A review of the concept of motion leads to associate a frame 
to all material bodies, whatever their scale, and to the representation of motion in Clifford Algebras. 
Momenta, translational and rotational, are then represented by spinors, which provide a clear 
explanation for the spin and the existence of anti-particles. 
    The force fields are introduced through connections, in the framework of gauge theories, which is 
here extended to the gravitational field. It shows that this field has actually a rotational and a 
transversal component, which are masked under the usual treatment by the metric and the Levy-
Civita connection. A thorough attention is given to the topic of the propagation of fields with 
interesting results, notably to explore gravitation. 
    The general theory of lagrangians in the application of the Principle of Least Action is reviewed, 
and two general models, incorporating all particles and fields are explored, and used for the 
introduction of the concepts of currents and energy-momentum tensor. Precise guidelines are given 
to find solutions for the equations representing a system in the most general case. 
    The topic of the last chapter is discontinuous processes. The phenomenon of collision is studied, 
and we show that bosons can be understood as discontinuities in the fields. 
 
In the Version Updated 7/19/2017 : the presentation of some important topics has been 

improved, and new results added. 

Geometry : the definition of matter fields has been improved. Symmetries have been added. 

Kinematics : the model of atoms has been added. 

Fields : an introduction to the Einstein's Theory of gravitation has been added. The section on the 

phenomenon of propagation has been rewritten. It is shown that fields propagate on Killing curves. 

As a consequence a general specification of the metric can be given. 
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INTRODUCTION

With each new discovery Physics has expanded into new theories Mechanics, Thermodynamics,
Electromagnetism, Fluid Mechanics,... Beyond their diversity, they share a common core of key
concepts and First Principles. Relativity, then Quantum Mechanics have broken this unity. A
century after their introduction these powerful theories have not brought what could have been
expected, that is a uni�ed framework, consistent, intellectually satisfying, and e¢ cient. For some
Physicists we have to accept the idea of two physics, based on unrecognizable visions of the world,
for others we have to give up altogether the idea of a real world and contend ourselves with more
or less consistent formal systems justi�ed only by their immediate e¢ ciency. For most this is not
a great concern, as far as the computation works. But not everybody is satis�ed by this sorry
state of Physics. A quick Google search for �quantum mechanics interpretations� provides more
than 5 millions links, and there are more than 50 elaborate theories, the multiuniverse having the
largest support in the scienti�c community. So one cannot say that modern Physics answer clearly
our questions about nature. And it is not true that experiments have proven the rightfulness of
the common practices. The discrepancy between what the theories predict and what is observed is
patched with the introduction of new concepts, whose physical realization is more and more di¢ cult
to check : collapse of the wave function, Higgs boson, dark matter, brown energy,...
The purpose of this book is not to add another interpretation to the existing long list. There will

be few assumptions about the physical world, clearly stated1 , and they are well in line with what
Physicists know and most Scientists agree upon. There will be no extra-dimensions, string theory,
branes, supersymmetry,...Not that such theories should be discarded, or will be refuted, but only
because they are not necessary to get a solid picture in Physics. And indeed we do not answer to
all questions in this book, some issues are still open, but I hope that their meaning will be clearer,
leading the way to a better and stronger understanding of the real world. Its purpose is to propose
a uni�ed Theory of Physics. Not all the domains are covered, but it addresses the key topics : the
Geometry of the Universe, the Kinematics of material body and Mechanics, the Theory of Fields,
their propagation and their interaction with material bodies, and the bases of the classi�cation of
Elementary Particles. I propose a Theory which can be understood, starting from the concepts
such as space, time, mass, momentum,... and the usual First Principles which are known by every
Physicist and have been used for centuries. But one needs a new, candid, look at these concepts and
the phenomena they describe, just as Einstein did in his celebrated 1905 article : space and time
are not necessarily how we are used to see them, and more than often one needs to pause before
jumping to Mathematics. Actually the indiscriminate use of formal systems can be hazardous. The
meaning of the concepts has often be lost, replaced by some mathematical expression. In most books
any consideration of a location is quickly followed by �let x; y; z be the coordinates of the point�,
without much of a thought for the fact that nobody use practically orthonormal frames to locate a
point. These formal substitutes acquire a life of their own, and can become a real burden when they
impede the full understanding of new theories. In Special Relativity �inertial frames� are part of
the mandatory equipment, and the Quantum Theory of Fields is deemed incompatible with General

1To be precise : assumptions are labeled �propositions�, and the results which can be proven from these propositions
are labeled �theorems�.
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xii INTRODUCTION

Relativity because giving up orthonormal frames seems too big an e¤ort. For a century studies in
General Relativity (GR) have been based on the metric and the Levy-Civita connection, without
much of a physical justi�cation, because they seem more convenient, and have become a standard
in the �eld. Theoretical Physics has its �generally accepted practices�, such as the �substitution
rule�in quantization, or the renormalisation to get rid of divergent integrals, which would surprise
any non professional. In looking beyond the usual formalism, in regaining the true meaning of the
physical properties and laws, it is possible to get a more sensible and uni�ed picture. But to develop
its full potential, we need the most adequate mathematical tools. Each new step in the progress of
Physics has been made with a simultaneous advance in the formalism. The new tools exist, they
need some e¤ort to master them, but it is worth of it.
In this book the reader will see how to deal with manifolds, �ber bundles, connections, Cli¤ord

algebras, group representations, generalized functions or Lagrange equations. There are many books
which deal with these topics, usually for physicists, with the purpose to make understandable in a
nut shell what are, after all, some of the most abstract parts of Mathematics. We will not choose
this path, not by some pedantic pretense, but because for a scientist the most general approach,
which requires few but key concepts, is easier than a pragmatic one based upon the acceptance
of many computational rules. So we will, from the beginning, introduce the mathematical tools,
usually in their most general de�nition, into the representation of physical phenomena and show how
their properties �t with what we can understand of these phenomena, and how they help to solve
some classical problems. This will be illustrated by building, step by step, a formal model which
incorporates all the bricks to show how they work. We will use many mathematical de�nitions
or theorems. The most important will be recalled, and for the proofs and a more comprehensive
understanding I refer to another book ("Mathematics for Theoretical Physics"). A great e¤ort has
been done to develop practical tools, which make the computations easier. For instance a dozen
lines su¢ ce to express the Einstein law of GR in 3 linear, computable, equations. And we give
explicit speci�cations for the metric, and formulas for its computation, in the most general case.
The objective is not only to give a beautiful picture, but to provide a manageable Theory.

The �rst chapter is devoted to a bit of philosophy. From many discussions with scientists I felt
that it is appropriate. Because the purpose of this book is to provide a new theoretical framework
for Physics, it is necessary to have a good understanding of what is meant by physical laws, theories,
validation by experiments, models, representations,... Epistemology, a branch of Philosophy, helps us
to sort out the di¤erent meanings of what we call knowledge, the status of Science and Mathematics,
how the Sciences improve and theories are replaced by new ones. This chapter will not introduce
any new Philosophy, just provide a summary of what scientists should know from the works of
professional philosophers. In this Chapter are reminded the First Principles of Physics, fundamental
laws which are universally accepted, and their general meaning.
The second chapter is dedicated to Quantum Mechanics (QM). This is mandatory, because QM

has dominated theoretical Physics for almost a century, with many disturbing and confusing issues.
It is at the beginning of the book because, as we will see, actually QM is not a physical theory, it
does not state any assumption about how Nature works. QM is a theory which deals with the way
one represents the world : its axioms, which appear as physical laws, are actually mathematical
theorems, which are the consequences of the use by Physicists of mathematical models to make their
computations and collect their data from experiments. This is not surprising that measure has such
a prominent place in QM : it is all about the measures, that is the image of the world that physicists
build, and not about the world itself.
There are three main objects in Physics : the Universe, material bodies and �elds. They are the

topic of the 3 following chapters.
By Universe we do not mean how the whole universe is, which is the topic of Cosmology. Cos-

mology is a branch of Physics of its own, which raises issues of an epistemological nature, and is,
from my point of view, speculative, even if it is grounded in Astrophysics. By Universe we mean
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the container, seen at our scale, in which every other object live, and how we represent it. This
is the topic of Geometry, and any Theory in Physics must have a physical Geometry, telling how
one locates a point, measure vectors or tensors, and of course, how one deals with time. The usual
Geometries are the Galilean Geometry, Special Relativity (SR) and General Relativity (GR). In
this book we adopt the latter. This choice will be justi�ed by building the Geometry from 5 basic,
natural assumptions, from where all the usual theorems can be deduced. For instance we show
that the existence of a Lorentz metric is the logical consequence of the Principle of Causality. This
metric is actually the main physical property of the Universe. We will introduce mathematical tools,
such as the �ow of a vector �eld and �ber bundles, which help to understand the geometry and to
make practical computations. We will see the necessity to introduce the observer, the physicist who
proceeds to the measures, as an integral part of the system.
The second object of Physics is material bodies, usually seen as a collection of material points

which behave in some coherent way. Material points have a location and a translational motion, but
material bodies have also other geometric properties, related to the concept of rotation. And it seems
that these properties exist for any material body, whatever the scale, from elementary particles to
galaxies. After a review of the classical representations, we show that these physical properties can
be represented through a Cli¤ord Algebra, we introduce tools to deal practically with any motion
in the GR framework. They enable to extend easily the concept of deformable solid, from atoms to
stars systems. Moreover they give the basis for the concept of matter �eld, a collection of particles
which have a similar behavior.
The fourth chapter addresses Kinematics, which, by the concept of momentum, is the bridge

between forces and geometry. The revision of the concept of motion of a material body requires
the introduction of a new representation of the momentum, based on Spinors. Spinors are not new
in Physics, but we will see why they are necessary and what they mean. This leads naturally to
the introduction of the spin, which has a clear and simple interpretation, of antiparticles and to
the representation of particles by �elds of spinors, which are one the faces of the duality wave /
particles. With these tools it is then easy to build a model of atoms and their electrons shells, using
the theorems of quantization proven in the 2nd Chapter.
Particles interact with force �elds, according to additional properties such as their electric charge.

After a short reminder of the Standard Model we see in the 4th Chapter how to extend Spinors to
represent the state of elementary particles, with all their properties, including their interactions with
force �elds.
The third object of Physics is Force Fields. They have been introduced in the late XIX� to

replace the idea of action at a distance between material bodies. There are represented, in any
physical theory, either as continuous objects, or as resulting from the action of special particles,
the bosons, which carry the �eld. Modern Physics have introduced, with �gauge �elds�, a powerful
tool to represent force �elds in their continuous manifestation. In the 4th Chapter we show how
it can be used to represent any �eld, including gravitation. The integration of Gravity, not in a
Great Uni�cation Theory, but with tools similar to the other forces and in parallel with them,
opens a fresh vision on important issues. We give a short presentation of the Einstein�s theory of
gravitation, usually seen as being part of General Relativity, but is actually an original theory which
deserves a special look to be genuinely understood. One important property of force �elds is that
they propagate in the vacuum. It is usually seen through the equations at equilibrium, of which
the Maxwell�s equations re the paradigm, but the phenomenon of propagation, to which too little
attention has been given by theoricians, requires a comprehensive study. We show that all force
�elds propagate along speci�c curves, and from this result we deduce a general speci�cation for the
metric.
The Principle of Least Action is the main tool to model force �elds and their interactions with

particles. In the 6th we review the problems, physical and mathematical, of its implementation, and
how to deal with them. We will see why a lagrangian cannot incorporate explicitly some variables,
and build a simple lagrangian with 6 variables, which can be used in most of the problems. We
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show how the variational calculus can be implemented, in particular with a rigorous introduction
of functional derivatives. It gives a solid framework for the introduction and justi�cation of the
Energy-Momentum tensor and conservation laws.
The 7th chapter is dedicated to continuous models. Continuous processes are not the rule in

the physical world, but are the simplest to represent and understand. We will see how the material
introduced in the previous chapters can be used by developing two models, for a �eld of particles
and for individual particles. In this chapter we introduce the concept of currents and prove some
important theorems. We give comprehensive and detailed guidelines to solve the equations in the
most general context. In particular we prove that non relativist particles follow geodesics, we give a
practical method to compute the �elds, and an explicit solution for the metric.
The eighth chapter is dedicated to discontinuous processes. They are common in the real world

but their study is di¢ cult. We show how one can solve the problem of collision of particles in
the general framework of GR and rotating bodies. From the concept of propagation of �elds, we
shall accept that this is not always a continuous process. Discontinuities of �elds then appear as
particles, which can be assimilated to bosons. We show how their known properties can be deduced
from this representation, and how the results can be used in electrodynamics and the interactions
of elementary particles.



Chapter 1

WHAT IS SCIENCE ?

Science has acquired a unique status in our societies. It is seen by the laymen as the premier gate
to the truth in this world, both feared and respected. Who could not be amazed by its technical
prowess ? How many engineers, technicians, daily put their faith in its laws ? For many scientists
their work has a distinctive quality, which puts them in another class than novelists, theologians,
or artists. Even when dealing with some topics as government, traditions, religion,... they mark
their territory by claiming the existence of Social Sciences, such as Economics, Sociology or Political
Sciences, endowed with methods and procedures which stand them apart, and lest us say, above
the others who engage in narratives on the same topics. But what are the bases for such pretense
? After all, many scienti�c assertions are controversial, when they impact our daily lives (from the
climate warming to almost any drug), but not least in the scienti�c community itself. The latter is
natural and even sound - controversy is consubstantial to science - however it has attained a more
bitter tone in the last years, fueled by the �erce competition between its servants, but also by the
frustrations of many scientists, mostly in Physics, at a scienti�cally correct corpus with too many
loopholes. A common answer to the discontents is to refer them to the all powerful experimental
proofs, but these are more and more di¢ cult to reach and to interpret : how many people could
sensibly discuss the discovery of the Higgs boson ?
To put some light on these issues, the natural way is to look towards Philosophy, and more

precisely Epistemology, which is its branch that deals with knowledge. After all, for thousands
of years philosophers have been the architects of knowledge. It started with the Greeks, mainly
Aristotle who provided the foundations, was frozen with the scholastic interpretation, was revitalized
by Descartes who brought in experimental knowledge, was challenged by the British empiricists
Hume, Locke, Berkeley, achieved its full rigor with Kant, and the American pragmatists (Peirce,
James, Putnam) added the concept of revision of knowledge. Poincaré made precise the role of
formalism in scienti�c theory, and Popper introduced, with the concept of falsi�ability, a key element
in the relation between experiment and formal theories. But since the middle of the XX� century
epistemology seems to have drifted away from science, and philosophers tend to think that actually,
philosophy and science have little to share. This feeling is shared by many scientists (Stephen
Weinberg in �Dreams of a Final Theory�). This is a pity as modern sciences need more than ever a
demanding investigation of their foundations.
Using all the basic work done by philosophers, I will try to draw a schematic view of epistemology,

with words which are more familiar to the scienti�c reader. The purpose is here to set the ground,
starting from questions such as What is knowledge ? How does it appear, is formatted, transformed,
challenged ? What are the relations between experimentation and intuition ? We will see what
are the speci�cities of scienti�c knowledge, how scienti�c theories are built and improved, what is
the role of measures and facts, what is the meaning of the mathematical formalism in our theories.
These are the topics of this �rst chapter.

1



2 CHAPTER 1. WHAT IS SCIENCE ?

1.1 WHAT IS KNOWLEDGE ?

First, a broad description of what is, and what is not knowledge.
Knowledge is di¤erent from perception : the most basic element of knowledge is the belief (a

state of mind) of an individual with regard to a subject. It can be initiated, or not, by a sensitive
perception or by the measure of a physical phenomenon.
Knowledge is not necessarily justi�ed : it can be a certain perception, or a plausible perception

(�I think that I have seen...�), or a pure stated belief (�God exists�), or a hypothesis.
Knowledge is shared beliefs : if individual states of minds can be an interesting topic, knowledge

is concerned with beliefs which can be shared with other human beings. So knowledge is expressed in
conventional formats, which are generally accepted by a community of people interested by a topic.
This is not a matter of the tongue which is used, it supposes the existence of common conventions,
which enables the transmission of knowledge without loss of meaning.
Knowledge is a construct : this is more than an accumulation of beliefs, knowledge can be learnt

and taught and for this purpose it uses basic concepts and rules, organized more or less tightly in
theories addressing similar topics.

1.1.1 Circumstantial assertions

The most basic element of knowledge can be de�ned as a circumstantial individual assertion,
which can be formatted as comprised of :
- the author of the assertion;
- the speci�c case (the circumstances) about which the assertion is made. Even if it is often

implicit, it is assumed that the circumstances, people, background,.. are known, this is a crucial
part of the assertion;
- the content of the assertion itself : it can be simply a logical assertion (it has the value true or

false) or be expressed in a value using a code or a number.
The assertion can be justi�ed or not. The author may himself think that his assertion is only

plausible, it is a hypothesis. An assertion can be justi�ed by being shared by several persons. A
stronger form of justi�cation is a factual justi�cation, when everybody who wants to check can
share by himself the assertion : the assertion is justi�ed by evidence. In Sciences factual justi�cations
are grounded in measures, done according to precise and agreed upon procedures : the experiment
can be repeated.
Examples of circumstantial individual assertions :
�Alice says that yesterday Bob had a blue hat�, �I think that this morning the temperature was

in the low 15 �C�;�I believe that the cure of Alice is the result of a miracle�,...

Knowledge, and specially scienti�c knowledge, is more than individual circumstantial assertions
: it is a method to build narratives from assertions. It proceeds by enlargement, by going from
individuals to a community, from circumstantial to universal, and by linking together assertions.

1.1.2 Rational narrative and logic

By combining together several assertions one can build a narrative, and any kind of theory is based
upon such construct. To be convincing, or only useful, a narrative must meet several criteria,
which makes it rational. Rationality is di¤erent from justi�cation : it addresses the syntax of the
narrative, the rules that the combination of di¤erent assertions must follow in the construct, and
does not consider a priori the validity of the assertions. The generally accepted rules come from
logic. Aristotle has exposed the basis of logic but, since then, it has become a �eld of research on
its own (for more see Maths.Part 1).
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Formal logic deals with logical assertions, that is assertions which can take the value true (T)
of false (F) exclusively. Any assertion can be put in this format.
Propositional logic builds propositions by linking assertions with four operators ^ (and), _

(or), q (not),) (implies). For each value T or F of the assertions the propositions resulting from the
application of the operators take a precise value, T or F. For instance the proposition : P = (A) B)
is F if A = T and B = F , and P = T otherwise. Then one can combine propositions in the same way,
and explore all their possible values by �table-truth�, which are just tables listing the propositions
in columns, and all their possible values in rows.
Demonstration in formal logic uses propositions, built as above, and deduces true propositions

from a collection of propositions deemed true (the axioms). To do this it lists axioms, then row after
row, new true propositions using a rule of inference : if A is T , and (A) B) is T , then B is T . The
last, true, proposition is then proven.
These two kinds of propositional logic can be formalized in the Boolean calculus, and automated.
Propositions deal with circumstantial assertions. To enlarge the scope of formal logic, predicates

are propositions which enable the use of variables, belonging to some �xed collection. Assertions
and propositions are then linked with the use of two additional operators : 8 (whatever the value
of the variable in the collection), 9 (there is a value of the variable in the collection). In �rst
order predicates, these operators act only on variables, which are previously listed, and not on
predicates themselves. One can build table-truth in the same way as above, for all combinations of
the variable. Demonstrations can be done in a similar way, with rules of inference which are a bit
more complicated.
The Gödel�s completeness theorem says that any true predicate can be proven, and conversely

that only true predicates can be proven. The Gödel�s compactness theorem says in addition that if
a formula can be proven from a set of predicates, it can also be proven by a �nite set of predicates :
there is always a demonstration using a �nite number of steps and predicates. These two theorems
show that, so formalized, formal logic is fully consistent, and can be accepted as a sound and solid
basis to build rational narratives.

This is only a sketch of logic,which has been developed in a sophisticated system, important
in computer theory. Several alternate formal logics have been proposed, but they lead to more
complicated, and less e¢ cient, systems, and so are not commonly used. Other systems called also
�logic�, have been proposed in special �elds, such as Quantum Mechanics (see Josef Jauch and
Charles Francis for more) and information theory. Actually they are Formal Systems, similar to
the Theories of Sets or Arithmetic in Mathematics : they do not introduce any new Calculus of
Predicates, but use Mathematical Logic acting on a set of axioms and propositions.

Using the basic rules of formal logic, one can build a rational narrative, in any �eld. Notice
that in the predicates the collections to which variables must belong are not sets, such as de�ned in
Mathematics, and no special property is assumed about them. A variable can be a citizen, belonging
to a country and indeed many laws could be formulated using formal logic.
Formal logic is not concerned about the justi�cation or the veracity of the assertions. It tells

only what can be logically deduced from a set of assertions, and of course can be used to refute
propositions which cannot be right, given their premises. For instance the narrative :
8X human being, ((X is ill) ^ (X prays) ^ (God wills)) ) (X is cured)
is rational. It is F only if there is a X such that the �rst part is T and X is not cured. And

one can deduce that God�s will is F in this case. Without the proposition (God wills) it would be
irrational.
Rational narrative are the ingredient of mystery books : at the end the detective comes with a

set of assertions to unveil the criminal. A rational narrative can provide a plausible explanation, and
a rational, justi�ed, narrative, is the basis for a judgement in a court of law.
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Scienti�c knowledge of course requires rational narratives, but it is more than that. A plausible
explanation is rooted in the speci�c circumstances in which it has occurred : there is no reason why,
under the same circumstances, the same facts would happen. To go further one needs a feature
which is called necessitation by philosophers, and this requires to go from the circumstantial to the
universal. And scienti�c knowledge is justi�ed, which means that the evidences which support the
explanation can be provided in a controlled way.
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1.2 SCIENTIFIC KNOWLEDGE

1.2.1 Scienti�c laws

Let us take some examples of scienti�c laws :
A material body which is not submitted to any force keeps its motion.
For any ideal gas contained in a vessel there is a relation PV = nRT between its pressure,

volume, and temperature.
For any conductive material submitted to an electric �eld there is a relation U = RI between

the potential U and the intensity I of the current.
Any dominant allele is transmitted to the descenders.

Scienti�c laws are assertions, which have two key characteristics :
i) They are universal : they are valid whenever the circumstances are met. A plausible expla-

nation if true in speci�c circumstances, a scienti�c law is true whenever some circumstances are met.
Thus in formal logic they should be preceded by the operator 8: This is a strong feature, because if
it is false in only one circumstance then it is false : it is falsi�able. This falsi�ability, which has
been introduced by Popper, is a key criterion of scienti�city.
ii) They are justi�able : what they express is linked to physical phenomena which can be repro-

duced, and the truth of the law can then be checked by anybody. In a justi�ed plausible explanation,
the evidences are speci�c and exist only in one realization. For a scienti�c law the evidences can
be supplied at will, by following procedures. A scienti�c law is justi�ed by the existence of repro-
ducible experimental proofs. This feature, introduced by Kant, distinguishes scienti�c narratives
from metaphysical narratives.

One subtle point of falsi�ability, by checking a prediction, is that it requires the possibility, at
least theoretically, to test and check any value of each initial assertion before the prediction. Take
the explanation that we have seen above :
8X human being, ((X is ill) ^ (X prays) ^ (God wills)) ) (X is cured)
For any occurrence, three of the assertions can be checked, and so one could assume that the

value of the fourth (God�s will) is de�ned by the �nal outcome in each occurrence, and we would
have a scienti�c law. However falsi�ability requires that one could test for di¤erent values of the
God�s will before measuring the outcome, so we do not have a scienti�c law. The requirement is
obvious in this example but we have less obvious cases in Physics. Take the two slits experiment
and the narrative :
(particles are targeted to a screen with two slits) ^ (particles behave as waves) )(we see a

pattern of interferences)
Without the capability to predict which of the two, contradictory, behaviors, is chosen, we cannot

have a scienti�c law.

These criteria are valid for any science. The capability to describe the circumstances, to reproduce
or at least to observe similar occurrences, to check and whenever possible to measure the facts, are
essential in any science. However falsi�ability is usually a di¢ cult criterion to meet in Social Sciences,
even if one strives to control the environment, but this is close to impossible in Archeology or History,
where the circumstances in which events happened are di¢ cult or impossible to reproduce, and are
usually not well known. The extinction of the dinosaurs by the consequences of the fall of an asteroid
is a plausible explanation, it seems di¢ cult to make a law of it.

1.2.2 Probability in scienti�c laws

The universality of scienti�c laws opens the way to probabilistic formalization : because one can
reproduce, in similar or identical manner, the circumstances, one can compute the probability of a
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given outcome. But this is worth some clari�cation because it is closely linked to a big issue : are
all physical processes determinist ?

In Social Sciences, which involve the behavior of individuals, the assumption of free will negates
the possibility of determinist laws : the behavior of a man or woman cannot be determined by his
or her biological, social or economic characteristics. This has been a lasting issue for philosophers
such as Spinoza, with a following in Marxist ideas. Of course one could challenge the existence of
free will, but it would not be without risk : the existence of free will is the basis for the existence of
Human Rights and the Rule of Law. Anyway, from our point of view here, no scienti�c law has been
proven which would negate this free will, just more or less strong correlations between variables,
which can be used in empirical studies (such as market studies).
In the other �elds, the discrepancy between the outcomes can be imputed to the fact that the

circumstances are similar, but not identical :
- the measures are imperfect;
- the properties of the objects (such as their shape) are not exactly what is assumed;
- some phenomena are neglected, because it is assumed that their e¤ect is small, but it is non

null and unknown.
This is a common case in Engineering, where phenomenological laws are usually su¢ cient for

their practical use (for instance for assessing the strength of materials). In Biology the Mendel�s
heredity laws provide another example. As an extreme example, consider the distribution of the
height of people in a given population. It seems di¢ cult to accept that, for a given individual, this
is a totally random variable. One could assume that biological processes determine (or quite so) the
height from parameters such as the genetic structure, diet, way of life,... The distribution that one
observes is the result of the distribution of the factors which are neglected, and it can be made more
precise, for instance just by the distinction between male and female.
And similarly, at a macroscopic scale, probabilist laws are commonly used to represent physical

processes which involve a great number of interacting microsystems (such as in Thermodynamics)
whose behavior cannot be individually measured, or discontinuous processes such as the breakdown
of a material, an earth-quake,...which are assumed to be the result of slow continuous processes.
In all these cases a probabilist law does not imply that the process which is represented is not

determinist, just that all the factors involved have not been accounted for. I don�t think that any
geologist believes that earth-quakes are pure random phenomena.
However one knows of physical elementary processes which, in our state of knowledge, seem to be

not determinist : the tunnel e¤ect in semi-conductors, the disintegration of a nucleus or a particle,
or conversely the spontaneous creation of a particle,..
Quantum Mechanics (QM) makes an extensive use of probability laws, and some of its interpre-

tations postulate that at some scale physical laws are fundamentally not determinist. Up to now
QM is still the only theory which can represent e¢ ciently elementary non determinist phenomena.
However, as we will see in the next chapter, the probabilist feature of the main axioms of QM does
not come from some random behavior of natural objects, but from the discrepancy between the
measures which can be done and their representation in our theories.

1.2.3 Models

To implement a scienti�c law, either to check it or to use it for practical purpose (to predict an
outcome), scientists and engineers use models. A model can be seen as a general representation of
the law. It comprises :
- a system : the area in which the system is located and the time frame during which it is

observed, the list of the objects and of their properties which are considered;
- the circumstances if they are speci�c (temperature, interference with the exterior of the sys-

tem,...);
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- the variables representing the properties, associated each to a mathematical object with more
speci�c mathematical properties if necessary (a scalar can be positive, a function can be continu-
ous,...);
- the procedures used to collect and analyze the data, notably if statistical methods are used.
Building and using models are a crucial part of the scienti�c work. Economists are familiar

with the denomination models, either theoretical or as a forecasting tool. If they are not known by
the name, any engineer or theoretical physicist use them, either to compute solutions of a problem
from well established laws, or to explore the consequences of more general hypotheses. A model
is a representation, usually simpli�ed, of part of the reality, built from concepts, assumptions and
accepted laws. The simpli�cation helps to focus on the purpose, trading accuracy for e¢ ciency.
Models provide both a framework in which to make the computations, using some formalism in
an ideal representation, and a practical procedure to organize the collection and analysis of the
data. They are the embodiment of scienti�c laws, implemented in more speci�c circumstances, but
still with a large degree of generality which enables to transpose the results from one realization to
another. Actually most, if not all, scienti�c laws can be expressed in the framework of a model.

Models use a formalism, that is a way to represent the properties in terms of variables, which can
take di¤erent values according to the speci�c realizations of the model, and which are used to make
computations to predict a result. The main purpose of the formalism is e¢ ciency, because it enables
to use rules and theorems well established in a more speci�c �eld. If the variables are logic, then
formal logic provides an adequate formalism. Usually in Physics the formalism is mathematical,
but other formalisms exist. The most illuminating example is the atomic representation used in
Chemistry. A set of symbols such as :
H2 + 1/2 O2 ! H2O + 286 kJ/Mol
tells us almost everything which is useful to understand and work with most of chemical experi-

ments. Similarly Economics uses the formalism of Accounting.

However the role of Mathematics in the formalism used in Physics leads us to have a look about
the status of Mathematics itself in Science.

1.2.4 The status of Mathematics

It is usually acknowledged that Euclide founded Mathematics, with his Geometry, based on the
de�nition of simple objects (points, lines,...) which are idealization of physical objects, a small
number of axioms, and logic as the computational motor. For millennia it has been seen as the
embodiment of rationality, and Mathematics has been developed in a patchwork of di¤erent �elds
: Algebra, Analysis, Di¤erential Geometry... extending the scope of objects, endowed with more
sophisticated properties. In the XIX� century mathematicians felt the need to unify this patchwork
and to found a clean Mathematics, grounded in as few axioms as possible. This was also the
consequence of discoveries, such as non euclidean geometries by Lobatchevski, and of paradoxes in
the newly borne Cantor�s set theory. And this was also the beginning of many controversies, which
are not totally closed at this day.
However this endeavour (promoted by Hilbert) lead to the creation of Mathematical Logic. This

is actually a vibrant �eld of Mathematics of its own, which aims at scrutinizing Mathematics with
respect to its consistency. It became clear that, in order to progress, it was necessary to distinguish
in the patchwork some mathematical theories, and the focus has been put on Arithmetic and Set
Theory, as they are the starting point for all the other �elds of Mathematics. Without attempting
to give even an overview of Mathematical Logic, three main features emerge from its results :
- the need to de�ne objects speci�c to each �eld (natural numbers, sets) through their properties

which are then enshrined in the axioms of the theories;
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- the fact that these objects are of an abstract nature, in the meaning that they cannot be seen
simply as the idealized realization of some physical objects, as points, lines,... were in Euclidean
Geometry;
- and this fact is compounded by the need to assume properties which cannot be the realization

of physical objects : the key example is the axiom of in�nity in the Set Theory which postulates the
existence of a set with an in�nite number of elements.
So Mathematics is essentially di¤erent from formal logic (even if it uses it to work on these

objects) : it relies on the prior de�nitions of objects and precise axioms, and deal only with these
objects and those which can be constructed from them. Formal logic is only syntax, Mathematics
assumes a semantic part.
On these bases several sets of axioms have been proposed both for Arithmetic (Peano) and the

Set Theory (Zermello, Frankael). They provide e¢ cient systems, which have been generally accepted
at the time and still nowadays, with some variants. However two results came as a big surprise:
- Gödel proved in 1931, with complements given by Gentzen in 1936 and Ackerman in 1940, that

in any formal system powerful enough to represent Arithmetic, there are propositions which are true
but cannot be proven.
- Church proved in 1936 that there cannot exist a �xed procedure to prove any problem in

Arithmetic in a �nite time (this is not a decidable theory).
The incompleteness Gödel�s theorem is commonly misunderstood. Its meaning is that, to rep-

resent Arithmetic with all its usual properties that we know, we need a minimum set of axioms,
but one could then add an in�nite number of other axioms, which would not be inconsistent with
the theory : they are true, because they are axioms, and they cannot be proven, because they are
independent from the other axioms.
The Church�s theorem is directly linked with computers (formalized as Turing�s machines) : it

cannot exist a program which would solve automatically all problems in Arithmetic.
Many similar or more sophisticated results have been proven in di¤erent �elds of Mathematical

Logic. For our purpose here, several conclusions can be drawn :
i) Mathematics can be seen as a science : it deals with objects and properties, using formal logic,

to deduce laws which are scienti�c by the fact that they are always true for any realization of the
objects. It has the great privilege to invent its own objects, however this comes with a price : the
de�nition is not unique, other properties could be added or speci�ed without harming Mathematics.
ii) The choice of the right axioms is not dictated by necessity, but by e¢ ciency. Mathematics,

as we know it, has not been created from scratch by an axiomatic construct, it is the product of
centuries of work, sometimes not rigorous, and the axioms which emerge today are the ones which
have been proven e¢ cient for our needs. But perhaps, one day, we will �nd necessary to enlarge the
set of axioms, as it has been done with the axiom of in�nity.
iii) Because the objects are not simple idealization of physical realizations, and because there is

no automated procedure to prove theorems, and so to extend Mathematics, it appears that it is a
true product of the human mind. All mathematicians (as Poincaré noticed) have known these short
periods of illumination, when intuition prevails over deduction, to �nd the right path to the truth.
It seems that an arti�cial intelligence could not have arrived to the creativity that Mathematics
requires.
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1.3 THEORIES

Scienti�c laws are an improvement over circumstantial explanations, because they have the character
of necessity and they are related to physical observable phenomena. Often philosophers view laws
of nature as something which has to be discovered, as a new planet, hidden from our knowledge or
perception. But science is more than a collection of laws, it has higher goals, it aims at providing a
plausible explanation for as many cases as possible. Early on appeared the want to unify these laws,
either to induce a cross fertilization process, or by the more holistic concern to understand what is
the real world that they describe : Science should provide more than e¢ cient tools, it should explain
what it is.
Scienti�c laws rely on the de�nition of objects (material body, force, ideal gas,...) which have

properties (motion, volume, pressure,...) related to observable physical phenomena and also repre-
sented by mathematical objects (scalar, functions,...). These concepts have emerged in each �eld,
and have been organized in Theories : Mechanics, Fluid Mechanics, Thermodynamics, Electromag-
netism, Theory of Fields,... and a similar process has been at work in Chemistry or Biology. And of
course the want to unify further these �elds has appeared. However the endeavour has not gone as
well as in Mathematics. Many scientists are quite pleased with their tools and do not feel the need
to go beyond what they use and know. A pervasive mood exists in Physics that the focus shall be
put on experiments : if it works then it is true, whatever the way the computations are done. In an
empiricist vision the concepts are nothing more than what is measured : a scienti�c law is essentially
the repeated occurrences of observed facts, and one can accept a patchwork of laws. QM has greatly
strengthened this approach, at �rst by casting a deep doubt about concepts which were thought to
be strong (such as location, speed, matter,...) and the generalization of probabilist laws, and then by
promoting the use of new concepts (�elds, wave function, superposition of states...) which, from the
beginning, were deemed to have no physical meaning, at least that we could understand. However
the need for a more uni�ed and consistent vision exist, even if it is met by unsatisfying construct,
and one goes from a patchwork of scienti�c laws to theories.

1.3.1 What is a scienti�c theory ?

A scienti�c theory aims at giving a uni�ed vision of a �eld, a framework in which scienti�c laws
can be expressed, and a formalism which enables to deduce new laws that can be checked. So it
comprises :
- a set of concepts, objects related to physical realizations, to which are attached properties which

can be measured. These properties can be seen as de�ning the objects.
- a set of fundamental laws, or �rst principles : expressed in general terms, they are based on the

observation of the physical world, and grounded in experiments, but they can or cannot be checked
directly.
- a formalism, which provides the framework of models, and the computational tools to deduce

new laws, forecast the results of experiments and check the laws.
Examples :
The atomist theory in Chemistry. Compounds are made of a combination of 118 elements with

distinct chemical properties, chemical reactions occur without loss of elements and an exchange of
energy, ruled by thermodynamics.
The Newton�s Mechanics. Material bodies are composed of material points, in a solid they stay

at a constant distance from each other. The motion of material bodies is represented in the Galilean
Geometry, it depends on their inertia and on forces which are exerted by contact or at a distance,
according to fundamental laws.
Special Relativity. The universe is a four dimensional a¢ ne space endowed with a �xed Lorentz

metric. Material bodies move along world lines at a constant velocity and their kinematics is char-
acterized by their energy-momentum vector. The speed of light is constant for any inertial observer.
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The properties are crucial because, for each situation, they can identify generic objects with
similar properties, and associate to these objects a set of well de�ned values, which can be measured
in each occurrence : �all insects have three pairs of legs�, �material bodies travel along a world line
in the 4 dimensional universe�, �for any gas there is a temperature T�. But by themselves they
do not have a predictive power. In some cases the value of the variable comes from the de�nition
itself (the number of legs of an insect), but usually it does not provide the value of the variable (the
temperature of a gas).
As said before, the formalism used is not necessarily mathematical, but it acquires a special

importance. This is a matter of much controversies but it is clear that major steps in the theories
would have been impossible without prior progresses in the formalism which is used : Chemistry with
the atomist representation, Mechanics with di¤erential and integral calculus, General Relativity with
di¤erential geometry, and even Economics with Statistics. The use of more powerful mathematical
tools, and similarly of computational techniques, increases our capacity to check predictions, but
also to build the theories. Inspired by Thermodynamics and QM, it has been proposed to give to
Information Theory an unifying role in Physics. A step further, considering that many structures
used in di¤erent �elds have similar features, the Category Theory, a branch of Mathematics developed
around 1945 (Eilenberg, Mac Lane) has been used as a formalism in Physics, notably in Quantum
Computing (Heyting algebras).
Fundamental laws can be not justi�ed experimentally, their validity stems essentially from the

consequences which can be deduced from them. From this point of view this is the theory as a whole
which is falsi�able : if any law that can be deduced in the framework of the theory is proven false, then
this is the entire theory which is at risk. And actually this has been a recurring event : Maxwell�s
laws and Galilean Geometry had to be revised after the Michelson and Morley experiments, the
Atomist theory has had to integrate radio-activity,...The process has not gone smoothly, and usually
patches are proposed to sustain the existing theory. And indeed a good part of the job of scientists
is to improve the theories, meaning to propose new theories which are then checked. What are the
criteria in this endeavour ?

1.3.2 The criteria to improve scienti�c theories

Simplicity

The �rst criterion is simplicity. This is an extension of the Occam�s razor rule : whenever we face
several possible explanations, the fewer assumptions are made, the better. With our description of
scienti�c theories it is easy to see what are the parameters to look for improvements. There must
be as few kinds of objects as possible, themselves di¤erentiated by a small number of properties or
variables. There are 118 elements with distinct chemical properties, their nuclei are comprised of
12 fermions, there are millions of eukaryotes, but their main distinctive characteristics come from
their DNA, organized in a small number of chromosomes, which are a combination of 4 bases. The
electric and magnetic �elds have been uni�ed by the Maxwell�s laws, and the uni�cation of all force
�elds including gravitation is the Graal of physicists. Similarly there should be as few fundamental
hypotheses as possible. The Galilean system was not more accurate or legitimate (the assertions
that Earth circles the Sun or that Sun moves around the Earth are both valid) than the Ptolemaic
system, but it was simpler and provided a general theory to compute the trajectories of bodies
around a star and paved the way to the Newton�s gravitation law.
There is some esthetic in Science. It is common to say about a theory that it is beautiful. And

simplicity usually brings more beauty. Quoting Jauch �in all properly formulated physical ideas
there is an economy of thought which is beautiful to contemplate. I have always been convinced
that this esthetic aspect of a well-expressed physical theory is just as indispensable as its agreement
with experience." (in Foundations of Quantum Mechanics).
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Enlarge the scope of phenomena addressed by the theory

The second criterion is the scope of the �eld which is addressed by the theory. Science is imperialist
: it strives to �nd a rational explanation to everything. Lead by the Occam�s razor rule it looks
for more fundamental objects and theories, from which all the others could be deduced. This is
a fact, and a legitimate endeavour. It has been developed in the di¤erent forms of positivism. In
its earlier version (A.Comte) science had to deal only with and proceed from empirical evidence,
scienti�c knowledge could be built by a logic formalization, which leads to a hierarchy of sciences
giving preeminence to mathematics. In its more modern version positivism embraces the idea of
the unity of science, that there is, underlying the various scienti�c disciplines, basically one science
about one real world. Actually this is more complicated.

Starting with mathematics, as we have seen it could be seen as a science. True, mathematicians
can invent their own objects. Quite often a narrative in Mathematics starts as �Let be a set such
that...�, but the �rst step required is to prove that such a set exists (as an example the de�nition of
the tensorial product of vector spaces from an universal property). And if this is not possible one
has to add another axiom (such as in�nite sets), and support the consequences.
In natural sciences it is a sound requirement that there is a strong, uni�ed background, explain-

ing and re�ecting the unity of the physical world. But, in the di¤erent �elds, theories usually do
not proceed from the most elementary laws. The atomic representation used in Chemistry precedes
Quantum Field Theory. Biology acknowledges the role of chemical reactions, but its basic concepts
are not embedded in chemistry. We do not have in Physics a theory which would be general and
powerful enough to account for everything. And anyway in most practical cases speci�c theories
su¢ ce. They use a larger set of assumptions, which are simpli�ed cases of general laws (Galilean
Geometry replacing Relativist Geometry, Newton�s laws substituted to General Relativity) or phe-
nomenological laws based on experimental data. In doing this the main motivation of scientists
is e¢ ciency : they do not claim the independence of their �elds, but acknowledge the necessity of
simpler theories for their work. However one cannot ignore that this move from one level to the other
may cover a part of mystery. We still do not understand what is life. We do not have a determinist
model of irreversible elementary process.
Economics is by far the social science which has achieved the higher level of formalization, in

theoretical studies, empirical predictive tools, and in the de�nition of a set of concepts which give
a rigorous basis for the collection and organization of data. Through the accounting apparatus, at
the company level, the state level as well as many specialized �elds (welfare, health care, R&D,...)
one can have a reliable and quanti�ed explanation of facts, and be able to assess the potential
consequences of decisions. Because of the stakes involved these concepts are controversial, but this
is not an exclusivity of Economics 1 . Actually what hampers Economics, and more generally the
Social Sciences, is the di¢ culty of experimentation. Most of the work of scientists in these �elds
relies on data about speci�c occurrences, past or related to a few number of cases. The huge number
of factors involved, most of which cannot be controlled, weakens any prediction2 , and the frailty
of phenomenological laws in return limits the power of the falsi�ability check. But this does not
prevent us to try.

So we are still far away from a theory of everything. But the imperialism of science is legitimate,
and we should go with the Hilbert�s famous saying : �Wir müssen wissen, wir werden wissen�. It is
backed by the pressing want of people to have explanations, even when they are not always willing
to accept them. As a consequence it increases the pressure on scientists and more generally on those

1Actually some philosophers (who qualify themselves as feminists, such as Antony) deny that science is objective,
and is very much an instrument of oppression (in Turri about Quine).

2And anyway it would be di¢ cult to justify the realization of an economic crisis in order to check a law. Quite
often Economics predictions are no realized because the implementation of the Economics Theory has prevented them
to happen.
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who claim to have knowledge. As G.B.Shaw said �All professions are a conspiracy against the laity�.
So it is a sound democratic principle that scientists should be kept accountable to the people who
fund their work.

Conservative pragmatism

The third criterion in the choice of theories is that any new theory should account for the ones
that it claims to replace. What one can call a conservative pragmatism. Sciences can progress by
jumps, but most often they are revisions of present theories, which become embedded in new ones
and are seen as special case occurring in more common circumstances. This process, well studied
by G.Bachelard, is most obvious in Relativity : Special Relativity encompasses Galilean Geometry,
valid when the speeds are weak, and General Relativity encompasses Special Relativity, valid when
gravitation does not vary too much. Old theories have been established on an extended basis of
experimental data, and backed by strong evidences which cannot be dismissed easily. New evidences
appear in singular and exceptional occurrences and this leads to a quest for more di¢ cult, and
expansive, experimentations, which require more complex explanations. This is unavoidable but has
drawbacks and the path is not without risks. The complexity of the proofs is often contrary to the
�rst criterion - simplicity - all the more so when the new theory involves new objects with assumed,
non checked, properties. The obvious examples are dark matter, or the Higgs boson. Of course it
has happened in the past, with the nucleus, the neutrino, ... but it is di¢ cult to feel comfortable in
piling up enigma : the purpose of science is to provide answers, not to explain a mystery by a riddle.
And when the new enigma requires more powerful tools the race may turn into a justi�cation in
itself.
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1.4 FIVE QUESTIONS ABOUT SCIENCE

1.4.1 Is there a scienti�c method ?

It is commonly believed that one distinctive feature of the scienti�c work is that it proceeds according
to a speci�c method. There is no doubt that the prerequisite of any scienti�c result is that it is
justi�ed for the scienti�c community. So the speci�city of a scienti�c method would be guaranteed
by higher ethical and professional standards. This claim is commonly associated to the �peer review�
process : any result is deemed scienti�c if it has been approved for publication by at least two bo¢ ns
of the �eld. Knowing the economics of this process, this criterion seems less reliable than what is
usually required for an evidence in a court of justice, as recent troubles with published results show.
The comparison is not fortuitous. For people who have dedicated years of their life to develop or to
teach ideas, it is neither easy nor natural to challenge their beliefs, and all the more so when these
beliefs are supported by the highest authorities in the �eld. Science has become a very competitive
area, with great fame and �nancial stakes. Assume that �erce competition has increased the pressure
to innovate is a bit optimistic. The real pressure comes from outside the scienti�c community, when
quick economic return can be expected from a new discovery. This is no surprise that Computer
Sciences or Biology have made gigantic progresses, meanwhile Particle Physics is still praising a
Standard Model 40 years old. In any business, if the introduction of a new product was submitted
to the anonymous judgment of your competitors, there would be no innovation. Only the interest of
the customers should matter, but in Science this is a very distant concern, as well as the more direct
interest of students who strive to understand theories that are reputed impossible to understand.
More generally this leads to question the existence of a science in �elds such as History, Arche-

ology,... Clearly there are criteria for the justi�cation of assertions in these �elds, which are more
or less agreed upon by their communities, but it seems di¢ cult that these assertions would ever be
granted the status of scienti�c laws, at best they are plausible explanations.
So, and in agreement with most philosophers, I consider that scienti�c knowledge cannot be

characterized by its method.

1.4.2 Is there a Scienti�c Truth ?

A justi�ed assertion can be accepted as truth in a Court of justice. But not many people would
endorse a scienti�c truth, and probably few scientists as well. Scienti�c theories are backed by a
huge amount of checked evidences, and justi�ed by their power to provide plausible explanations for
a large scope of occurrences. So in many ways they are closer to the truth than most conceivable
human assertions, but the purpose of science is not the quest for the truth, because science is a work
in progress and doubt is a necessary condition for this progress. A striking example of this complex
relation between science and truth is Marxism : Karl Marx made very valuable observations about
the relations between technology, economic and political organizations, and claimed to have founded
a new science, which enables people to make history. The fact that his followers accepted his claims
to be the truth had dramatic consequences 3 .

1.4.3 Science and Reality

Science requires the existence of a real world, which does not depend on our minds, without which it
would be impossible to conceive universal assertions. Moreover it assumes that this reality is uni�ed,
in a way that enables us to know its di¤erent faces, if any. Perhaps this is most obvious in social
sciences : communities have very di¤erent organizations, beliefs and customs, but we strive to study
them through common concepts because we see them as special occurrences of Human civilizations,

3This aspect of marxism as the pretense of a science has been explained in my article published in 1982 in "les
temps modernes".
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with common needs and constraints. However this does not mean that we know what is reality :
what we can achieve is the most accurate and plausible representation of reality, but it will stay
temporary, subject to revision, and adjusted to the capability of our minds.
Because this representation is made through a formalization, the language which is used acquires a

special importance. Some scientists resent this fact, perceived as an undue race towards abstraction,
meanwhile they believe that empirical research should stay at the core of scienti�c progress. Actually
the issue stems less from the use of more sophisticated mathematics than from the reluctance to
adjust the concepts upon which the theories are based to take full advantage of the new tools. It
is disconcerting to see physical concepts such as �elds, particles, mass, energy, momentum,.. mixed
freely with highly technical topological or algebraic tools. The discrepancy between the precision of
the mathematical concepts and the crudeness of the physical concepts is source of confusion, and
de�ance. But the revision of the concepts will not come from the accumulation of empirical data,
whatever the sophistication of the computational methods, it will come from fresh ideas.
From where do come these fresh ideas ? They are not the result of inference : a theory, with its

collection of concepts and related formalism, has for purpose to provide models to explain speci�c
occurrences. A continuous enlargement of the scope of experimental research provides more reliable
laws, or conversely the proof of the failure of the theory, but it does not creates a new theory. New
theories require a revision of the concepts, which may imply, but not necessarily, new hypotheses
which are then checked. Innovation is not a linear, predictable process, it keeps some mystery, which,
probably, is related to the genuine di¤erence between computers and human intelligence. But it is
obvious that a deep understanding of the concepts is a key to scienti�c progress.

1.4.4 Measure

Measure is certainly one of the characteristics of Science. The capacity to measure is indeed the
condition for the development of a formalism and models. For instance Economics has achieved its
full status with accounting. From there Measure has acquired a kind of sacred status. After all, the
verdict of scienti�city through falsi�ability is based on measure. However the process of measure
is more complex than reading a �gure on an instrument. Any measure is actually a comparison
between systems which are assumed to behave similarly. The most basic measure of lengths, by
surveying, assume that the standard keeps its length. The new de�nition of the meter is based
on the assumption that light has always the same speed in the vacuum. The data collected from
experiments show the relations between systems that we know, and systems that we probe. This is
the most obvious in Particles Physics : the color, representing the charge in strong interactions, is
just a classi�cation to identify particles which have the same behavior.
As a consequence concepts such as mass, charge, lengths,.. 4and the units in which they are

measured, lose their intrinsic character. The concepts stay, but one cannot say that this object
�has� this length, we can just say that by comparison with other objects it has a property which
shows constant correlations.
In some interpretations of QM the properties of the objects of Physics are nothing more than the

relations between phenomena, statistically checked by repeated experiments. Eventually one cannot
say anything about a property before it has been submitted to the process of measure. Its existence
becomes a metaphysical assertion, without physical justi�cation. Mathematical objects are attached
to these relations (the variables of a model), physical laws are just mathematical computations, and
the formalism is at least as legitimate than the physical properties it represents. This interpretation,
common in QM, has important consequences.
It does not see anything strange in probabilist laws, since their validation is a statistical process,

this is just an extension of their expression. But, to reject the determinism is not without risk : if
ultimately all physical phenomena occur randomly the criterion of falsi�ability would loose most of

4The coordinates of space and time used to locate a point in the Universe are similarly conventional as it is seen
in the Chapter 3.



1.4. FIVE QUESTIONS ABOUT SCIENCE 15

its merit. The second consequence is that it gives an incommensurate importance to the way the
experiments are done. Notably to the possibility to measure or not simultaneously two quantities
(the role given to the commutation rules in the formalism). But, as Relativity shows, simultaneity is
a subtle concept, and obviously, measures, based on the comparison between similar phenomena, are
never simultaneous. The third consequence is that the link with the evidence is lost : the objects of
the formalism have not necessarily a real content (the wave function), mysterious objects appear on a
regular basis, and virtuality reigns. So, while pretending to stay close to the empirical facts, actually
this interpretation gives preeminence to the formalism over the reality. Moreover this interpretation
misses an important point : the mathematical objects used in a model have also properties of their
own, as we will see in the next chapter.

1.4.5 Dogmatism and Hubris in Science

As the criteria for the validation of Scienti�c knowledge began to emerge, the implementation of the
same criteria led to two opposite dogmatisms, and their unavoidable hubris. And what is strange is
that, in some areas of the present days Physics, these opposite succeeded to be packaged together,
for the worst.
The �rst dogmatism is the identi�cation of the real world with the concepts. This is what Euclide

and generations of mathematicians did for millennia : a point, a line, exist really, as well as parallels
lines : after all they are nothing more than the idealization of tangible objects whose properties can
be studied as suited. The overwhelming place taken by the mathematical formalism and the power
it gives to compute complicated predictions lead to believe in the appropriateness between models
and the real world. If it can be computed, then it exists. And if something cannot be computed,
it is not worth to be considered. The �rst challenges to this dogmatism appear with Relativity,
then the Physics in the atomic world. Scientists had been used to consider natural a 3 dimensional
euclidean universe, with an external time. The jump to a 4 dimensional representation, and worst a
curved Universe, seemed intractable. If the Universe integrates time, do the past and future events
exist all together ? Still today, even for some professionals physicists, it seems di¢ cult to address
these questions. They do not realize that, after all, the idea of an in�nite, �at Universe, existing
for ever, is also a controversial representation. Similarly Mechanics and its admirable mathematical
apparatus, seemed to breakdown when confronted to experiments in the atomic world : particles
cannot pass the test of the two slits experiments, electrons could not keep a stable orbit around
the nucleus, even Chemistry was challenged with the non conservation of matter and elements. Of
course Engineers had for centuries a more pragmatic approach to the problem, the clean idea of
continuous, non dissipative, motion had been replaced by phenomenological laws which could deal
with deformable solids, �uid, and gas. But this was only Engineering...
The second dogmatism appeared, and triumphed, in reaction to the disarray caused by this

discrepancy between a comprehensive and consistent vision and the experiments. Since the facts
are the ultimate jury in checking a Scienti�c Theory, let us put the measures at the starting point
in the elaboration of the theories. And because experimentation is overall a matter of statistical
evaluation, it is natural to give to probability the place that it should have had from the beginning.
There is nothing wrong in acknowledging the actual practices of scienti�c experiments. After all a
Scienti�c Law is no more than the repetition of occurrences. The formalism of Statistical Mechanics
was available, and soon, with the support of some mathematical justi�cation, Quantum Physics had
been born, and stated in axioms, rules and computational methods.
The central issue, pushed by the supporters of the �rst dogmatism, was then to �nd a physi-

cal justi�cation to the new formalism. As of today there has not been a unique answer. For some
physicists Quantum Mechanics belong to a realm inaccessible to human understanding, a modern
Metaphysics that it is vain to discuss, even if it can be marginally justi�ed by mathematical con-
siderations in simple cases. For others the want to �nd an interpretation is stronger, and the past
century has been heralded with hundred of interpretations. They succeed actually in merging the
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two dogmatisms : if QM is stated in bizarre, non intuitive rules, it is because Reality itself is bizarre
: it is discreet, non determinist. We retrieve the identi�cation of the formalism, as convoluted as it
is, with the real world, but at the price of an obvious lack of agreement in the Scienti�c community,
and at best a muddled picture. One of the strangest example of this new dogmatism is given in
Cosmology : because we can model the Universe, it is possible to compute the whole Universe,
and adding some QM, even consider the wave function of the Universe, which could then assess the
probability of occurrences of the parallel universes...
Dogmatism and hubris go together. The criterion of factual justi�cation is replaced by the forced

identi�cation of the real world with the formalism : if the computation works, it is because this is
how the physical reality is. Humility is not the most signi�cant feature of the Human mind, happily
so. We need concepts, broad, easy to understand, illuminating and consistent representations which
can be implemented and developed, which can be understood, learnt and taught. They can only
be the product of intuition, of the imagination of the Human brain, they will never come from a
batch of data. These ideas must be kept in check by the facts, not suppressed by the facts. But
in the same time we must keep in mind that these are our concepts, our ideas, and that reality is
still there, waiting to be probed, not enlisted to our cause. This leads to the reintroduction of the
Observer in Physics, an object to which the rest of the book will give a signi�cant place.
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1.5 FUNDAMENTAL PRINCIPLES IN PHYSICS

Whatever the theory in Physics there are some fundamental principles which are generally accepted.

1.5.1 Principle of Relativity

Scienti�c laws in Physics require measures of physical phenomena. Each object identi�ed in a model
has properties which are associated to mathematical objects, and the measure of these properties
implies that it is possible to associate �gures, real scalars, to the properties. There are many ways
to do this, and because Scienti�c laws are universal, it shall be possible to do the measures in a
consistent way, in precise protocols, and because it shall be possible to check the law in di¤erent
occurrences, the protocol must tell how to adapt the measures to di¤erent circumstances.
The Principle of Relativity is used with di¤erent meanings in the literature. Here I will state it as

�Scienti�c laws do not depend on the observer�. Which is the logical consequence of the de�nition
of Scienti�c laws : they should be checked for any occurrence, as long as the proper protocols are
followed, whoever do the experiment (the observers), whenever and wherever they are located. It
has strong and important consequences in the mathematical formalization of the theories.
In any model the quantities which are measured are represented as mathematical objects, which

have their own properties, and these properties are a de�ning part of the model, notably because
they impose the format to collect the data. For instance in the Newton�s law

�!
F = m�! the

quantities
�!
F ;�! are vectors, and we must know how their components change when one uses one

frame or another. Similarly the laws should not depend on the units in which the quantities are
expressed. As a general rule, if a law is expressed as a relation Y = L(X) between variables
X;Y and there are relations X 0 = R(X), Y 0 = S(Y ) where R;S are �xed maps, given by the
protocols under which two observers proceed, and thus known, then the law L0 shall be such that
: Y 0 = L0 (X 0) , L0 = S � L � R�1: This is of special interest when R;S vary according to some
parameters, because the last relation must be met whatever the value of the parameter. This is the
starting point for the gauge theories in Physics.
The Principle of Relativity assumes that there are observers. In its common meaning an observer

is the scientist who makes the measures. But in a Theory it requires that one de�nes the properties
of an observer : this is a concept as the others, and it is not always obvious to de�ne precisely and
in a consistent way what are these properties. One key property of observers is that they have free
will, and this implies notably that they can change freely the conditions of an experiment (as the
universality of scienti�c laws requires) : they can choose di¤erent units, spatial location of their
devices, repeat the same experiment over and over,... Free will implies also that the observers are
not subjected to the laws which rule the system they observe, however they are also subjected to
physical laws but it is assumed that these laws do not interfere with the experiment they review.
This raises some issues in Relativity, and a big issue in Cosmology, which is a theory of the whole
Universe.

1.5.2 Principle of Conservation of Energy and Momentum

The principle is usually stated as �In any physical process the total quantity of energy and momentum
of a system is conserved�. But its interpretation raises many questions.

The �rst is about the de�nition of energy and momentum. They come from the intuitive notion
that every physical object carries with it a capacity either to resist to a change, or to cause a change
in other objects. So energy and momentum are attached to each object of the system : it is one
of their properties. For localized objects such as material bodies, these quantities are localized as
well. For objects which are spread over a vast area (�uids, force �elds), energy and momentum are
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de�ned as density, related to some measure of volume of the area. Then the principle reads as �the
sum of energy and momentum for all the objects of the system is conserved�.

For a material body the momentum is related to the motion. Motion is a purely geometric
concept, corresponding to the change in the location and disposition of a material body with time.
If the translational motion can be easily understood and modelled, the rotational motion is simple
only for solids. But it seems clear that the motion of objects at the atomic scale should incorporate in
some way these two components. Moreover the usual representations based on orthonormal frames
in a 3 dimensional space must be adjusted to the relativist context.
The link between motion and momentum is done through kinematic characteristics of material

bodies, such as mass and inertial tensor. Their representation must be done in accordance with the
representation of motion, and then Relativity requires a profound adjustment, which has been done
only partially. In particular rotation has a clear meaning only for rigid solid, whose concept cannot
be transposed as such in Relativity.
Actually, if the momentum can be computed, only the change of momentum has a physical mean-

ing, it is related to the forces and torques exerted to the body to change its motion. In a continuous
motion the link is clear but not so in discontinuous processes, such as those occurring at the atomic
level. Momenta are represented by vectorial quantities, in accordance to the usual representation of
forces. However the representation of torques is essentially conventional in Newtonian Mechanics.

With the advent of Electromagnetism it has been clear that we should reject the idea of action
at a distance, and this led to the introduction of a new object in physics : the force �elds. They
have special properties : they exist everywhere, they propagate at a �nite speed, they interact with
particles and this interaction depends on speci�c properties of particles, their charge. Actually the
only �eld which is well known is the Electromagnetic �eld (EM). The concept of �eld is consistent
only in the Relativist framework, however its propagation raises several issues, such as its measure
by di¤erent observers. Their interaction with particles introduce, at least formally, a discontinuity,
as interactions occur at a point, and the �eld propagates everywhere.

The concept of Energy comes from the work done by a force. This mechanical energy has a
translational and a rotational component. Moments are vectorial and localized quantities, energy is a
expressed by a scalar and has a more versatile de�nition. It has been enlarged with Thermodynamics,
but it is essentially rooted in Mechanics. Thermodynamics considers internal energy as a state
variable, which has an absolute value5 , an interpretation which as taken traction with Relativity,
however only the �ow of energy during processes, or between states, can be measured.
Because force �elds and particles interact, energy must be exchanged during this process, and so

we have to de�ne and measure the �ow of energy of a �eld.

The concepts of motion, momentum, and energy require a clear de�nition of the time, which
can depend on the observer. It is assumed that energy and momentum are conserved at each time
for the observer. Which leads to the concept of �potential energy� : when we lift an object from
the surface we spend some energy, which is �stored� and can be recovered when the object falls.
Formally the balance is kept even at each time, by assuming that the energy is exchanged in the
interaction between the object and the gravitational �eld.
One feature to notice about the Principle of Conservation of Energy and Momentum is that it does

not assume that the evolution is continuous : there are clearly two states of the system, di¤erentiated
by a time elapsed between the measures, but the process can be continuous or discontinuous. Then
this is the di¤erence between the values of energy and momentum at the beginning and at the end
of the process which matters.

5Actually the most important property of internal energy U in Thermodynamics is that its changes can be expressed
by a total di¤erential dU .
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1.5.3 Principle of Least Action

The scope of the Principle of Least Action is more limited : it concerns continuous processes, which
are considered over a de�nite period of time (or area of Space-Time) and describes the conditions
for the equilibrium of a system.
It assumes that, in any physical process, a system has privileged states, called states of equi-

librium, from which it does not move without a change in its environment, for instance an external
action. Equilibrium does not imply that the state of the system is frozen, it can change along a path
from which it does not di¤er easily. This is the generalization of the idea that an isolated system
is in the state of least energy. States of equilibrium can be achieved by a continuous or a discon-
tinuous process however, by construct, the Principle of Least Action describes the characteristics of
an equilibrium in a continuous process. But is does not assume anything about the mechanisms by
which this equilibrium is reached.
From Mechanics, this principle is usually represented by the assumption that a scalar functional,

the action, is stationary for the values corresponding to the state of equilibrium : `
�
L
�
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�� ; :::are the variables and their partial derivatives and L a scalar function (the

scalar lagrangian).
It comes from Analytic Mechanics where L =
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i �U is the total energy of the system (Ki-

netic and potential) and the lagrangian has the general meaning of a density of energy, as described
above.
Stationary means that for any (small) changes �Z of the value of the variables around the

equilibrium Z0 the value of the functional ` is unchanged. So this is not necessarily a maximum or a
minimum, even local. And a state of equilibrium is not necessarily unique. Whenever the variables
are maps or functions de�ned over the area 
 of a manifold endowed with a volume measure $ the
functional is assumed to be an integral :R
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This formulation is extensively used, and many laws in Physics can be expressed this way. The
Principle does not tell anything about the lagrangian, in which lies the physical content. There are
constraints on its expression, due to the Principle of Relativity, but the choice of the right lagrangian
is mostly an art, which of course must be checked by the consequences that can be deduced.
The Principle seems to introduce a paradox in that the values taken by the variables at any

moment depend on the values on the whole evolution of the system, that is on the values which will
be taken in the future. But this paradox stems from the model itself : at the very beginning the
physicist assumes that the variables which are measured or computed belong to some class of objects
which are de�ned all over 
 and are smooth. So the variables are the maps and not the values that
they take for each value of their arguments.
The physical quantity represented by L in the action is usually seen as the total energy of the

system, but it is actually the sum of the energy exchanged between the components of the system,
and if actions exterior to the system are involved, they should be accounted for (they are then
known) in L: So the concept of equilibrium is that of a global balance between the physical objects
considered.
An equilibrium can be static or dynamic. A static equilibrium is reached when the state

of the system does not change : the variables de�ning the system keep the same values all over
the time. So it can be seen as a special solution in the implementation of the Principle of Least
Action, where all the derivatives with respect to the time are null. But, because the concept
of equilibrium encompasses the case of systems whose state evolves with time, one can consider
dynamic equilibrium. And indeed, because the key variables are the maps (and not their value
at a given point), the implementation of the Principle of Least Action provides solutions in which,
at any given time, the system is at the equilibrium, even if the state changes. An object in a
ballistic trajectory is always in equilibrium. However one can consider special solutions, in which
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the same states appear regularly : they are periodic states, such as the motion of planets in a
star system, tides, thermodynamic cycles,... The concept of periodic equilibrium is linked to the
idea of stable state : a system which always �looks the same�, even if it changes. Quite often
one knows, or can assume, that the stability of the system, attested by the measure of some of
its properties, covers actually some internal processes which are not static. For instance the stable
state of an atom, the system comprised of a nucleus and its electrons, does not imply that the
state of the individual particles is �xed, but that they change according to a �xed pattern. The
picture of a stable state depends on the scale : scale of which the phenomenon is observed, but also
the frequency at which the state is measured. When a physicist states that a system is stable, he
assumes that the changes which may occur do not matter for his purpose. There are two ways to
deal with the characterization of a stable state : either one assumes that it is the result of random
behaviors, whose sum (over time and space) is on average null, or that it is the result of a periodic
behavior, whose manifestation cannot be measured, or is considered not signi�cant. The choice of
the method depends on the problem, but it is clear that the Principle of Least Action is not e¢ cient
to deal with random processes, meanwhile it is well suited to study periodic states : it is the simplest
generalization of static states. Indeed in a periodic equilibrium it is assumed that all the variables
take the same value at some periodic moment, so they can be considered as depending on the time
only : if the location, represented by some coordinates x; is an argument of some variable X (x),
then, because the location will be always the same over a period, one can consider X (x (t)) with
only the argument t:

The Principle of Least Action gives the conditions for an equilibrium, it is di¤erent from the
Principle of Conservation of Energy. If the lagrangian represents the balance of energy between all
the physical elements interacting in the system in an action such as :R
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the conservation of energy tells that, for a given observer, the integral should be constant for any
variation at a given time. It brings a condition, in addition to the stationarity of the integral.

1.5.4 Second Principle of Thermodynamics and Entropy

The universality of scienti�c laws implies that experiments are reproducible, time after time, which
requires either that the circumstances stay the same, or that they can be reproduced identically.
This can be achieved only to some degree, controlled by checking all the parameters which could
in�uence the results. It is assumed that the parameters which are not directly involved in the law
which is tested are not signi�cant, or keep a steady value, in time as well as in the domains which
are exterior to the area which is studied. So universality implies some continuity of the phenomena.
A physical process is not necessarily continuous. The distinction between continuous / discon-

tinuous processes is made clear when one considers the mathematical formalism : it is related to
the properties assigned to the variables. But totally discontinuous functions are a mathematical
curiosity, not easy to build. So the maps involved in physical models can be safely assumed to be
continuous, except at isolated points. And from a physical point of view one can say, in a similar
way, that a discontinuous process is characterized by the existence of a transition between two equi-
libriums. Many discontinuous phenomena at a macroscopic scale can be explained as the result of
continuous processes at a smaller scale : an earthquake is the result of the slow motion of tectonic
plates. Others involve the transition between phases, which are themselves states of equilibrium, and
can be explained by the interaction of microsystems. And in the study of a discontinuous process
what matters most for the physicist is the transition, when and in which conditions it occurs.
If a transition occurs between two states of equilibrium the Principle of Least action can be

implemented for each of them. But this leaves several issues.
The �rst is about the concept of equilibrium itself. When dynamic equilibriums are considered,

several interpretations are possible. If it is clear in the Principle of Least Action, other de�nitions
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exist in Physics. In Thermodynamics equilibrium is identi�ed with reversible processes, seen as slow
processes : at any moment the system is close to equilibrium. In Theoretical Physics a common
de�nition is processes whose evolution is ruled by equations which are invariant by time reversal : if
X(t) is solution, then the replacement of t by �t is still a solution. A reversible process is determinist
(there is only one path to go from a state to another) but the converse is not true. The Second
Principle of Thermodynamics is a way to study processes which do not meet these restrictions.
In Thermodynamics the Second Principle is based upon the equation :
dU = TdS � pdV +

P
c �cdNc

where the internal energy U , the entropy S, the volume V and the number of moles of chemical
species Nc are variables which characterize the state of the system. The key point is that they do
not depend on the path which has been followed to arrive at a given state. In the evolution between
states:

dU = �Q+ �W

where �Q; �W are the quantity of heat and work exchanged by the system with its surroundings
during any evolution. The variable temperature T is a true thermodynamic variable : it has a
meaning only at a macroscopic scale. The symbol d represents a di¤erential, meaning that the
corresponding state variables are di¤erentiable, and thus continuous, and � a variation, which can
be discontinuous.
For a system in any process :
dS � �Q

T

so that for isolated systems dS � 0 : their entropy can only increase and this de�nes an �arrow
of time�. We have an equality only in reversible processes.
The Thermodynamics formulation can be generalized to the evolution of systems consisting

of many interacting microsystems. The model, proposed �rst by Boltzmann and Gibbs, has been
used with many variants, notably by E.T. Jayes in his Principle of Maximum Entropy in relation
with Information Theory. Its most common formalization is the following. A system is comprised
of N (a large number) identical microsystems. Their states are represented by a random variable
X = (Xa)

n
a=1 valued in a domain 
 with an unknown probability law Pr(X1 = x1; :::XN = xN ) =

� (x1; ::xn) . There are m macroscopic variables (Yk)
m
k=1 which can be measured for the whole

system, whose value depend on the states of the microsystems :Yk = fk (x1; :::xN ) . Knowing the

values
�bYk�m

k=1
observed, the problem is to estimate �:

The Principle of Maximum Entropy states that the law � is such that the integral :
S =

R


�� (x1; ::xN ) ln � (x1; ::xN ) dx1:::dxN

over the domain 
 of the xa is maximum, under the constraints :bYk = fk (x1; :::xN )R


�dx = 1

The solution of this problem requires the introduction of m new variables (�k)
m
i=1 (the Lagrange

parameters) dual of the observables Yk; which are truly thermodynamic : they have no meaning for
the microsystems. Temperature is the dual of energy.
So formulated we have a classic problem of Statistics, and we can give a more precise de�nition

of a reversible process. If the process is such that :
- the state of a microsystem does not depend on the state of other microsystems, only on the

state of the global system;
- the collection (Yk)

m
k=1 is a complete statistic (one cannot expect to have more information on

the system by adding another macroscopic variable);
then it is not di¢ cult, using the Pitman-Koopman-Darmois theorem, to show that the solution

given by the Principle of Maximum Entropy is indeed a good maximum of likehood estimator.
This idea has been extended in the framework of QM, the quantity �Tr [� ln �] called the infor-

mation entropy, becoming a functional and � an operator on the space of states.
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The concept of Entropy, whatever its form, has a clear meaning in the study of systems consisting
of microsystems interacting. Then it shows :
- that not all states of equilibrium of the whole system are equivalent, and there is a driving force

towards one of them;
- there are quantities, which have a meaning and can be measured for the whole system (such as

temperature) but not at the level of microsystems.
As such it has a great importance in Physics, however it does not address the laws which rule

the behavior of the microsystems, only the possible outcomes of their interactions.
But it is usually acknowledged that there is no satisfying general model for non reversible

processes, or processes which involve disequilibrium (see G.Röpke for more). And there is no obvi-
ous reason to focus on processes which are modelled by equations invariant by time reversal, and
actually they are not in Quantum Theory of Fields. The issue of determinism is more important.

1.5.5 Principle of Locality

It can be stated as : �the outcome of any physical process occurring at a location depends only on the
values of the involved physical quantities at this location�. So it prohibits actions at a distance. This
is obvious in the lagrangian formulation of the Principle of Least Action : the integral is computed
from data whose values are taken at each point m (but one can conceive other functionals `).
Any physical theory assumes the existence of material objects, whose main characteristic is that

they are localized : they are at a de�nite place at a given time. To account for phenomena such as
electromagnetism or gravity, the principle requires the existence of physical objects, the force �elds,
which have a value at any point. Thus this principle is consubstantial to the distinction matter /
�elds. It does not prohibit by itself the existence of objects which are issued from �elds and behave
like matter (the bosons). And similarly it does not forbid the representation of material bodies in a
formalism which is de�ned at any point : in Mechanics the trajectory of a material point is a map
x (t) de�ned over a period of time. But these features appear in the representation of the objects,
and do not imply physical action at a distance. The validity of this principle has been challenged
by the entanglement of states of bosons, but it seems di¢ cult to accept that it is false, as most of
the Physics use it.
Because any measurement involves a physical process, the principle of locality implies that the

measures shall be done locally, that is by observers at each location. This does not preclude the
observers to exchange their information, but requires a procedure to collect and compare these
measures. This procedure is part of the system, and the laws that they represent. As it has been said
before, the observer, meanwhile he is not by himself submitted to the phenomena that he measures
(he has free will), has distinctive characteristics which must be accounted for in the formulation of
a law. So the Principle of Locality requires the de�nition of rules which tell how measures done by
an observer at a location can be compared to measures done by an observer at another location.

1.5.6 Principle of causality

The Principle of Causality exists since the beginning of Philosophy, and it would seem to belong
more to the rules for rational discourse than to Physics. However it introduces, one way or another,
a critical component which is a relation in time. A phenomenon A is the cause of another B if it
manifests before B. And this is more than a simple timing : it is accepted than two phenomena
can be not related. In Classic Physics the use of a time coordinate is usually su¢ cient to account
for the potential causality. In Quantum Mechanics this is more sensitive : almost all reasonings are
based on the comparison between an initial state and a �nal state, which requires the possibility to
identify non ambiguously these states, that is a set of measures, related to a set of phenomena, which
can be considered as the potential causes or the results of an experiment. Relativity introduced a
disturbing element : simultaneity is no longer universal and depends on the observer. The Principle
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of Causality adds a speci�c structure in the representation of the geometry of the universe, which is
clearly explained by the existence of a metric. However this leads to much complication in Quantum
Mechanics.

There is another Principle acknowledged in Physics : the laws of Physics are assumed to be
invariant by the CPT operations. As its de�nition involves a precise framework, it will be given in
the Chapter 5.

The rest of this book will be in some way a practical illustration of this �rst chapter. We will
successfully expose the Geometry of General Relativity, the Kinematics of material bodies, the Force
�elds, the Interactions Fields / Particles, the Bosons. Starting from facts, common or scienti�c known
facts, we will make assumptions, then, using the right mathematical formalism and Fundamental
principles, we will deduce scienti�c laws, as theorems. And this is the experimental veri�cation of
these laws which provides the validity of the theory. So this is very di¤erent, almost the opposite, of
what is usually done in Physics Books, such as Feynman�s, where the starting point is almost always
an experiment. The next chapter, dedicated to Quantum Theory, is purely mathematical but, as we
will see, it starts also by the construction of its own objects : physical models.
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Chapter 2

QUANTUM MECHANICS

Quantum Physics encompasses several theories, with three distinct areas:
i) Quantum Mechanics (QM) proper, which, since the seminal von Neumann�s book, is expressed

as a collection of axioms, such as summarized by Weinberg :
- Physical states of a system are represented by vectors  in a Hilbert space H, de�ned up to a

complex number (a ray in a projective Hilbert space)
- Observables are represented by Hermitian operators
- The only values that can be observed for an operator are one of its eigen values �k corresponding

to the eigen vector  k
- The probability to observe �k if the system is in the state  is proportional to jh ; kij2
- If two systems with Hilbert space H1;H2 interact, the states of the total system are represented

in H1 
H2

and, depending on the authors, the Schrödinger�s equation.
ii) Wave Mechanics, which states that particles can behave like �elds which propagate, and

conversely force �elds can behave like pointwise particles. Moreover particles are endowed with a
spin. In itself it constitutes a new theory, with the introduction of new concepts related to physical
objects (spin, photon), for which QM is the natural formalism. Actually this is essentially a theory
of electromagnetism, and is formalized in Quantum Electrodynamics (QED).
iii) The Quantum Theory of Fields (QTF) is a theory which encompasses theoretically all the

phenomena at the atomic or subatomic scale, but has been set up mainly to deal with the other forces
(weak and strong interactions) and the physics of elementary particles. It uses additional concepts
(such as gauge �elds), formalism and computation rules (Feynman diagrams, path integrals).

I will address in this chapter QM only. It would seem appropriate to begin the Physics part
of this book by QM, as it has been dominant and pervasive since 70 years. But actually it is the
converse : the place of this chapter comes from the fact that QM is not a physical theory. This is
obvious with a look at the axioms : they do not de�ne any physical object, or physical property (if
we except the Schrödinger�s equation which is or not part of the corpus). They are deemed valid for
any system and, actually, they would not be out of place in a book on Economics. These axioms,
which are used commonly, are not Physical Laws, and indeed they are not falsi�able (how could
we check that an observable is a Hermitian operator ?). Some, whose wording is general, could
be seen as Fundamental Laws, similar to the Principle of Least Action, but others have an almost
supernatural precision (the eigen vectors). Nevertheless they are granted with a total infallibility,
supported by an unshakable faith, lauded by the media as well as the Highest Academic Authorities,
reputed to make incredibly precise predictions. Their power is limited only by a scale which is not
even mentioned and which is impossible to compute.

25
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This strange status, quite unique in Science, is at the origin of the search for interpretations,
and for the same reason, makes so di¢ cult any sensible discussion on the topic. Actually these
axioms have emerged slowly from the practices of great physicists, kept without any change in the
last decenniums, and endorsed by the majority, mostly because, from their �rst Physics 101 to the
software that they use, it is part of their environment. I will not enter into a debate about the
interpretations of these axioms, but it is necessary to evoke the attempts which have been made to
address directly their foundations.
In seminal books and articles, von Neumann and Birkho¤ have proposed a new direction to

understand and justify these axioms. Their purpose was, from general considerations, to set up a
Formal System, actually similar to what is done in Mathematics for Arithmetic or Sets Theory, in
which the assertions done in Physics can be expressed and used in the predictions of experiments, and
so granting to Physics a status which would be less speculative and more respecting of the facts as
they can actually be established. This work has been pursued, notably by Jauch, Haag, Varadarajan
and Francis in the recent years. An extension which accounts for Relativity has been proposed by
Wightman and has been developed as an Axiomatic Quantum Field Theory (Haag, Araki, Halvorson,
Borchers, Doplicher, Roberts, Schroer, Fredenhagen, Buchholz, Summers, Longo,...). It assumes the
existence of the formalism of Hilbert space itself, so the validity of most of the axioms, and emphasizes
the role of the algebra of operators. Since all the information which can be extracted from a system
goes through operators, it can be conceived to de�ne the system itself as the set of these operators.
This is a more comfortable venue, as it is essentially mathematical, which has been studied by several
authors (Bratelli and others). Recently this approach has been completed by attempts to link QM
with Information Theory, either in the framework of Quantum Computing, or through the use of
the Categories Theory.
These works share some philosophical convictions, supported with a strength depending on the

authors, but which are nonetheless present :
i) A deep mistrust with regard to realism, the idea that there is a real world, which can be

understood and described through physical concepts such as particles, location,...At best they are
useless, at worst they are misleading.
ii) A great faith in the mathematical formalism, which should ultimately replace the concepts.
iii) The preeminence of experimentation over theories : experimental facts are seen as the unique

source of innovation, physical laws are essentially the repeated occurrences of events whose correla-
tion must be studied by statistical methods, the imperative necessity to consider the conditions in
which the experiments can or cannot be made.
As any formal system, the axiomatic QM de�nes its own objects, which are basically the assertions

that a physicist can make from the results of experiments (�the yes-no experiments�of Jauch), and
sets up a system of rules of inference according to which other assertions can be made, with a special
attention given to the possibility to make simultaneous measures, and the fact that any measure is the
product of a statistical estimation. With the addition of some axioms, which obviously cannot re�ect
any experimental work (it is necessary to introduce in�nity), the formal system is then identi�ed,
by a kind of structural isomorphism, with the usual Hilbert space and its operators of Mathematics.
And from there the axioms of QM are deemed to be safely grounded.
One can be satis�ed or not by this approach. But some remarks can be done.
In many ways this attempt is similar to the one by which mathematicians tried to give an ultimate,

consistent and logical basis to Mathematics, by de�ning a formal system. Their attempt has not
failed, but have shown the limits of what can be achieved : the necessity to detach the objects of the
formal system from any idealization of physical objects, the non unicity of the axioms, and the fact
that they are justi�ed by experience and e¢ ciency and not by a logical necessity. The same limits are
obvious in axiomatic QM. If to acknowledge the role of experience and e¢ ciency in the foundations
of the system should not be disturbing, the pretense to enshrine them in axioms, not refutable and
not subject to veri�cation, places a great risk to the possibility of any evolution. And indeed the
axioms have not changed for more than 50 years, without stopping the controversies about their
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meaning. The unavoidable replacement of physical concepts, identi�cation of physical objects and
their properties, by formal and abstract objects, which is consistent with the philosophical premises,
is specially damaging in Physics. Because there is always a doubt about the meaning of the objects
(for instance it is quite impossible to �nd the de�nition of a �state�) the implementation of the
system sums up practically to a set of �generally accepted computations�, it makes its learning
and teaching perilous (the Feynmann�s a¢ rmation that it cannot be understood), and eventually
to the recurring apparitions of �unidenti�ed physical objects� whose existence is supposed to �ll
the gaps. In many ways the formal system has replaced the Physical Theories, that is a set of
objects, properties and behaviors, which can be intuitively identi�ed and understood. The Newton�s
laws of motion are successful, not only because they can be checked, but also because it is easy to
understand them. This is not the case for the decoherence of the wave function...
Nevertheless, this attempt is right in looking for the origin of these axioms in the critique (in

the Kantian meaning) of the method speci�c to Physics. But it is aimed at the wrong target : the
concepts are not the source of the problems, they are and will stay necessary because they make
the link between formalism and real world, and are the �eld in which new ideas can germinate. And
the solution is not in a sancti�cation of the experiments, which are too diverse to be submitted to
any analytical method. Actually these attempts have missed a step, which always exists between
the concepts and the collection of data : the mathematical formalization itself, in models. Models,
because they use a precise formalism, can be easily analyzed and it is possible to show that, indeed,
they have speci�c properties of their own, which do not come from the reality they represent, but
from their mathematical properties and the way they are used. The objects of an axiomatic QM,
if one wishes to establish one, are then clearly identi�ed, without disturbing the elaboration or the
implementation of theories. The axioms can then be proven, they can also be safely used.
QM is about the representation of physical phenomena, and not a representation of these phe-

nomena (as can be Wave Mechanics, QED or QTF). It expresses properties of the data which can
be extracted from measures of physical phenomena but not properties of physical objects. To sum
up : QM is not about how the physical world works, it is about how it looks.
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2.1 HILBERT SPACE

2.1.1 Representation of a system

Models play a central role in the practical implementation of a theory to speci�c situations. They
will be our starting point.
Let us start with common Analytic Mechanics. A system, meaning a delimited area of space

comprising material bodies, is represented by scalar generalized coordinates q = (q1; :::; qN ) its
evolution by the derivatives q0 = (q01; :::; q

0
N ) . By extension q can be the coordinates of a point Q of

some manifold M to account for additional constraints, and then the state of the system at a given
time is fully represented by a point of the vector bundle TM : W = (Q;VQ) . By mathematical
transformations the derivatives q0 can be exchanged with conjugate momenta, and the state of the
system is then represented in the phase space, with a symplectic structure. But we will not use this
addition and stay at the very �rst step, that is the representation of the system by (q; q0) .
Trouble arises when one considers the other fundamental objects of Physics : force �elds. By

de�nition their value is de�ned all over the space � time. So in the previous representation one
should account, at a given time, for the value of the �elds at each point, and introduce unaccountably
in�nitely many coordinates. This issue has been at the core of many attempts to improve Analytic
Mechanics.
But let us consider two facts :
- Analytic Mechanics, as it is usually used, is aimed at representing the evolution of the system

over a period of time [0; T ], as it is clear in the Lagrangian formalism : the variables are accounted,
together, for the duration of the experiment;
- the state of the system is represented by a map W : [0; T ] ! (Q;VQ) : the knowledge of this

map sums up all that can be said on the system, the map itself represents the state of the system.
Almost all the problems in Physics involve a model which comprises the following :
i) a set of physical objects (material bodies or particles, force �elds) in a delimited area 
 of

space � time (it can be in the classical or the relativist framework) called the system;
ii) the state of the system is represented by a �xed �nite number N of variables X = (Xk)

N
k=1

which can be maps de�ned on 
 , with their derivatives;
so that the state of the system is de�ned by a �nite number of maps, which usually belong

themselves to in�nite dimensional vector spaces.
And it is legitimate to substitute the maps to the coordinates in 
. We still have in�nite

dimensional vector spaces, but by proceeding �rst to an aggregation by maps, the vector space is
more manageable, and we have some mathematical tools to deal with it. But we need to remind
the de�nition of a manifold, a structure that we will use abundantly in the following (more in
Maths.15.1.1).

2.1.2 Manifold

Let M be a set, E a topological vector space, an atlas, denoted A = (Oi; 'i; E)i2I is a collection of :
subsets (Oi)i2I of M such that [i2IOi =M (this is a cover of M)
maps ('i)i2I called charts, such that :

i) 'i : Oi ! Ui :: � = 'i (m) is bijective and � are the coordinates of M in the chart
ii) Ui is an open subset of E
iii) 8i; j 2 I : Oi \Oj 6= ? :
'i (Oi \Oj) ; 'j (Oi \Oj) are open subsets of E, and there is a bijective, continuous map, called

a transition map :
'ij : 'i (Oi \Oj)! 'j (Oi \Oj)
Notice that no mathematical structure of any kind is required on M . A topological structure

can be imported on M , by telling that all the charts are continuous, and conversely if there is a
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topological structure on M the charts must be compatible with it. The set M has no algebraic
structure : a combination such as am+ bm0 has no meaning.
Two atlas A = (Oi; 'i; E)i2I ; A

0 =
�
O0j ; '

0
j ; E

�
j2J of M are said to be compatible if their union

is still an atlas. Which implies that :
8i 2 I; j 2 J : Oi \O0j 6= ? : 9'ij : 'i

�
Oi \O0j

�
! '0j

�
Oi \O0j

�
is a homeomorphism

The relation A;A0 are compatible atlas of M is a relation of equivalence. A class of equivalence
is a structure of manifold on the set M.
The key points are :
- there can be di¤erent structures of manifold on the same set. On R4 there are unaccountably

many non equivalent structures of smooth manifolds (this is special to R4: on Rn; n 6= 4 all the
smooth structures are equivalent !).
- all the interesting properties on M come from E : the dimension of M is the dimension of

E (possibly in�nite); if E is a Fréchet space we have a Fréchet manifold, if E is a Banach space
we have a Banach manifold and then we can have di¤erentials, if E is a Hilbert space we have a
Hilbert manifold, but these additional properties require that the transition maps 'ij meet additional
properties.
- for many sets several charts are required (a sphere requires at least two charts) but an atlas can

have only one chart, then the manifold structure is understood as the same point M will be de�ned
by a set of compatible charts.
The usual, euclidean, 3 dimensional space of Physics is an a¢ ne space. It has a structure of

manifold, which can use an atlas with orthonormal frames, or with curved coordinates (spherical or
cylindrical). Passing from one system of coordinates to another is a change of charts, and represented
by transition maps 'ij :

2.1.3 Fundamental theorem

In this chapter we will consider models which meet the following conditions:

Condition 1 i) The system is represented by a �xed �nite number N of variables (Xk)
N
k=1

ii) Each variable belongs to an open subset Ok of a separable Fréchet real vector space Vk
iii) At least one of the vector spaces (Vk)

N
k=1 is in�nite dimensional

iv) For any other model of the system using N variables (X 0
k)
N
k=1 belonging to open subset O

0
k of

Vk; and for Xk; X
0
k 2 Ok \O0k there is a continuous map : X 0

k = zk (Xk)

Remarks :
i) The variables must be vectorial. This condition is similar to the superposition principle which

is assumed in QM. This is one of the most important condition. By this we mean that the associated
physical phenomena can be represented by vectors (or tensors, or scalars). The criterion, to check
if this is the case, is : if the physical phenomenon can be represented by X and X 0, does the
phenomenon corresponding to any linear combination �X + �X 0 have a physical meaning ?
Are usually vectorial variables : the speed of a material point, the electric or magnetic �eld, a

force, a moment,...and the derivatives, which are, by de�nition, vectors.
Are usually not vectorial variables : qualitative variables (which take discrete values), a point in

the euclidean space or on a circle, or any surface. The point can be represented by coordinates, but
these coordinates are not the physical object, which is the material point. For instance in Analytic
Mechanics the coordinates q = (q1; :::; qN ) are not a geometric quantity : usually a linear combination
�q + �q0 has no physical meaning (think to polar coordinates). The issue arises because physicists
are used to think in terms of coordinates (in euclidean or relativist Lorentz frame) which leads to
forget that the coordinates are just a representation of an object which, even in its mathematical
form (a point in an a¢ ne space), is not vectorial.
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So this condition, which has a simple mathematical expression, has a deep physical meaning : it
requires to understand clearly why the properties of the physical phenomena can be represented by
a vectorial variable, and reaches the most basic assumptions of the theory. The status, vectorial or
not, of a quantity is not something which can be decided at will by the Physicist : it is part of the
Theory which he uses to build his model. However the addition of a variable which is not a vector
can be useful (Theorem 24).
ii) The variables are assumed to be independent, in the meaning that there is no given relation

such that
P
kXk = 1: Of course usually the model is used with the purpose to compute or check

relations between the variables, but these relations do not matter here. Actually to check the validity
of a model one considers all the variables, those which are given and those which can be computed,
they are all subject to measures and this is the comparison, after the experiment, between computed
values and measured values which provides the validation. So in this initial stage of speci�cation of
the model there is no distinction between the variables, which are on the same footing.
Similarly there is no distinction between variables internal and external to the system : if the

evolution of a variable is determined by the observer or by phenomena out of the system (it is
external) its value must be measured to be accounted for in the model, so it is on the same footing
as any other variable. And it is assumed that the value of all variables can be measured.
The derivative dXk

dt (or partial derivative at any order) of a variable Xk is considered as an
independent variable, as it is usually done in Analytic Mechanics and in the mathematical formalism
of r-jets.
iii) Because the variables are maps, belonging to in�nite dimensional vector spaces, a single

occurrence of the model, that is a single experiment, provides possibly in�nitely many measures. If
Xk :M ! R is a map de�ned on a setM , then the measures could be Xk (m1) ; :::Xk (mn) at points
m1:::mn; for any n 2 N: The variables are the maps Xk : M ! R and not their values Xk (m) at
a given point m 2 M: The usual case is when they represent the evolution of the system with the
time t : then Xk is the function itself : Xk : R! Ok :: Xk (t)
iv) In the conditions 1 we stay at the very �rst step of modelling : the description of all the

mathematical objects which will be considered. The purpose of a model is to represent, in a com-
mon formalism, a broad range of similar physical experiments, with varying parameters, which are
themselves part of the variables Xk. The variables can be restricted to take only some range (for
instance it must be positive) : this is the meaning of the condition Xk 2 Ok:
v) A Fréchet space is a Hausdor¤, complete, topological space endowed with a countable family

of semi-norms (Maths.12.2.6). It is locally convex and metric.
Are Fréchet spaces :
- any Banach vector space : the spaces of bounded functions, the spaces Lp (E;�;C) of integrable

functions on a measured space (E;�), the spaces Lp (M;�;E) of integrable sections of a vector bundle
(valued in a Banach E);
- the spaces of continuously di¤erentiable sections on a vector bundle, the spaces of di¤erentiable

functions on a manifold.
A topological vector space is separable if it has a dense countable subset (Maths.10.1.3) which,

for a Fréchet space, is equivalent to be second countable. A totally bounded (8r > 0 there is a �nite
number of balls which cover V ), or a connected locally compact Fréchet space, is separable. The
spaces Lp (Rn; dx;C) of integrable functions for 1 � p <1, the spaces of continuous functions on a
compact domain, are separable (Lieb).
Thus this somewhat complicated speci�cation encompasses most of the usual cases.
In the following of this book we will see examples of these spaces : they are mostly maps :

X : 
 ! E from a relatively compact subset 
 of a manifold M to a �nite dimensional vector
space, endowed with a norm. Then the space of maps such that

R


kX (m)k$ (m) <1 where $ is

a measure on M (a volume measure) is an in�nite dimensional, separable, Fréchet space.
vi) The condition iv addresses the case when the variables are de�ned over connected domains.

But it implicitly tells that any other set of variables which represent the same phenomena are deemed
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compatible with the model.

The set of all potential states of the system is then given by the set S =
n
(Xk)

N
k=1 ; Xk 2 Ok

o
:

If there is some relation between the variables, stated by a physical law or theory, its consequence
is to restrict the domain in which the states of the system will be found, but as said before we stay
at the step before any experiment, so Ok represents the set of all possible values of Xk:

Theorem 2 For any system represented by a model meeting the conditions 1 there is a separable,
in�nite dimensional, Hilbert space H, de�ned up to isomorphism, such that S can be embedded as
an open subset 
 � H which contains 0 and a convex subset.

Proof. i) Each value of the set S of variables de�nes a state of the system, denoted X, belonging

to the product O =
NY
k=1

Ok � V =
NY
k=1

Vk: The couple (O;X), together with the property iv) de�nes

the structure of a Fréchet manifold M on the set S, modelled on the Fréchet space V =
NY
k1

Vk. The

coordinates are the values (xk)
N
k=1 of the functions Xk: This manifold is in�nite dimensional. Any

Fréchet space is metric, so V is a metric space, and M is metrizable.
ii) As M is a metrizable manifold, modelled on an in�nite dimensional separable Fréchet space,

the Henderson�s theorem (Henderson - corollary 5, Maths.15.1.3) states that it can be embedded
as a open subset 
 of an in�nite dimensional separable Hilbert space H, de�ned up to isomor-
phism. Moreover this structure is smooth, the set H � 
 is homeomorphic to H, the border @
 is
homeomorphic to 
 and its closure 
.
iii) Translations by a vector are isometries. Let us denote hiH the scalar product on H (this is

a bilinear symmetric positive de�nite form). The map : 
 ! R :: h ; iH is bounded from below
and continuous, so it has a minimum (possibly not unique)  0 in 
: By translation of H with  0 we
can de�ne an isomorphic structure, and then assume that 0 belongs to 
. There is a largest convex
subset of H contained in 
, de�ned as the intersection of all the convex subset contained in 
. Its
interior is an open convex subset C. It is not empty : because 0 belongs to 
 which is open in H,
there is an open ball B0 = (0; r) contained in 
.

So the state of the system can be represented by a single vector  in a Hilbert space.
From a practical point of view, often V itself can be taken as the product of Hilbert spaces,

notably of square summable functions such as L2 (R; dt) which are separable Hilbert spaces and
then the proposition is obvious.
If the variables belong to an open O0 such that O � O0 we would have the same Hilbert space,

and an open 
0 such that 
 � 
0: V is open so we have a largest open 
V � H which contains all
the 
:
Notice that this is a real vector space.
The interest of Hilbert spaces lies with Hilbertian basis, and we now see how to relate such basis

of H with a basis of the vector space V . It will enable us to show a linear chart of the manifold M .

2.1.4 Basis

Theorem 3 For any basis (ei)i2I of V contained in O, there are unique families ("i)i2I ; (�i)i2I of
independent vectors of H, a linear isometry � : V ! H such that :
8X 2 O : � (X) =

P
i2I h�i;�(X)iH "i 2 


8i 2 I : "i = �(ei)
8i; j 2 I : h�i; "jiH = �ij
and � is a compatible chart of M:
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Proof. i) Let (ei)i2I be a basis of V such that ei 2 O and V0 = Span (ei)i2I . Thus O � V0:
Any vector of V0 reads : X =

P
i2I xiei where only a �nite number of xi are non null. Or

equivalently the following map is bijective :
�V : V0 ! RI0 :: �V

�P
i2I xiei

�
= x = (xi)i2I

where the set RI0 � RI is the subset of maps I ! R such that only a �nite number of components
xi are non null.
(O;X) is an atlas of the manifold M and M is embedded in H, let us denote � : O ! 
 a

homeomorphism accounting for this embedding.
The inner product on H de�nes a positive kernel :
K : H �H ! R :: K ( 1;  2) = h 1;  2iH
Then KV : O � O ! R :: KV (X;Y ) = K (� (X) ;� (Y )) de�nes a positive kernel on O

(Math.12.5.7).
KV de�nes a de�nite positive symmetric bilinear form on V0, denoted hiV ; by :
P

i2I xiei;
P
i2I yiei

�
V
=
P
i;j2I xiyjKij with Kij = KV (ei; ej)

which is well de�ned because only a �nite number of monomials xiyj are non null. It de�nes a
norm on V0:
ii) Let : "i = �(ei) 2 
 and H0 = Span ("i)i2I the set of �nite linear combinations of vectors

("i)i2I : It is a vector subspace of H. The family ("i)i2I is linearly independent, because, for any
�nite subset J of I, the determinant
det
�
h"i; "jiH

�
i;j2J = det [KV (ei; ej)]i;j2J 6= 0:

Thus ("i)i2I is a non Hilbertian basis of H0:
H0 can be de�ned similarly by the bijective map :
�H : H0 ! RI0 :: �H

�P
i2I yi"i

�
= y = (yi)i2I

iii) By the Gram-Schmidt procedure (which works for in�nite sets of vectors) it is always possible
to built an orthonormal basis (e"i)i2I of H0 starting with the vectors ("i)i2I indexed on the same set
I (as H is separable I can be assimilated to N):

`2 (I) � RI is the set of families y = (yi)i2I � RI such that :
sup

�P
i2J (yi)

2
�
<1 for any countable subset J of I.

RI0 � `2 (I)
The map : � : `2 (I) ! H1 :: � (y) =

P
i2I yie"i is an isomorphism to the closure H1 =

Span (e"i)i2I = H0 of H0 in H (Math.1121). H1 is a closed vector subspace of H, so it is a Hilbert
space. The linear span of (e"i)i2I is dense in H1, so it is a Hilbertian basis of H1 (Maths.12.5.2).
Let � : H ! H1 be the orthogonal projection on H1 : k � � ( )kH = minu2H1

k � ukH then :
 = � ( ) + o ( ) with o ( ) 2 H?

1 which implies : k k2 = k� ( )k2 + ko ( )k2
There is a open convex subset, containing 0, which is contained in 
 so there is r > 0 such that :
k k < r )  2 
 and as k k2 = k� ( )k2 + ko ( )k2 < r2

then k k < r ) � ( ) ; o ( ) 2 

o ( ) 2 H?

1 ;H0 � H1 ) o ( ) 2 H?
0

) 8i 2 I : h"i; o ( )iH = 0 = KV

�
��1 ("i) ;�

�1 (o ( ))
�
= KV

�
ei;�

�1 (o ( ))
�

) ��1 (o ( )) = 0) o ( ) = 0
H?
1 = 0 thus H1 is dense in H, and as it is closed : H1 = H

(e"i)i2I is a Hilbertian basis of H and

8 2 H :  =
P
i2I he"i;  iH e"i with Pi2I jhe"i;  iH j2 <1

, (he"i;  iH)i2I 2 `2 (I)
H0 is the interior of H, it is the union of all open subsets contained in H, so 
 � H0

H0 = Span
�
(e"i)i2I� thus the map :e�H : H0 ! RI0 :: e�H �Pi2I eyie"i� = ey = (eyi)i2I

is bijective and : e�H (H0) = eR0 � RI0 � `2 (I)
Moreover : 8 2 H0 : e�H ( ) = (he"i;  iH)i2I 2 RI0
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Thus :
8X 2 O : � (X) =

P
i2I he"i;� (X)iH e"i 2 


and e�H (� (X)) = (he"i;� (X)iH)i2I 2 eR0
8i 2 I; ei 2 O ) � (ei) = "i =

P
j2I he"j ; "iiH e"j

and e�H ("i) = �he"j ; "iiH�j2I 2 eR0
iv) Let be : eei = ��1 (e"i) 2 V0 and LV 2 GL (V0;V0) :: LV (ei) = eei
We have the following diagram :26666664

� L�1H
ei ! "i ! e"i

& #
LV & # ��1

& #eei

37777775
heei; eejiV = h� (eei) ;� (eej)iH = he"i; e"jiH = �ij
So (eei)i2I is an orthonormal basis of V0 for the scalar product KV

8X 2 V0 : X =
P
i2I exieei =Pi2I heei; XiV eei and (heei; XiV )i2I 2 RI0

The coordinates of X 2 O in the basis (eei)i2I are (heei; XiV )i2I 2 RI0
The coordinates of � (X) 2 H0 in the basis (e"i)i2I are (he"i;� (X)iH)i2I 2 RI0
he"i;� (X)iH = h� (eei) ;� (X)iH = heei; XiV
De�ne the maps :e�V : V0 ! RI0 :: e�V �Pi2I exieei� = ex = (exi)i2I
� : V0 ! H0 :: � = e��1H � e��1V
which associates to each vector of V the vector ofH with the same components in the orthonormal

bases, then :
8X 2 O : � (X) = � (X)
and � is a bijective, linear map, which preserves the scalar product, so it is continuous and is an

isometry.
v) There is a bijective linear map : LH 2 GL (H0;H0) such that : 8i 2 I : "i = LH (e"i) .
(e"i)i2I is a basis of H0 thus "i =

P
j2I [LH ]

j
i e"j where only a �nite number of coe¢ cients [LH ]ji

is non null.
Let us de�ne : $i : H0 ! R :: $i

�P
j2I  j"j

�
=  i

This map is continuous at  = 0 on H0 :
take  2 H0; k k ! 0

then  =
P
i2I he"i;  iH e"i and e j = he"i;  iH ! 0

so if k k < r then k k2 =
P
j2I

��� e j���2 < r2 and 8j 2 I :
��� e j��� < r

 i =
P
j2J [LH ]

j
i
e j ) j ij < "

P
j2I max

���[LH ]ji ��� and ����[LH ]ji ����
j2I

is bounded ) j ij ! 0

Thus $i is continuous and belongs to the topological dual H 0
0 of H0: It can be extended as a

continuous map $i 2 H 0 according to the Hahn-Banach theorem (Maths.952). Because H is a
Hilbert space, there is a vector �i 2 H such that : 8 2 H : $i ( ) = h�i;  iH so that :
8X 2 O : � (X) = � (X) =

P
i2I  i"i

=
P
i2I h�i;  iH "i =

P
i2I h�i;� (X)iH "i

8i 2 I :
� (ei) = "i = �(ei) =

P
j2I h�j ; "iiH "j ) h�j ; "iiH = �ij

� (eei) =Pj2I h�j ;� (eei)iH "j = e"i =Pj2I h�j ; e"iiH "j
vi) The map � : O ! 
 is a linear chart of M , using two orthonormal bases : it is continuous,

bijective so it is an homeomorphism, and is obviously compatible with the chart �:
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Remarks

i) Because (e"i)i2I is a Hilbertian basis of the separable in�nite dimensional Hilbert space H, I is
a countable set which can be identi�ed to N: The assumption about (ei)i2I is that it is a Hamel
basis, which is the most general because any vector space has one. From the proposition above we
see that this basis must be of cardinality @0 . Hamel bases of in�nite dimensional normed vector
spaces must be uncountable, however our assumption about V is that it is a Fréchet space, which
is a metrizable but not a normed space, and this distinction matters. If V is a Banach vector space
then, according to the Mazur theorem, it implies that there it has an in�nite dimensional vector
subspace W which has a Shauder basis : 8X 2 W : X =

P
i2I xiei where the sum is understood

in the topological limit. Then the same reasoning as above shows that the closure of W is itself a
Hilbert space. Moreover it has been proven that any separable Banach space is homeomorphic to a
Hilbert space, and most of the applications will concern spaces of integrable functions (or sections
of vector bundle endowed with a norm) which are separable Fréchet spaces.
One interesting fact is that we assume that the variables belong to an open subset O of V . The

main concern is to allow for variables which can take values only in some bounded domain. But
this assumption addresses also the case of a Banach vector space which is �hollowed out� : O can
be itself a vector subspace (in an in�nite dimensional vector space a vector subspace can be open),
for instance generated by a countable subbasis of a Hamel basis, and we assume explicitly that the
basis (ei)i2I belongs to O.
ii) For O = V we have a largest open 
V and a linear map � : V ! 
V with domain V .
iii) To each (Hamel) basis on V is associated a linear chart � of the manifold, such that a point

of M has the same coordinates both in V and H. So � depends on the choice of the basis, and
similarly the positive kernel KV depends on the basis.
iv) In the proof we have introduced a map : KV : O�O ! R :: KV (X;Y ) which is not bilinear,

but is de�nite positive in a precise way. It plays an important role in several following demonstrations.
From a physical point of view it can be seen as related to the probability of transition between two
states X;Y often used in QM.1

2.1.5 Complex structure

The variables X and vector space V are real and H is a real Hilbert space. The condition that
the vector space V is real is required only in Theorem 2 to prove the existence of a Hilbert space,
because the Henderson�s theorem holds only for real structures. However, as it is easily checked, if
H exists, all the following theorems hold even if H is a complex Hilbert space. This is specially
useful when the space V over which the maps X are de�ned is itself a complex Hilbert space, as this
is often the case.
Moreover it can be useful to endow H with the structure of a complex Hilbert space : the set

does not change but one distinguishes real and imaginary components, and the scalar product is
given by a Hermitian form. Notice that this is a convenience, not a necessity.

Theorem 4 Any real separable in�nite dimensional Hilbert space can be endowed with the structure
of a complex separable Hilbert space

Proof. H has a in�nite countable Hilbertian basis ("�)�2N because it is separable.
A complex structure is de�ned by a linear map : J 2 L (H;H) such that J2 = �Id: Then the

operation : i�  is de�ned by : i = J ( ) :
De�ne :
J ("2�) = "2�+1; J ("2�+1) = �"2�
1We will see that this positive kernel plays an important role in the proofs of other theorems. The transitions

maps are a key characteristics of the structure of a manifold, and it seems that the existence of a positive kernel is a
characteristic of Fréchet manifolds. This is a point to be checked by mathematicians.
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8 2 H : i = J ( )
So : i ("2�) = "2�+1; i ("2�+1) = �"2�
The bases "2� or "2�+1 are complex bases of H :
 =

P
�  

2�"2� +  
2�+1"2�+1 =

P
�

�
 2� � i 2�+1

�
"2�

=
P
�

�
�i 2� +  2�+1

�
"2�+1

k k2 =
P
�

�� 2� � i 2�+1��2
=
P
�

�� 2���2 + �� 2�+1��2 + i�� 2� 2�+1 +  2� 2�+1�
Thus "2� is a Hilbertian complex basis
H has a structure of complex vector space that we denote HC
The map : T : H ! HC : T ( ) =

P
�

�
 2� � i 2�+1

�
"2� is linear and continuous

The map : T : H ! HC : T ( ) =
P
�

�
 2� + i 2�+1

�
"2� is antilinear and continuous

De�ne :  ( ; 0) =


T ( ) ; T ( 0)

�
H

 is sesquilinear
 ( ; 0) =


P
�

�
 2� + i 2�+1

�
"2�;

P
�

�
 02� � i 02�+1

�
"2�
�
H

=
P
�

�
 2� + i 2�+1

� �
 02� � i 02�+1

�
=
P
�  

2� 02� +  2�+1 02�+1 + i
�
 2�+1 02� �  2� 02�+1

�
 ( ; ) = 0) h ; iH = 0)  = 0
Thus  is de�nite positive

2.1.6 Decomposition of the Hilbert space

V is the product V = V1� V2:::� VN of vector spaces, thus the proposition implies that the Hilbert
space H is also the direct product of Hilbert spaces H1 �H2:::�HN or equivalently H = �Nk=1Hk

where Hk are Hilbert vector subspaces of H. More precisely :

Theorem 5 If the model consists of N continuous variables (Xk)
N
k=1 ; each belonging to a separable

Fréchet vector space Vk; then the real Hilbert space H of states of the system is the Hilbert sum of
N Hilbert space H = �Nk=1Hk and any vector  representing a state of the system is uniquely the
sum of N vectors  k; each image of the value of one variable Xk in the state  

Proof. By de�nition V =
NY
k=1

Vk .The set V 0k = f0; ::; Vk; :::0g � V is a vector subspace of V . A basis

of V 0k is a subfamily (ei)i2Ik of a basis (ei)i2I of V . V
0
k has for image by the continuous linear map

� a closed vector subspace Hk of H. Any vector X of V reads : X 2
NY
k=1

Vk : X =
PN
k=1

P
i2Ik x

iei

and it has for image by � :  = �(X) =
PN
k=1

P
i2Ik x

i"i =
PN
k=1  k with  k 2 Hk .This

decomposition of �(X) is unique.
Conversely, the family (ei)i2Ik has for image by � the set ("i)i2Ik which are linearly independent

vectors of Hk:It is always possible to build an orthonormal basis (e"i)i2Ik from these vectors as done
previously. Hk is a closed subspace of H, so it is a Hilbert space. The map : b�k : `2 (Ik) ! Hk ::b�k (x) =Pi2Ik x

ie"i is an isomorphism of Hilbert spaces and :8 2 Hk :  =
P
i2Ik he"i;  iH e"i.

8 k 2 Hk;  l 2 Hl; k 6= l : h k;  liH =


��1 ( k) ;�

�1 ( l)
�
E
= 0

Any vector  2 H reads :  =
PN
k=1 �k ( ) with the orthogonal projection �k : H ! Hk ::

�k ( ) =
P
i2Ik he"i;  iH e"i so H is the Hilbert sum of the Hk

As a consequence the de�nite positive kernel of (V;�) decomposes as :
K ((X1; :::XN ) ; (X

0
1; :::X

0
N ))

=
PN
k=1Kk (Xk; X

0
k)
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=
PN
k=1 h�(Xk) ;�(X

0
k)iHk

This decomposition comes handy when we have to translate relations between variables into
relations between vector states, notably it they are linear. But it requires that we keep the real
Hilbert space structure.

2.1.7 Discrete variables

It is common in a model to have discrete variables (Dk)
K
k=1 ; taking values in a �nite discrete set.

They correspond to di¤erent cases:
i) The discrete variables identify di¤erent elementary systems (such as di¤erent populations of

particles) which coexist simultaneously in the same global system, follow di¤erent rules of behavior,
but interact together. We will see later how to deal with these cases (tensorial product).
ii) The discrete variables identify di¤erent populations, whose interactions are not relevant. Ac-

tually one could consider as many di¤erent systems but, by putting them together, one increases the
size of the samples of data and improve the statistical estimations. They are not of great interest
here, in a study of formal models.
iii) The discrete variables represent di¤erent kinds of behaviors, which cannot be strictly identi�ed

with speci�c populations. Usually a discrete variable is then used as a proxy for a quantitative
parameter which tells how close the system is from a speci�c situation.
We will focus on this third case. The system is represented as before by quantitative variables

X, whose possible values belong to some set M , which has the structure of an in�nite dimensional
manifold. The general idea in the third case is that the possible states of the system can be regrouped
in two distinct subsets. That we formalize in the following assumption : the set O of possible states
of the system has two connected components O1; O2

Theorem 6 If the condition of the theorem 2 are met, and the set O of possible states of the system
has two connected components O1; O2 then there is a continuous function F : V ! [0; 1] :: F (X) =
f ��(X) such that f (� (X)) = 1 in O1 and f (� (X)) = 0 in O2

Proof. The connected components O1; O2 of a topological space are closed, so O1; O2 are disjoint
and both open and closed in V (Maths.628). Using a linear continuous map � then 
 has itself two
connected components, 
1 = ��1 (O1) ;
2 = ��1 (O2) both open and closed, and disjoint. H is
metric, so it is normal (Maths.708). 
1;
2 are disjoint and closed in H. Then, by the Urysohn�s
Theorem (Maths.600) there is a continuous function f on H valued in [0; 1] such that f ( ) = 1
in H1 and f ( ) = 0 in H2. The function F : V ! [0; 1] :: F (X) = f � �(X) is continuous and
F (X) = 1 in O1 and F (X) = 0 in O2:
The set of continuous, bounded functions is a Banach vector space, so it is always possible, in

these conditions, to replace a discrete variable by a quantitative variable with the same features.
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2.2 OBSERVABLES

The key point in the conditions 1 above is that the variables are maps, which take an in�nite number
of values (usually non countable). So the variables would require the same number of data to be
totally known, which is impossible. The physicist estimates the variable by statistical methods. But
any practical method involves a �rst step : the scope of all maps is reduced from V to a smaller
subset W , so that any map of W can be characterized by a �nite number of parameters. The
procedure sums up to replace X by another variable � (X) that we will call an observable, which
is then estimated from a �nite batch of data. The mechanism of estimating the variables X � V is
the following :
- the observer collects data, as a set Y = fxpgNp=1 of values assumed to be taken by the variable

X, in the mathematical format �tted to X (scalars, vectors,..) for di¤erent values of the arguments
- he proceeds to the estimation bX of the map � (X) by statistical adjustment to the data fxpgNp=1

. Because there are a �nite number of parameters (the coordinates of � (X) in W ) this is possible
- the estimation is : bX = ' (Y ) 2W : this is a map which is a simpli�ed version of X.
The procedure of the replacement of X by � (X), called the choice of a speci�cation, is done by

the physicist, and an observable is not unique. However we make three general assumptions about
� :

De�nition 7 i) an observable is a linear map : � 2 L (V ;V )
ii) the range of an observable is a �nite dimensional vector subspaceW of V : W � V;dim� (W ) <

1
iii) 8X 2 O;� (X) is an admissible value, that is � (O) � O:

Using the linear chart � given by any basis; to � one can associate a map :

b� : H ! H :: b� = � � � ���1 (2.1)

and b� is an operator on H. And conversely.
The image of W by � is a �nite dimensional vector subspace H� = �(W ) of H, so it is closed

and a Hilbert space : b� 2 L (H;H�)26666664

�
V ! ! ! W
# #

� # # �

# b� �
H ! ! ! H�

37777775
2.2.1 Primary observables

The simplest speci�cation for an observable is, given a basis (ei)i2I , to de�ne � as the projection
on the subspace spanned by a �nite number of vectors of the basis. For instance if X is a function
X(t) belonging to some space such as : X (t) =

P
n2N anen (t) where en (t) are �xed functions, then

a primary observable would be YJ (X (t)) =
PN
n=0 anen (t) meaning that the components (an)n>N

are discarded and the data are used to compute (an)
N
n=0 : To stay at the most general level, we de�ne

:
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De�nition 8 A primary observable � = YJ is the projection of X = fXk; k = 1:::Ng on the

vector subspace VJ spanned by the vectors (ei)i2J �
�
eki
�
i2Jk

where J =
NY
k=1

Jk � I =
NY
k=1

Ik is a

�nite subset of I and (ei)i2I =
NY
k=1

�
eki
�
i2Ik

is a basis of V .

So the procedure can involve simultaneously several variables. It requires only the choice of a
�nite set of independent vectors of V .

Theorem 9 To any primary observable YJ is associated uniquely a self-adjoint, compact, trace-class
operator bYJ on H : YJ = ��1 � bYJ �� such that the measure YJ (X) of the primary observable YJ ,
if the system is in the state X 2 O; is

YJ (X) =
X
i2I

D
�i; bYJ (� (X))E

H
ei (2.2)

Proof. i) We use the notations and de�nitions of the previous section. The family of variables
X = (Xk)

N
k=1 de�ne the charts : � : O ! 
 and the basis (ei)i2I de�nes the bijection � : V ! H

8X =
P
i2I xiei 2 O :

� (X) =
P
i2I xi�(ei) =

P
i2I xi"i =

P
i2I h�i;�(X)iH "i

, xi = h�i;�(X)iH
8i; j 2 I : h�i; "jiH = �ij
ii) The primary observable YJ is the map :
YJ : V ! VJ :: YJ (X) =

P
j2J xjej

This is a projection : Y 2J = YJ
YJ (X) 2 O so it is associated to a vector of H :

�(YJ (X)) = �
�P

j2J xjej

�
=
P
j2J h�j ;�(YJ (X))iH "j

=
P
j2J h�j ;�(X)iH "j

iii) 8X 2 O : � (YJ (X)) 2 HJ where HJ is the vector subspace of H spanned by ("j)j2J : It is
�nite dimensional, thus it is closed in H. There is a unique map (Math.1111) :bYJ 2 L (H;H) :: bY 2J = bYJ ; bYJ = bY �JbYJ is the orthogonal projection from H onto HJ : It is linear, self-adjoint, and compact because

its range is a �nite dimensional vector subspace. As a projection :
bYJ = 1:bYJ is a Hilbert-Schmidt operator (Maths.1147) : take the Hilbertian basis e"i in H:P

i2I

bYJ (e"i)2 =Pij2J jh�j ; e"iij2 k"jk2 =Pj2J k�jk
2 k"jk2 <1bYJ is a trace class operator (Maths.1151) with trace dimHJP

i2I

DbYJ (e"i) ; e"iE =Pij2J h�j ; e"ii h"j ; e"ii
=
P
j2J h�j ; "ji =

P
j2J �jj = dimHJ

iv) 8 2 HJ : bYJ ( ) =  

8X 2 O : � (YJ (X)) 2 HJ

8X 2 O : � (YJ (X)) = bYJ (� (X)), YJ (X) = �
�1 � bYJ (� (X)), YJ = �

�1 � bYJ ��
v) The value of the observable reads : YJ (X) =

P
i2I

D
�i; bYJ (� (X))E

H
ei
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2.2.2 von Neumann algebras

There is a bijective correspondence between the projections, meaning the maps P 2 L (H;H) :
P 2 = P; P = P � and the closed vector subspaces of H (on these topics Maths.III.3.). Then P is the
orthogonal projection on the vector subspace. So the operators bYJ for any �nite subset J of I are
the orthogonal projections on the �nite dimensional, and thus closed, vector subspace HJ spanned
by ("j)j2J :
We will enlarge the family of primary observables in several steps, keeping the same basis (ei)i2I

of V .
1. For any given basis (ei)i2I of V , we extend the de�nition of these operators bYJ to any �nite or

in�nite, subset of I by taking bYJ as the orthogonal projection on the closure HJ in H of the vector
subspace HJ spanned by ("j)j2J : HJ = Span ("j)j2J .

Theorem 10 The operators
nbYJo

J�I
are self-adjoint and commute

Proof. Because they are projections the operators bYJ are such that : bY 2J = bYJ ; bY �J = bYJbYJ has for eigen values :
1 for  2 HJ

0 for  2
�
HJ

�?
For any subset J of I, by the Gram-Schmidt procedure one can built an orthonormal basis (e"i)i2J

of HJ starting with the vectors ("i)i2J and an orthonormal basis (e"i)i2Jc of HJc starting with the
vectors ("i)i2Jc
Any vector  2 H can be written :
 =

P
j2I xje"j =Pj2J xje"j +Pj2Jc xje"j with (xj)j2I 2 `2 (I)

HJ is de�ned as
P
j2J xje"j with (xj)j2J 2 `2 (J) and similarly HJc is de�ned as

P
j2Jc xje"j

with (xj)j2Jc 2 `2 (Jc)
So bYJ can be de�ned as : bYJ �Pj2I xje"j� =Pj2J xje"j
For any subsets J1; J2 � I :bYJ1 � bYJ2 = bYJ1\J2 = bYJ2 � bYJ1bYJ1[J2 = bYJ1 + bYJ2 � bYJ1\J2 = bYJ1 + bYJ2 � bYJ1 � bYJ2
So the operators commute.

2. Let us de�ne W = Span
nbYio

i2I
the vector subspace of L (H;H) comprised of �nite linear

combinations of bYi (as de�ned in 1 above). The elements nbYio
i2I

are linearly independent and

constitute a basis of W .
The operators bYj ; bYk are mutually orthogonal for j 6= k :bYj � bYk ( ) = h�k;  i h�j ; "ki "j = h�k;  i �jk = �jk bYj ( )
Let us de�ne the scalar product on W :DP

i2I ai
bYi;Pi2I bi

bYiE
W
=
P
i2I aibiPi2I ai

bYi2
W
=
P
i2I a

2
i

bYi2
W
=
P
i2I a

2
i

W is isomorphic to RI0 and its closure in L (H;H) : W = Span
nbYio

i2I
is isomorphic to `2 (I) ;

and has the structure of a Hilbert space with :

W =
nP

i2I ai
bYi; (ai)i2I 2 `2 (I)o

3. Let us de�ne A as the algebra generated by any �nite linear combination or products of

elements bYJ ; J �nite or in�nite, and A as the closure of A in L (H;H) : A = Span
nbYJo

J�I
with

respect to the strong topology, that is in norm.
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Theorem 11 A is a commutative von Neumann algebra of L (H;H)

Proof. It is obvious that A is a *subalgebra of L (H;H) with unit element Id = bYI :
Because its generators are projections, A is a von Neumann algebra (Maths.12.5.6).

The elements of A = Span
nbYJo

J�I
that is of �nite linear combination of bYJ commute

Y; Z 2 A) 9 (Yn)n2N ; (Zn)n2N 2 AN : Yn !n!1 Y; Zn !n!1 Z

The composition is a continuous operation.
Yn �Zn = Zn �Yn ) lim (Yn � Zn) = lim (Zn � Yn) = limYn � limZn = limZn � limYn = Z �Y =

Y � Z
So A is commutative.
A is identical to the bicommutant of its projections, that is to A"

This result is of interest because commutative von Neumann algebras are classi�ed : they are
isomorphic to the space of functions f 2 L1 (E;�) acting by pointwise multiplication ' ! f' on
functions ' 2 L2 (E;�) for some set E and measure � (not necessarily absolutely continuous). They
are the topic of many studies, notably in ergodic theory. The algebra A depends on the choice of
a basis (ei)i2I and, as can be seen in the formulation through (e"i)i2I ; is de�ned up to a unitary
transformation.
Taking the axioms of QM as a starting point, one can de�ne a system itself by the set of its

observables : this is the main idea of the Axiomatic QM Theories. This is convenient to explore
further the behavior of systems or some sensitive issues such as the continuity of the operators. But
this approach has a fundamental drawback : it leads further from an understanding of the physical
foundations of the theory itself. To tell that a system should be represented by a von Neumann
algebra does not explain more why a state should be represented in a Hilbert space at the beginning.
We see here how such an algebra appears naturally. However the algebra A is commutative,

and this property is the consequence of the choice of a unique basis (ei)i2I : It would not hold for
primary observables de�ned through di¤erent bases : they do not even constitute an algebra. Any
von Neumann algebra is the closure of the linear span of its projections (Maths.1190), and any
projection can be de�ned through a basis, thus one can say that the �observables�(with their usual
de�nition) of a system are the collection of all primary observables (as de�ned here) for all bases of
V .

2.2.3 Secondary observables

Beyond primary observables, general observables � can be studied using spectral theory (Maths.13.2).
1. A spectral measure de�ned on a measurable space E with ��algebra �E and acting on the

Hilbert space H is a map : P : �E ! L (H;H) such that :
i) P ($) is a projection
ii) P (E) = Id

iii) 8 2 H the map: $ ! hP ($) ; iH = kP ($) k
2 is a �nite positive measure on (E; �E).

One can show that there is a bijective correspondence between the spectral measures on H and
the maps : � : �E ! H such that :
i) � ($) is a closed vector subspace of H
ii) �(E) = H

iii) 8$;$0 2 �E ; $ \$0 = ? : � ($) \ � ($0) = f0g
then P ($) is the orthogonal projection on �($); denoted : b��($)
Thus, for any �xed  6= 0 2 H the function b� : �E ! R :: b� ($) = hb��($) ; i

k k2 =
kb��($) k2

k k2 is

a probability law on (E; �E).
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2. An application of standard theorems on spectral measures tells that, for any bounded mea-
surable function f : E ! R , the spectral integral :

R
E
f (�) b��(�) de�nes a continuous operator b�f

on H. b�f is such that :
8 ; 0 2 H :

Db�f ( ) ;  0E = RE f (�) 
b��(�) ( ) ;  0�
And conversely for any continuous normal operator b� on H, that is such that :b� 2 L (H;H) : b� � b�� = b�� � b� with the adjoint b��
there is a unique spectral measure P on (R; �R) such that b� = RSp(b�) sP (s) where Sp(b�) � R

is the spectrum of b�:
So there is a map � : �R ! H where �R is the Borel algebra of R such that :
� ($) is a closed vector subspace of H
� (R) = Id
8$;$0 2 �R; $ \$0 = ?) � ($) \ � ($0) = f0g
and b� = R

Sp(b�) sb��(s)
The spectrum Sp(b�) is a non empty compact subset of R: If b� is normal then � 2 Sp(b�), � 2

Sp(b��):
For any �xed  6= 0 2 H the function b� : �R ! R :: b� ($) = hb��($) ; i

k k2 =
kb��($) k2

k k2 is a

probability law on (R; �R).
3. We will de�ne :

De�nition 12 A secondary observable is a linear map � 2 L (V ;V ) valued in a �nite dimen-
sional vector subspace of V , such that b� = � �� ���1 is a normal operator : b� � b�� = b�� � b� with
the adjoint b��
Theorem 13 Any secondary observable � is a compact, continuous map, its associated map b� =
� � � ���1 is a compact, self-adjoint, Hilbert-Schmidt and trace class operator.
� =

Pn
p=1 �pYJp where

�
YJp
�N
p=1

are primary observables associated to a basis (ei)i2I of V and

(Jp)
n
p=1 are disjoint �nite subsets of I

Proof. i) b� (H) is a �nite dimensional vector subspace of H. So :b� has 0 for eigen value, with an in�nite dimensional eigen space Hc:
�; b� are compact and thus continuous.
ii) As b� is continuous and normal, there is a unique spectral measure P on (R; �R) such thatb� = R

Sp(b�) sP (s) where Sp(b�) � R is the spectrum of b�: As b� is compact, by the Riesz theorem
(Maths.1146) its spectrum is either �nite or is a countable sequence converging to 0 (which may
or not be an eigen value) and, except possibly for 0, is identical to the set (�p)p2N of its eigen
values. For each distinct eigen value the eigen spaces Hp are orthogonal and H is the direct sum
H = �p2NHp. For each non null eigen value �p the eigen space Hp is �nite dimensional.
Let �0 be the eigen value 0 of b�: So : b� =Pp2N �pb�Hp

and any vector of H reads :  =
P
p2N  p

with  p = b�Hp
( )

Because b� (H) is �nite dimensional, the spectrum is �nite and the non null eigen values are

(�p)
n
p=1, the eigen space corresponding to 0 is Hc =

�
�np=1Hp

�?
8 2 H :  =  c +

Pn
p=1  p with  p = b�Hp ( ) ;  c = b�Hc ( )b� =Pn

p=1 �pb�Hp

Its adjoint reads : b�� =Pp2N �pb�Hp =
P
p2N �pb�Hp because H is a real Hilbert spaceb� is then self-adjoint, Hilbert-Schmidt and trace class, as the sum of the trace class operatorsb�Hp

:
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iii) The observable reads :
� =

Pn
p=1 �p�p where �p = ��1 � b�Hp � � is the projection on a �nite dimensional vector

subspace of V :
�p � �q = ��1 � b�Hp

�� ���1 � b�Hq
�� = ��1 � b�Hp

� b�Hq
�� = �pq�

�1 � b�Hp
�� = �pq�p

� � �p = �p�p so �p (V ) = Vp is the eigen space of � for the eigen value �p and the subspaces
(Vp)

n
p=1 are linearly independent.
By choosing any basis (ei)i2Jp of Vp; and (ei)i2Jc with J

c = {I
�
�np=1Jn

�
for the basis of Vc =

Span
�
(ei)i2Jc

�
X = YJc (X) +

Pn
p=1 YJp (X)

the observable � reads : � =
Pn
p=1 �pYJp

We have :
YJp (X) =

P
i2Jp

D
�i; bYJp (� (X))E

H
ei

� (X) =
Pn
p=1 �p

P
i2Jp

D
�i; bYJp (� (X))E

H
ei

=
P
i2I

D
�i;
Pn
p=1 �p

bYJp (� (X))E
H
ei

=
P
i2I

D
�i; b� (� (X))E

H
ei

�; b� have invariant vector spaces, which correspond to the direct sum of the eigen spaces.
The probability law b� : �R ! R reads :b� ($) = Pr (�p 2 $) = kb�Hp ( )k2k k2
To sum up :

Theorem 14 For any primary or secondary observable �, there is a basis (ei)i2I of V , a compact,
self-adjoint, Hilbert-Schmidt and trace class operator b� on the associated Hilbert space H such that
: b� = � � � ���1
If the system is in the state X =

P
i2I h�i;�(X)iH ei the value of the observable is :

� (X) =
X
i2I

D
�i; b� (� (X))E

H
ei (2.3)

b� has a �nite set of eigen values, whose eigen spaces (except possibly for 0) are �nite dimensional
and orthogonal. The vectors corresponding to the eigen value 0 are never observed, so it is convenient
to represent the Hilbert space H through a basis of eigen vectors, each of them corresponding to
a de�nite state, which usually can be identi�ed. This is a method commonly used in Quantum
Mechanics, however the vector has also a component in the eigen space corresponding to the null
eigen value, which is not observed but exists. Conversely any observable (on V ) can be de�ned
through an operator on H with the required properties (compact, normal, it is then self-adjoint).
We will come back on this point in the following, when a group is involved.

2.2.4 E¢ ciency of an observable

A crucial factor for the quality and the cost of the estimation procedure is the number of parameters
to be estimated, which is closely related to the dimension of the vector space � (V ) ; which is �nite.
The error made by the choice of � (X) when the system is in the state X is : o� (X) = X �� (X) :
If two observables �;�0 are such that � (V ) ;�0 (V ) have the same dimension, one can say that � is
more e¢ cient than �0 if : 8X : ko� (X)kV � ko�0 (X)kV
To assess the e¢ ciency of a secondary observable � it is legitimate to compare � to the primary

observable YJ with a set J which has the same cardinality as the dimension of �np=1Hp:
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The error with the choice of � is :
o� (X) = X � � (X) = Yc ( ) +

Pn
p=1 (1� �p)Yp ( )

ko� (X)k2V = kYc ( )k
2
V +

Pn
p=1 (1� �p)

2 kYp ( )k2bo� (� (X)) = � (X)� b� (� (X)) = b�Hc
( ) +

Pn
p=1 (1� �p) b�Hp

( )

kbo� (� (X))k2 = kb�Hc
( )k2 +

Pn
p=1 (1� �p)

2 b�Hp
( )
2 = ko� (X)k2V

And for YJ : kboYJ (� (X))k2 = kb�Hc
( )k2 because �p = 1

So :

Theorem 15 For any secondary observable there is always a primary observable which is at least
as e¢ cient.

This result justi�es the restriction, in the usual formalism, of observables to operators belonging
to a von Neumann algebra.

2.2.5 Statistical estimation and primary observables

At �rst the de�nition of a primary observable seems naive, and the previous results will seem
obvious. After all the de�nition of a primary observable requires only the choice of a �nite number
of independent vectors of V . A primary observable is always better than a, more sophisticated,
secondary observable. But we have also to compare a primary observable to what is practically done
in an experiment, where we have to estimate a map from a batch of data.
Consider a model with variables X, maps, belonging to a Hilbert space H (to keep it simple),

from a set M to a normed vector space E, endowed with a scalar product hiE . The physicist has a
batch of data, that is a �nite set fxp 2 E; p = 1:::Ng of N measures of X done at di¤erent points

 = fmp 2M;p = 1:::Ng : of M : xp = X (mp) : The estimated map bX should be a solution of the
collection of equations : xp = X (mp) where xp;mp are known.
The evaluation maps is the collection of maps E (m) on H :
E (m) : H ! E :: E (m)Y = Y (m)
Because H and E are vector spaces E (m) is a linear map : E (m) 2 L (H;E), depending on both

H and E. It can be continuous or not.
The set of solutions of the equations, that is of maps Y of H such that 8mp 2 
 : Y (mp) = xp

is :
A = \mp2
E (mp)

�1
(xp)

Y 2 A, 8m 2 
 : Y (m) = X (m)
It is not empty because it contains at least X. Its closed convex hull is the set B in H :
8Z 2 B : 9� 2 [0:1] ; Y; Y 0 2 A : Z = �Y + (1� �)Y 0
) 8m 2 
 : Z (m) = xp
B is the smallest closed set of H such that all its elements Z are solutions of the equations :

8p = 1::N : Z (mp) = xp:
If we specify an observable, we restrict X to a �nite dimensional subspace HJ � H: With

the evaluation map EJ on HJ we can consider the same procedure, but then usually AJ = ?:
The simpli�cation of the map to be estimated as for consequence that there is no solution to the
equations. So the physicist uses a statistical method, that is a map which associates to each batch
of data X (
) a map ' (X (
)) = bX 2 HJ : Usually bX is such that it minimizes the sum of the

distance between points in E :
P
m2


 bX (m)� xp
E
(there can be additional conditions).

The primary observable � gives another solution : � (X) is the orthogonal projection of X on
the Hilbert space HJ ; it is such that it minimizes the distance between maps :
8Z 2 HJ : kX � ZkH � kX � � (X)kH :
� (X) always exist, and does not depend on the choice of an estimation procedure ': � (X)

minimizes the distance between maps in H, meanwhile ' (X (
)) minimizes distance between points
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in E. Usually ' (X (
)) is di¤erent from � (X) and � (X) is a better estimate than bX : a primary
observable is actually the best statistical estimator for a given size of the sample. But it requires the
explicit knowledge of the scalar product and HJ : This can be practically done in some signi�cant
cases (see for an example J.C.Dutailly Estimation of the probability of transitions between phases).
Knowing the estimate bX provided by a statistical method '; we can implement the previous

procedure to the set bX (
) and compute the set of solutions : bA = \mp2
EJ (mp)
�1
� bX (m)� : It is

not empty. Its closed convex hull bB in HJ is the domain of con�dence of bX : they are maps which

take the same values as bX in 
 and as a consequence give the same value to
P
m2


 bX (m)� xp
E
:

Because bB is closed and convex there is a unique orthogonal projection Y of X on bB and :

8Z 2 bB : kX � ZkH � kX � Y kH ) X � bX
H
� kX � Y kH

so Y is a better estimate than ' (X (
)) ; and can be computed if we know the scalar product
on H.
We see clearly the crucial role played by the choice of a speci�cation. But it leads to a more

surprising result, of deep physical meaning.

2.2.6 Quantization of singularities

A classic problem in Physics is to prove the existence of a singular phenomenon, appearing only for
some values of the parameters m. To study this problem we use a model similar to the previous one,
with the same notations. But here the variable X is comprised of two maps, X1; X2 with unknown,
disconnected, domains M1;M2 :M =M1 +M2: The �rst problem is to estimate X1; X2:
With a statistical process ' (X (
)) it is always possible to �nd estimations bX1; bX2 of X1; X2:

The key point is to distinguish in the set 
 the points which belong to M1 and M2: There are
2N�1 � 1 distinct partitions of 
 in two subsets 
1 + 
2; on each subset the statistical method '
gives the estimates :bY1 = ' (X (
1)) ; bY2 = ' (X (
2))
Denote : � (
1;
2)
=
P
mp2
1 kX (mp)� ' (X (
1)) (mp)k+

P
mp2
2 kX (mp)� ' (X (
2)) (mp)k

A partition (
1;
2) is said to be a better �t than (
01;

0
2) if :

� (
1;
2) � � (
01;
02)
Then bX1 = ' (X (
1)) ; bX2 = ' (X (
2)) is the solution for the best partition.
So there is a procedure, which provides always the best solution given the data and '; but it

does not give M1;M2 precisely, their estimation depends on the structure of M .
However it is a bit frustrating, if we want to test a law, because the procedure provides always

a solution, even if actually there is no such partition of X. And this can happen. If we de�ne the
sets as above with the evaluation map : EJ (m) : HJ ! E :: E (m)Y = Y (m)

Ak = \mp2
kE (mp)
�1
� bXk (mp)

�
� HJ for k = 1; 2. It is not empty because it contains at leastbXk.

Bk the closed convex hull of Ak in HJ

Then : 8Y 2 Bk;m 2 
k : Y (m) = bXk (m)
If B1 \ B2 6= ? there is at least one map, which can be de�ned uniquely on M , belongs to HJ

and is equivalent to bX1; bX2:
This issue is of importance because many experiments aim at proving the existence of a spe-

cial behavior. We need, in addition, a test of the hypothesis (denoted H0) : there is a partition
(and then the best solution would be bX1; bX2) against the hypothesis (denoted H1) there is no
partition : there is a unique map bX 2 HJ for the domain 
: The simplest test is to compareP
mp2
 kX (mp)� ' (
) (mp)k to � (
1;
2) : If ' (
) gives results as good as bX1; bX2 we can reject

the hypothesis. Notice that it accounts for the properties assumed for the maps in HJ : For instance
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if HJ comprise uniquely continuous maps, then ' (X (
)) is continuous, and clearly distinct from
the maps bX1; bX2 continuous only on M1;M2:
It is quite obvious that the e¢ ciency of this test decreases with N : the smaller N , the greater

the chance to accept H0. Is there a way to control the validity of an experiment ? The Theory of
Tests, a branch of Statistics, studies this kind of problems.
The problem is, given a sample of points 
 = (mp)

N
p=1 and the corresponding values x = (xp)

N
p=1 ;

decide if they obey to a simple (X, Hypothesis H1) or a double (X1; X2; Hypothesis H0) distribution
law.
The choice of the points (mp)

N
p=1in a sample is assumed to be random : all the points m of M

have the same probability to be in 
; but the size of M1;M2 can be di¤erent, so it could give a
di¤erent chance for a point of M1 or M2 to be in the sample. Let us say that :
Pr (m 2M1jH0) = 1� �;Pr (m 2M2jH0) = �;Pr (m 2M jH1) = 1
(all the probabilities are for a sample of a given size N)
Then the probability for any vector of E to have a given value x depends only on the map X :

this is the number of points m of M for which X (m) = x: For instance if there are two points m
with X(m) = x then x has two times the probability to appear, and if X is more concentrated in
an area of E, this area has more probability to appear. Let us denote this value � (x) 2 [0; 1] :
Rigorously, with a measure dx on E, � on M , � (x) dx is the pull-back of the measure � on M .

For any $ belonging to the Borel algebra �E of E :R
$
� (x) dx =

R
E(m)�1($) � (m), � (x) dx = X��

If H1 is true, the probability Pr (xjH1) = � (x) depends only on the value x; that is of the map
X.
If H0 is true the probability depends on the maps and if m 2M1 or m 2M2 (M =M1 +M2)
Pr (xjH0 ^m 2M1) = �1 (x)
Pr (xjH0 ^m 2M2) = �2 (x)
) Pr (xjH0) = (1� �) �1 (x) + ��2 (x)
Moreover we have with some measure dx on E :R
E
� (x) dx =

R
E
�1 (x) dx =

R
E
�2 (x) dx = 1

The likehood function is the probability of a given batch of data. It depends on the hypothesis :

L (xjH0) = Pr (x1; x2; :::xN jH0) =
NY
p=1

((1� �) �1 (xp) + ��2 (xp))

L (xjH1) = Pr (x1; x2; :::xN jH1) =

NY
p=1

� (xp)

The Theory of Tests gives us some rules (see Kendall t.II). A critical region is an area w � EN

such that H0 is rejected if x 2 w. One considers two risks :
- the risk of type I is to wrongly reject H0: It has the probability : � = Pr(x 2 wjH0)
- the risk of type II is to wrongly accept H0: It has the probability : 1�� = Pr(x 2 EN �wjH0)

called the power of the test thus :
� = Pr(x 2 wjH1)
A simple rule, proved by Neyman and Pearson, says that the best critical region w is de�ned by

:
w =

n
x : L(xjH0)

L(xjH1)
� k

o
the scalar k being de�ned by : � = Pr(x 2 wjH0): So we are left with a single parameter �;

which can be seen as the rigor of the test.
The critical area w � EN is then :

w =

(
x 2 EN :

NY
p=1

((1��)�1(xp)+��2(xp))
�(xp)

� k
)

with :
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� =
R
w

NY
p=1

((1� �) �1 (�p) + ��2 (�p)) (d�)N

It provides a reliable method to build a test, but requires to know, or to estimate, �; �1; �2; �:
In most of the cases encountered, actually one looks for an anomaly.
H1 is unchanged, there is only one map X;de�ned over M . Then : Pr (xjH1) = � (x)

H0 becomes :
M =M1 +M2

Pr (m 2M1jH0) = 1� �;Pr (m 2M2jH0) = �

On M1 the variable is X :
Pr (xpjH0 ^mp 2M1) = � (x)) Pr (xpjH0) = (1� �) � (x)
On M2 the variable becomes X2

Pr (xpjH0 ^mp 2M2) = �2 (x)) Pr (xpjH0) = ��2 (x)

And w is :

w =

(
x 2 EN :

NY
p=1

((1��)�(xp)+��2(xp))
�(xp)

� k
)

w =

(
x 2 EN :

NY
p=1

�
1� �+ ��2(xp)�(xp)

�
� k

)

� =
R
w

NY
p=1

((1� �) � (xp) + ��2 (xp)) (dx)N

� = Pr(x 2 wjH1) =
R
w

 
NY
p=1

� (xp)

!
(dx)

N

If there is one observed value such that � (xp) = 0 then H0 should be accepted. But, because
�; �2 are not well known, and the imprecision of the experiments, H0 would be proven if

L(xjH0)
L(xjH1)

> k

for a great number of experiments. So we can say that H0 is scienti�cally proven if :

8 (x1; x2; :::xN ) :
NY
p=1

�
(1� �) + ��2(xp)�(xp)

�
> k

By taking x1 = x2 = ::: = xN = x :

8x : (1� �) + ��2(x)�(x) > k1=N

�2(x)
�(x) >

�
k1=N + �� 1

�
=�

When N !1 : k1=N ! 1) �2(x)
�(x) > 1

So a necessary condition to have a chance to say that a singularity has been reliably proven is
that : 8x : �2(x)�(x) > 1:

The function �2(x)
�(x) can be called the Signal to Noise Ratio, by similarity with the Signal Theory.

Notice that we have used very few assumptions about the variables. And we can state :

Theorem 16 In a system represented by variables X which are maps de�ned on a set M and valued
in a vector space E, a necessary condition for a singularity to be detected is that the Signal to Noise
Ratio is greater than 1 for all values of the variables in E.

This result can be seen the other way around : if a signal is acknowledged, then necessarily it
is such that �2(x)

�(x) > 1: Any other signal would be interpreted as related to the imprecision of the
measure. So there is a threshold under which phenomena are not acknowledged, and their value is
necessarily above this threshold. The singular phenomena are quantized.
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2.2.7 Observables de�ned by distributions

A measure is, in one way or another, the result of an experiment in which the unknown variable X
acts on some known other variables ' to produce a �nite number of data. For instance a �eld is
measured by testing the behavior of known particles. We can model this measure as follows :

The variable X 2 V belongs to a vector space of maps, the �test functions�' 2 W belongs to
a vector space of maps W; with all the nice properties that we wish (they are smooth, compactly
supported, and de�ned by a small number of parameters), the result of the experiment is expressed
as a linear map :

T : V �W ! F :: T (X) (') = u

where F is a �nite dimensional vector space. T is linear and continuous in both variables.

The observable is then T (X) : Because ' is known and simple, and F �nite dimensional it is
expected that we have a good knowledge of X by doing enough experiments.

When X;' are scalar complex functions de�ned on some manifold M; then T (X) 2 W 0 : it
belongs to the topological dual of W; and it can be shown that in the most general cases T can be
expressed by an integral :

T (X) (') =
R
M
X (m)' (m)� (m)

with some �xed measure � on M . Then T (X) is called a �distribution�(or �generalized func-
tion�). And this can be extended to the case of maps X 2 C (M ;L (E;F )) ; ' 2 C1;c (M ;E) : at
each point m 2 M the quantity X (m) (' (m)) is a vector u (m) of F and the integral is a vector
of F: The key point in the de�nition is that T (X) becomes a linear map, valued in F; and acting
on the vector space C1;c (M ;E) of smooth and compactly supported maps on M valued in E. In
Mathematics the interest of distributions is that they enable to extend some operations (such as
derivation) to any function (see Maths.7.2.2). But they have a physical meaning.

In our models the variables are maps, de�ned at any point of M , we can expect to measure
their values x1; :::xN at some points m1; :::mN and, using a speci�cation and a statistical method,
estimate X: However a measure, as any experiment, is not done at a point (that is at a de�nite place
and time), but in the neighborhood of a point and a short period of time. The test function ' is
assumed to be compactly supported, which means that it is null outside of a compact area ! around
a point. And to assign a value T (X) to the observable states that, whatever the test function ';
the result will be given by

R
M
X (m) (' (m))� (m) : It is then customary to write : T (X) = X that

is to identify the variable X with the linear operator T (X) ; and the identi�cation is understood �in
the meaning of distributions�.

The interest of this construct is that one meets equations of the kind X = Y where X;Y are
de�ned on the same set M; and valued in the same vector space, but with di¤erent support. If Y is
null out of a line N , then X should be null on the line, which is usually impossible if it is continuous,
or worse smooth. By understanding the equation in the meaning of distributions we state that :

8' :
R
M
X (m) (' (m))� (m) =

R
N
Y (m) (' (m))� (m)

Whatever the physical measure of the variables X;Y we get the same result.

The set C1;c (M ;E) is chosen by the Physicist, it is as nice as he wishes and we can assume
that this is a �nite dimensional Hilbert space, as well as F Then, if X meets the conditions 1 there
is an associated vector �(X) 2 H and bT (� (X)) is a linear map : bT : H � C1;c (M ;E) ! F ::bT (� (X)) (') = T (X) (')bT �� = T , bT = T ���1bT is a linear map between Hilbert spaces, and its restriction to any �nite dimensional vector space
HJ is de�ned by a �nite number of parameters. This is equivalent to take T (YJ) as observable, with
a primary observable YJ of X:
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2.2.8 Structure de�ned by an observable

Let a model with variables X 2 O � V meeting the conditions 1. Then, for any occurrence of X a
primary observable de�nes a map :

YJ (X) =
P
i2J

D
�i; bYJ (� (X))E

H
ei

with p = card (J) real parameters x = (xj)j2J : xj =
D
�j ; bYJ (� (X))E

H
: Or equivalently a map

fJ : O ! Rp :: fJ (X) = x: Because bYJ is compact the image bOJ = fJ (O) is an open subset of Rp:
Conversely, for any set x of parameters such that x 2 bOJ the map cXj (x) =

P
j2J xjej provides

an estimate of X; a map de�ned by p scalars which can be used in other problems.
Primary observables, as well as the maps fJ ;cXj are uniquely de�ned by the choice of p linearly

independent vectors (ej)j2J 2 V J : If we denote Fp the set of all maps fJ for all possible primary
observables and Cp the set of all associated maps cXJ : Rp ! V such that cXJ (x) 2 O; then the
triple (O;Cp; Fp) de�ne a p-structure on the model 2 , which is linear : the model is characterized
by p scalars.
8X 2 O : cXJ � fJ (X) = YJ (X)

8x 2 bO : fJ � cXJ (x) = x
However this structure has 2 limitations.
i) For a given set (ej)j2J ; the map YJ (X) is an optimal estimator of X but there is a discrepancy

between X and YJ (X) : It would be useful to know more about the quality of the estimation, and
how it depends on the choice of (ej)j2J : This point is addressed in the next section.
ii) A state of the system is represented by a single vector  = �(X) 2 H but can provide

in�nitely many observations. If X :M ! RN is a map over some set M , then the observations are
done at points m1; :::mn with any n 2 N: The vectors X (m1) ; :::; X (mn) are not related to a Hilbert
space. As a consequence there is no relation between p in the de�nition of a primary observable, and
n, the number of available data. We can guess that the larger p, the better it will be to �t a large
number of observations with YJ (X) : The �wave function�provides a general answer. And when the
variables depend on a scalar variable, as in a system depending on time, we have important results.
They are seen in the next sections.

2The de�nition is an extenstion based on the paper �Smooth structures on �ber jet spaces�by Jan Slovak.
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2.3 PROBABILITY

One of the main purposes of the model is to know the state X, represented by some vector  2 H:
The model is fully determinist, in that the values of the variables X are not assumed to depend
on a speci�c event : there is no probability law involved in its de�nition. However the value of X
which will be acknowledged at the end of the experiment, when all the data have been collected
and analyzed, di¤ers from its actual value. The discrepancy stems from the usual imprecision of
any measure, but also more fundamentally from the fact that we estimate a vector in an in�nite
dimensional vector space from a batch of data, which is necessarily �nite. We will focus on this later
aspect, that is on the discrepancy between an observable � (X) and X.
In any practical physical experiment the estimation of X requires the choice of an observable.

The most e¢ cient solution is to choose a primary observable which, furthermore, provides the best
statistical estimator. However usually neither the map � nor the basis (ei)i2I are explicit, even if
they do exist. An observable � can be de�ned simply by choosing a �nite number of independent
vectors, and it is useful to assess the consequences of the choice of these vectors. So we can look at
the discrepancy X � � (X) from a di¤erent point of view : for a given, �xed, value of the state X,
what is the uncertainty which stems from the choice of � among a large class of observables ? This
sums up to assess the risk linked to the choice of a speci�cation for the estimation of X.

2.3.1 Primary observables

Let us start with primary observables : the observable � is some projection on a �nite dimensional
vector subspace of V .
The bases of the vector space V0 (such that O � V0) have the same cardinality, so we can consider

that the set I does not depend on a choice of a basis. The set 2I of all subsets of I is the largest
��algebra on I. The set

�
I; 2I

�
is measurable.

For any �xed  6= 0 2 H the functionb� : 2I ! R :: b� (J) = hbYJ ; ik k2 =
kbYJ k2
k k2

is a probability law on
�
I; 2I

�
: it is positive, countably additive and b� (I) = 1 (on Probability

Maths.11.4).
The choice of a �nite subset J 2 2I can be seen as an event from a probabilist point of view. For

a given  6= 0 2 H the quantity bYJ ( ) is a random variable, with a distribution law b� 
The operator bYJ has two eigen values : 1 with eigen space bYJ (H) and 0 with eigen space bYJc (H)

. Whatever the primary observable, the value of � (X) will be YJ (X) for some J , that is an eigen
vector of the operator � = YJ ; and the probability to observe � (X) , if the system is in the state
X, is :

Pr (� (X) = YJ (X)) = Pr (J j ) = b� (J) = kbYJ k2k k2 =
kb�(�(X))k2

H

k�(X)k2H
This result still holds if another basis had been chosen : � (X) will be YJ (X) for some J;

expressed in the new basis, but with a set J of same cardinality. And some speci�cation must
always be chosen. So we have :

Theorem 17 For any primary observable �, the value � (X) which is measured is an eigen vector
of the operator �; and the probability to measure a value � (X) if the system is in the state X is :

Pr (� (X) jX) =

b� (� (X))2
H

k�(X)k2H
(2.4)

2.3.2 Secondary observables

For a secondary observable, as de�ned previously :
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� =
Pn
p=1 �pYJpb� =Pn
p=1 �pb�Hp

The vectors decompose as :
X = YJc (X) +

Pn
p=1Xp

with Xp = YJp (X) =
P
i2Jp

D
�i; bYJp (� (X))E

H
ei 2 Vp

�(X) =  =  c +
Pn
p=1  p with  p = b�Hp

( ) ;  c = b�Hc
( )

where  pis an eigen vector of b�; Xp is an eigen vector of � both for the eigen value �p
and
� (X) =

Pn
p=1 �pXpb� ( ) =Pn
p=1 �p p

If, as above, we see the choice of a �nite subset J 2 2I as an event in a probabilist point of view
then the probability that � (X) = �pXp if the system is in the state X, is given by Pr (JpjX) =
kbYp k2
k k2 =

k pk2
k k2

And we have :

Theorem 18 For any secondary observable �; the value � (X) which is observed if the system is
in the state X is a linear combination of eigen vectors Xp of � for the eigen value �p: � (X) =Pn
p=1 �pXp

The probability that � (X) = �pXp is:

Pr (� (X) = �pXpjX) =
k�(Xp)k2

k�(X)k2
(2.5)

Which can also be expressed as : � (X) can take the values �pXp; each with the probability
k pk2
k k2 ; then � (X) reads as an expected value. This is the usual way it is expressed in QM.
The interest of these results comes from the fact that we do not need to explicit any basis, or

even the set I. And we do not involve any speci�c property of the estimator of X, other than � is
an observable. The operator b� sums up the probability law. It gives a - theoretical - answer to the
question of the quality of an observable, that is how close its result � (X) is from X: The quantity

Pr (� (X) jX) = k
b�(�(X))k2

H

k�(X)k2H
can be seen as a proxy for such an indicator. Its value depend on b�

and X: The larger the set b� (� (O)) the better : the quality of a primary observable increases with
card(J):
This result can be seen another way : as only � (X) can be accessed, one can say that the system

takes only the states � (�pXp) ; with a probability
k pk2
k k2 : This gives a probabilistic behavior to the

system (X becoming a random variable) which is not present in its de�nition, but is closer to the
usual interpretation of QM.
This result can be illustrated by a simple example. Let us take a model where a function x is

assumed to be continuous and take its values in R: It is clear that any physical measure will at
best give a rational number Y (x) 2 Q up to some scale. There are only countably many rational
numbers for unaccountably many real scalars. So the probability to get Y (x) 2 Q should be zero.
The simple fact of the measure gives the paradox that rational numbers have an incommensurable
weight, implying that each of them has some small, but non null, probability to appear.

2.3.3 Wave function

The wave function is a central object in QM, but it has no general de�nition and is deemed non
physical (except in the Bohm�s interpretation). Usually this is a complex valued function, de�ned over
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the space of con�guration of the system : the set of all possible values of the variables representing
the system. If it is square integrable, then it belongs to a Hilbert space, and can be assimilated to
the vector representing the state. Because its arguments comprise the coordinates of objects such as
particles, it has a value at each point, and the square of the module of the function is proportional to
the probability that the measure of the variable takes the values of the arguments at this point. Its
meaning is relatively clear for systems comprised of particles, but less so for systems which include
force �elds, because the space of con�guration is not de�ned. But it can be precisely de�ned in our
framework.

Theorem 19 In a system modelled by N variables, collectively denoted X, which are maps : X :
M ! F from a common measured setM to a �nite dimensional normed vector space F and belonging
to an open subset of an in�nite dimensional, separable, real Fréchet vector space V , such that the
evaluation map : E (m) : V ! F :: E (m) (X) = X (m) which assigns at any X its value in a �xed
point m inM is measurable : then for any state X of the system there is a function : W :M�F ! R
such that W (m; y) = Pr (� (X) (m) = yjX) is the probability that the measure of the value of any
primary observable � (X) at m is y.

Proof. The conditions 1 apply, there is a Hilbert space H and an isometry � : V ! H:
To the primary observable � : V ! VJ is associated the self-adjoint operator b� = � � � ���1
We can apply the theorem 17 : the probability to measure a value � (X) = Y if the system is in

the state X is :

Pr (� (X) = Y jX) = k
b�(�(Y ))k2

H

k�(X)k2H
= � (Y )

Because only the maps belonging to VJ are observed it provides a probability law � on the set
VJ : � : V� ! [0; 1] where V� is the Borel algebra of VJ .
The evaluation map : EJ (m) : VJ ! F :: EJ (m) (Y ) = Y (m) assigns at any Y 2 VJ its value at

the �xed point m in M .
If y 2 F is a given vector of F , the set of maps in VJ which gives the value y in m is :

$ (m; y) = EJ (m)�1 (y) � VJ :
The probability that the observable takes the value y at m � (X) (m) = y is

� ($ (m; y)) = �
�
EJ (m)�1 (x)

�
= 1

k�(X)k2H

R
Y 2$(m;y)

b� (� (Y ))2
H
� (Y ) =W (m; y)

If M is endowed with a positive measure � and X is a scalar function, the space V of square
integrable maps

R


jX (m)j2 � (m) < 1 is a separable Hilbert space H, then the conditions 1 are

met and H can be identi�ed with the space of the states.

W (m; y) = 1
kXk2H

R
Y 2$(m;y) jY j

2
H =

�R


jXj2 �

��1
�
�
Y �1 (m; y)

�
No structure, other than the existence of the measure �, is required on M . But of course if the

variables X include derivatives M must be at least a di¤erentiable manifold.
W can be identi�ed with the square of the wave function of QM.
The function W provides the mean to address the quality of an observable, when the data are

measures done at a collection of points m1; ::mn:
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2.4 CHANGE OF VARIABLES

In the conditions 1 the variables can be de�ned over di¤erent connected domains. Actually one
can go further and consider the change of variables, which leads to a theorem similar to the well
known Wigner�s theorem. The problem appears in Physics in two di¤erent ways, which re�ect the
interpretations of Scienti�c laws.

2.4.1 Two ways to de�ne the same state of a system

The �rst way : from a theoretical model

In the �rst way the scientist has built a theoretical model, using known concepts and their usual
representation by mathematical objects. A change of variables appears notably when :
i) The variables are the components of a geometric quantity (a vector, a tensor,...) expressed in

some basis. According to the general Principle of Relativity, the state of the system shall not depend
on the observers (those measuring the coordinates). For instance it should not matter if the state of
a system is measured in di¤erent units. The data change, but according to rules which depend on
the mathematical representation which is used, and not on the system itself. In a change of basis,
coordinates change but they represent the same vectorial quantity.
ii) The variables are maps, depending on arguments which are themselves coordinates of some

event : Xk = Xk (�1; :::�pk) : Similarly these coordinates � can change according to some rules, while
the variable Xk represents the same event.
By de�nition in both cases there is a continuous bijective map U : V ! V 0 such that X and

X 0 = U(X) represent the same state of the system. This is the way mathematicians see a change of
variables, and is usually called the passive way by physicists.
Any primary or secondary observable � is a linear map � 2 L (V ;W ) into a �nite dimensional

vector subspace W . For the new variable the observable is �0 2 L (V ;W 0) : Both W;W 0 � V but
W 0 is not necessarily identical to W . However the assumption that X 0 = U(X) and X represents
the same state of the system implies that for any measure of the state we have a similar relation :
�0 �U (X) = U �� (X), �0 �U = U ��. This is actually the true meaning of �represent the same
state�. This means that actually one makes the measures according to a �xed procedure, given by
�; on variables which vary with U . Because U is a bijection on V : �0 = U � � � U�1 .

The second way : from experimental measures

In the second way the scientist makes measures with a device that can be adjusted according to
di¤erent values of a parameter, say � : often it is the orientation of the device which can be changed.
And the measures Y (�) which are taken are related to the choice of parameter for the device. If the
results of experiments show that Y (�) = Q (�)Y (�0) with a bijective map Q (�) and �0 some �xed
value of the parameter one can assume that this experimental relation is a feature of the system
itself.
Physicists distinguish a passive transformation, when only the device changes, and an active

transformation, when actually the experiment involves a physical change on the system. In a passive
transformation we come back to the �rst way and it is legitimate to assume that we have actually the
same state, represented by di¤erent data, re�ecting some mathematical change in their expression,
even if the observable, which is valued in a �nite dimensional space, does not account for all the
possible values of the variables. In an active transformation (for instance in the Stern-Gerlach
experiment one changes the orientation of a magnetic �eld to which the particles are submitted) one
can say that there is some map U acting on the space V of the states of the system, such that the
measure is done by a unique procedure e� on a state X which is changed by a map U (�) : So that
the measures are Y (�) = e� � U (�)X and the relation Y (�) = Q (�)Y (�0) reads : e� � U (�) (X) =
U (�) � e� (X) : So this is very similar to the �rst case, where � represents the choice of a frame.
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In both cases there is the general idea that the state of the system is represented by some �xed
quantity, which can be measured by di¤erent procedures, so that there is a relation, given by the
way one goes from one procedure to the others, between the measures of the state. In the �rst
way the conclusion comes from the mathematical de�nition in a theoretical model : this is a simple
mathematical deduction using the Principle of Relativity. In the second way there is an assumption
: that one can extend the experimental facts, necessarily limited to a �nite number of data, to the
whole set of possible values of the variable.
The Theorem 2 is based on the existence of a Fréchet manifold structure on the set of possible

values of the maps X. The same manifold structure can be de�ned by di¤erent, compatible, atlas.
So the choice of other variables can lead to the same structure, and the �xed quantity that we
identify with a state is just a point on the manifold, and the change of variables is a change of charts
between compatible atlas. The variables must be related by transition maps, that is continuous
bijections, but additional conditions are required, depending on the manifold structure considered.
For instance for di¤erentiable manifolds the transition maps must be di¤erentiable. We will request
that the transition maps preserve the positive kernel, which plays a crucial role in Fréchet manifolds.

2.4.2 Fundamental theorem for a change of variables

We will summarize these features in the following :

Condition 20
i) The same system is represented by the variables X = (X1; :::XN ) and X 0 = (X 0

1; :::X
0
N 0) which

belong to open subsets O,O0 of the in�nite dimensional, separable, Fréchet vector space V .
ii) There is a continuous map U : V ! V; bijective on (O;O0) ; such that X and X 0 = U(X)

represent the same state of the system
iii) U preserves the positive kernel on V 3

iv) For any observable � of X, and �0 of X 0 : �0 � U = U � �

The map U shall be considered as part of the model, as it is directly related to the de�nition of
the variables, and is assumed to be known. There is no hypothesis that it is linear.

Theorem 21 Whenever a change of variables on a system meets the conditions 20 above,
i) there is a unitary, linear, bijective map bU 2 L (H;H) such that : 8X 2 O : bU (� (X)) =

� (U (X)) where H is the Hilbert space and � is the linear map : � : V ! H associated to X;X 0

ii) U is necessarily a bijective linear map.
For any observables �; �0:
iii) W 0 = �0 (V ) is a �nite dimensional vector subspace of V , isomorphic to W = �(V ) : W 0 =

U (W )

iv) the associated operators b� = ������1; b�0 = ���0���1are such that : b�0 = bU � b�� bU�1and
H 0
�0 =

b�0 (H) is a vector subspace of H isomorphic to H� = b� (H)
Proof. i) Let V0 = O [ O0: This is an open set and we can apply the theorem 2. There is a
homeomorphism � : V0 ! H0 where H0 is an open subset of a Hilbert space H. For a basis (ei)i2I
of Span (V0) there is an isometry � such that :
� : V0 ! H0 :: � (Y ) =

P
i2I h�i;�(Y )iH "i

8i 2 I : "i = �(ei) ;
8i; j 2 I : h�i; "jiH = �ij ;
ii) �de�nes a positive kernel on V0 : KV (Y1; Y2) = h�Y1;�Y2iH
The sets (V0;�;H) and (V0;�U;H) are two realizations triple of KV : Then there is an isometry

' such that :.

3The positive kernel plays a role similar to the probability of transition between states of the Wigner�s Theorem.
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�U = ' �� (Maths.III.13.4)
hUX1; UX2iV = h�UX1;�UX2iH = h' ��X1; ' ��X2iH
= h�X1;�X2iH = hX1; X2i
So U preserves the scalar product on V
Let be : bU = � � U ���1DbU 1; bU 2E

H
=


� � U �

�
��1 1

�
;� � U �

�
��1 2

��
H

=


U �

�
��1 1

�
; U �

�
��1 2

��
V
=

�
��1 1

�
;
�
��1 2

��
V

= h 1;  2iH
So bU preserves the scalar product on H
iii) As seen in Theorem 3 starting from the basis ("i)i2I of H one can de�ne a Hermitian basis

(e"i)i2I of H, an orthonormal basis (eei)i2I of V for the scalar product KV = hiV with eei = ��1 (e"i)
U is de�ned for any vector of V , so for (eei)i2I of V .
De�ne : bU (e"i) = bU (� (eei)) = � (U (eei)) = e"0i
The set of vectors (e"0i)i2I is an orthonormal basis of H:
e"0i; e"0j�H = DbU (� (eei)) ; bU (� (eej))EH = heei; eejiV = �ij

The map : � : `2 (I) ! H :: � (y) =
P
i2I yie"0i is an isomorphism (same as in Theorem 3) and

(e"0i)i2I is a Hilbertian basis of H. So we can write :
8 2 H :  =

P
i2I  

ie"i; bU ( ) =Pi2I  
0ie"0i

and :  i = he"i;  iH = DbU (e"i) ; bU ( )E
H
=
De"0i;Pj2I  

0je"0jE
H
=  0i

Thus the map bU reads : bU : H ! H :: bU �Pi2I  
ie"i� =Pi2I  

ie"0i
It is linear, continuous and unitary :

DbU ( 1) ; bU ( 2)E = h 1;  2i and bU is invertible

U = ��1 � bU �� is linear and bijective
iv) For any primary or secondary observable � there is a self-adjoint, Hilbert-Schmidt and trace

class operator b� on the associated Hilbert space H such that : b� = ������1: For the new variable
the observable is �0 2 L (V ;W 0) and W 0 � V is not necessarily identical to W . It is associated to
the operator : b�0 = � � �0 ���1: W and W 0 are �nite dimensional vector subspaces of V .266666666664

� U �0

W    V ! ! ! V ! ! ! W 0

# # # #
# � # � � # � #
# b� # bU � c�0 �
H�    H ! ! ! H ! ! ! H�0

377777777775
Because U is a bijection on V : �0 � U = U � �) �0 = U � � � U�1 and V is globally invariant

by U
�0 (V ) =W 0 = U � � � U�1 (V ) = U � � (V ) = U (W )
thus W 0 is a vector subspace of V isomorphic to Wb�0 = � � �0 ���1 = � � U � � � U�1 ���1 = bU �� � � ���1 � bU�1 = bU � b� � bU�1
Let us denote : b� (H) = H�; b�0 (H) = H�0bU (H) = H because it is a unitary mapb�0 (H) = bU � b� � bU�1 (H) = bU � b� (H) = bU (H�) = H�0

thus H�0 is a vector subspace of H isomorphic to H�

As a consequence the map U is necessarily linear, even if this was not assumed in the conditions
20 : variables which are not linearly related (in the conditions 20) cannot represent the same state.
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As bU is unitary, it cannot be self adjoint or trace class (except if U = Id). So it di¤ers from an
observable.

2.4.3 Change of units

A special case of this theorem is the choice of units to measure the variables. A change of units is a
map : X 0

k = �kXk with �xed scalars (�k)
N
k=1 : As we must have :

hU (X1) ; U (X2)iV = hX1; X2iV =
PN
k=1 �

2
k hX1; X2iV = hX1; X2iV )

PN
k=1 �

2
k = 1

it implies for any single variable Xk : �k = 1: So the variables in the model should be dimen-
sionless quantities. This is in agreement with the elementary rule that any formal theory should not
depend on the units which are used.
More generally whenever one has a law which relates quantities which are not expressed in the

same units, there should be some fundamental constant involved, to absorb the discrepancy between
the units. For instance some Physicals laws involve an exponential, such as the wave equation for a
plane wave :

 = exp i
�D�!

k ;�!r
E
�$t

�
They require that the argument in the exponential is dimensionless, and because �!r is a length

and t a time we should have a fundamental constant with the dimension of a speed (in this case c).
But also it implies that there should be some �universal system of units� (based on a single

quantity) in which all quantities of the theory can be measured. In Physics this is the Planck�s
system which relates the units of di¤erent quantities through the values of the fundamental constants
c, G (gravity), R (Boltzmann constant), ~; and the charge of the electron (see Wikipedia for more).
Usually the variables are de�ned with respect to some frame, then the rules for a change of frame

have a special importance and are a de�ning feature of the model. When the rules involve a group,
the previous theorem can help to precise the nature of the abstract Hilbert space H and from there
the choice of the maps X.

2.4.4 Group representation

The theory of group representation is a key tool in Physics. We will remind some basic results here,
see Maths.23 for a comprehensive study of this topic.

Representation

The left action of a group G on a set E is a map :� : G � E ! E :: � (g; x) such that � (gg0; x) =
� (g; � (g0; x)) ; � (1; x) = x: And similarly for a right action � (x; g) :
The representation of a group G is a couple (E; f) of a vector space E and a continuous map

f : G! GL (E;E) (the set of linear invertible maps from E to E) such that :
8g; g0 2 G : f (g � g0) = f (g) � f (g0) ; f (1) = Id) f

�
g�1

�
= f (g)

�1

A representation is faithful if f is bijective.
A vector subspace F is invariant if 8u 2 F; g 2 G : f (g)u 2 F
A representation is irreducible if there is no other invariant subspace than E; 0.
A representation is not unique : from a given representation one can build many others. The

sum of the representations (E1; f1) ; (E2; f2) is (E1 � E2; f1 + f2) :
A representation is unitary if E is a Hilbert space (there is a de�nite positive scalar product on

E) and f (g) is unitary : 8u; v 2 F; g 2 G : hf (g)u; f (g) vi = hu; vi
Any continuous representation (H; f) of a topological group can be decomposed in the sum of

mutually orthogonal irreducible representations : (H; f) = �k (Hk; f) where Hk are orthogonal
subspaces of H: Moreover if G is compact then the Hk are �nite dimensional.
If two groups G;G0 are isomorphic by �, then a representation (E; f) of G provides a represen-

tation of G0:
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� : G0 ! G :: 8g; g0 2 G0 : � (g � g0) = � (g) � � (g0) ;
� (1G0) = 1G ) �

�
g�1

�
= � (g)

�1

f : G! GL (E;E)
De�ne f 0 : G0 ! GL (E;E) :: f 0 (g0) = f (� (g0))
f 0 (g01 � g02) = f (� (g01 � g02)) = f (� (g02)) � f (� (g01)) = f 0 (g01) � f 0 (g02)
Any representation of a group on a �nite dimensional vector space becomes a representation on

a set of matrices by choosing a basis. The representations of the common groups of matrices are
tabulated. In the standard representation (Kn; {) of a group G of n � n matrices on a �eld K the
map { is the usual action of matrices on column vectors in the space Kn:
Two representations (E; f) ; (F; �) of the same group G are equivalent if there is an isomorphism

: � : E ! F such that :
8g 2 G : f (g) = ��1 � � (g) � �
Then from a basis (ei)i2I of E one deduces a basis jei > of F by : jei >= � (ei) : Because � is an

isomorphism jei > is a basis of F . Moreover the matrix of the action of G is in this basis the same
as for (E; f) :

� (g) jei >=
P
j2J [� (g)]

i
j jej >= � (g)� (ei) = � � f (g) (ei)

= �
�P

j2I [f (g)]
j
i ej

�
=
P
p2I [f (g)]

j
i � (ej) =

P
p2I [f (g)]

j
i jej >

[� (g)] = [f (g)]
If K is a subgroup of G, and (E; f) a representation of G, then (E; f) is a subrepresentation of

K.
The vector subspaces F of E which are invariant by K provide representations (F; f) of K.

Lie groups

A Lie group is a group G endowed with the structure of a manifold (Maths.22). On the tangent
space T1G at its unity (that we will denote 1) there is an algebraic structure of Lie algebra, that
we will also denote T1G; endowed with a bracket [] which is a bilinear antisymmetric map on T1G:
The commutation on a group by an element g is the operation : x! g � x � g�1: Its derivative at

x = 1 is the Adjoint map Adg : T1G! T1G:
If G is a Lie group with Lie algebra T1G and (E; f) a representation of G, then (E; f 0 (1)) is a

representation of the Lie algebra T1G :
f 0 (1) 2 L (T1G;L (E;E))
8X;Y 2 T1G : f 0 (1) ([X;Y ]) = f 0 (1) (X) � f 0 (1) (Y )� f 0 (1) (Y ) � f 0 (1) (X)
The converse, from the Lie algebra to the group, holds if G is simply connected, otherwise a

representation of the Lie algebra provides usually multiple valued representations of the group.
Any Lie group G has the adjoint representation (T1G;Ad) over its Lie algebra.
A real �nite dimensional, semi-simple, compact Lie group G has a Killing form which is a bilinear

form, de�nite negative and is preserved by the adjoint map Ad, so its Lie algebra is a Hilbert space,
and G has the unitary representation (T1G;Ad)
Lie algebras of group of matrices are deduced from the standard representation by derivation.

Abelian groups

An abelian group is a commutative group (we will always assume that this is also a topological, �nite
dimensional Lie group, with unity denoted 0). Any n dimensional abelian Lie group over the �eld
K is isomorphic to the product of groups (with addition) : (K=Z)p �Kn�p. So the representations
of abelian groups are modelled on the representations of ((K=Z)m;+) or of (Km;+) : They are both
vector spaces but ((K=Z)m;+) is a compact group. Representations of abelian groups are linked to
the Fourier transform.
Any irreducible, unitary or �nite dimensional, representation (H; f) of an abelian group G is

unidimensional. It can be written as :
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H = fkU; k 2 Kg for some �xed vector U
f (g)u = � (g)u with : � (g + g0) = � (g)� (g0)
If the representation is unitary :
hf (g)u; f (g) vi = hu; vi = � (g)� (g) hu; vi , � (g)� (g) = 1, � (g) 2 U (1) = fexp ix; x 2 Rg
So a unitary irreducible representation is parametrized by a map : � : G! U (1) and the choice

of a vector UbG (called the Pontryagin dual) is the set of continuous morphisms
� : G! U (1) such that � (g + g0) = � (g)� (g0) ; � (0) = 1bG is �xed by G: This is a discrete group if G is compact, a �nite group if G is �nite.
This picture is generalized for any unitary representation, irreducible or not, by using spectral

integrals.
Practically, for vector spaces of maps de�ned over R;we have two cases.
i) Periodic maps : V is a vector space of periodic maps X : R ! E :: X (t+ T ) = X (t) where

T is a �xed scalar, E a vector space endowed with a de�nite positive scalar product. Then X is
de�ned by a Fourier series : it belongs to the Hilbert space H with basis : f"i exp iz$tgz2Zi2I where
("i)i2I is an orthonormal basis of E; and

X (t) =
P
z2Z

bX (z) exp iz$t for a set � bX (z)�
z2Z

of �xed vectors of E :bX (z) = 1
T

R T
0
X (t) exp (�iz$t) dt

If X (t) is real valued, then the formula still holds, with the additional condition :

8n 2 N : bX (�n) = bX (n)
The scalar product is : hX;Y iH = 1

T

R T
0
hX (t) ; Y (t)iE dt =

D bX; bY E =Pz2Z

D bX (z) ; bY (z)E
E

ii) V is a vector space of maps X : R ! E where E is a vector space endowed with a de�nite
positive scalar product, which is globally invariant by the operation : f (�) : V ! V : f (�) (X) (t) =
X (t+ �) for any � �xed. Then necessarily V � L2 (R; dt; E) which is a Hilbert space with scalar
product :
hX;Y i =

R
R hX (t) ; Y (t)iE dt

and we can use all the properties of the Fourier transform.
If X 2 L1 (R; dt; E) then F (X) (x) = bX (x) = 1p

2�

R
RX (t) exp (�itx) dt

4 .

2.4.5 Application to groups of transformations

Change of variable parametrized by a group

This is the usual case in Physics. The second point of view that we have noticed above is clear when
U is de�ned by a group. The system is represented by �xed variables, and the measures are taken
according to procedures which change with g and we have :
� (g) (X) = U (g) � � (1) (X)
� 2 L (V ;W ) and U(g) is a bijection so X and � (1) (X) are in bijective correspondence and X

must belong to W � V : we reduce the de�nition of the states at what can be observed. And to
assume that this is true for any value of g leads to rede�ne X as in the �rst way, but this requires
an additional assumption.

Theorem 22 If the conditions 20 are met, and (V;U) is a representation of the group G, then:
i)
�
H; bU� is a unitary representation of the group G with bU (g) = � � U (g) ���1

ii) For any observable � 2 L (V ;W ) the vector space W � V is invariant by U and (W;U) is a

representation of G, and for the associated operator b� = bU (g) � b� � bU (g)�1 2 L (H;H�) ;
�
H�; bU�

is a �nite dimensional unitary representation of the group G.

4The expression of the Fourier integral depends on the authors. On the properties of the Fourier transform see
Maths.31.
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If G is a Lie group, and U continuous, then :

iii) U is smooth, bU is di¤erentiable and
�bU 0 (1) ;H� is an anti-symmetric representation of the

Lie algebra T1G of G

iv) For any observable � 2 L (V ;W )
�
H�; bU 0 (1)� is an anti-symmetric representation of the

Lie algebra T1G of G

If (F; f) is a unitary representation of G, equivalent to
�
H�; bU� ; and � a primary or secondary

observable, then :
v) The results of measures of � for two values 1; g and the same state of the system are related

by :
� � U (1) (X) =

P
j2J X

j (1) ej ;� � U (g) (X) =
P
j2J X

j (g) ej for some basis (ei)i2I of V

Xj (g) =
P
k2J [f (g)]

j
kX

k (1) where [f (g)] is the matrix of f(g) in orthonormal bases of F
vi) If moreover G is a Lie group and U; f continuous, then the action U 0 (1) (�a) of U 0(1) for

vectors �a of T1G are expressed by the same matrices [Ka] of the action f 0 (1) (�a) :
f 0 (1) (�a) (fj) =

P
k2J [Ka]

k
j fk ! U 0(1) (�a) (ej) =

P
k2J [Ka]

k
j ek

and similarly for the observable � : � � U 0 (1) (�a) (ej) =
P
k2J [Ka]

k
j ek

Proof. i) The map : U : G! GL (V ;V ) is such that : U (g � g0) = U (g) � U (g0) ;U (1) = Id where
G is a group and 1 is the unit in G.
Then U(g) is necessarily invertible, because U

�
g�1

�
= U (g)

�1bU : G! L (H;H) :: bU = � � U ���1 is such that :bU (g � g0) = � � U (g � g0) ���1 = � � U (g) � U (g0) ���1 = � � U (g) ���1 �� � U (g0) ���1 =bU (g) � bU (g0)bU (1) = � � U (1) ���1 = Id

So
�
H; bU� is a unitary representation of the group G (bU (g) is bijective, thus invertible).

ii) For any observable : � � U (g) = U (g) � �; b� = bU (g) � b� � bU (g)�1
Let us take Y 2W = �(V ) : 9X 2 V : Y = �(X)
U (g)Y = U (g) (� (X)) = � (U (g)X) 2 � (V )
And similarlybY 2 b� (H) : 9 2 H : bY = b� ( )bU (g) bY = bU (g)�b� ( )� = b��bU (g) � 2 b� (H)
thus W;H� = b� (H) are invariant by U ,bU
The scalar product on H holds on the �nite dimensional subspace b� (H) ; which is a Hilbert

space.
iii) If G is a Lie group and the map U : G ! L (V ;V ) continuous, then it is smooth, bU is

di¤erentiable and
�bU 0 (1) ;H� is an anti-symmetric representation of the Lie algebra T1G of G :

8� 2 T1G :
�bU 0 (1)��� = ��bU 0 (1)��bU (exp�) = exp bU 0 (1)� where the �rst exponential is taken on T1G and the second on L(H;H).

iv) � is a primary or secondary observable, and so is � � U (g) ; then b� � bU (g) = bU (g) � b�
is a self-adjoint, compact operator, and by the Riesz theorem its spectrum is either �nite or is a
countable sequence converging to 0 (which may or not be an eigen value) and, except possibly for 0,
is identical to the set (�p (g))p2N of its eigen values. For each distinct eigen value the eigen spaces
Hp (g) are orthogonal and H is the direct sum H = �p2NHp (g). For each non null eigen value �p (g)
the eigen space Hp (g) is �nite dimensional. For a primary observable the eigen values are either 1
or 0.
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Because H� is �nite dimensional, for each value of g there is an orthonormal basis (e"i (g))i2J of
H� comprised of a �nite number of vectors which are eigen vectors of b� � bU (g) : b� � bU (g) (e"j (g)) =
�j (g) e"j (g)
Any vector of H� reads :
 =

P
j2J  

j (g) e"j (g) andb� � bU (g) =Pp2N �p (g) b�Hp(g)with the orthogonal projection b�Hp(g) on Hp (g) :
And, because any measure belongs to H� it is a linear combination of eigen vectors

� � U (g) (X) = ��1 � b� � bU (g) ��(X) = ��1 �Pj2J �j (g) 
j (g) e"j (g)�

=
P
j2J �j (g) 

j��1 (e"j (g)) =Pj2J �j (g) 
jej (g)

for some basis (ei)i2I of V : ej (g) = ��1 (e"j (g)) and � � U (g) (ej (g)) = �jej (g)
That we can write :
� � U (g) (X) =

P
j2J �j 

j (g) ej (g) =
P
j2J X

j (g) ej (g) = U (g) � � (X)
� (X) = U

�
g�1

� �P
j2J X

j (g) ej (g)
�

v) If the representations
�
H�; bU� ; (F; f) are equivalent (which happens if they have the same

�nite dimension) there is an isomorphism � : H� ! F which can be de�ned by taking an orthonormal
basis (e"i (g0))i2J ; (fj (g0))j2J in each vector space, for some �xed g0 2 G that we can take g0 = 1 :
�
�P

i2J  
je"j (1)� =Pi2J  

jfj (1), � (e"j (1)) = fj (1)
To a change of g corresponds a change of orthonormal basis, both in H� and F , given by the

known unitary map f(g) : fj (g) = f (g) (fj (1)) =
P
k2J [f (g)]

k
j fk (1) and thus we have the same

matrix for bU (g) :e"j (g) = bU (g) (e"j (1)) = ��1 � f (g) � � (e"j (1)) = ��1 � f (g) (fj (1)) =
P
k2J [f (g)]

k
j e"k (1)2666666666666664

U (g) �
V ! ! ! V ! ! ! W
# # #
# � � # � #
# bU (g) � b� # bU (g)
H ! ! ! H ! ! ! H� ! ! ! H�

# #
� # � #

# f (g) #
F ! ! ! F

3777777777777775
e"j (g) = bU (g) (e"j (1)) =Pk2J [f (g)]

k
j e"k (1)

ej (g) = �
�1 (e"j (g)) = ��1 �Pk2J [f (g)]

k
j e"k (1)�

=
P
k2J [f (g)]

k
j �

�1 (e"k (1)) =Pk2J [f (g)]
k
j ek (1)

ej (g) = �
�1 � bU (g) ��(ej (1)) = U (g) (ej (1))

Thus the matrix of U(g) to go from 1 to g is [f (g)]

� (X) = U
�
g�1

� �P
j2J X

j (g) ej (g)
�

� � U (g) (X) =
P
j2J X

j (g) ej (g) =
P
j2J X

j (g)
P
k2J

�
f
�
g�1

��k
j
ek (1)

� � U (1) (X) =
P
k2J X

k (1) ek (1))
P
j2J X

j (g)
�
f
�
g�1

��k
j
= Xk (1)

Xj (g) =
P
k2J [f (g)]

k
j X

j (1)
The measures � � U (g) (X) transform with the known matrix f (g) :

vi)
�
H�; bU 0(1)� ; (F; f 0 (1)) are equivalent, anti-symmetric (or anti-hermitian for complex vector

spaces) representations of the Lie algebra T1G: If (�a)
m
a=1 is a basis of T1G then f 0 (1), which is a
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linear map, is de�ned by the values of f 0(1) (�a) 2 L (F ;F ) :bU 0 (1) (�)
H� ! ! ! H�

# #
� # � #

# f 0 (1) (�) #
F ! ! ! FbU 0 (1) (�) ( ) = ��1 � f 0 (1) (�) � � ( )

If we know the values of the action of f 0 (1) (�a) on any orthonormal basis (fj)j2J of F :

f 0 (1) (�a) (fj) =
P
k2J [Ka]

k
j fk

we have the value of bU 0 (1) (�a) for the corresponding orthonormal basis (b"j)j2J of H�bU 0 (1) (�a) (b"j) = bU 0 (1) (�a)��1 (fj) = ��1 � f 0 (1) (�a) (fj)
= ��1

�P
k2J [Ka]

k
j fk

�
=
P
k2J [Ka]

k
j b"k

So bU 0 (1) is represented in an orthonormal basis of H� by the same matrices [Ka]
And similarly :bU (g) = � � U (g) ���1 ) bU 0 (1) (�) = � � U 0 (1) (�) ���1
U 0(1) (�a) (ej) = � � U 0 (1) (�a) ���1 (ej) = � � U 0 (1) (�a) (b"j)
= �

�P
k2J [Ka]

k
j b"k� =Pk2J [Ka]

k
j ek

vii) Because � � U (g) = U (g) � �) � � U 0 (1) (�a) = U 0 (1) (�a) � � :
� � U 0 (1) (�a) (ej) =

P
k2J [Ka]

k
j � (ek)

This result is specially important in Physics.
i) We have seen that unitary representations of an abelian group are isomorphic to some special

classes of maps, so usually the speci�cations of the variables can be deduced.
ii) An observable is the choice of a speci�cation, that is the choice of a vector subspace of

maps, depending on a �nite number of parameters, which �xes the dimension of this vector space
V0. If we are in the conditions of the Theorem 22 then it makes sense to look for an irreducible
representation. Indeed, if the representation is reducible, then, for all the possible values of g, the
value of the observable belongs to a vector subspace of V0; meaning that the speci�cation of the
variables requires fewer parameters.
So, in the conditions of the theorem, we can assume that an observable belongs to an

irreducible representation.
iii) A continuous unitary representation

�
H; bU� can be decomposed on the sum �k �Hk; bU�

of orthogonal irreducible representations so, in a continuous process, the system stays in states
belonging to one of the irreducible representation Hk : a change Hk ! Hj implies a discontinuous
process, and this holds for X:
iv) If G is compact or �nite then the Hk are �nite dimensional. In each irreducible representation

the variables are characterized by a �nite number of parameters.
v) Usually in Physics the changes are not parametrized by the group, but by a vector of the Lie

algebra (for instance rotations are not parametrized by a matrix but by a vector representing the
rotation), which gives a special interest to the two last results.
vi) In the v),vi) ot the theorem the nature of the space F in the equivalent representation (F; f)

does not matter, only the matrices [f (g)] ; [K] :
The usual geometric representations, based on frames de�ned through a point and a set of vectors,

such as in Galilean Geometry and Special Relativity, have been generalized by the formalism of �ber
bundles, which encompasses also General Relativity, and is the foundation of gauge theories. Gauge
theories use abundantly group transformations, so they are a domain of choice to implement the
previous results.
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One parameter groups

An important case is when the variables X depend on a scalar real argument, and the model is such
that X (t) ; X 0(t0) = X(t + �); with any �xed �; represent the same state. The variables must be
de�ned over a domain which is invariant by the translation t ! t + �; so it must be the totality of
R; and not just an interval.
The associated operator is parametrized by a scalar and we have a map :bU : R+ ! GL (H;H) such that :bU (t+ t0) = bU (t) � bU (t0)bU (0) = Id

Then we have a one parameter semi-group. If moreover the map bU is strongly continuous (that

is limt!0

bU (t)� Id = 0 ), it can be extended to R:
�bU;H� is a unitary representation of the

abelian group (R;+) : We have a one parameter group, and because bU is a continuous Lie group
morphism it is di¤erentiable with respect to t.
Any strongly continuous one parameter group of operators on a Banach vector space admits an

in�nitesimal generator S 2 L (H;H) such that : bU (t) = P1
n=0

tn

n!S
n = exp tS (Maths.12.3.4). By

derivation with respect to t we get : d
ds
bU (s) jt=s = (exp tS) � S ) S = d

ds
bU (s) jt=0

Because bU (t) is unitary S is anti-hermitian :DbU (t) ; bU (t) 0E
H
= h ; 0iH

)
D
d
dt
bU (t) ; bU (t) 0E

H
+
DbU (t) ; ddt bU (t) 0E

H
= 0) S = �S�

S is normal and has a spectral resolution P :
S =

R
Sp(S)

sP (s)

S is anti-hermitian so its eigen-values are pure imaginary : � = ��: bU (t) is not compact and S
is not compact, usually its spectrum is continuous, so it is not associated to any observable.

2.4.6 Extension to manifolds

Several extensions of the theorem 2 can be considered. One frequent case is the following. In a model
variables X are maps de�ned on a manifoldM , valued in a �xed vector space, and belong to a space
V of maps with the required properties. But a variable Y is de�ned through X : Y (m) = f (X (m))
and is valued in a manifold N . So the conditions 1 do not apply.
To address this kind of problem we need to adapt our point of view. We have seen the full

mathematical de�nition of a manifold in the �rst section. A manifold M is a class of equivalence
: the same point m of M can be de�ned by several charts, maps ' : E ! M from a vector space
E to M , with di¤erent coordinates : m = 'a (�a) = 'b (�b) so that it de�nes classes of equivalence
between sets of coordinates : �a � �b , 'a (�a) = 'b (�b) : These classes of equivalence are made
clear by the transitions maps �ba : E ! E, which are bijective : �a � �b , �b = �ba (�a) : And these
transitions maps are the key characteristic of the manifold. To a point m of M corresponds a class
of equivalence of coordinates and one can conceive that to each value of Y is associated a speci�c
class of equivalence.
So let us consider a system represented by a model which meets the following general properties

Condition 23 The model comprises :
i) A �nite number of variables, collectively denoted X, which are maps valued in a vector space E

and meeting the conditions 1 : they belong to an open subset O of a separable, in�nite dimensional
Fréchet space V .
ii) A variable Y , valued in a set F , de�ned by a map :
f : O ! F :: Y = f (X)
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iii) A collection of linear continuous bijective maps U =(Ua 2 GL (V ;V ))a2A ; comprising the
identity, closed under composition : 8a; b 2 A : Ua � Ub 2 U
iv) On V and F the equivalence relation :
R : X � X 0 , 9a 2 A : X 0 = Ua (X) ; f (X) = f (X 0)

The conditions iii) will be usually met by the action of a group : Ua (X) = � (a;X) :
Denote the set N = fY = f (X) ; X 2 Og : The quotient set : N=R is comprised of classes of

equivalence of points Y which can be de�ned by related coordinates. This is a manifold, which can
be discrete and comprising only a �nite number of points. One can also see the classes of equivalence
of N=R as representing states of the system, de�ned equivalently by the variable X;X 0 = Ua (X) :
Notice that f is unique, no condition is required on E other than to be a vector space, and nothing

on F . Usually the maps Ua are de�ned by : Ua (X) = �a �X where the maps �a 2 GL (E;E) are
bijective on E (not F or V ) but only the continuity of Ua can be de�ned.
We have the following result :

Theorem 24 For a system represented by a model meeting the conditions 23 :
i) V can be embedded as an open of a Hilbert space H with a linear isometry � : V ! H; to each

Ua is associated the unitary operator bUa = � � Ua ���1 on H, each class of equivalence [V ]y of R
on V is associated to a class of equivalence [H]y in H of : bR :  �  0 , 9a 2 A :  0 = bUa ( ) :
[V ]y is a partition of V and [H]y of H.

ii) If (V;U) is a representation of a Lie group G, then
�
H; bU� is a unitary representation of G

and each [H]yis invariant by the action of G.

Proof. i) R de�nes a partition of V , we can label each class of equivalence by the value of Y , and
pick one element Xy in each class :
[V ]y = fX 2 O : f (X) � f (Xy) = yg � fX 2 O : 9a 2 A : X = Ua (Xy)g
� fX 2 O : X = Ua (Xy) ; a 2 Ag
The variables X meet the conditions 1, O can be embedded as an open of a Hilbert space H and

there is linear isomorphism : � : V ! H
In [V ]y the variables X;X

0 = Ua (X) de�ne the same state and we can implement the theorem

21. bUa = � � Ua ���1 is an unitary operator on H
8X 2 [V ]y : bUa ��(Xy) = � � Ua (Xy) = � (X)

The set [H]y = �
�
[V ]y

�
=
n
 2 H :  = bUa (� (Xy)) ; a 2 A

o
is the class of equivalence of :bR :  �  0 , 9a 2 A :  0 = bUa ( )

R de�nes a partition of V : V = [y [V ]y and bR de�nes a partition of H : H = [y [H]y
ii) If (V;U) is a representation of a Lie group G then [V ]y is the orbit of Xy;

�
H; bU� is a unitary

representation of G
Each [H]y is invariant by G. The vector subspace [F ]y spanned by [H]y is invariant by G, so�

[F ]y ;
bU� is a representation of G.

As a consequence of the last result, for each �xed value of Y the subset [H]y is invariant by the
action of G, so it provides an irreducible representation, as well as [F ]y. The observables belong
to �nite dimensional irreducible representations characterized by the value of Y:
We have seen in the Theorem 6 that one can replace a discrete variable by a continuous function

f : V ! [0; 1] such that f (X) = 1 for X 2 O1; f (X) = 0 for X 2 O2: Then, in the conditions of the
theorem above, the Hilbert space H = H1 � H2 where H1;H2 are associated to each value of the
discrete variable.
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2.5 THE EVOLUTION OF THE SYSTEM

In many models involving maps, the variables Xk are functions of the time t, which represents the
evolution of the system. So this is a privileged argument of the functions. So far we have not made
any additional assumption about the model : the open 
 of the Hilbert space contains all the possible
values but, due to the laws to which it is subjected, only some solutions will emerge, depending on
the initial conditions. They are �xed by the value X(0) of the variables at some origin 0 of time.
They are speci�c to each realization of the system, but we should expect that the model and the
laws provide a general solution, that is a map : X (0) ! X which determines X for each speci�c
occurrence of X(0). It will happen if the laws are determinist. One says that the problem is well
posed if for any initial conditions there is a unique solution X, and that X depends continuously on
X(0). We give a more precise meaning of determinism by enlarging the conditions 1 as follows :

Condition 25 : The model representing the system meets the conditions 1. Moreover :
i) V is an in�nite dimensional separable Fréchet space V of maps : X = (Xk)

N
k=1 :: R ! E

where R is an open subset of R and E a normed vector space
ii) 8t 2 R the evaluation map : E (t) : V ! E : E (t)X = X (t) is continuous
The laws for the evolution of the system are such that the variables (Xk)

N
k=1, which de�ne the

possible states considered for the system (that we call the admissible states) meet the conditions :
iii) The initial state of the system, de�ned at t = 0 2 R, belongs to an open subset A of E
iv) For any solutions X;X 0 belonging to O if the set $ = ft 2 R : X(t) = X 0(t)g has a non null

Lebesgue measure then X = X 0.

The last condition iv) means that the system is semi determinist : to the same initial conditions
can correspond several di¤erent solutions, but if two solutions are equal on some interval then they
are equal almost everywhere.
The condition ii) is rather technical and should be usually met. Practically it involves some

relation between the semi-norms on V and the norm on E (this is why we need a norm on E) :
when two variables X;X 0 are close in V , then their values X (t) ; X 0 (t) must be close for almost all
t. More precisely, because E (t) is linear, the continuity can be checked at X = 0 and reads:
8t 2 R;8X 2 O : 8" > 0;9� : d (X; 0)V < � ) kX (t)kE < " where d is the metric on V
In all usual cases (such as Lp spaces or spaces of di¤erentiable functions) d (X; 0)V ! 0) 8t 2

R : kX (t)kE ! 0 and the condition ii) is met, but this is not a general result.
This condition is met if there is a solution which is not static : 8t 6= t0 2 R;9X 2 V : X (t) 6=

X (t0)
Proof. The family of maps X is separating, the weak topology on V induced by the family of maps
X is Hausdor¤. Then d (X; 0)V = 0) kX (t)kE = 0: (Maths.10.2.3).
Notice that :
- the variables X can depend on other arguments besides t as previously
- E can be in�nite dimensional but must be normed
- no continuity condition is imposed on X.

2.5.1 Fundamental theorems for the evolution of a system

If the model meets the conditions 25 then it meets the conditions 1 : there is a separable, in�nite
dimensional, Hilbert space H, de�ned up to isomorphism, such that the states (admissible or not)
S belonging to O can be embedded as an open subset 
 � H which contains 0 and a convex subset.
Moreover to any basis of V is associated a bijective linear map � : V ! H:

Theorem 26 If the conditions 25 are met, then there are :
i) a Hilbert space F , an open subset eA � F
ii) a map : � : R! L (F ;F ) such that �(t) is unitary and, for the admissible states X 2 O � V :
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X (0) 2 eA � F
8t : X (t) = � (t) (X (0)) 2 F
iii) for each value of t an isometry : bE (t) 2 L (H;F ) such that for the admissible states X 2

O � V :
8X 2 O : bE (t)� (X) = X (t)
where H is the Hilbert space and � is the linear chart associated to X and any basis of V

Proof. i) De�ne the equivalence relation on V :
R : X � X 0 , X(t) = X 0(t) for almost every t 2 R
and take the quotient space V=R; then the set of admissible states is a set eO such that :eO 2 O � V
8X 2 eO : X (0) 2 A
8X;X 0 2 eO;8t 2 R : X(t) = X 0(t)) X = X 0

ii) De�ne :

8t 2 R : eF (t) = nX (t) ; X 2 eOo thus eF (0) = A

A is a subset of E. There are families of independent vectors belonging to A, and a largest family
(fj)j2J of independent vectors. It generates a vector space F (0) which is a vector subspace of E,
containing A:
8u 2 F (0) : 9 (xj)j2J 2 RJ0 : u =

P
j2J xjfj

The map :e�(t) : eF (0)! eF (t) :: e�(t)u = E (t) � E (0)�1 u
is bijective and continuous
The set F (t) = e�(t)F (0) � E is well de�ned by linearity :e�(t)�Pj2J xjfj

�
=
P
j2J xj

e�(t) (fj)
The map : e�(t) : F (0) ! F (t) is linear, bijective, continuous on an open subset A, thus

continuous, and the spaces F (t) are isomorphic, vector subspaces of E, containing eF (t) :
De�ne : ('j)j2J the largest family of independent vectors ofne�(t) (fj) ; t 2 Ro. This is a family of independent vectors of E, which generates a subspace eF

of E, containing each of the F (t) and thus each of the eF (t) : Moreover each of the 'j is the image
of a unique vector fj for some tj 2 R:
The map e�(t) is then a continuous linear map e�(t) 2 L� eF ; eF�
iii) The conditions of proposition 1 are met for O and V , so there are a Hilbert space H and a

linear map : � : O ! 

Each of the 'j is the image of a unique vector fj for some t 2 R;and thus there is a uniquely

de�ned family (Xj)j2J of
eO such that Xj (tj) = 'j .

De�ne on eF the bilinear symmetric de�nite positive form with coe¢ cients :

h'j ; 'ki eF = KV

�
E (tj)�1 'j ; E (tk)�1 'k

�
=
D
�E (tj)�1 'j ;�E (tk)�1 'k

E
H
= hXj ; XkiH

By the Gram-Schmidt procedure we can build an orthonormal basis (e'j)j2J of eF : eF =

Span (e'j)j2J and the Hilbert vector space :
F =

nP
j2J exj e'j ; (exj)j2J 2 `2 (J)o which is a vector space containing eF (but is not necessarily

contained in E).

iv) The map : e�(t) 2 L� eF ; eF� is a linear homomorphism, eF is dense in F , thus e�(t) can be
extended to a continuous operator �(t) 2 L (F ;F ).e�(t) is unitary on eF : hu; vi eF = KV

�
E (0)�1 u; E (0)�1 v

�
so �(t) is unitary on F .
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iv) De�ne the map :bE (t) : 
! F :: bE (t)� (X) = X (t)
where 
 � H is the open associated to V and O.
For X 2 eO :bE (t)� (X) = X (t) = e�(t)X = E (t) � E (0)�1XbE (t) = E (t) � E (0)�1 ���1bE (t) is linear, continuous, bijective on 
; it is an isometry :DbE (t) ; bE (t) 0E

F
= hX (t) ; X 0 (t)iF = h�X;�X 0iH = h ; 0iH

v) A = eF (0) is an open subset of F (0), which is itself an open vector subspace of F . Thus A can
be embedded as an open subset eA of F .
The key point in the proof is the property :
�The map : e�(t) : eF (0)! eF (t) :: e�(t)u = E (t) � E (0)�1 u is bijective and continuous�
which is easily understood when t is the only variable, then it means that the laws for the

evolution of the system are such that the initial value X(0) de�nes, up to a negligible set of points,
uniquely X(t).
When other arguments than t are involved this is more complicated. Let X(t; x) with x other

(possible multiple) arguments. Then the sets eF (t) = n
X (t) ; X 2 eOo of the values taken by X

depend on t, but also x; and shall be interpreted as eF (t; x) = nX (t; x) ; X 2 eOo for a �xed value of
x. Then the evaluation map is bijective, for a given, �xed, value of x. And the operator �(t) acts
on the map Xx : R! Xx (t) = X (t; x) that is : Xx (t) = � (t)Xx (0) :
As a consequence the model is determinist, up to the equivalence between maps almost every-

where equal. But the operator �(t) depends on t and not necessarily continuously, so the problem
is not necessarily well posed. Notice that each solution X(t) belong to E, but the Hilbert space F
can be larger than E. Moreover the result holds if the conditions apply to some variables only.
But we have a stronger result.

Theorem 27 If the model representing the system meets the conditions 1 and moreover :
i) V is an in�nite dimensional separable Fréchet space V of maps : X = (Xk)

N
k=1 :: R ! E

where E is a normed vector space
ii) 8t 2 R the evaluation map : E (t) : V ! E : E (t)X = X (t) is continuous
iii) the variables X 0

k (t) = Xk (t+ �) and Xk (t) represent the same state of the system, for any
t0 = t+ � with a �xed � 2 R
then :
i) There is a continuous map S 2 L (V ;V ) such that :
E (t) = E (0) � exp tS
8t 2 R : X (t) = (exp tS �X) (0) =

�P1
n=0

tn

n!S
nX
�
(0)

and the operator bS = � � S ���1 associated to S is anti-hermitian
ii) There are a Hilbert space F , an open eA � F; a continuous anti-hermitian map eS 2 L (F ;F )

such that :
8X 2 O � V : X (0) 2 eA � F
8t : X (t) =

�
exp teS� (X (0)) 2 F

iii) The maps X are smooth and : d
dsX (s) js=t = eSX (t)

Proof. i) We have a change of variables U depending on a parameter � 2 R which reads with the
evaluation map : E : R� V ! F :: E (t)X = X (t) :
8t; � 2 R : E (t) (U (�)X) = E (t+ �) (X)
, E (t)U (�) = E (t+ �) = E (�)U (t):
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U de�nes a one parameter group of linear operators:
U (� + �0)X (t) = X (t+ � + �0) = U (�) � U (�0)X (t)
U (0)X (t) = X (t)
It is obviously continuous at � = 0 so it is continuous.
ii) The conditions 1 are met, so there are a Hilbert space H, a linear chart �; and bU : R !

L (H;H) such that bU (�) is linear, bijective, unitary :
8X 2 O : bU (�) (� (X)) = � (U (�) (X))bU (� + �0) = � �U (� + �0) ���1 = � �U (�) �U (�0) ���1 = � �U (�) ���1 �� �U (�0) ���1 =bU (�) � bU (�0)bU (0) = � � U (0) ���1 = Id

The map : bU : R! L (H;H) is uniformly continuous with respect to �; it de�nes a one parameter
group of unitary operators. So there is an anti-hermitian operator bS with spectral resolution P such
that :bU (�) =P1

n=0
�n

n!
bSn = exp � bS

d
ds
bU (s) j�=s = �exp � bS� � bSbS = R

Sp(S)
sP (s)bU (�) = 1 � exp� bS

iii) S = ��1 � bS �� is a continuous map on the largest vector subspace V0 of V which contains
O, which is a normed vector space with the norm induced by the positive kernel.

kSk �
��1bS k�k = bS because � is an isometry.

So the series
P1
n=0

�n

n! S
n converges in V0 and :

U (�) = ��1 � bU (�) �� =P1
n=0

�n

n! S
n = exp �S

8�; t 2 R : U (�)X (t) = X (t+ �) = (exp �S)X (t)
E (t) exp �S = E (t+ �)
Exchange �; t and take � = 0 :
E (�) exp tS = E (t+ �)
E (0) exp tS = E (t) 2 L (V ;E)
which reads :
8t 2 R : U (t)X (0) = X (t) = (exp tS)X (0)
(U; V0) is a continuous representation of (R;+) ; U is smooth and X is smooth :
d
dsU (s)X (0) js=t =

d
dsX (s) js=t = SX (t)

, d
dsE (s) js=t = SE (t)

The same result holds whatever the size of O in V , so S is de�ned over V .
iv) The set : F (t) = fX (t) ; X 2 V g is a vector subspace of E.
Each map is fully de�ned by its value at one point :
8t 2 R : X (t) = (exp tS �X) (0)
X (t) = X 0 (t)) 8� : X (t+ �) = X 0 (t+ �), X = X 0

So the conditions 4 are met.
�(t) : F (0)! F (t) :: � (t)u = E (t) � E (0)�1 u = E (0) � exp tS � E (0)�1 u
The map �(�) : F ! F de�nes a one parameter group, so it has an in�nitesimal generatoreS 2 L (F ;F ) : � (�) = exp � eS and because �(�) is unitary eS is anti-hermitian.
d
ds�(s)X (0) js=t =

d
dsX (s) js=t = eSX (t)

As a consequence such a model is necessarily determinist, and the system is represented by
smooth maps whose evolution is given by a unique operator. It is clear that the conditions 25 are
then met, so this case is actually a special case of the previous one. Notice that, even if X was
not assumed to be continuous, smoothness is a necessary result. This result can seem surprising,
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but actually the basic assumption about a translation in time means that the laws of evolution
are smooth, and as a consequence the variables depend smoothly on the time. And conversely this
implies that, whenever there is some discontinuity in the evolution of the system, the conditions
above cannot hold : time has a speci�c meaning, related to a change in the environment.
In the conditions of the last theorem It can be useful to introduce explicitly a complex structure.

This can always be done in H. If bS is anti-hermitian, then bS0 = ibS is hermitian, and bU (�) =
exp � bS = exp��i� bS0� is the Fourier transform of bS0: Then bU is the solution of the problem : �ndbU such that � 1i

d
ds
bU (s) js=t = bS0 bU (t) with the initial condition : bU (0) = bS0: This is the usual

formulation of the Schrödinger�s law.

Comments

The conditions above depend deeply on how the time is understood in the model. We have roughly
two cases :
A) t is a parameter used only to identify a temporal location. In Galilean Geometry the time

is independent from the spatial coordinates for any observer and one can consider a change of
coordinates such as : t0 = t+� with any constant �: The variables X;X 0 such that X 0 (t0) = X (t+ �)
represent the same system. Similarly in Relativist Geometry the universe can be modelled as a
manifold, and a change of coordinates with a¢ ne parameters, �0 = � + � with a �xed 4 vector �; is
a change of charts. The components of any quantity de�ned on the tensorial tangent bundle change

according to the jacobian
h
@�0

@�

i
which is the identity, so the corresponding variables represent the

same system. Then we are usually in the conditions of the Theorem 27, and this is the basis of the
Schrödinger equation.
B) t is a parameter used to measure the duration of a phenomenon, usually the time elapsed

since some speci�c event, and it is clear that the origin of time matters and the variables X;X 0 such
that X 0 (t0) = X (t+ �) do not represent the same system. This is the case in more speci�c models,
such as in Engineering. The proposition 27 does not hold, but the proposition 26 holds if the model
is determinist.
The conditions 25 require at least that all the variables which are deemed signi�cant are accounted

for. Usually probabilist laws appear because some of them are missing. The Theorem 26 precise this
issue : by denoting the missing variables Y , one needs to enlarge the vector space E, and similarly
F . The map �(t) still exists, but it encompasses the couples (X (t) ; Y (t)) : The dispersion of the
observed values of X(t) are then imputed to the distribution of the unknown values Y (t).
It seems strange that a law for the evolution of the system can appear without any hypotheses

about the mechanisms at play in this evolution. Actually the theorems do not provide the laws of
evolution - they assume that they exist, in the form of semi-determinism - they only precise their
speci�cation. The existence of laws (in the form of the maps X) encompassing the whole of the
period under review has the e¤ect that going from one state of the system at a given time to the
state at another time is like a change of observer, and this is obvious in the second theorem. Then
the change of the time parameter is an operation which is done on a given set of states, which are
assumed to exist. But of course this assumption is critical.

2.5.2 Periodic States

An important point to notice in the previous theorems is that X;X 0 = X (t+ �) are di¤erent
variables, which does not necessarily take the same values. This is what we call equivariance : the
variables represent the same state, their values for the same state are related, but not necessarily
equal. This is the di¤erence with a symmetry : in a symmetry the values are equal. In the present
case two kinds of symmetry can be considered.
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The system is in a static state if its state does not change with time. Then the variables do not
depend of t; and actually this is of little interest here.
The system is in a periodic state. The variables are periodic with respect to the argument time.

It implies that they are de�ned over R and Xk (t+ T ) = Xk (t) for some �xed T 2 R: We have seen
in the First Chapter that periodic states are the simplest generalization of static states, and the
motivation for their study.
If the model is focused on looking for periodic states (that is �nding their general properties)

then :
i) the variables are de�ned over R and the choice of the origin of the time is arbitrary, however

the conditions of the theorem 27 are not met : T is a �xed, given quantity.
ii) all variables can be considered as function of t only. Even if Xk depends on other arguments

x; actually it is assumed that they take the same value with the periodicity T; so that their value
itself if a function of t : Xk (t; x) = Xk (t; x (t)) : For instance in the study of a star system, the
gravitational �eld depends on the location and is de�ned everywhere, however what matters is its
value at the locations of the planets, which depends only, for a given planet, on t:

Theorem 28 The model representing the system meets the conditions 1. Moreover :
i) the variables are maps : Xk : R! Ek where Ek is a normed vector space
ii) the evolution of the system is periodic : 9T 2 R : 8t 2 R;8k : Xk (t+ T ) = Xk (t)
then :
i) there is a Hilbert space F such that E � F
ii) there is a sequence

�b�(z)� 2 L (F ;F )Z such that :b�(0) = IdF
8t 2 R : � (t) =

P
z2Z

b�(z) exp zi$t 2 L (F ;F ), b�(z) = 1
T

R T
0
�(t) exp (�iz$t) dt

iv) for any periodic state the variables are given by :
8t : X (t) = � (t) (X (0))

Proof. i) The theorem 26 holds. There is a Hilbert space F such that X : R! F:
Because X is periodic it can be written :
X (t) =

P
z2Z

bX (z) exp zi$t
where bX (z) = 1

T

R T
0
X (t) exp (�iz$t) dt are �xed vectors of F:

The scalar product on V is : hX;Y iF = 1
T

R T
0
hX (t) ; Y (t)iE dt =

P
z2Z

D bX (z) ; bY (z)E
E

ii) There is a map : � : R ! L (F ;F ) such that �(t) is unitary and, for the admissible states
X 2 O � V :

X (0) 2 eA � F
8t : X (t) = � (t) (X (0)) 2 F
) X (t+ T ) = � (t+ T ) (X (0))) �(t+ T ) = � (t)
� is a periodic map valued on the Hilbert space L (F ;F ) : So :
�(t) =

P
z2Z

b�(z) exp zi$t
�(0) = IdF )

P
z2Z

b�(z) = IdF

where b�(z) = F (�) (z) = 1
T

R T
0
�(t) exp (�iz$t) dt are �xed vectors of L (F ;F )

iii) 8t : X (t) = � (t) (X (0)))
X (t) =

P
z2Z

b�(z) (X (0)) exp zi$tbX (z) = 1
T

R T
0

P
z2Z

�b�(z) (X (0)) exp zi$t� exp (�iz$t) dt = b�(z) (X (0))
iv) 8t;�(t) is unitary on F
hX (t) ; Y (t)iF = hX (0) ; Y (0)iF =

P
z2Z

Db�(z) (X (0)) exp zi$t; b�(z) (Y (0)) exp zi$tE
F
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=
P
z2Z

Db�(z) (X (0)) ; b�(z) (Y (0))E
F

because :
P
z2Z

b�(z) = IdF ) b�(z) (X (0)) = X (0)

It is clear that the model is focused on the search for periodic solutions. It can be a restriction
of a more general model.
As a result the problem is well posed : the solutions X (t) depend continuously, and even linearly,

on the initial conditions. However we are here in the simple description, in the frame of a model, of
the system. Usually the model includes some relations between the variables, which restrict the set
of possible solutions. In particular, for a model involving the time, the derivatives with respect to
the time are part of the description : D = dX

dt is a separate variable. And a condition imposed to
the solutions is that :

D (t) =
P
z2Z

bDk (z) exp iz$t

X (t) =
P
z2Z

bXk (z) exp iz$t

D = dX
dt ) bDk (z) =

1
T

R T
0

dX
dt (t) exp (�ik$t) dt

= [X (t) exp (�ik$t)]T0 + ik$ 1
T

R T
0
X (t) exp (�ik$t) dt = ik$ bXk (z)

A condition which is not necessarily met for any value of �: But we have another result, which
can be seen as an illustration of the theorem 24. From
hX (t) ; Y (t)iF = hX (0) ; Y (0)iF
h�(t)X (0) ;�(t)X (0)iF = hX (0) ; X (0)iF ) d

dt h�(t)X (0) ;�(t)X (0)iF = 0

d
dt�(t)X (0) ;�(t)X (0)

�
F
+


�(t)X (0) ; ddt�(t)X (0)

�
F
= 0

Im


�(t)X (0) ; ddt�(t)X (0)

�
F
= 1

i



�(t)X (0) ; ddt�(t)X (0)

�
F
= 1

i



X (t) ; ddtX (t)

�
F

The energy stored in a system is related to the state of the system and its rate of change, so the
quantity 1

i



X (t) ; ddtX (t)

�
F
is a good candidate to represent it. And we see that, in a periodic state

:
1
i



X (t) ; ddtX (t)

�
F
= 1

T

R T
0



X (t) ; ddtX (t)

�
E
dt = 1

i

P
z2Z

D bX (z) ; bD (z)E
E

= 1
i

P
z2Z

D bX (z) ; ik$ bXk (z)
E
E
= $

P
z2Z k

D bX (z) ; bXk (z)
E
E

E = �
X
z2Z

2�k
D bX (z) ; bXk (z)

E
E

(2.6)

For a given system the energy depends on the initial conditions and the general laws gov-
erning the system, but in a periodic state it is proportional to the frequency �. Equivalently,
to each level of energy is associated a speci�c frequency. Of course we cannot postulate thatP
z2Z 2�k

D bX (z) ; bXk (z)
E
E
is some universal constant, but it is fascinating that we retrieve, in

the most general picture, a result which is reminiscent of the Planck�s law.

2.5.3 Observables

When a system is studied through its evolution, the observables can be considered from two di¤erent
points of view :
- in the movie way : the estimation of the parameters is done at the end of the period considered,

from a batch of data corresponding to several times (which are not necessarily the same for all
variables). So this is the map X which is estimated through an observable X ! � (X).
- in the picture way : the estimation is done at di¤erent times (the same for all the variables

which are measured). So there are the values X(t) which are estimated. Then the estimation of
X(t) is given by ' (X (t)) = ' (E (t)X) ; with ' a linear map from E to a �nite dimensional vector
space, which usually does not depend on t (the speci�cation stays the same).
In the best scenario the two methods should give the same result, which reads :
' (E (t)X) = E (t) (�X), ' = E (t) � � � E (t)�1
But usually, when it is possible, the �rst way gives a better statistical estimation.
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2.5.4 Phases Transitions

There is a large class of problems which involve transitions in the evolution of a system. They do
not involve the maps X, which belong to the same family as above, but the values X(t) which are
taken over a period of time in some vector space E. There are distinct subsets of E, that we will call
phases (to avoid any confusion with states which involves the map X), between which the state of
the system goes during its evolution, such as the transition solid / gas or between magnetic states.
The questions which arise are then : what are the conditions, about the initial conditions or the
maps X, for the occurrence of such an event ? Can we forecast the time at which such event takes
place ?
Staying in the general model meeting the conditions 25, the �rst issue is the de�nition of the

phases. The general idea is that they are signi�cantly di¤erent states, and it can be formalized by :
the set fX(t); t 2 R;X 2 Og is disconnected, it comprises two disjoint subsets E1; E2 closed in E:
If the maps X : R ! F are continuous and R is an interval of R (as we will assume) then the

image X(R) is connected, the maps X cannot be continuous, and we cannot be in the conditions
of proposition 27 (a fact which is interesting in itself), but we can be in the case of proposition 26.
This is a di¢ cult but also very common issue : in the real life such discontinuous evolutions are the
rule. However in the physical world discontinuities happen only at isolated points : the existence of
a singularity is what makes interesting a change of phase. If the transition points are isolated, there
is an open subset of R which contains each of them, a �nite number of them in each compact subset
of R, and at most a countable number of transition points. A given map X is then continuous (with
respect to t) except in a set of points (��)�2A ; A � N: If X(0) 2 E1 then the odd transition points
�2�+1 mark a transition E1 ! E2 and the opposite for the even points �2�:
If the conditions 25 are met then � is continuous except in (��)�2A ; the transition points do

not depend on the initial state X(0), but the phase on each segment does. Then it is legitimate
to assume that there is some probability law which rules the occurrence of a transition. We will
consider two cases.
The simplest assumption is that the probability of the occurrence of a transition at any time t

is constant. Then it depends only on the cumulated lengths of the periods T1 =
P
�=0 [�2�; �2�+1] ;

T2 =
P
�=0 [�2�+1; �2�+2] respectively.

Let us assume that X (0) 2 E1 then the changes E1 ! E2 occur for t = �2�+1; the probability
of transitions read :
Pr (X (t+ ") 2 E2jX (t) 2 E1) = Pr (9� 2 N : t+ " 2 [�2�+1; �2�+2])
= T2= (T1 + T2)

Pr (X (t+ ") 2 E1jX (t) 2 E2) = Pr (9� 2 N : t+ " 2 [�2�; �2�+1])
= T1= (T1 + T2)

Pr (X (t) 2 E1) = T1= [R] ; Pr (X (t) 2 E2) = T2= [R]

The probability of a transition at t is : T2= (T1 + T2)�T1= (T1 + T2)+T1= (T1 + T2)�T2= (T1 + T2) =
2T1T2= (T1 + T2)

2. It does not depend of the initial phase, and depends only on �: This probability
law can be checked from a batch of data about the values of T1; T2 for each observed transition.
However usually the probability of a transition depends on the values of the variables. The phases

are themselves characterized by the value of X(t), so a sensible assumption is that the probability
of a transition increases with the proximity of the other phase . Using the Hilbert space structure
of F it is possible to address practically this case.
If E1; E2 are closed convex subsets of F , which is a Hilbert space, there is a unique map :

�1 : F ! E1. The vector �1 (x) is the unique y 2 E1 such that kx� ykF is minimum. The map �1
is continuous and �21 = �1. And similarly for E2:
The quantity r = kX (t)� �1 (X (t))kF+kX (t)� �2 (X (t))kF = the distance to the other subset

than where X(t) lies, so one can assume that the probability of a transition at t is : f (r) where f :
R ! [0; 1] is a probability density. The probability of a transition depends only on the state at t,
but one cannot assume that the transitions points �� do not depend on X.
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The result holds if E1; E2 are closed vector subspaces of F such that E1 \ E2 = f0g : Then
X (t) = �1 (X (t)) + �2 (X (t))

and kX (t)k2 = k�1 (X (t))k2 + k�2 (X (t))k2
k�1(X(t))k2
kX(t)k2 can be interpreted as the probability that the system at t is in the phase E1.

One important application is forecasting a transition for a given map X. From the measure of
X(t) one can compute for each t the quantity r(t) = kX (t)� �1 (X (t))kF + kX (t)� �2 (X (t))kF
and, if we know f , we have the probability of a transition at t. The practical problem is then to
estimate f from the measure of r over a past period [0; T ]. A very simple, non parametric, estimator
can be built when X are maps depending only of t (see J.C.Dutailly Estimation of the probability
of transitions between phases). It can be used to forecast the occurrence of events such as earth
quakes.



72 CHAPTER 2. QUANTUM MECHANICS

2.6 INTERACTING SYSTEMS

2.6.1 Representation of interacting systems

In the propositions above no assumption has been done about the interaction with exterior variables.
If the values of some variables are given (for instance to study the impact of external factors with
the system) then they shall be fully integrated into the set of variables, at the same footing as the
others.
A special case occurs when one considers two systems S1; S2, which are similarly represented,

meaning that we have the same kind of variables, de�ned as identical mathematical objects and
related signi�cance. To account for the interactions between the two systems the models are of the
form :26666666666666666664

p S1 q p S2 q
X1 Z1 X2 Z2
V1 � W1 V2 � W2

# �1 # �2
 1  2
H1 H2

p S1+2 q
X1 X2

V1 � V2

 1  2
H1 � H2

37777777777777777775
X1; X2 are the variables (as above X denotes collectively a set of variables) characteristic of the

systems S1; S2;and Z1; Z2 are variables representing the interactions. Usually these latter variables
are di¢ cult to measure and to handle. One can consider the system S1+2 with the direct product
X1 �X2 , but doing so we obviously miss the interactions Z1; Z2.
We see now how it is possible to build a simpler model which keeps the features of S1; S2 and

accounts for their interactions.
We consider the models without interactions (so with only X1; X2) and we assume that they

meet the conditions 1. For each model Sk; k = 1; 2 there are
a linear map : �k : Vk ! Hk :: �k (Xk) =  k =

P
i2Ik h�ki;  ki eki

a positive kernel : Kk : Vk � Vk ! R
Let us denote S the new model. Its variables will be collectively denoted Y , valued in a Fréchet

vector space V 0. There will be another Hilbert space H 0, and a linear map �0 : V 0 ! H 0 similarly
de�ned. As we have the choice of the model, we will impose some properties to Y and V 0 in order
to underline both that they come from S1; S2 and that they are interacting.

Condition 29 i) The variable Y can be deduced from the value of X1; X2 : there must be a bilinear
map : � : V1 � V2 ! V 0

ii) � must be such that whenever the systems S1; S2 are in the states  1;  2 then S is in the state
 0 and
�0�1 ( 0) = �

�
��11 ( 1) ;�

�1
2 ( 2)

�
iii) The positive kernel is a de�ning feature of the models, so we want a positive kernel K 0 of

(V 0;�0) such that :
8X1; X

0
1 2 V1;8X2; X

0
2 2 V2 :

K 0 (� (X1; X2) ;� (X
0
1; X

0
2)) = K1 (X1; X

0
1)�K2 (X2; X

0
2)

We will prove the following :
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Theorem 30 Whenever two systems S1; S2 interact, there is a model S encompassing the two sys-
tems and meeting the conditions 29 above. It is obtained by taking the tensor product of the variables
speci�c to S1; S2: Then the Hilbert space of S is the tensorial product of the Hilbert spaces associated
to each system.

Proof. First let us see the consequences of the conditions if they are met.
The map : ' : H1 � H2 ! H 0 :: ' ( 1;  2) = �

�
��11 ( 1) ;�

�1
2 ( 2)

�
is bilinear. So, by the

universal property of the tensorial product, there is a unique map b' : H1 
 H2 ! H 0 such that :
' = b' � { where { : H1 �H2 ! H1 
H2 is the tensorial product.
The condition iii) reads :
h�1 (X1) ;�1 (X

0
1)iH1

� h�2 (X2) ;�2 (X
0
2)iH2

= h(�0 � � (�1 (X1) ;�2 (X2)) ;�
0 � � (�1 (X 0

1) ;�2 (X
0
2)))iH0

h 1;  01iH1
� h 2;  02iH2

= h' ( 1;  2) ; ' ( 01;  02)iH0

= hb' ( 1 
  2) ; b' ( 01 
  02)iH0

The scalar products on H1;H2 extend in a scalar product on H1 
H2; endowing the latter with
the structure of a Hilbert space with :
h( 1 
  2) ; ( 01 
  02)iH1
H2

= h 1;  01iH1
h 2;  02iH2

and then the reproducing kernel is the product of the reproducing kernels.
So we must have : hb' ( 1 
  2) ; b' ( 01 
  02)iH0 = h 1 
  2;  01 
  02iH1
H2

and b' must be an
isometry : H1 
H2 ! H 0

So by taking H 0 = H1 
H2 and V 0 = V1 
 V2 we meet the conditions.
The conditions above are a bit abstract, but are logical and legitimate in the view of the Hilbert

spaces. They lead to a natural solution, which is not unique and makes sense only if the systems are
de�ned by similar variables. The measure of the tensor S can be addressed as before, the observables
being linear maps de�ned in the tensorial products V1
V2; H1
H2 and valued in �nite dimensional
vector subspaces of these tensor products.

Entanglement

A key point in this representation is the di¤erence between the simple direct product : V1 � V2 and
the tensorial product V1 
 V2; an issue about which there is much confusion.
The knowledge of the states (X1; X2) of both systems requires two vectors of I components each,

that is 2 � I scalars, and the knowledge of the state S requires a vector of I2 components. So
the measure of S requires more data, and brings more information, because it encompasses all the
interactions. Moreover a tensor is not necessarily the tensorial product of vectors (if it is so it is said
to be decomposable), it is the sum of such tensors. There is no canonical map : V1
V2 ! V1�V2:
So there is no simple and unique way to associate two vectors (X1; X2) to one tensor S. This
seems paradoxical, as one could imagine that both systems can always be studied, and their states
measured, even if they are interacting. But the simple fact that we consider interactions means that
the measure of the state of one of the system shall account for the conditions in which the measure
is done, so it shall precise the value of the state of the other system and of the interactions Z1; Z2.
If a model is arbitrary, its use must be consistent : if the scientist assumes that there are

interactions, they must be present somewhere in the model, as variables for the computations as
well as data to be collected. They can be dealt with in two ways. Either we opt for the two systems
model, and we have to introduce the variables Z1; Z2 representing the interactions, then we have
two separate models as in the �rst section. The study of their interactions can be a topic of the
models, but this is done in another picture and requires additional hypotheses about the laws of the
interactions. Or, if we intend to account for both systems and their interactions in a single model,
we need a representation which supports more information that can bring V1 � V2: The tensorial
product is one way to enrich the model, this is the most economical and, as far as one follows the
guidelines i),ii),iii) above, the only one. The complication in introducing general tensors is the price
that we have to pay to account for the interactions. This representation does not, in any way, imply
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anything about how the systems interact, or even if they interact at all (in this case S is always
decomposable). As usual the choice is up to the scientist, based upon how he envisions the problem
at hand. But he has to live with his choice.
This issue is at the root of the paradoxes of entanglement. With many variants it is an experi-

ment which involves two objects, which interact at the beginning, then are kept separated and non
interacting, and eventually one measures the state of one of the two objects, from which the state
of the other can be deduced with some probability. If we have two objects which interact at some
point, with a signi�cant result because it de�nes a new state, and we compare their states, then we
must either incorporate the interactions, or consider that they constitute a single system and use
the tensorial product. The fact that the objects cease to interact at some point does not matter :
they are considered together if we compare their states. The interactions must be accounted for, one
way or another and, when an evolution is considered, this is the map which represents the whole of
the evolution which is signi�cant, not its value at some time.5

A common interpretation of this representation is to single out decomposable tensors 	 =  1
 2
, called �pure states�, so that actual states would be a superposition of pure states (a concept
popularized by the famous Schrödinger�s cat). It is clear that in an interacting system the pure
states are an abstraction, which actually would represent two non interacting systems, so their
superposition is an arti�cial construction. It can be convenient in simple cases, where the states of
each system can be clearly identi�ed, or in complicated models to represent quantities which are
de�ned over the whole system as we will see later. But it does not imply any mysterious feature,
notably any probabilist behavior, for the real systems. A state of the two interacting systems is
represented by a single tensor, and a tensor is not necessarily decomposable, but it is a sum of
decomposable tensors.

2.6.2 Homogeneous systems

The previous result can be extended to N (a number that we will assumed to be �xed) similar
systems (that we will call microsystems), represented by the same model, interacting together.
For each microsystem, identi�ed by a label s, the Hilbert space H and the linear map � are the
same, the state S of the total system can be represented as a vector belonging to the tensorial
product VN = 
Ns=1V; associated to a tensor 	 belonging to the tensorial product HN = 
Ns=1H:
The linear maps � 2 L (V ;H) can be uniquely extended as maps �N 2 L (VN ;HN ) such that
(Maths.13.5) :
�N (X1 
 :::
XN ) = � (X1)
 :::
�(XN )

The state of the system is then totally de�ned by the value of tensors S;	, with IN components.
If (e"i)i2I is a Hilbertian basis of H then Ei1:::iN = e"i1 
 :::
 e"iN is a Hilbertian basis of 
Ns=1H:

The subspaces 
ps=1H 
 e"i 
Ns=p+2 H are orthogonal and 
Ns=1H ' `2
�
IN
�
. The scalar product is

de�ned by linear extension of
h	;	0iHN

= h 1;  01iH � :::� h N ;  0N iH
for decomposable tensors : 	 =  1 
 :::
  N ;	0 =  01 
 :::
  0N :
Any operator on H can be extended on 
Ns=1H with similar properties : a self adjoint, unitary

or compact operator extends uniquely as a self adjoint, unitary or compact operator.

In the general case the label matters : the state S = X1 
 ::: 
 XN is deemed di¤erent from
S = X�(1)
 :::
X�(N) where

�
X�(p)

�N
p=1

is a permutation of (Xs)
N
s=1. If the microsystems have all

the same behavior they are, for the observer, indistinguishable. Usually the behavior is related to
a parameter analogous to a size, so in such cases the microsystems are assumed to have the same
size. We will say that these interacting systems are homogeneous :

5On this point see Haag p.106
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De�nition 31 A homogeneous system is a system comprised of a �xed number N of microsys-
tems, represented in the same model, such that any permutation of the N microsystems gives the
same state of the total system.

We have the following result :

Theorem 32 The states 	 of homogeneous systems belong to an open subset of a subspace h of the
Hilbert space 
Ns=1H , de�ned by :
i) a class of conjugacy S (�) of the group of permutations S (N) ;de�ned itself by a decomposition

of N in p parts :
� = f0 � np � ::: � n1 � N;n1 + :::np = Ng :
ii) p distinct vectors (e"j)pj=1 of a Hermitian basis of H which together de�ne a subspace HJ

iii) The space h of tensors representing the states of the system is then :
either the symmetric tensors belonging to : �n1HJ 
�n2HJ :::
�npHJ

or the antisymmetric tensors belonging to : �n1HJ 
 ^n2HJ :::
 ^npHJ

Proof. i) In the representation of the general system the microsystems are identi�ed by some label
s = 1::: N . An exchange of labels U(�) is a change of variables, represented by an action of the
group of permutations S (N): U is de�ned uniquely by linear extension of U(�) (X1 
 :::
XN ) =
X�(1) 
 :::
X�(N) on decomposable tensors.
We can implement the Theorem 22 proven previously. The tensors  representing the states of

the system belong to a Hilbert space HN � 
Ns=1H such that
�
HN ; bU� is a unitary representation

of S (N) . Which implies that HN is invariant by bU . The action of bU on 
Ns=1H is de�ned uniquely
by linear extension ofbU(�) ( 1 
 :::
  N ) =  �(1) 
 :::
  �(N) on decomposable tensors.
	 2 
Ns=1H reads in a Hilbert basis (e"i)i2I of H :
	 =

P
i1:::iN2I 	

i1:::iN e"i1 
 :::e"iN and :bU(�)	 =Pi1:::iN2I 	
i1:::iN bU(�) (e"i1 
 :::e"iN ) =Pi1:::iN2I 	

i1:::iN e"�(i1) 
 :::e"�(iN )
=
P
i1:::iN2I 	

�(i1):::�(iN )e"i1 
 :::e"iNDbU(�)	; bU(�)	0E = h	;	0i
,
P
i1:::iN2I 	

�(i1):::�(iN )	0�(i1):::�(iN ) =
P
i1:::iN2I 	

i1:::iN	0i1:::iN

The only vector subspaces of 
Ns=1H which are invariant by bU and on which bU is unitary are
spaces of symmetric or antisymmetric tensors :
symmetric : 	�(i1):::�(iN ) = 	i1:::iN

antisymmetric : 	�(i1):::�(iN ) = � (�)	i1:::iN

ii) S (N) is a �nite, compact group. Its unitary representations are the sum of orthogonal,
�nite dimensional, unitary, irreducible representations. Let h � 
Ns=1H be an irreducible, �nite
dimensional, representation of bU: Then 8� 2 S (N) : bU(�)h � h
iii) Let J be a �nite subset of I with card(J) � N , HJ the associated Hilbert space, bYJ : H ! HJ

the projection, and bYJN = 
N bYJ be the extension of bYJ to 
Ns=1H :bYJN �Pi1:::iN2I 	
i1:::iN e"i1 
 :::e"iN � =Pi1:::iN2J 	

i1:::iN e"i1 
 :::e"iN
Then :
8� 2 S (N) : bU(�)bYJN �Pi1:::iN2I 	

i1:::iN e"i1 
 :::e"iN �
=
P
i1:::iN2J 	

�(i1):::�(iN )e"i1 
 :::e"iN = bYJN bU(�)	
So if h is invariant by bU then bYJNh is invariant by bU: If �h;bU� is an irreducible representation

then the only invariant subspace are 0 and h itself, so necessarily h �bYJN �
Ns=1H� for card(J) = N:

Which implies : h �
N HJ with HJ = bYJH and card(J) = N:
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iv) There is a partition of S (N) in conjugacy classes S (�) which are subgroups de�ned by a
decomposition of N in p parts :

� = f0 � np � ::: � n1 � N;n1 + :::np = Ng : Notice that there is an order on the sets f�g : Each
element of a conjugacy class is then de�ned by a repartition of the integers f1; 2; :::Ng in p subsets
of nk items (this is a Young Tableau) (Maths.5.2.2). A class of conjugacy is an abelian subgroup of
S (N) : its irreducible representations are unidimensional.
The irreducible representations of S (N) are then de�ned by a class of conjugacy, and the choice

of a vector.
h is a Hilbert space, thus it has a Hilbertian basis, composed of decomposable tensors which are

of the kind e"j1 
 :::
 e"jN where e"jk are chosen among the vectors of a Hermitian basis (e"j)j2J of HJ

If e"j1 
 :::
 e"jN 2 H;8� 2 S (N) : bU(�)e"j1 
 :::
 e"jN = e"j�(1) 
 :::
 e"j�(N)
2 h

and because the representation is irreducible the basis of h is necessarily composed from a set
of p � N vectors e"j by action of bU(�)
Conversely : for any Hermitian basis (e"i)i2I of H, any subset J of cardinality N of I, any

conjugacy class �; any family of vectors (e"jk)pk=1 chosen in (e"i)i2J , the action of bU on the tensor :
	� = 
n1e"j1 
n2 e"j2 :::
np e"jp ; j1 � j2:: � jp
gives the same tensor if � 2 S (�) : bU (�)	� = 	�
gives a di¤erent tensor if � 2 S (�c) the conjugacy class complementary toS (�) : S (�c) = {S(�)

S(N)

so it provides an irreducible representation by :
8	 2 h :	 =

P
�2S(�c)	

� bU (�) �
n1e"j1 
n2 e"j2 :::
np e"jp�
where the components 	� are labeled by the vectors of a basis of h. The dimension of h his

given by the cardinality of S (�c) that is : N !
n1!:::np!

: All the vector spaces h of the same conjugacy
class (but di¤erent vectors e"i) have the same dimension, thus they are isomorphic.
v) A basis of h is comprised of tensorial products of N vectors of a Hilbert basis of H. So we

can give the components of the tensors of h with respect to 
Ns=1H: We have two non equivalent
representation :
By symmetric tensors : h is then isomorphic to �n1HJ 
�n2HJ :::
�npHJ with the symmetric

tensorial product � and the space of n order symmetric tensor on HJ is �nHJ

By antisymmetric tensors : h is then isomorphic to ^n1HJ 
 ^n2HJ ::: 
 ^npHJ and the space
of n order antisymmetric tensor on HJ is ^nHJ

The result extends to VN by : S = ��1N (	)

Remarks

i) For each choice of a class of conjugacy, and each choice of the vectors (e"j)pj=1 which de�nes HJ ; we
have a di¤erent irreducible representation with vector space h. Di¤erent classes of conjugacy gives
non equivalent representations. But di¤erent choices of the Hermitian basis (e"j)j2I and the subset
J of I, for a given class of conjugacy, give equivalent representations, and they can be arbitrary. So,
for a given system, the set of states is characterized by a subset J of N elements in any basis of H,
and by a class of conjugacy.
A change of the state of the system can occur either inside the same vector space h, or between

irreducible representations: h ! h0. As we will see in the next chapters usually the irreducible
representation is �xed by other variables (such that energy) and a change of irreducible representation
implies a discontinuous process. The states of the total system are quantized by the interactions.
ii) 
n1e"j1 
n2 e"j2 ::: 
np e"jp can be seen as representing a con�guration where nk microsystems

are in the same state e"jk :The class of conjugacy, characterized by the integers np; correspond to the
distribution of the microsystems between �xed states.
iii) If O is a convex subset then S belongs to a convex subset, and the basis can be chosen such

that 8	 2 h is a linear combination (yk)qk=1 of the generating tensors with yk 2 [0; 1] ;
Pq
k=1 yk = 1:

S can then be identi�ed to the expected value of a random variable which would take one of the value
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n1X1 
n2 X2::: 
np Xp; which corresponds to nk microsystems having the state Xk: As exposed
above the identi�cation with a probabilist model is formal : there is no random behavior assumed
for the physical system.
iv) In the probabilist picture one can assume that each microsystem behaves independently, and

has a probability �j to be in the state represented by e"j and PN
j=1 �j = 1: Then the probability

that we have (nk)
p
k=1 microstates in the states (e"k)pk=1 is N !

n1!:::np!
(�j1)

n1 :::
�
�jp
�np

:

v) The set of symmetric tensors �nHJ is a closed vector subspace of 
nHJ ; this is a Hilbert space,
dim
nHJ = Cp�1p+n�1 with Hilbertian basis

1p
n!
�j2J e"j = 1p

n!
Sn (
j2Je"j) where the symmetrizer is

:
Sn

�P
(i1:::in)

 i1::ine"i1 
 ::
 e"in� =P(i1:::in)
 i1::in

P
�2S(n) e"�(1) 
 ::::e"�(k)

A tensor is symmetric i¤ : 	 2 �nHJ , Sn (	) = n!	.
The set of antisymmetric tensors �nHJ is a closed vector subspace of 
nHJ ; this is a Hilbert

space, dim^nHJ = Cnp with Hilbertian basis
1p
n!
^j2J e"j = 1p

n!
An (
j2Je"j) with the antisym-

metrizer :
An

�P
(i1:::in)

 i1::ine"i1 
 ::
 e"in� =P(i1:::in)
 i1::in

P
�2S(n) � (�) e"�(1) 
 ::::e"�(k)

A tensor is antisymmetric i¤ : 	 2 ^nHJ , An (	) = n!	

v) for � 2 S (N) : bU(�)	 is usually di¤erent from 	

2.6.3 Global observables of homogeneous systems

The previous de�nitions of observables can be extended to homogeneous systems. An observable is
de�ned on the total system, this is a map : � : VN ! W where W is a �nite dimensional vector
subspace of VN , but not necessarily a tensorial vector product of spaces. To � is associated the
self-adjoint operator b� = � � � ���1 and H� = b� �
Ns=1H� � 
Ns=1H:
Theorem 33 Any observable of a homogeneous system is of the form :
� : VN !W where W is generated by vectors �� associated to each class of conjugacy of S (N)
The value of � (X1 
 :::
XN ) = ' (X1; :::; XN ) �� where ' is a scalar linear symmetric map,

if the system is in a state corresponding to �

Proof. The space W must be invariant by U and H� invariant by bU: If the system is in a state

belonging to h for a class of conjugacy �; then H� = b�h and �b�h;bU� is an irreducible repre-
sentation of the abelian subgroup S (�) corresponding to �: It is necessarily unidimensional and
� (X1 
 :::
XN ) is proportional to a unique vector. The observable being a linear map, the func-
tion ' is a linear map of the components of the tensor.
There is no way to estimate the state of each microsystem. From a practical point of view, this is

a vector  = b� �
n1e"j1 
n2 e"j2 :::
np e"jp� which is measured, and from it �; (e"jk)pk=1 are estimated.
No random behavior is assumed for the microsystems. However, formally, one can associate a

probability �j to the event that a microsystem were in the state "j : Then the expected value of  is
:
hi = z (�1; :::; �N )
with
z (�1; :::; �N )

=
P
�

N !
n1!:::np!

P
1�j1�::�jp�N (�j1)

n1 :::
�
�jp
�np b� �
n1"j1 :::
np "jp�

We have a classic statistical problem : estimate the �i from a statistic given by the measure of .
If the statistic b� is su¢ cient, meaning that �i depends only on ; as F is �nite dimensional whatever
the number of microsystems, the Pitman-Koopman-Darmois theorem tells us that the probability
law is exponential, then an estimation by the maximum likehood gives the principle of Maximum
Entropy with entropy :

E = �
PN
j=1 �j ln�j
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In the usual interpretation of the probabilist picture, it is assumed that the state of each mi-
crosystem can be measured independently. Then the entropy E = �

PN
j=1 �j ln�j can be seen as a

measure of the heterogeneity of the system. And, contrary to a usual idea, the interactions between
the micro-systems do not lead to the homogenization of their states, but to their quantization : the
states are organized according to the classes of conjugacy.
But is clear that no random behavior is assumed from the microsystem : the probability law is

related to the - random - choice for a set of the states of the microsystems, under the constraint
given by the value of the observable. This is similar to the - random - choice of a primary observable
for a speci�cation.

2.6.4 Evolution of homogeneous systems

The evolution of homogeneous systems raises many interesting issues. The assumptions are a com-
bination of the previous conditions.

Theorem 34 For a model representing the evolution of a homogeneous system comprised of a �xed
number N of microsystems s = 1:::N which are represented by the same model, with variables
(Xs)

N
s=1 such that, for each microsystem :
i) the variables Xs are maps : Xs :: R ! E where R is an open subset of R and E a normed

vector space, belonging to an open subset O of an in�nite dimensional Fréchet space V
ii) 8t 2 R the evaluation map : E (t) : O ! E : E (t)Xs = Xs (t) is continuous
iii) 8t 2 R : Xs (t) = X 0

s (t)) Xs = X 0
s

There is a map : S : R! 
NF such that S(t) represents the state of the system at t. S(t) takes

its value in a vector space f(t) such that
�
f (t) ; bUF� , where bUF is the permutation on 
NF; is an

irreducible representation of S (N)

The crucial point is that the homogeneity is understood as the microsystems follow the same
laws, but at a given time they do not have necessarily the same state.
Proof. i) Implement the Theorem 2 for each microsystem : there is a common Hilbert space H
associated to V and a continuous linear map � : V ! H ::  s = �(Xs)
ii) Implement the Theorem 32 on the homogeneous system, that is for the whole of its evolution.

The state of the system is associated to a tensor 	 2 h where h is de�ned by a Hilbertian basis
(e"i)i2I of H, a �nite subset J of I, a conjugacy class � and a family of p vectors (e"jk)pk=1 belonging
to (e"i)i2J : The vector space h stays the same whatever t.
iii) Implement the Theorem 26 on the evolution of each microsystem : there is a common Hilbert

space F , a map : bE : R! L (H;F ) such that : 8Xs 2 O : bE (t)� (Xs) = Xs (t) and 8t 2 R; bE (t) is
an isometry
De�ne 8i 2 I : 'i : R! F :: 'i (t) = bE (t) e"i
iv) bE (t) can be uniquely extended in a continuous linear map :bEN (t) : 
NH ! 
NF such that : bEN (t) (
N s) = 
NXs (t)bEN (t) �
Ns=1e"is� = 
Ns=1'is (t)bEN (t) is an isometry, so 8t 2 R : �
Ns=1'is (t) ; is 2 I	 is a Hilbertian basis of 
NF
v) De�ne as the state of the system at t : S (t) = bEN (t) (	) 2 
NF
De�ne : 8� 2 S (N) : bUF (�) 2 L (
NF ;
NF ) by linear extension of : bUF (�) �
Ns=1fs� =


Ns=1f�(s)bUF (�) �
Ns=1'is (t)� = 
Ns=1'�(is) (t) = bEN (t) bU (�) �
Ns=1e"is�
8	 2 h :	 =

P
�2S(�c)	

� bU (�) �
n1e"j1 
n2 e"j2 :::
np e"jp�
S (t) =

P
�2S(�c)	

� bEN (t) � bU (�) �
n1e"j1 
n2 e"j2 :::
np e"jp�
S (t) =

P
�2S(�c)	

� bUF (�)
n1 'j1 (t)
n2 'j2 (t) :::
np 'jp (t)
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8� 2 S (�) : bUF (�) �
n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)�
= 
n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)
8� 2 S (�c) : bUF (�) �
n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)�
6=
�

n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)

�
and the tensors are linearly independent

So
nbUF (�) �
n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)� ; � 2 S (�c)o is an orthonormal basis of

f (t) = Span
nbUF (�) �
n1'j1 (t)
n2 'j2 (t) :::
np 'jp (t)� ; � 2 S (�c)o

f (t) = bEN (t) (h)
Let ef (t) � f (t) be any subspace globally invariant by nbUF (�) ; � 2 S (N)o : bUF (�) ef (t) 2 ef (t)bEN (t) is an isometry, thus a bijective mapeh = bEN (t)�1 ef (t), ef (t) = bEN (t)ehbUF (�) bEN (t)eh 2 bEN (t)eh
8	 2 h :bUF (�) bEN (t)	 = bEN (t) bU (�)	
) bEN (t) bU (�)eh 2 bEN (t)eh
) bU (�)eh 2 eh
So
�
f (t) ; bUF� is an irreducible representation of S (N)

For each t the space f (t) is de�ned by a Hilbertian basis (fi)i2I of F , a �nite subset J of I, a
conjugacy class � (t) and a family of p vectors (fjk (t))

p
k=1 belonging to (fi)i2J : The set J is arbitrary

but de�ned by h, so it does not depend on t. For a given class of conjugacy di¤erent families of
vectors (fjk (t))

p
k=1 generate equivalent representations and isomorphic spaces, by symmetrization or

antisymmetrization. So for a given system one can pick up a �xed ordered family (fj)
N
j=1 of vectors

in (fi)i2I such that for each class of conjugacy � = f0 � np � ::: � n1 � N;n1 + :::np = Ng there is
a unique vector space f� de�ned by 
n1f1 
n2 f2:::
np fp: Then if S (t) 2 f� :

S (t) =
P
�2S(�c) S

� (t) bUF (�) �
n1f1 
n2 f2:::
np fp�
and at all time S (t) 2 
NFJ :
The vector spaces f� are orthogonal. With the orthogonal projection �� on f� :
8t 2 R : S (t) =

P
� ��S (t)

kS (t)k2 =
P
� k��S (t)k

2

The distance between S(t) and a given f� is well de�ned and :
kS (t)� ��S (t)k2 = kS (t)k2 � k��S (Ut)k2
Whenever S, and thus �; is continuous, the space f� stays the same. As we have seen previously

one can assume that, in all practical cases, � is continuous but for a countable set ftk; k = 1; 2::g
of isolated points. Then the di¤erent spaces f� can be seen as phases, each of them associated
with a class of conjugacy �. And there are as many possible phases as classes of conjugacy. So,
in a probabilist picture, one can assume that the probability for the system to be in a phase � :
Pr (S (t) 2 f�) is a function of k��S(t)k

2

kS(t)k2 : It can be estimated as seen previously from data on a past

period, with the knowledge of both � and k��S(t)k2
kS(t)k2 :
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2.7 CORRESPONDENCE WITH QM

It is useful to compare the results proven in the present paper to the axioms of QM as they are
usually expressed.

2.7.1 Hilbert space

QM : 1. The states of a physical system can be represented by rays in a complex Hilbert space H.
Rays meaning that two vectors which di¤er by the product by a complex number of module 1 shall be
considered as representing the same state.

In Theorem 2 we have proven that in a model meeting precise conditions the states of the system
can be represented by vectors in an in�nite dimensional, separable, real Hilbert space. We have seen
that it is always possible to endow the Hilbert space with a complex structure, but this is not a
necessity. Moreover the Hilbert space is de�ned up to an isometry, so notably up to the product by
a �xed complex scalar of module 1. We will see in the following how and why rays appear (this is
speci�c to the representation of particles with electromagnetic �elds).

In Quantum Physics a great attention is given to the Principle of Superposition. This Principle
is equivalent to the condition that the variables of the system (and then its state) belong to a vector
space. There is a distinction between pure states, which correspond to actual measures, and mixed
states which are linear combination of pure states, usually not actually observed. There has been
a great e¤ort to give a physical meaning to these mixed states. Here the concept of pure states
appears only in the tensors representing interacting systems, with the usual, but clear, explanation.
In Quantum Mechanics some states of a system cannot be achieved (through a preparation for
instance) as a combination of other states, and then super-selection rules are required to sort out
these speci�c states. Here there is a simple explanation : because the set H0 is not the whole of H it
can happen that a linear combination of states is not inside H0: The remedy is to enlarge the model
to account for other physical phenomena, if it appears that these states have a physical meaning.

Actually the main di¤erence comes from the precise conditions of the Theorem 2. The variables
must be maps, but also belong to a vector space. Thus for instance it does not apply to the model
of a solid body represented by its trajectory x(t) and its speed v(t) : the variable x(t) is a map :
x : R!M valued in a manifold (an a¢ ne space in Galilean geometry). So it is necessary to adapt
the model, using the �ber bundle formalism, and this leads to a deep rede�nition of the concept of
motion (including rotation) and to the spinors. And as it has been abundantly said, the state is
de�ned by maps over the evolution of the system, and not pointwise.

2.7.2 Observables

QM : 2. To any physical measure �, called an observable, which can be done on the system, is
associated a continuous, linear, self-adjoint operator b� on H.
We have proven that this operator is also compact and trace-class. The main result is that we

have a clear understanding of the concept of observable, rooted in the practical way the data are
analyzed and assigned to the value of the variables, with the emphasize given to the procedure of
speci�cation, an essential step in any statistical analysis and which is usually overlooked. Because
the operator is compact, it excludes the usual �observables� of location and position : they are
actually (in the common framework) the in�nitesimal generators of the translation operators.

There is no assumption about the times at which the measures are taken, when the model
represents a process the measures can be taken at the beginning, during the process, or at the end.
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The variables which are estimated are maps, and the estimation of maps requires more than one
value of the arguments. The estimation is done by a statistical method which uses all the available
data. From this point of view our picture is closer to what is done in the laboratories, than to
the idealized vision of simultaneous measures, which should be taken all together at each time, and
would be impossible because of the perturbation caused by the measure.
In QM a great emphasize if given to the commutation of observables, linked to the physical

possibility to measure simultaneously two variables. This concept does not play any role here. The
product of observables itself has no clear meaning and no use. If a variable is added, we have another
model, the variable gets the same status as the others, and it is assumed that it can be measured.
Actually the importance granted to the simultaneity of measures, magni�ed by Dirac, is some-

what strange. It is also problematic in the Relativist picture. It is clear that some measures cannot
be done, at the atomic scale, without disturbing the state of the system that is studied, but this does
not preclude to use the corresponding variables in a model, or give them a special status. Before
the invention of radar the artillerymen used e¢ cient models even if they were not able to measure
the speed of their shells. And in a collider it is assumed that the speed and the location of particles
are known when they collide.

From primary observables it is possible to de�ne von Neumann algebras of operators, which are
necessarily commutative when a �xed basis has been chosen. As the choice of a privileged basis can
always be done, one can say that there is always a commutative von Neumann algebra associated
to a system. One can link the choice of a privileged basis to an observer, then, for a given observer,
the system can be represented by a commutative von Neumann algebra, and it would be interesting
to see what are the consequences for the results already achieved. In particular the existence of a
commutative algebra nulli�es the emphasize given to the commutation of operators, or at least, it
should be understood as the change of observer. But these von Neumann algebras do not play any
role in the proofs of the theorems. Their introduction can be useful, but they are not a keystone in
our framework.

2.7.3 Measure

QM : 3. The result of any physical measure is one of the eigen-values � of the associated operatorb�: After the measure the system is in the state represented by the corresponding eigen vector  �

This is one of the most puzzling axiom. We have here a clear interpretation of this result, with
primary observables, and there is always a primary observable which is at least as e¢ cient than a
secondary observable.

In our picture there is no assumption about how the measures are done, and particularly if they
have or not an impact on the state of the system. If it is assumed that this is the case, a speci�c
variable should be added to the model. Its value can be measured directly or estimated from the
value of the other variables, but this does not make a di¤erence : it is a variable as the others.

2.7.4 Probability

QM : 4. The probability that the measure is � is equal to jh �;  ij2 (with normalized eigen vectors).
If a system is in a state represented by a normalized vector  , and an experiment is done to test
whether it is in one of the states ( n)

N
n=1 which constitutes an orthonormal set of vectors, then the

probability of �nding the system in the state  n is jh n;  ij2 .

The �rst part is addressed by the theorem 17. The second part has no direct equivalent in our
picture but can be interpreted as follows : a measure of the primary observable has shown that
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 2 HJ , then the probability that it belongs to HJ0 for any subset J 0 � J is
bYJ0 ( )2 : It is a

computation of conditional probabilities :

Proof. The probability that  2 HK for any subset K � I is
bYK ( )2 : The probability that

 2 HJ0 knowing that  2 HJ is :

Pr ( 2 HJ0 j 2 HJ) =
Pr( 2HJ0^ 2HJ )
Pr( 2HJ0 j 2HJ )

= Pr( 2HJ0 )
Pr( 2HJ0 j 2HJ )

=
kbYJ0 ( )k2
kbYJ ( )k2 =

bYJ0 ( )2 becausebYJ0 ( ) =  and k k = 1
Moreover we have seen how the concept of wave functions can be introduced, and its meaning,

for models where the variables are maps de�ned on the same set. Of course the possibility to de�ne
such a function does not imply that it is related to a physical phenomenon.

2.7.5 Interacting systems

QM : 5. When two systems interacts, the vectors representing the states belong to the tensorial
product of the Hilbert states.

This is the topic of the theorem 29. We have seen how it can be extended to N systems, and the
consequences that entails for homogeneous systems. If the number of microsystems is not �xed, the
formalism of Fock spaces can be used but would require a mathematical apparatus that is beyond
the scope of this book.
There is a �erce debate about the issue of locality in physics, mainly related to the entanglement

of states for interacting particles. It should be clear that the formal system that we have built is
global : more so, it is its main asset. While most of the physical theories are local, with the tools
which have been presented we can deal with variables which are global, and get some strong results
without many assumptions regarding the local laws.

2.7.6 Wigner�s theorem

QM : 6. If the same state is represented by two rays R;R0, then there is an operator bU , unitary or
antiunitary, on the Hilbert space H such that if the state  is in the ray R then bU is in the ray
R0.

This the topic of the theorem 21. The issue unitary / antiunitary exists in the usual presentation
of QM because of the rays. In our picture the operator is necessarily unitary, which is actually
usually the case.

2.7.7 Schrödinger equation

QM : 7. The vector representing the state of a system which evolves with time follows the equation
: i~@ @t = bH where bH is the Hamiltonian of the system.

This is actually the topic of the theorem 27 and the result holds for the variables X in speci�c
conditions, including in the General Relativity context. The imaginary i does not appear because
the Hilbert space is real. As for Planck�s constant of course it cannot appear in a formal model.
However as said before all quantities must be dimensionless, as it is obvious in the equivalent
expression  (t) = exp t

i~
bH (0) : Thus it is necessary either to involve some constant, or that all

quantities (including the time t) are expressed in a universal system of units. This is commonly
done by using the Planck�s system of units. Which is more important is that the theorems (and
notably the second) precise fairly strong conditions for their validity. In many cases the Schrödinger�s
equation, because of its linearity, seems �to good to be true�. We can see why.
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2.7.8 The scale issue

The results presented here hold whenever the model meets the conditions 1. So it is valid whatever
the scale. But it is clear that the conditions are not met in many models used in classic physics,
notably in Analytic Mechanics (the variables q are not vectorial quantities). Moreover actually in
the other cases it can often be assumed that the variables belong themselves to Hilbert spaces. The
results about observables and eigen values are then obvious, and those about the evolution of the
system, for interacting systems or for gauge theories keep all their interest.
The �Quantic World�, with its strange properties does not come from speci�c physical laws, which

would appear below some scale, but from the physical properties of the atomic world themselves.
And of course these cannot be addressed in the simple study of formal models : they will be the
topic of the rest of this book.

So the results presented here, which are purely mathematical, give a consistent and satisfying
explanation of the basic axioms of Quantum Mechanics, without the need for any exotic assumptions.
They validate, and in many ways make simpler and safer, the use of techniques used for many years.
Moreover, as it is easy to check, most of these results do not involve any physics at all : they hold
for any scienti�c theory which is expressed in a mathematical formalism. From my point of view
they bring a de�nitive answer to the issue of the interpretation of QM : the interpretations were
sought in the physical world, but actually there is no such interpretation to be found. There is no
physical interpretation because QM is not a physical theory.
The results presented go beyond the usual axioms of QM : on the conditions to detect an anomaly,

on the quantization of a variable Y = f(X), on the phases transitions. And other results can
probably be found. So the method should give a fresh view of the foundations of QM in Physics.
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Chapter 3

GEOMETRY

Almost all, if not all, measures rely eventually on measures of lengths and times. The concepts
of space and time are at the foundation of theories about the geometry of the physical universe,
meaning of the container in which live the objects of physics. The issue here is not a model of the
Universe, seen in its totality, which is the topic of Cosmology, but a model which tells us how to
measure lengths and times, and how to compare measures done by di¤erent observers. Such a model
is a prerequisite to any physical theory. Geometry, as a branch of Mathematics, is the product of
this quest of a theory of the universe, and naturally a physical geometry is formalized with the tools
of Mathematical Geometry. There are several Geometries used in Physics : Galilean Geometry,
Special Relativity (SR) and General Relativity (GR).
In the �rst section we will see how such a geometry can be built, from simple observations. We

will go directly to the General Relativity model. This is the one which is the most general and
will be used in the rest of the book. It is said to be di¢ cult, but actually these di¢ culties can be
overcome with the right formalism. Moreover it forces us to leave usual representations, which are
often deceptive.

85
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3.1 MANIFOLD STRUCTURE

3.1.1 The Universe has the structure of a manifold

The �rst question is how do we measure a location ?
In almost all Physics books the answer will go straight to an orthonormal frame, or in GR to

a map with some coordinates ��; often with additional provisions for �inertial frames�, before a
complicated discourse about light, and quite often trains for the Relativist picture. Actually, and
what is somewhat strange for academics who pride themselves to be respectful of experiments, all
these narratives, simply, do not respect the facts.
At small distances it is possible to measure lengths by surveying, and indeed the scientists who

established the meter in 1792 based their work on a strict survey along 15 kms. Then it is possible to
use an orthonormal frame. But even at small scale, topographers use a set of 3 angles with respect
to �xed directions given by sta¤s, or far enough objects, points in the landscape, or distant stars,
combined with one measure of distance. The latter is measured usually by the delay for a signal
emitted to rebound on the surface on a distant object. There are small, clever, devices which do
that with ultrasound, radars use electromagnetic �elds. The speed of the propagation of the signal
is taken conventionally �xed and constant. It is assumed to have been measured at small scale, and
the results are then extended for larger distances. For not too far away celestial bodies, the distances
can be measured using the angles observed at di¤erent locations (the parallaxes), the knowledge of
the length of the basis of the triangle and some trigonometry. Further away one uses the measure of
the luminosity of �standard candles�, and eventually the red shift of some speci�c light waves. This
is the meaning of the �cosmic distance ladder�used in Astrophysics. So, measures of spatial location
rely essentially on measures of angles, and one measure of distance, which is established from some
phenomena, according to precise protocols based on conventions about the relation between the
distance and the phenomenon which is observed. The key is that, on the scale where two methods
are applicable, the measures of distances are consistent.
For the temporal location one uses the coincidence with any agreed upon event. For millennia

men used the position of celestial bodies for this purpose. Say "See you at Stonehenge at the spring�s
equinox" and you will be understood. Of course one can use a clock, but the purpose of a clock is
to measure elapsed time, so one needs a clock and a starting point, which are agreed upon, to locate
an event in time. So an observer can locate in time any event which occurs at his place. Are deemed
occurring at the time of the observer events that he can see directly, and for events occurring beyond
that, the observer accounts for a delay due to the transmission of his perception of the event, based
on a convention for the speed of the signal. This speed can be measured itself, for not too far away
events, either by a direct communication with a distant observer, or by bouncing a signal on a object
at the distant location. But farther away the speed of transmission is set conventionally. Actually
the physical support of the signal does not matter much as long as it is e¢ cient, and for the measure
of the temporal location, can rely on any convention. There is no need for a physical assumption
as the constancy of the speed of light, as long as only the measures done by a single observer are
considered.
The measures of location, in time and space, are so based on conventions. This is not an issue, as

long as the protocols are precise, and the measures consistent : the purpose of the measures is to be
able to identify e¢ ciently an event. One does that with 3 spatial coordinates, and 1 coordinate for
the time, organized in charts combining in a consistent way measures done according to di¤erent,
agreed upon procedures. The key point is that the charts are compatible : when it is possible to
proceed to the measures for the same event by di¤erent procedures, there is a way to go from one
measure to another. And this enables to extend the range of the chart by applying conventions,
such as in the cosmic ladder.
These procedures describe a manifold, a mathematical structure seen in the 2nd Chapter. A

set of charts covering a domain constitutes an atlas. There are mathematical functions, transition
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maps, which relate the coordinates of the same point in di¤erent charts. A collection of compatible
atlas over a set M de�nes the structure of a manifold. The coordinates represent nothing more than
the measures which can be done, and the knowledge of the protocols is su¢ cient.
This leads to our �rst proposition :

Proposition 35 The Universe can be represented by a four dimensional real manifold M

The charts de�ne over M a topology, deduced from the vector space. The manifold is di¤eren-
tiable (resp. smooth) if the transition maps are di¤erentiable (resp.smooth).
In Galilean Geometry the manifold is the product of R with a 3 dimensional a¢ ne space, and in

SR this is a 4 dimensional a¢ ne space (a¢ ne spaces have a manifold structure).
We will limit ourselves to an area 
 of the universe, which can be large, where there is no

singularity such as black hole, so that one can assume that one chart su¢ ces. We will represent such
a chart by a map :

'M : R4 ! 
 :: 'M
�
�0; �1; �2; �3

�
= m

which is assumed to be bijective and smooth, where � =
�
�0; �1; �2; �3

�
are the coordinates of m

in the chart 'M :
We will assume that 
 is a relatively compact open in M , so that the manifold structure on M

is the same as on 
; and 
 is bounded.
A change of chart is represented by a bijective smooth map (the transition map) :
� : R4 ! R4 :: �� = ��

�
�0; �1; �2; �3

�
such that the new map e'M and the initial map 'M locate the same point :e'M ��� ��0; �1; �2; �3� ; � = 0; ::3� = 'M

�
�0; �1; �2; �3

�
Notice that there is no algebraic structure onM : am+bm0 has no meaning. This is illuminating

in GR, but still holds in SR or Galilean Geometry. There is a clear distinction between coordinates,
which are scalars depending on the choice of a chart, and the point they locate on the manifold
(a¢ ne space or not).

3.1.2 The tangent vector space

Spatial locations rely heavily on the measures of angles with respect to �xed directions. At any point
there is a set of spatial directions, corresponding to small translations in one of the coordinates. And
the time direction is just the translation in time for an observer who is spatially immobile. There is
the same construct in Mathematics.
Mathematically at any point of a manifold one can de�ne a set which has the structure of a

vector space, with the same dimension as M . The best way to see it is to di¤erentiate the map 'M
with respect to the coordinates (this is close to the mathematical construct). To any vector u 2 R4
is associated the vector um =

P3
�=0 u

�@�'M
�
�0; �1; �2; �3

�
which is denoted um =

P3
�=0 u

�@��:

The basis (@��)
3
�=0 associated to a chart, called a holonomic basis, depends on the chart, but

the vector space at m denoted TmM does not depend on the chart. With this vector space structure
one can de�ne a dual space TmM� and holonomic dual bases denoted d�� with : d�� (@��) = ��� ;
and any other tensorial structure (see Maths.16).
In the de�nition of the holonomic basis the tangent space is generated by small displacements

along one coordinate, around a point m. So, physically, locally the manifold is close to an a¢ ne
space with a chosen origin m, and locally GR and SR look the same. This is similar to what we see
on Earth : locally it looks �at.
However there are essential distinctions between coordinates, used to measure the location of a

point in a chart, and components, used to measure a vectorial quantity with respect to a basis. Points
and vectors are geometric objects, whose existence does not depend on the way they are measured.
However a point on a manifold does not have an algebraic structure attached (the combination
am+ bm0 has no meaning), meanwhile a vector belongs to a vector space : one can combine vectors.
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Some physical properties of objects can be represented by vectors, others cannot, and the distinction
comes from the fundamental assumptions of the theory. It is enshrined in the theory itself. From the
construct of the tangent space one sees that any quantity de�ned as a derivative of another physical
quantity with respect to the coordinates is vectorial.

The vector spaces TmM depend on m, and there is no canonical (meaning independent of the
choice of a speci�c tool) procedure to compare vectors belonging to the tangent spaces at two di¤erent
points. These vectors um can be considered as a couple of a location m and a vector u;which can
be de�ned in a holonomic basis or not, and all together they constitute the tangent bundle TM:
Notably there is no physical mean to measure a change in the vectors of a holonomic basis with
time : it would require to compare @�� at two di¤erent locations m;m0 2 M: But, because there
are maps to go from the coordinates in a chart to the coordinates in another chart, there are maps
which enable to compute the components of vectors in the holonomic bases of di¤erent charts, at
the same point.

However because the manifolds are actually a¢ ne spaces, in SR and Galilean Geometry the
tangent spaces at di¤erent points share the same structure (which is the underlying tangent vector
space), and only in these cases they can be assimilated to R4: This is the origin of much confusion
on the subject, and the motivation to start in the GR context where the concepts are clearly
di¤erentiated.

3.1.3 Vector �elds

A vector �eld on M is a map : V : M ! TM :: V (m) =
P3
�=0 v

� (m) @�� which associates to any
point m a vector of the tangent space TmM: The vector does not depend on the choice of a basis or
a chart, so its components change in a change of chart as :

v� (m)! ev� (m) =P3
�=0 [J (m)]

�
� v

� (m)

where [J (m)] =
h
@��

@��
(m)

i
is a 4� 4 matrix called the jacobian

Similarly a one form on M is a map $ : M ! TM� :: $(m) =
P3
�=0$� (m) d�

� and the
components change as :

$� (m)! e$� (m) =
P3
�=0 [K (m)]

�
�$� (m) and [K (m)] = [J (m)]

�1

The sets of vector �elds, denoted X (TM) ;and of one forms, denoted X (TM�) or �1 (M ;R) are
in�nite dimensional vector spaces (with pointwise operations).

A curve on a manifold is a one dimensional submanifold : this is a geometric structure, and there
is a vector space associated to each point of the curve, which is a one dimensional vector subspace
of TmM .

A path on a manifold is a map : p : R ! M :: m = p (�) where p is a di¤erentiable map such
that p0 (�) 6= 0: Its image is a curve Lp, and p de�nes a bijection between R (or any interval of R) and
the curve (this is a chart of the curve), the curve is a 1 dimensional submanifold embedded in M .
The same curve can be de�ned by di¤erent paths. The tangent is the map : p0 (�) : R! Tp(�)M ::
dp
d� 2 Tp(�)Lp . In a change of parameter in the path : e� = f (�) (which is a change of chart) for
the same point : m = ep (e�) = p (f (�)) the new tangent vector is proportional to the previous one :
dm
d� =

dep
de� de�d� , dm

de� = 1
f 0
dm
d�

For any smooth vector �eld there is a collection of smooth paths (the integrals of the �eld) such
that the tangent at any point of the curve is the vector �eld. There is a unique integral curve
which goes through a given point. The �ow of a vector �eld V is the map :

�V : R �M ! M :: �V (�; a) such that �V (:; a) : R ! M :: m = �V (�; a) is the integral path
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going through a and �V (:; a) is a local di¤eomorphism :

8� 2 R : @
@��V (�; a) j�=� = V (�V (�; a))

8�; � 0 2 R : �V (� + � 0; a) = �V (�;�V (� 0; a))
�V (0; a) = a

8� 2 R : �V (��;�V (�; a)) = a

(3.1)

For a given vector �eld, the parameter � is de�ned up to a constant, so it is uniquely de�ned
with the condition �V (0; a) = a:

In general the �ow is de�ned only for an interval of the parameter, but this restriction does not
exist if 
 is relatively compact. Any smooth path can be considered as the integral of some vector
�eld (not uniquely de�ned), and it is convenient to express a path as the �ow of a vector �eld.

3.1.4 Fundamental symmetry breakdown

The idea that the Universe could be 4 dimensional is not new. R.Penrose remarked in his book �The
road to reality�that Galileo considered this possibility. The true revolution of Relativity has been
to acknowledge that, if the physical universe is 4 dimensional, it becomes necessary to dissociate the
abstract representation of the world, the picture given by a mathematical model, from the actual
representation of the world as it can be seen through measures. And this dissociation goes through
the introduction of a new object in Physics : the observer. Indeed, if the physical Universe is 4
dimensional, the location of a point is absolute : there is a unique material body, in space and time,
which can occupy a location. Then, does that mean that past and future exist together ? Can we
say that this apple, which is falling, is somewhere in the Universe, still on the tree ? To avoid the
conundrum and all the paradoxes that it entails, the solution is to acknowledge that, if there is a
unique reality, actually the reality which is scienti�cally accessible, because it enables experiments
and measures, is speci�c : it depends on the observer. This does not mean that it would be wrong
to represent the reality in its entirety, as it can be done with charts, frames or other abstract
mathematical objects. They are necessary to give a consistent picture, and more bluntly, to give a
picture that is accessible to our mind. But we cannot identify this abstract representation, common
to everybody, with the world as it is. This is one of the reasons that motivate the introduction of
Geometry in this book through GR : it is common to introduce subtle concepts such as location
and velocity through a frame, which is evoked in passing, as if it was obvious, standing somewhere
at the disposition of the public. There is nothing like this. I can build my frame, my charts, and
from there conceive that it can be extended, and compared to what other Physicists have done. But
comparison requires �rst dissociation, and this is more easily done in a context to which we are less
used, by years of schematic representations.
The four coordinates are not equivalent : the measure of the time �0 cannot be done with the

same procedures as the other coordinates, and one cannot move along in time : one cannot survey
time. This is the fundamental symmetry breakdown.
The time coordinate of an event can be measured, by conventional procedures which relate the

time on the clock (whatever it is) of a given observer to the time at which a distant event has
occurred. So we assume that a given observer can tell if two events A;B occur in his present
time (they are simultaneous), and that the relation �two events are simultaneous� is a relation of
equivalence between events. Then the observer can label each class of equivalence of events by the
time of his clock. Which can be expressed by telling that for each observer, there is a function :
fo : M ! R :: fo (m) = t which assigns a time t, with respect to the clock of the observer, at any
point of the universe (or at least 
): The points : 
 (t) = fm = fo (t) ;m 2 
g correspond to the
present of the observer. No assumption is made about the clock, and di¤erent clocks can be used,
with the condition that, as for any chart, it is possible to convert the time given by a clock to the
time given by another clock (both used by the same observer).
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In Galilean Geometry instantaneous communication is possible, so it is possible to de�ne a
universal time, to which any observer can refer to locate his position, and the present does not
depend on the observer. The manifold M can be assimilated to the product R � R3: The usual
representation of material bodies moving in the same a¢ ne space is a bit misleading, actually one
should say that this a¢ ne space R3 (t) changes continuously, in the same way, for everybody. Told
this way we see that Galilean Geometry relies on a huge assumption about the physical universe.
In Relativist Geometry instantaneous communication is impossible, so it is impossible to syn-

chronize all the clocks. However a given observer can synchronize the clocks which correspond to
his present, this is the meaning of the function fo, whose practical realization does not matter here.
Whenever there is, on a manifold, a map such that fo, with f 0o(m) 6= 0; it de�nes onM a foliation

: there is a collection of hypersurfaces (3 dimensional submanifolds) 
3 (t) ;and the vectors u of the
tangent spaces on 
3 (t) are such that f 0o(m)u = 0; meanwhile the vectors which are transversal to

3 (t) (corresponding to paths which cross the hypersurface only once) are such that f 0o(m)u > 0
for any path with t increasing. So there are two faces on 
3 (t) : one for the incoming paths, and
the other one for the outgoing paths. The hypersurfaces 
3 (t) are di¤eomorphic : they can be
deduced from each other by a di¤erentiable bijection, which is the �ow of a vector �eld. Conversely
if there is such a foliation one can de�ne a unique function fo with these properties (Maths.15071).
The successions of present �spaces� for any observer is such a foliation, so our representation is
consistent. And we state :

Proposition 36 For any observer there is a function

fo :M ! R :: fo (m) = t with f 0o (m) 6= 0 (3.2)

which de�nes in any area 
 of the Universe a foliation by hypersurfaces


3 (t) = fm = fo (t) ;m 2 
g (3.3)

which represents the location of the events occurring at a given time t on his clock.

An observer can then de�ne a chart of M , by taking the time on his clock, and the coordinates
of a point x in the 3 dimensional hypersurfaces 
3 (t) : it would be some map : ' : R � 
3 (0) !
M :: m = ' (t; x) however we need a way to build consistently these spatial coordinates, that is to
relate ' (t; x) to ' (t0; x).

3.1.5 Trajectories of material bodies

The Universe is a container where physical objects live, and the manifold provides a way to measure
a location. This is a 4 dimensional manifold which includes the time, but that does not mean that
everything is frozen on the manifold : the universe does not change, but its content changes. As
bodies move in the universe, their representation are paths on the manifold. And the fundamental
symmetry breakdown gives a special meaning to the coordinate with respect to which the changes
are measured. Time is not only a parameter to locate an event, it is also a variable which de�nes
the rates of change in the present of an observer.

Material bodies and particles

The common de�nition of a material body in Physics is that of a set of material points which are
related. A material point is assumed to have a location corresponding to a point of the manifold.
According to the relations between material points of the same body we have rigid solids (the
distance between two points is constant), deformable solids (the deformation tensor is locally given

1This theorem, which has far reaching consequences, is new and its proof, quite technical is given in my book.
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by the matrix of the transformation of a frame), �uids (the speed of material points are given by a
vector �eld). These relations are expressed in phenomenological laws, they are essential in practical
applications. The generalization to Relativity of the concept of solids, or material bodies which have
a spatial extension, is an important issue that we address in a following section.
We will consider �rst in this section material bodies which have no internal structures, or whose

internal structure can be neglected, that we will call particles. The only property that we will
consider here for a particle is its location, given by a geometrical point in the universe. A particle
then can be an electron, a nucleus, a molecule, or even a star system, according to the scale of the
study. We will add other properties to particles in the following chapters.

World line and proper time

As required in any scienti�c theory a particle must be de�ned by its properties, and the �rst is that
it occupies a precise location at any time. The successive locations of the material body de�ne a
curve and the particle travels on this curve according to a speci�c path called its world line. Any
path can be de�ned by the �ow of a vector such that the derivative with respect to the parameter
is the tangent to the curve. The parameter called the proper time is then de�ned uniquely, up to
the choice of an origin. The derivative with respect to the proper time is called the velocity. By
de�nition this is a vector, de�ned at each point of the curve, and belonging to the tangent space to
M . So the velocity has a de�nition which is independent of any basis.
Remark : For brevity I will call velocity the 4-vector, also usually called 4-velocity, and spatial

speed the common 3 vector.
Observers are assumed to have similarly a world line and a proper time (they have other prop-

erties, notably they de�ne a frame).
To sum up :

Proposition 37 Any particle or observer travels in the universe on a curve according to a speci�c
path, p : R ! M :: m = p (�) called the world line, parametrized by the proper time � , de�ned
uniquely up to an origin. The derivative of the world line with respect to the proper time is a vector,
the velocity, u. So that :

u (�) = dp
d� j�=� 2 Tp(�)M

p (�) = �u (�; a) with a = �u (0; a) = p (0)
(3.4)

Observers are assumed to have clocks, that they use to measure their temporal location with
respect to some starting point. The basic assumption is the following :

Proposition 38 For any observer his proper time is the time on his clock.

So the proper time of a particle can be seen formally as the time on the clock of an observer who
would be attached to the particle.
The observer uses the time on his clock to locate temporally any event : this is the purpose of

the function fo and of the foliation 
3 (t). The curve on which any particle travels meets only once
each hypersurface 
3 (t) : it is seen only once. This happens at a time t :

fo (p (�)) = t = fo (�u (�; a))
So there is some relation between t and the proper time � of any particle: It is speci�c, both to

the observer and to the particle. It is bijective and both increases simultaneously, so that : d�dt > 0:
The travel of the particle on the curve can be represented by the time of an observer. We will

call then this path a trajectory.
With this assumption each observer can build a chart. On some hypersurface 
3 (0) representing

the space of the observer at a time t = 0 he chooses a chart identifying each point x of 
3 (0) by
3 coordinates �1; �2; �3; using the methods to measure spatial locations described previously, and
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m = 'o
�
t; �1; �2; �3

�
is a chart of the area 
 � M spanned by the 
3 (t) : Each point m (t) =

'o
�
t; �1; �2; �3

�
corresponds to the trajectory of a material body or of an observer which would

stand still at x: We will call this kind of chart a standard chart for the observer. It relies on
the choice of a chart of 
3 (0) ; that is a set of procedures to measure a spatial location (so several
compatible charts can be used) and a clock or any procedure to identify a time. A standard chart is
speci�c to each observer and is essentially �xed.
An observer is not necessarily spatially immobile. But to know his new location he has to proceed

to measures which are similar to setting up a chart, with similar protocols, so actually this is a change
of chart and it is managed by the relations between old and new coordinates. In order to keep it
simple, in this book we assume that the standard chart is a chart for an observer who is spatially
immobile, and the motion of an observer is a change of observer.
Even if two observers can compare the measures of spatial locations, actually so far we cannot

go further : the hypersurfaces 
3 (t) are de�ned by the function fo and, a priori, are speci�c to
each observer. Moreover a clock measures the elapsed time. It seems legitimate to assume that,
in the procedure, one chooses clocks which run at the same rate. But, to do this, one needs some
way to compare this rate, that is a scalar measure of the velocity d

d� po (�) : But, as velocities are 4
dimensional vectors, one needs a special scalar product.
The essential feature of proper time is more striking when one considers particles. They should

be located at some point of M : they are not spread over all their world line, their location varies
along their world line with respect to the parameter �; their proper time. So their location is de�nite,
but with respect to a parameter � which is speci�c to each particle : there is a priori no way to
tell where, at some time, are all the particles ! An observer can locate a particle which is in his
�present�, and so identify speci�c particles, but this is speci�c to each observer.

3.1.6 Causal structure

The Principle of Causality states that there is some order relation between events. This relation is
not total : some events are not related. In the Relativist Geometry it can be stated as a relation
between locations in the Universe : a binary relation between two points (A;B).
The function fo of an observer provides such a relation : it su¢ ces to compare fo (A) ; fo (B) :

B follows A if fo (B) > fo (A) and is simultaneous to A if fo (B) = fo (A) : For a relation between
points it is natural to look at curves joining the points. For a path p 2 C1 ([0; 1] ;M) such that
p (0) = A; p (1) = B one can compute fo (p (�)) : If the function is increasing then one can say that B
follows A, and this is equivalent to f 0o (p (�))

dp
d� > 0: And we can say that the vector u =

dp
d� 2 Tp(�)M

is future oriented for the observer if f 0o (p (�))u > 0: We have the same conclusion for any vector at
a point m 2M which belongs to one of the hypersurfaces 
3 (t) of an observer : if it is transversal
it can be oriented towards the future by f 0o (m)u; and any curve can be similarly oriented at any
point, but the orientation is not necessarily constant. The classi�cation of the curves which have
a constant orientation is a topic of algebraic geometry, but here there is a more interesting issue :
the Principle of Causality should be met for any observer. We can study this issue by looking at
vectors u at a given point m. The derivative f 0o (m) is just a covector � 2 TmM�: The function :
B : TmM

� � TmM ! R :: B (�; u) = � (u) is continuous in both variables (TmM�; TmM are �nite
dimensional vector spaces and have a de�nite topology). For a given � if � (u) > 0 then � (�u) < 0;
and we have a partition of TmM in 3 connected components : future oriented vectors � (u) > 0;
past oriented vectors � (u) < 0; null vectors � (u) = 0: This partition of TmM should hold for any
observer. The implementation of the Principle of Causality in Relativist Geometry leads to state
that, at each point m, there is a set C+ of vectors future oriented for all observers, and that vectors
which do not belong to C+ are not future oriented for any observer. The opposite set C� is the set
of past oriented vectors. C+ is a convex open half cone : if for an observer u; v are future oriented,
then �u+ (1� �) v for � 2]0; 1[ is future oriented.
For any observer, there is a hyperplan Ho (m) passing by m; which separates C+; C� : take
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f 0o (m) 2 TmM�

8u 2 C�; v 2 C+ : f 0o (m) (u) < 0 < f 0o (m) (v)) supu2C� f
0
o (m) (u) � infv2C+ f 0o (m) (v)

Moreover this hyperplan is tangent to his hypersurface 
3 (t) passing by m:
So any observer can choose a basis of TmM consisting of 3 vectors ("i)

3
i=1 belonging to Ho (m) ;

that is his �space�. Then f 0o (m) ("i) = 0; i = 1; 2; 3 because the vectors are tangent to 
3 (t) : With
any other vector "0 as 4th vector of his basis,

f 0o (m) (u) = f 0o (m)
�P3

i=0 u
i"i

�
= u0f 0o (m) ("0)

To have a consistent result for this function, that is to be able to distinguish a past from a future
oriented vector, the observer must choose "0 2 C+ , and this choice is always possible by taking his
velocity as "0:
And this choice can be done in a consistent manner for any observer. Any �physical�basis chosen

by an observer comprises 3 spatial vectors, which do not belong to C+ and the 4th vector belong to
C�: This holds for the holonomic basis induced by a standard chart.
The function B (�; u) is de�ned all overM , does not depend on the observer, it is a bilinear map,

so this is a tensor �eld B 2 TM� 
 TM: In any basis it is expressed at a point by a 4 � 4 matrix,
and this matrix can be considered as the matrix of a bilinear form, from which a symmetric bilinear
form can be computed, and so a metric on TM . However we see that there are vectors such that
B (u; u) = 0: This metric cannot be de�nite positive.

A manifold is usually not isotropic : not all directions are equivalent. The fundamental symmetry
breakdown introduces a �rst anisotropy, speci�c to each observer, and we see that actually it goes
deeper, because it is common to all observers and not all vectors representing a translation in time
are equivalent : C+ is a half cone and not a half space.
So the Principle of Causality leads to assume that there is an additional structure in the Universe.

This causal structure is usually de�ned through the propagation of light : a region B is temporally
dependant from a region A if any point of B can be reached from A by a future oriented curve.
This is the domain of nice studies (see Wald), but there is no need to involve the light, the causal
structure exists at the level of the tangent bundle, its de�nition does not need the existence of a
metric, but clearly leads to assume that there is a metric and that this metric is not de�nite positive.

3.1.7 Metric on the manifold

Lorentz metric

A scalar product is de�ned by a bilinear symmetric form g acting on vectors of the tangent space,
at each point of the manifold, thus by a tensor �eld called a metric. In a holonomic basis g reads :

g (m) =

3X
��=0

g�� (m) d�
� 
 d�� with g�� = g�� (3.5)

The matrix of g is symmetric and invertible, if we assume that the scalar product is not degen-
erate. It is diagonalizable, and its eigen values are real. One wants to account for the symmetry
breakdown and the causal structure, so these eigen values cannot have all the same sign (a direction
is privileged). One knows that the hypersurface 
3 (t) are Riemannian : there is a de�nite positive
scalar product (acting on the 3 dimensional vector space tangent to 
3 (t)); and that transversal
vectors correspond to the velocities of material bodies. So there are only two solutions for the signs
of the eigen values of [g (m)] : either (-,+,+,+) or (+,-,-,-) which provides both a Lorentz metric.
The scalar product, in an orthonormal basis ("i)

3
i=0 at m reads :

signature (3; 1) : hu; vi = u1v1 + u2v2 + u3v3 � u0v0
signature (1; 3) : hu; vi = �u1v1 � u2v2 � u3v3 + u0v0 (3.6)
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Such a scalar product de�nes by restriction on each hypersurface 
3 (t) a positive or a negative
de�nite metric, which applies to spatial vectors (tangent to 
3 (t)) and provides, up to sign, the
usual euclidean metric. So that both signatures are acceptable.
Which leads to :

Proposition 39 The manifold M representing the Universe is endowed with a non degenerate met-
ric, called the Lorentz metric, with signature either (3,1) of (1,3) de�ned at each point.

This reasoning is a legitimate assumption, which is consistent with all the other concepts and
assumptions, notably the existence of a causal structure, this is not the proof of the existence of
such a metric. Such a proof comes from the formula in a change of frames between observers, which
can be checked experimentally.
Notice that on a �nite dimensional, connected, Hausdor¤ manifold, there is always a de�nite

positive metric. There is no relation between this metric and a Lorentz metric. Not all manifolds
can have a Lorentz metric, the conditions are technical (see Giachetta p.224 for more) but one can
safely assume that they are met in a limited region 
:
A metric is represented at each point by a tensor, whose value can change with the location.

One essential assumption of General Relativity is that, meanwhile the container M is �xed, and
so the chart and its holonomic basis are �xed geometric representations without speci�c physical
meaning, the metric is a physical object and can vary at each point according to speci�c physical
laws. The well known deformation of the space-time with gravity is expressed, not in the structure
of the manifold (which is invariant) but in the value of the metric at each point. However the metric
conserve always its basic properties - it is a Lorentz metric.

Gauge group

The existence of a metric implies that, at any point, there are orthonormal bases ("i)
3
i=0 with the

property :

De�nition 40 h"i; "ji = �ij for the signature (3,1) and h"i; "ji = ��ij for the signature (1,3)

with the matrix [�]

Notation 41 In any orthonormal basis "0 denotes the time vector.
h"0; "0i = �1 if the signature is (3; 1)
h"0; "0i = +1 if the signature is (1; 3)

Notation 42 [�] =

2664
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775 whatever the signature
An orthonormal basis, at each point, is a gauge. The choice of an orthonormal basis depends

on the observer : he has freedom of gauge. One goes from one gauge to another by a linear map �
which preserves the scalar product. They constitute a group, called the gauge group. These maps
are represented by a matrix [�] such that :h

[�]
t
[�] [�] = [�]

i
(3.7)

The group denoted equivalently O(3; 1) or O(1; 3), does not depend on the signature (replace [�]
by -[�]). (Maths.24.5). O(3; 1) is a 6 dimensional Lie group with Lie algebra o(3; 1) whose matrices
[h] are such that :

[h]
t
[�] + [�] [h] = 0 (3.8)
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The Lie algebra is a vector space and we will use the basis :

[�1] =

2664
0 0 0 0
0 0 0 0
0 0 0 �1
0 0 1 0

3775 ; [�2] =
2664
0 0 0 0
0 0 0 1
0 0 0 0
0 �1 0 0

3775 ; [�3] =
2664
0 0 0 0
0 0 �1 0
0 1 0 0
0 0 0 0

3775
[�4] =

2664
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3775 ; [�5] =
2664
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

3775 ; [�6] =
2664
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

3775
so that any matrix of o(3; 1) can be written :
[�] = [J (r)] + [K (w)] with

[J (r)] =

2664
0 0 0 0
0 0 �r3 r2
0 r3 0 �r1
0 �r2 r1 0

3775 ; [K (w)] =
2664
0 w1 w2 w3
w1 0 0 0
w2 0 0 0
w3 0 0 0

3775
The exponential of these matrices read :
exp [K (w)] = I4 +

sinh
p
wtwp

wtw
K(w) + cosh

p
wtw�1

wtw K(w)K(w)

exp [K (w)] =

"
cosh

p
wtw wt sinh

p
wtwp

wtw

w sinh
p
wtwp

wtw
I3 +

cosh
p
wtw�1

wtw wwt

#
exp [J (r)] = I4 +

sin
p
rtrp

rtr
J(r) + 1�cos

p
rtr

rrr J(r)J(r) =

�
1 0
0 R

�
where R a 3� 3 matrix of O(3).
The group O(3) has two connected components : the subgroup SO(3) with determinant 1, and

the subset O1 (3) with determinant -1.
O(3; 1) has four connected components which can be distinguished according to the sign of the

determinant and their projection under the compact subgroup SO(3)� fIg :
Any matrix of SO(3; 1) can be written as the product : [�] = exp [K (w)] exp [J (r)] (or equiva-

lently exp [J (r0)] exp [K (w0)]). So we have the 4 cases :

- SO0 (3; 1) : with determinant 1: [�] = expK(w)�
�
1 0
0 R

�
- SO1 (3; 1) : with determinant 1: [�] = expK(w)�

�
�1 0
0 �R

�
- SO2 (3; 1) with determinant = -1: [�] = expK(w)�

�
�1 0
0 R

�
- SO3 (3; 1) with determinant = -1: [�] = expK(w)�

�
1 0
0 �R

�
where R a 3� 3 matrix of SO(3), so that �R 2 O1 (3)

Orientation and time reversal

Any �nite dimensional vector space is orientable. A manifold is orientable if it is possible to de�ne
a consistent orientation of its tangent vector spaces, and not all manifolds are orientable. If it is
endowed with a metric then the map : det g : M ! R provides an orientation function (its sign
changes with the permutation of the vectors of a holonomic basis) and the manifold is orientable.
But on a 4 dimensional vector space one can de�ne other operations, of special interest when the

4 dimensions have not the same properties. For any orthonormal basis ("i)
3
i=0 :

space reversal is the change of basis :
i = 1; 2; 3 : e"i = �"ie"0 = "0
time reversal is the change of basis :
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i = 1; 2; 3 : e"i = "ie"0 = �"0
These two operations change the value of the determinant, so they are not represented by matrices

of SO (3; 1) :

space reversal matrix : S =
�
1 0
0 �I3

�
time reversal matrix : T =

�
�1 0
0 I3

�
ST = �I4
The matrices of the subgroups SOk (3; 1) ; k = 1; 2; 3 are generated by the product of any element

of SO0 (3; 1) by either S or T .

Is the universe orientable ? Following our assumption, if there is a metric, it is orientable.
However one can check for experimental proofs. In a universe where all observers have the same
time, the simple existence of stereoisomers which do not have the same chemical properties su¢ ces
to answer positively : we can tell to a distant observer what we mean by �right� and �left� by
agreeing on the property of a given product. In a space-time universe one needs a process with an
outcome which discriminates an orientation. All chemical reactions starting with a balanced mix
of stereoisomers produce an equally balanced mix (stereoisomers have the same level of energy).
However there are experiments involving the weak interactions (CP violation symmetry in the decay
of neutral kaons) which show the required property. So we can state that the 4 dimensional universe
is orientable, and then we can distinguish orientation preserving gauge transformations.

A change of gauge, physically, implies some transport of the frame (one does not jump from one
point to another) : we have a map : � : R! SO(3; 1) such that at each point of the path po : R!M
de�ned on a interval R of R, � (t) is an isometry. The path which is followed matters. In particular
it is connected. The frame ("i)

3
i=0 is transported by : e"i (�) = � (t) "i (0) : So f[� (�)] ; t 2 Rg,

image of the connected interval R by a continuous map is a connected subset of SO(3; 1), and
because �(0) = Id it must be the component of the identity. So the right group to consider is the
connected component of the identity SO0 (3; 1)

Time like and space like vectors

The causal structure is then fully de�ned by the metric.
At any point m one can discriminate the vectors v 2 TmM according to the value of the scalar

product hv; vi.

De�nition 43 Time like vectors are vectors v such that hv; vi < 0 with the signature (3,1) and
hv; vi > 0 with the signature (1,3)
Space like vectors are vectors v such that hv; vi > 0 with the signature (3,1) and hv; vi < 0 with

the signature (1,3)

Moreover the subset of time like vectors has two disconnected components (this is no longer true
in universes with more than one �time component�). So one can discriminate these components and,
in accordance with the assumptions about the velocity of material bodies, it is logical to consider that
their velocity is future oriented. And one can distinguish gauge transformations which preserve
this time orientation.

De�nition 44 We will assume that the future orientation is given in a gauge by the vector "0: So
a vector u is time like and future oriented if :
hu; ui < 0; hu; "0i < 0 with the signature (3,1)
hu; ui > 0; hu; "0i > 0 with the signature (1,3)
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A matrix [�] of SO(3; 1) preserves the time orientation i¤ [�]00 > 0 and this will always happen
if [�] = exp [K (w)] exp [J (r)] that is if [�] 2 SO0 (3; 1) :
A gauge transformation which preserves both the time orientation, and the global orientation

must preserve also the spatial orientation.
Killing vector �elds are vector �elds V such that their �ow, which is always a di¤eomorphism,

preserves the metric : it is an isometry. We will use Killing vector �elds in the Chapter 5.

3.1.8 Velocities have a constant Lorentz norm

The velocity dpo
d� is a vector which is de�ned independently of any basis, for any observer it is

transversal to 
3 (t) : It is legitimate to say that it is future oriented, and so it must be time-like.
One of the basic assumptions of Relativity is that it has a constant length, as measured by the metric,
identical for all observers. So it is possible to use the norm of the velocity to de�ne a standard rate
at which the clocks run.
Because the proper time of any material body can be de�ned as the time on the clock of an

observer attached to the body this proposition is extended to any particle.
The time is not measured with the same unit as the lengths, used for the spatial components of

the velocity. The ratio �i=t has the dimension of a spatial speed. So we make the general assumption

that for any observer or particle the velocity is such that
D
dp
d� ;

dp
d�

E
= �c2 where � is the proper

time. Notice that c is a constant, with no speci�c value. This is consistent with the procedures used
to measure the time of events occurring at a distant spatial location.
And we sum up :

Proposition 45 The velocity dp
d� of any particle or observer is a time like, future oriented vector

with Lorentz norm �
dp

d�
;
dp

d�

�
= �c2 (3.9)

(with signature (3,1) or c2 with signature (1,3)) where c is a fundamental constant.

3.1.9 Standard chart of an observer

With the previous propositions we can de�ne the standard chart of an observer.

Theorem 46 For any observer there is a vector �eld "0 2 X (TM) which is future oriented, with
length h"0 (m) ; "0 (m)i = �1; normal to 
3 (t) and such that : "0 (po (t)) = 1

c
dpo
dt where dpo

dt is the
velocity of the observer at each point of his world line.

Proof. For an observer the function fo : 
! R has for derivative a one form f 0o (m) 6= 0 such that
: 8v 2 Tm
3 (t) : f 0o (m) v = 0; and for any future oriented vector v 2 TmM : f 0o (m) v > 0

Using the metric, it is possible to associate to f 0o (m) a vector : gradfo : hgradfo; vi = f 0o (m) v
which is unique up to a scalar. Thus gradfo is normal to 
3 (t). It is time like. At each point m it
is possible to de�ne a vector "0 (m) = � (m) gradfo (m) such that "0 (m) is future oriented and with
length h"0 (m) ; "0 (m)i = �1

dpo
dt is orthogonal to 
3 (t) thus

dpo
dt = �"0 (po (t)) and

D
dpo
dt ;

dpo
dt

E
= �c2 ) dpo

dt = c"0 (po (t))

As a consequence :

Theorem 47 
3 (t) are space like hypersurfaces, with unitary, future oriented, normal "0 2 X (TM)
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The vector �eld "0; deduced from the function fo; characterizes the observer. His worldline is
po (t) = �c"0 (t; po (0)) and the �ow of the vector �eld c"0 is a di¤eomorphism 
3 (0)! 
3 (t) :
8x 2 
3 (0) : �c"0 (t; x)
Let '
 : R3 ! 
3 (0) :: x = '


�
�1; �2; �3

�
be a chart of 
3 (0)

Denote : �0 = ct
Then the map : 'o : R4 ! 
 :: 'o

�
�0; �1; �2; �3

�
= �c"0 (t; x) is a chart of 
 that we will call the

standard chart associated to the observer "0:
For any �xed point y = '


�
�1; �2; �3

�
2 
3 (0)

q (t) = 'o
�
ct; �1; �2; �3

�
dq
dt =

P3
�=0

@��

@t @�� =
dct
dt @�0 (q (t)) = c@�0 (q (t))

dq
dt =

@
@t�c"0 (t; y) = c"0 (q (t))

thus @�0 (m) = "0 (m)
And we will write often m = 'o (ct; �) where � =

�
�1; �2; �3

�
are the coordinates in 
3 (0)

'
 : R3 ! 
3 (0) :: x = '

�
�1; �2; �3

�
'o : R4 ! 
 :: 'o

�
ct; �1; �2; �3

�
= �c"0 (t; x)

@�0 (m) = "0 (m)
�0 = ct

(3.10)

According to the principle of locality any measure is done locally : the state of any system at t
is represented by the measures done over 
3 (t) : The system itself can be de�ned as the �physical
content� of 
3 (t) and its evolution as the set f
3 (t) ; t 2 [0; T ]g. The physical system itself is
observer dependant. The vector �eld "0 de�nes a special chart, but also the system itself. Two
observers who do not share the vector �eld "0 do not perceive the same system. So actually this is a
limitation of the Principle of Relativity : it holds but only when the observers agree on the system
they study. And of course the observers who share the same "0 have a special interest.

3.1.10 Trajectory and speed of a particle

A particle follows a world line q (�), parametrized by its proper time. Any observer sees only one
instance of the particle, located at the point where the world line crosses the hypersurface 
3 (t) so
we have a relation between � and t. This relation identi�es the respective location of the observer
and the particle on their own world lines. With the standard chart of the observer it is possible to
measure the velocity of the particle at any location, and of course at the location where it belongs
to 
3 (t) :
The trajectory (parametrized by t) of any particle in the standard chart of an observer is :
q (t) = 'o

�
�0 (t) ; �1 (t) ; �2 (t) ; �3 (t)

�
q (t) 2 
3 (t), �0 (t) = ct
By di¤erentiation with respect to t :
dq
dt =

P3
�=0

@��

@t @�� = c@�0 (q (t)) +
P3
�=1

@��

@t @�� = c"0 (q (t)) +
�!v

�!v =
P3
�=1

d��
dt @�� 2 Tq(t)
3 (t) so is orthogonal to "0 (q (t))

De�nition 48 The spatial speed of a particle on its trajectory q (t) = 'o (ct; x (t)) with respect to
an observer is the vector of Tq(t)
3 (t) :
�!v = '0o

�P3
�=1

d��

dt @��

�
Thus for any particle in the standard chart of an observer :

V (t) =
dq

dt
= c"0 +

�!v (3.11)

For the observer in the standard chart we have : x = Ct, �!v = 0
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Notice that the velocity, and the spatial speed, are measured in the chart of the observer at the
point q(t) where is the particle. Because we have de�ned a standard chart it is possible to measure
the speed of a particle located at a point q (t) which is di¤erent from the location of the observer.
And we can express the relation between � and t.

Theorem 49 The proper time � of any particle and the corresponding time of any observer t are
related by :

d�

dt
=

s
1� k

�!v k2

c2
(3.12)

where �!v is the spatial speed of the particle, with respect to the observer and measured in his
standard chart.
The velocity of the particle is :

dp

d�
=

1r
1� k

�!v k2
c2

(�!v + c"0 (m)) (3.13)

Proof. i) Let be a particle A with world line :
p : R!M :: m = p (�) = �u (�; a) with a = �u (0; a) = p (0)
In the standard chart �c"0 (t; x) of the observer O its trajectory is :
q : R!M :: m = q (t) = �c"0 (t; x (t))
So there is a relation between t; � :
m = p (�) = �u (�; a) = q (t) = �c"0 (t; x (t))
By di¤erentiation with respect to t :
d
dtq (t) = c"0 (q (t)) +

�!v
dq
dt =

dp
d�

d�
dt = ud�dtD

dp
d� ;

dp
d�

E
= �c2D

dq
dt ;

dq
dt

E
= �c2

�
d�
dt

�2D
dq
dt ;

dq
dt

E
= h�!v ;�!v i3 � c2 because "0 (m) ? 
3 (t)

k�!v k2 � c2 = �c2
�
d�
dt

�2
and because d�

dt > 0 :
d�
dt =

r
1� k

�!v k2
c2

ii) The velocity of the particle is :
dp
d� =

dq
dt

dt
d� =

1r
1�k

�!v k2
c2

(�!v + c"0 (m))

As a consequence :

k�!v k3 < c (3.14)

V (t) = dq
dt is the measure of the motion of the particle with respect to the observer : it can be

seen as the relative velocity of the particle with respect to the observer. It involves �!v which has the
same meaning as usual, but we see that in Relativity one goes from the 4 velocity u = dp

d� (which

has an absolute meaning) to the relative velocity V (t) = dq
dt =

dp
d�

d�
dt = u

r
1� k

�!v k2
c2 by a scalar.
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3.2 FIBER BUNDLES

The location of a particle is absolute : this is the point in the physical Universe that it occupies
at some time. Similarly the velocity of a particle or an observer is absolute : in its de�nition
there is no reference to a chart or a frame. This is an essential point in Relativity. It is a vector,
which is an intrinsic property of material bodies and particles. It is measured in bases, and the
value of its components vary according to precise mathematical rules when one goes from one basis
to another. The physical quantity is absolute, but its measure is relative. And this holds for all
physical quantities : a measure in itself has no meaning if one does not know how it has been done,
the units and the standards used. It is specially important in Relativity because the observers are
not interchangeable. Meanwhile in Classic Physics we are used to some universal frame there is
nothing equivalent in General Relativity, starting with the vectorial basis (@��) which varies with
the location.
The most general mathematical tool to deal with this problem is the �ber bundle, which is a

generalization of the concept of vector space tangent to a manifold.

3.2.1 Fiber bundles theory

(see Math.Part VI)

General �ber bundle

A �ber bundle, denoted P (M;F; �P ); is a manifold P , which is locally the product of two manifolds,
the base M and the standard �ber F , with a projection : �P : P ! M which is a surjective
submersion. The subset of P : ��1P (m) is the �ber over m. It is usually de�ned over a collection
of open subsets of M , patched together, but we will assume that on the area 
 there is only one
component (the �ber bundles are assumed to be trivial)2 . A trivialization is a map :

'P :M � F ! P :: p = 'P (m; v)
and any element of P is projected on M : 8v 2 F : �P ('P (m; v)) = m: So it is similar to a

chart, but the arguments are points of the manifolds.
A section p on P is de�ned by a map : v : M ! F and p (m)='P (m; v (m)) : The set of

sections is denoted X (P ) :
A �ber bundle can be de�ned by di¤erent trivializations. In a change of trivialization the

same element p is de�ned by a di¤erent map 'P : this is very similar to the charts for manifold.
p = 'P (m; v) = e'P (m; ev)
and there is a necessary relation between v and ev (m stays always the same) depending on the

kind of �ber bundle.

Vector bundle

If F = V is a vector space then P is a vector bundle :
'P :M � F ! P :: X (m) = (m;

Pn
i=1Xi (m) "i)

This is a vector of V located at m. The rules in a change of trivialization are such that P has at
each point the structure of a vector space :

wm = 'P (m;w) ; w
0
m = 'P (m;w

0) ; �; � 2 R :
�wm + �w

0
m = 'P (m;�w + �w

0)
and one can de�ne a holonomic basis : it is de�ned by a basis ("i)i2I of V :
"i (m) = 'P (m; "i)
and write :
2 If, in the mathematical de�nition of �ber bundles, the concept of collection of open subsets is essential, in all

the practical consequences, notably with regard to the computation rules, the concept of change of trivialization is
equivalent and has a clear physical meaning. So we can restrict ourselves to trivial bundles without loss of rigor.
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X (m) = (m;
Pn
i=1Xi (m) "i) =

Pn
i=1Xi (m) "i (m)

("i)i2I plays the same role as the holonomic basis (@��)
3
�=0 of the tangent bundle TM:

Usually one requires some property of the basis "i; for instance it must be orthonormal. The
mean to go from one basis to another is provided usually by the action of a group. So the vector
bundles that we will meet are de�ned as associated to a principal bundle.

Principal bundle

If F = G is a Lie group then P is a principal bundle : its elements are a value g(m) of G localized
at a point m.

p will usually de�ne the basis used to measure vectors, so p is commonly called a gauge. There
is a special gauge which can be de�ned at any point (it will usually be the gauge of the observer) :
the standard gauge, the element of the �ber bundle such that : p (m) = 'P (m; 1) : This is not a
section : the standard gauge is arbitrary, it re�ects the free will of the observer, and as such is not
submitted to any physical law. Its de�nition, with respect to measures, is done in protocols which
document the experiments. There is no such thing as a given, natural, ��eld of gauges�.
A principal bundle P (M;G; �) is characterized by the existence of the right action of the group

G on the �ber bundle P :
� : P �G! P :: p � g0 = 'P (m; g) � g0 = 'P (m; g:g

0)
such that (p � g0) � g" = p � (g0:g")
which does not depend on the trivialization. So that any p 2 P can be written : p = 'U (m; g) =

� (p;g) with the standard gauge p (m)='P (m; 1).
A change of trivialization (that we call a change of gauge) is induced by a map : � : M ! G

that is by a section � 2 X (P ) and :ep (m) = e'P (m; 1) = p (m) � � (m)='P (m;� (m))
p = 'P (m; g) = p (m) � g = ep (m) � eg = (p (m) � � (m)) � eg = p (m) � (� (m) :eg)
) g = � (m) :eg , eg = � (m)

�1
:g

� (m) can be identical over M (the change is said to be global) or depends on m (the change is
local).
The expression of the elements of a section change as :
� 2 X (P ) :: � = 'P (m;� (m)) = e'P (m; e� (m)), e� (m) = � (m)

�1 � � (m)
It will be more convenient to de�ne a change of gauge by � (m)�1 (and not � (m)) with the

obvious adjustments.

p (m) = 'P (m; 1)! ep (m) = p (m) � � (m)�1 :
� (m) = 'P (m; g) = e'P (m;� (m) � g)

� (m)! e� (m) = � (m) � � (m)
(3.15)

So changes of trivialization and change of gauge are the same operations, and we will consider
usually a change of gauge.

Associated �ber bundle

Whenever there is a manifold F , a left action � of G on F , one can built an associated �ber
bundle denoted P [F; �] which consists of couples :
(p; v) 2 P � F with the equivalence relation : (p; v) �

�
p � g; �

�
g�1; v

��
The result belong to a �xed set, but its value is labeled by the standard which is used and related

to a point of a manifold.
It is convenient to de�ne these couples by using the standard gauge on P:

(p (m) ; v) = ('P (m; 1) ; v) �
�
'P (m; g) ; �

�
g�1; v

��
(3.16)
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A standard gauge is nothing more than the use of an arbitrary standard, represented by 1, with
respect to which the measure is done. A change of standard gauge in the principal bundle impacts
all associated �ber bundles (this is similar to the change of units) :

p (m) = 'P (m; 1)! ep (m) = p (m) � � (m)�1
vp = (p (m) ; v) = (ep (m) ; ev) : ev = � (� (m) ; v)

(3.17)

Similarly for the components of a section :

v 2 X (P [V; �]) :: v (m) = (p (m) ; v (m)) =
�
p (m) � � (m)�1 ; � (� (m) ; v)

�
If F is a vector space V and [V; �] a representation of the group G then we have an associated

vector bundle P [V; �] which has locally the structure of a vector space. It is convenient to de�ne
a holonomic basis ("i (m))

n
i=1 from a basis ("i)

n
i=1 of V by : "i (m) = (p (m) ; "i) then any vector

of P [V; �] reads :

vm = (p (m) ; v) =

 
p (m) ;

nX
i=1

vi"i

!
=

nX
i=1

vi"i (m) (3.18)

A change of standard gauge p (m) = 'P (m; 1)! ep (m) = p (m)�� (m)�1 in the principal bundle
impacts all associated vector bundles.
For any vector :

vm = (p (m) ; v) �
�
p (m) � � (m)�1 ; � (� (m)) (v)

�
Meanwhile the holonomic basis of a vector bundle changes as :
"i (m) = (p (m) ; "i)!e"i (m) = (ep (m) ; "i) = �p (m) � � (m)�1 ; "i�
�
��
p (m) � � (m)�1

�
� � (m) ; �

�
� (m)

�1
�
"i

�
=
�
p (m) ; �

�
� (m)

�1
�
("i)
�
= �

�
� (m)

�1
�
"i (m)

so that the components of a vector in the holonomic basis change as :
vm =

Pn
i=1 v

i"i (m) =
Pn
i=1 evie"i (m) =Pn

i=1 evi� (� (m))�1 "i (m)
) evi =Pj [� (� (m))]

i
j v

j

p (m) = 'P (m; 1)! ep (m) = p (m) � � (m)�1 :
vm = (p (m) ; v) �

�
p (m) � � (m)�1 ; � (m) (v)

�
"i (m) = (p (m) ; "i)! e"i (m) = � (� (m))

�1
"i (m)

vi ! evi =Pj [� (� (m))]
i
j v

j

(3.19)

The set of sections on P [V; �] ; denoted X (P [V; �]) ; is an in�nite dimensional vector space.
(X (P [V; �]) ; �) is an in�nite dimensional representations of the group G. The elements of a section
stay the same, but their de�nition changes, meanwhile the holonomic bases are de�ned by di¤erent
elements. This is very similar to what we have in any vector space in a change of basis : the vectors
of the basis change, the other vectors stay the same, but their components change.
An important point : even if one denotes v (m) =

Pn
i=1 v

i (m) "i (m) actually the vector is
measured in a �xed vector space : v (m) = ('P (m; 1) ; v (m)) where v (m) =

Pn
i=1 v

i (m) "i 2 V: So
that the derivatives : @�v (m) = ('P (m; 1) ; @�v (m)) with @�v (m) =

Pn
i=1

�
@�v

i (m)
�
"i: The �ber

bundle formalism enables to consider the components independently from the basis. This is possible
because the gauge p (m) = 'P (m; 1) is not a section.
Any Lie Group G has a representation (T1G;Ad) on its Lie algebra with its adjoint map Ad: So

for any principal bundle there is the adjoint bundle PG [T1G;Ad] which is a vector bundle, whose
holonomic bases are given by bases of T1G:
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I have given with great precision the rules in a change of gauge, as they will be used quite often
(and are a source of constant mistakes ! For help see the Formulas in the Annex). They are necessary
to ensure that a quantity is intrinsic : if it is geometric, its measure must change according to the
rules. And conversely if it changes according to the rules, then one can say that it is intrinsic (this
is similar to tensors). A quantity which is a vector of a �ber bundle is geometric with regard the
conditions 1 of the 2nd chapter.

Scalar product and norm

Whenever there is a scalar product (bilinear symmetric of Hermitian two form) hi on a vector space
V , so that (V; �) is a unitary representation of the group G : h� (g) v; � (g) v0i = hv; v0i ; the scalar
product can be extended on the associated vector bundle P [V; �] :

h(p (m) ; v) ; (p (m) ; v0)iP [V;�] = hv; v
0iW (3.20)

If this scalar product is de�nite positive, with any measure � on the manifold M (usually the
Lebesgue measure associated to a volume form as in the relativist context), one can de�ne the spaces
of integrable sections Lq (M;�; P [V; �]) of P [V; �] (by taking the integral of the norm pointwise).
For q = 2 they are Hilbert spaces, and unitary representation of the group G. Notice that the
signature of the scalar product is that of the product de�ned on P [V; �] ; the metric on M is not
involved.

There are several �ber bundles in the Geometry of the Universe. The simplest is the usual
tangent bundle TM over M , which is a vector bundle associated to the choice of an invertible map
at each point (the gauge group is SL(R; 4)): A standard chart de�nes a �ber bundle :
base R
projection �o (m) = f0 (m) = t
�ber 
3 (0) : x = '


�
�1; �2; �3

�
trivialization m = ' (t; x)
A change of trivialization is a change of chart on 
3 (0) :

3.2.2 Standard gauge associated to an observer

Frames and bases are used to measure components of vectorial quantities. Following the Principle
of Locality any physical map, used to measure the components of a vector at a point m in M , must
be done at m, that is in a local frame. Observers belong to 
3 (t) and can do measures at any point
of 
3 (t) :
They can measure components of vectors in the holonomic basis (@��)

3
�=0 given by a chart. This

basis changes with the location but the chart is �xed for a given observer.
One property of the observers is that they have freedom of gauge : they can decide to measure

the components of vectors in another basis than (@��)
3
�=0 : usually, and this is what we will assume,

they choose an orthonormal basis. This can be done by choosing 3 spatial vectors at a point, and we
assume that they can extend the choice at any other point of 
3 (t)): However for the time vector
the observer has actually no choice : this is necessarily the vector �eld "0 which is normal to 
3 (t))
and future oriented, and in the same direction as @�0:
We will call such orthonormal bases a Standard gauge. They are arbitrary, chosen by the observer,

with the restriction about the choice of "0; and implemented all over 
3 (t) : They can be de�ned
with respect to the holonomic basis of a chart.
This is equivalent to assume that, for each observer, there is a principal bundle Po (M;SO0 (3; 1) ; �p),

a gauge p (m) = 'P (m; 1) and an associated vector bundle Po
�
R4; {

�
where

�
R4; {

�
is the standard

representation of SO0(3; 1). It de�nes at each point an holonomic orthonormal basis : "i (m) =
(p (m) ; "i) :To sum up :
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Proposition 50 For each observer there is :
a principal �ber bundle structure Po (M;SO0 (3; 1) ; �p) on M with �ber the connected com-

ponent of identity SO0 (3; 1), which de�nes at each point a standard gauge : p (m) = 'P (m; 1)
an associated vector bundle structure Po

�
R4; {

�
where

�
R4; {

�
is the standard representation

of SO0(3; 1); which de�nes at any point m 2 
 the standard basis "i (m) = (p (m) ; "i) ; i = 0::3
where "0 (m) is orthogonal to the hypersurfaces 
3 (t) to which m belongs.

3.2.3 Formulas for a change of observer

Theorem 51 For any two observers O;A the components of the vectors of the standard orthonormal
basis of A, expressed in the standard basis of O are expressed by the following matrix [�] of SO0 (3; 1) ;
where �!v is the instantaneous spatial speed of A with respect to O and R a matrix of SO(3) :

[�] =

26664
1q

1� kvk2
c2

vt

cq
1� kvk2

c2

v
cq

1� kvk2
c2

I3 +

 
1q

1� kvk2
c2

� 1
!

vvt

kvk2

37775
�
1 0
0 R

�
(3.21)

Proof. Let be :
O be an observer (this will be main observer) with associated vector �eld "0 , proper time t and

world line po (t)
A be another observer with associated vector �eld e0 , proper time �
Both observers use their standard chart 'o; 'A and their standard orthonormal basis, whose time

vector is in the direction of their velocity. The location of A on his world line is the point m such
that A belongs to the hypersurface 
3 (t)
The velocity of A at m :
dpA
d� = ce0 (m) by de�nition of the standard basis of A
dpA
d� = 1r

1�k
�!v k2
c2

(�!v + c"0 (m))as measured in the standard basis of O

The matrix [�] to go from the orthonormal basis ("i (m))
3
i=0 to (ei (m))

3
i=0 belongs to SO0(3; 1).

It reads :

[� (t)] =

"
cosh

p
wtw wt sinh

p
wtwp

wtw

w sinh
p
wtwp

wtw
I3 +

cosh
p
wtw�1

wtw wwt

# �
1 0
0 R

�
for some w 2 R3; R 2 SO (3)
The elements of the �rst column of [� (t)] are the components of e0 (m) ; that is of 1c

dpA
d� expressed

in the basis of O :
cosh

p
wtw = 1q

1� kvk2
c2

w sinh
p
wtwp

wtw
=

�!v
c

1q
1� kvk2

c2

w = k�!v ) wtw = k2 k�!v k2

which leads to the classic formula with

w = v
kvk arg tanh

v
c

 = 1
2
v
kvk ln

�
c+k�!v k
c�k�!v k

�
� 1

2
v
kvk ln

�
1 + 2

k�!v k
c

�
' v

c

Some key points to understand these formulas :
- They hold for any observers O, A, who use their standard orthonormal basis (the time vector

is oriented in the direction of their velocity). There is no condition such as inertial frames.
- The points of M where O and A are located can be di¤erent, O 2 
3 (�) ; A 2 
3 (�) \ 
3 (t) :

The spatial speed �!v is a vector belonging to the space tangent at 
3 (�) at the location m of A
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(and not at the location of O at t) and so is the relative speed of A with respect to the point m of
M , which is �xed for O.
- The formulas are related to the standard orthonormal bases ("i (m))

3
i=0 of O and (ei (m))

3
i=0

of A located at the point m of 
3 (t) where A is located.
- These formulas apply to the components of vectors in the standard orthonormal bases. Except

in SR, there is no simple way to deduce from them a relation between the coordinates in the charts
of the two observers.
- The formula involves a matrix R 2 SO (3) which represents the possible rotation of the spatial

frames of O and A, as it would be in Galilean Geometry.
These formulas have been veri�ed with a great accuracy, and the experiments show that c is the

speed of light. This is an example of a theory which is checked by the consequences that can be
drawn from its basic assumptions.

If we take v
c ! 0 we get [�] =

�
1 0
0 R

�
; that is a rotation of the usual space. The Galilean

Geometry is an approximation of SR when the speeds are small with respect to c. Then the velocities
are d�A

d� = (�!v + c"0) with a common vector "0:

3.2.4 The Tetrad

The principal �ber bundle PG

So far we have de�ned a chart 'o and a �ber bundle structure Po for an observer : the construct is
based on the trajectory of the observer, and his capability to extend his frame over the hypersurfaces

3 (t) . With the formulas above we see how one can go from one observer to another, and thus relate
the di¤erent �ber bundles Po: The computations in a change of frame can be done with measures
done by the observers, and have been checked experimentally. So it is legitimate to assume that
there is a more general structure of principal bundle, denoted PG (M;SO0 (3; 1) ; �G) ;over M . In
this representation the bases used by any observer is just a choice of speci�c trivialization.

Proposition 52 There is a unique structure of principal bundle
PG (M;SO0 (3; 1) ; �G) with base M , standard �ber SO0 (3; 1) : A change of observer is given by

a change of trivialization on PG:
The standard gauge p (m) = 'G (m; 1) is, for any observer, associated to his standard basis

"i (m) = (p (m) ; "i)..

Charts on a manifold are a way to locate a point. As such they are arbitrary and �xed. They are
only related to the manifold structure. We have de�ned standard charts and their holonomic bases,
which depend on the observer, and are �xed for this observer. And physically one cannot conceive
other charts : a physical chart is always the standard chart of some observer.
Standard basis, or standard gauges, are orthonormal, and chosen at any point by the observer.

They comprise 4 vectors, called a tetrad. The time vector is imposed by the velocity of the observer,
but the components of the spatial vectors can be measured in the holonomic basis of a chart.
With the structure of �ber bundle it is possible to compute the impact of a change of gauge We

will always assume that a change of "0 is a change of observer. A change of gauge is given by a
section � (global or not) of PG; the vectors of the standard basis transform according to the matrix
[�]. The operation is associative : the combination of relative motions is represented by the product
of the matrices, which is convenient.
The condition for 4 vectors to be orthogonal depends on the metric, which changes with the

location. It is proven in Di¤erential Geometry that there is no chart such that its holonomic basis
can be orthogonal at each point (the manifolds with this property, which is not assumed for M , are
special and said to be parallelizable). This is due to the fact that a metric is an object which is
added to the structure of manifold, it does not come with it. And there is no reason why it would
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be constant 3 . As a consequence an orthonormal basis cannot have �xed components in any chart,
even if the observer strives to keep them as �xed as possible. And the components of the tetrad
in the - �xed - holonomic chart must change in order to keep the basis orthonormal. For the time
being we do not make any assumption about the factors which can explain this varying metric, this
will be seen in the Chapter 5.

Tetrad

De�nition
De�ne a vector bundle associated to a principal bundle sums up to de�ne, at each point, a basis

associated to the standard gauge pG (m) = 'G (m; 1) :
"i 2 R4 ! "i (m) = (pG (m) ; "i)
that is, practically, to choose an orthonormal basis with vectors "i (m) ; i = 0:::3 at the point m:

These vectors, called vierbein, constitute the tetrad, and can be expressed in the holonomic basis of
any chart :

"i (m) =
3X

�=0

P�i (m) @�� , @�� =
3X
i=0

P 0i� (m) "i (m) (3.22)

where [P ] is a real invertible matrix (which has no other speci�c property, it does not belong to
SO (3; 1)) and we denote

Notation 53 [P 0] = [P ]�1 =
�
P 0i�
�
:

The dual of (@��)
3
�=0 is (d�

�)
3
�=0 with the de�ning relation :

d�� (@��) = ��� :

The dual
�
"i (m)

�3
i=0

is :

"i (m) =
3X
i=0

P 0i� (m) d�
� , d�� =

3X
i=0

P�i (m) "
i (m) (3.23)

The quantities (P�i (m))
3
i=1 and

�
P 0i� (m)

�3
i=1

are one of the variables in any model in GR : as
such they replace the metric g.

Change of gauge :
A change of observer is a change of gauge on the principal bundle PG : p (m) = 'P (m; 1) !ep (m) = p (m) � � (m)�1 with [� (m)] 2 SO0 (3; 1)
The tetrad of the new observer is :

"i (m) = (p (m) ; "i)! e"i (m) = (ep (m) ; "i) � �p (m) ; [� (m)]�1 "i� =P3
j=0

h
� (m)

�1
ij
i
"j (m)P3

�=0
eP�i (m) @�� =P3

j=0

h
� (m)

�1
ij
i
P�j (m) @��h eP (m)i = [P (m)] [� (m)]�1

p (m) = 'P (m; 1)! ep (m) = p (m) � � (m)�1
"i (m) = (p (m) ; "i)! e"i (m) =P3

j=0

h
� (m)

�1
ij
i
"j (m)h eP (m)i = [P (m)] [� (m)]�1 (3.24)

3Even in an a¢ ne space, such as in SR, there is no reason why the metric should be constant. This is an additional
assumption in SR.
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Standard chart :
In the Standard Chart the 4th vector is always in the direction of the velocity of the observer. So

we have :
"o (m) = @�0 (m)) P 0i0 = �i0
� = 1; 2; 3 : @

@��'o
�
�0; �1; �2; �3

�
= @�� 2 Tm
3 (t)) P 00� = 0

and the matrix [P ] takes the simpler form :

[P ] =

�
1 0
0 Q

�
; [Q] =

24 P11 P12 P13
P21 P22 P23
P31 P32 P33

35
[P 0] =

�
1 0
0 Q0

�
; [Q0] =

24 P 011 P 012 P 013
P 021 P 022 P 023
P 031 P 032 P 033

35
[Q] [Q0] = I3

Metric

The scalar product can be computed from the components of the tetrad. By de�nition :
g�� (m) = h@��; @��i =

P3
ij=0 �ij [P

0]
i
� [P

0]
j
�

The induced metric on the cotangent bundle is denoted with upper indexes :
g� =

P
�� g

��@�� 
 @��
and its matrix is [g]�1 :
g�� (m) =

P3
ij=0 �

ij [P ]
�
i [P ]

�
j

[g]
�1
= [P ] [�] [P ]

t , [g] = [P 0]
t
[�] [P 0] (3.25)

It does not depend on the gauge on PG :

[eg] = h eP 0it [�] h eP 0i = [P 0]t h� (m)�1it [�] h� (m)�1i [P 0] = [P 0]t [�] [P 0]
The metric is the physical part of the Geometry of the universe. It imposes a constraint to the

choice of the vectors of the tetrad, as the relations above show. The tetrad is de�ned up to a matrix
of SO (3; 1) and we have seen how to extend this equivalence to di¤erent observer. The tetrad and
its matrix [P ] makes the link between the abstract mathematical structures de�ned in orthonormal
bases, and the physical world de�ned in a chart.
In the standard chart of the observer : g00 = �1:

[g] =

�
�1 0
0 [g]3

�
=

�
�1 0

0 [Q0]
t
[Q0]

�
[g]

�1
=

�
�1 0

0 [g]
�1
3

�
=

�
�1 0

0 [Q] [Q]
t

�
and [g]3 is de�nite positive.
The metric de�nes a volume form on M. Its expression in any chart is, by de�nition :
$4 (m) = "0 ^ "1 ^ "2 ^ "3 =

p
jdet [g]jd�0 ^ d�1 ^ d�2 ^ d�3

[g] = [P 0]
t
[�] [P 0]) det [g] = � (det [P 0])2 )

p
jdet [g]j = det [P 0]

$4 = det [P
0] d�0 ^ d�1 ^ d�2 ^ d�3 (3.26)

Divergence of a vector �eld
By de�nition the divergence of a vector �eld, with respect to a volume form $4 is the function

such that :
$V$4 = div (V )$4

So it is related to the metric :
divV = 1p

� det g
P3
�=0 @�

�
V �
p
�det g

�
=
P3
�=0

@V �

@�� +
1
2V

�
P3
�=0 g

�@�g�
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Induced metric

The metric on M induces a metric on any submanifold but it can be degenerated.
On hypersurfaces the metric g3 is non degenerated if the unitary normal n is such that hn; ni 6= 0.

The induced volume form is :
�3 = in$4 = det [P

0] d�0 ^ d�1 ^ d�2 ^ d�3 (n)
For 
3 (t) the unitary normal n is "0 , the induced metric is Riemannian and the volume form

$3 is :
$3 = i"0$4 = det [P

0] d�0 ^ d�1 ^ d�2 ^ d�3 ("0)
= det [P 0] d�0 ("0) ^ d�1 ^ d�2 ^ d�3
= det [P 0] d�1 ^ d�2 ^ d�3

$3 = det [P
0] d�1 ^ d�2 ^ d�3 (3.27)

and conversely :
$4 = "0 ^$3 = det [P

0] d�0 ^ d�1 ^ d�2 ^ d�3
$3 is de�ned with respect to the coordinates �1; �2; �3 but the measure depends on �0 = ct:

For a curve C, represented by any path : p : R ! C :: m = p (�) the condition is
D
dp
d� ;

dp
d�

E
6= 0:

The volume form on any curve de�ned by a path : q : R!M with tangent V = dq
d� is

p
jhV; V ijd�:

So on the trajectory q (t) of a particle it is

$1 (t) =
p
�hV; V idt (3.28)

For a particle there is the privileged parametrization by the proper time, and as
D
dp
d� ;

dp
d�

E
= �c2

the length between two points A,B is :

`p =
R �B
�A

r
�
D
dp
d� ;

dp
d�

E
d� =

R �B
�A

cd� = c (�B � �A)
This is an illustration of the idea that all world lines correspond to a travel at the same speed.

Remarks

i) For an observer using his standard chart, the time vector "0 is necessarily in the direction of his
velocity. However he can choose another vector, using the �ber bundle structure, which sums up to
take as tetrad a basis which is linked to another observer. For instance a spatially immobile observer
on Earth can choose a chart which is Sun centered, and the associated tetrad. The computations
can be done using the formula for a change of chart and gauge, but they require to know the motion
of the two observers with respect to each other. So we will usually consider a spatially immobile
observer, using his standard chart and standard tetrad.
ii) One can be not comfortable with the tetrad : how do we know what is the tetrad at a given

point ? Actually the issue is the same with any holonomic basis (@��)
3
�=0 given by a chart ': The

mathematical de�nition is clear, and there is a procedure which tells how to build, physically, a basis
(by small translations along the coordinates) at any point, but this procedure is accessible only to a
physicist located at this point. A tetrad is any orthonormal basis, and it is possible to check that it
is orthonormal, but this can be done only locally. There is no way to compare two bases, holonomic
or orthogonal, at di¤erent points without a special tool. Because we have freedom of gauge one can
choose such a tool, and say that the tetrad at m is the image of the tetrad at some point O by a
map. But, because the metric is not constant on the manifold, it requires that the map preserves
the metric. One can prove that there are such maps (called isometries), and we will even see in the
Chapter 4 how to de�ne, physically, convenient isometries, which could be necessary in practical
problems. But to establish the more fundamental results, which is the purpose of this book, it is
more important to keep the freedom of gauge.
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iii) For the same reason the derivatives of the matrix [P ] are, a priori, not de�ned, but the
derivatives of detP;detP 0 which come from the metric are well de�ned. One can also compute the
derivatives of the components of tensors expressed in the tetrad, which is then considered as �xed,
as we will see.

3.2.5 Symmetries

For any variable X de�ned over M a symmetry is de�ned with respect to a map F :M !M: The
variable is said to be symmetric if X (F (m)) = X (m) :
Notice the di¤erence with the change of variables seen in the 2nd Chapter : m and F (m)

represent di¤erent physical locations, and we must account for the fact that the Universe is not
uniform. Its geometry has some speci�c properties which lead to consider di¤erent symmetries.

Spatial and dynamic symmetries

The �rst property of the Universe is, for any observer, the breakdown of M in 3 dimensional hyper-
surfaces.

Spatial symmetries :
A spatial symmetry is de�ned with respect to a map F such that the function fo :M ! R of an

observer is itself symmetric with respect to the map F : fo (F (m)) = fo (m) : Then, at any time t,
F (m) belongs to the same hypersurface 
3 (t) : In the standard chart the map F is expressed as :
F ('o (ct; �)) = 'o (ct; f (�)) for some map f : R3 ! R3: And a variable X : M ! E is symmetric
with respect to F if X ('o (ct; �)) = X ('o (ct; f (�))) : It takes the same value at two di¤erent
spatial locations, at any time. Because f is a map over R3 all the usual symmetries (translation,
rotations,...) can be implemented easily.

Dynamic symmetries :
Let us denote �o : M ! 
3 (t0) the projection on some �xed hypersurface 
3 (t0) for a given

observer. A dynamic symmetry is de�ned with respect to a map F such that �o (F (m)) = �o (m) :
In the standard chart the map F is expressed as : F ('o (ct; �)) = 'o (f (cto) ; �) for some map
f : R ! R: Then a variable X : M ! E is symmetric with respect to F if X ('o (ct; �)) =
X ('o (f (ct) ; �)) : Whatever the spatial location, the variable X takes the same value at the times
ct and f (ct) : The most important dynamic symmetries are periodic maps : f (t) = t+ T:

Symmetries de�ned by a group :
In both cases the symmetries are preserved in a change of chart for the same observer.
The map F is generally the continuous action of a Lie group G : F (g)�F (g0) = F (gg0) ;F (1) =

Id: Then there are mathematical tools available (Maths.5.7). The action is necessarily free and
actually the study of the variable X sums up to the study of its value on the orbits of the action
(the sets Gm = fF (g) (m) ; g 2 Gg): Moreover the variables bX (�0; �1; �2; �3) and bX 0 (�0; �1; �2; �3)
de�ned with respect to the coordinates in a standard chart represent the same state. If they meet
the conditions 20 one can implement the Theorem 22. The observables of X belong to an irreducible
representation of the group G. In particular translations, either spatial or periodic, are abelian
groups and the variable X can then be studied by Fourier series or integrals (see 2.4.4 in the 2nd
Chapter).

Isometries

The most important physical property of the Universe is the existence of the metric g. The question
is then the existence of symmetries for the metric. The metric is a tensor, it is de�ned in the tangent
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space and to compare the values of g at m and F (m) one uses a special tool : the pull back of
g by F . For any di¤erentiable map : F : M ! M the value of its derivative is a linear map :
F 0 (m) : TmM ! TF (m)M: So we can de�ne the pull back F �g of g by F by :
8u; v 2 Tm (F (m)) : F �g (m) (u; v) = g (F (m)) (F 0 (m)u; F 0 (m) v)
and we say that F preserve the metric g if F �g = g: Then the image of an orthonormal basis is

an orthonormal basis, and F is an isometry.
The question which arises is then : are there isometries for the physical Universe ? Isometries

are generated by the �ow of Killing vector �elds, de�ned by PDE, and one can say that, usually, for
a given metric, isometries do exist. Moreover they constitute a Lie Group of dimension at most 10
(for a manifold of dimension 4).
A variable X is then symmetric with respect to an isometry if X (F (m)) = X (m) : And we see

that it has a physical meaning only for variables which are de�ned at any point. This is not the
case of variables related to particles, but it holds for force �elds, and one can guess that they have
a special role in the de�nition of physical isometries, as we will see in the Chapter 4.
If F is an isometry it is always possible to choose the tetrads such that : [P (F (m))] = [P (m)],

all the geometric quantities can then be expressed in the same, �xed, basis.
With the principal bundle PG we can de�ne more general symmetries, beyond isometries. PG is

not linked to the metric : a section � 2 X (PG) does not tell if a basis is orthonormal, it provides just
the rules in a change of orthonormal basis (with the Lorentz scalar product) at each point, whatever
the metric. � can be symmetric with respect to a map F even if F is not an isometry. The same
action (such as the rotation of the tetrad) is done by � at m and F (m), whatever the tetrad at
m and F (m), or the value of the metric. The symmetry will be independent on the gauge but the
quantities are not necessarily symmetric when expressed in a chart.
In SR (or Euclidean Geometry) the metric is constant, but the di¤erence between the 2 kinds of

symmetries still holds : an isometry must be such that its jacobian [F 0 (m)] is an orthogonal matrix
: [F 0 (m)]t [�] [F 0 (m)] = [�] :

3.2.6 Spherical charts

This is a frequent case, which can be implemented easily in our framework.
We single out a �xed point O 2 
3 (0) ; and O (t) is just O at the time t of the spatially �xed

observer.
We assume the following :
There is a family P � C1 (R; 
3 (0)) of spatial paths : p : R! 
3 (0) such that :
8p 2 P;8� 6= �0 : p (�) 6= p (�0) there is no loop and each p is a bijection
p (0) = O (0)
8x 2 
3 (0) there is a unique p 2 P such that : 9� 2 R : p (�) = x
dp
d� = u (�) : hu (�) ; u (�)i3 = 1
Thus the paths constitute a grid, centered in O (0) ; to locate any point in 
3 (0). This is what

is done practically by an observer.
Then each path can be identi�ed by the value of u (0) = v and we denote p (v; �) = p (�) 2 
3 (0)

which is a chart of 
3 (0) : Each vector v can be identi�ed by its components in any orthonormal
basis at O (0) : Let us say :

v = (cos� cos �; cos� sin �; sin�) and one can take as coordinates in 
3 (0) :
�1 = � cos� cos �; �2 = � cos� sin �; �3 = � sin�:
The holonomic basis at x = p (v; �) is the image of the basis at O (0) by the derivative p (v; �)0 jx:
The standard chart is given by
'o (ct; x) = 'M (ct; � cos� cos �; � cos� sin �; � sin�) :
A path from A = 'o (c�0; x0) to B = 'o (c�1; x1) can be represented by :
q (�) = 'o (c�; x (�))
dq
d� = c"0 +

dx
d�
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and its length is :

` (A;B) =
R �1
�0

r
�
D
dq
d� ;

dq
d�

E
M
d� =

R �1
�0

q�
c2�2 � g3 (�; x (�))

�
dx
d� ;

dx
d�

��
d�

The volume measure $3 reads :
$3 (x) = det [P

0 ('o (t; x))] �
2 jcos�j d�d�d�

thus it still depends on t; but acts on variables whose arguments are de�ned through �; �; �:
No assumption has been made about the �shape� of 
3 (0) ; just that this is a 3 dimensional

manifold de�ned by the chart.
One can assume more, that there is a physical spherical symmetry. The physical part of the

Geometry is the metric. So we assume that the metric has a symmetry in the following meaning.
There is an action of SO (3) on the vectors v at O (0) (they are de�ned in an orthonormal basis

at O (0)) :
v ! [h] [v]

which induces an action on P and 
3 (0) : R0 : SO (3) � 
3 (0) ! 
3 (0) :: R0 ([h]) p (v; �) =
p ([h] [v] ; �)

which can be extended to M :

R : SO (3)�M !M :: R ([h])'o (t; x) = 'o (t; R0 (g) (x))

Notice that SO (3) acts only on v and � is unchanged.
The geometry is said to be spherically symmetric if R0 is an isometry. The metric is invariant

by R0 :
R0 ([h])� g3 = g3
with the push forward4 R0 ([h])� g3 :
g3 (R0 ([h])x) (R

0
0 ([h] (x)) jxux; R00 ([h] (x)) jxvx) = g3 (x) (ux; vx)

The metric on 
3 (0) does not depend on �; � but still depends on �:
Because "0 is invariant by this action, it can be extended to M if R0 is an isometry for any t on


3 (t) :Then the metric, as well as [P ] ; depends only on t; �:
A cylindric symmetry can be represented in the same framework : the action is then that of a

subgroup of SO (3) with a de�nite axis, which can be taken as one of the vector of the orthonormal
basis in O (0) :
If this symmetry applies to the whole system (the symmetry of the metric is a prerequisite)

then the variables X which have the coordinates as arguments belong to a unitary representation of
SO (3) and the simplest is the trivial one : they depend only on t; �:

We are free to choose our charts and gauges. So in a problem one can take a particle as the
observer, apply the rules above, then the results can be translated for any observer by applying
the rules for a change of observer, using the Principle of Relativity. This is the simplest, and most
rigorous, way to compute the EM �eld created by a charged particle.

3.2.7 Special Relativity

All the results of this chapter hold in Special Relativity. This theory, which is still the geometric
framework of QTF and Quantum Physics, adds two assumptions : the Universe M can be repre-
sented as an a¢ ne space, and the metric does not depend on the location (these assumptions are
independent). As consequences :

- the underlying vector space
�!
M (the Minkovski space) is common to all observers : the vectors

of all tangent spaces to M belong to
�!
M

- one can de�ne orthonormal bases which can be freely transported and compared from a location
to another

4See Formulas for the de�nitions of push forward and pull back.
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- because the scalar product of vectors does not depend on the location, at each point one can de-
�ne time-like and space-like vectors, and a future orientation (this condition relates the mathematical
and the physical representations, and

�!
M is not simply R4)

- there are �xed charts
�
O; ("i)

3
i=0

�
, called frames, which consist of an origin (a location O in M

: a point) and an orthonormal basis ("i)
3
i=0 : There is necessarily one vector such that h"i; "ii = �1:

It is possible to de�ne, non unique, orthonormal bases such that "0 is timelike and future oriented.

- the coordinates of a point m, in any frame
�
O; ("i)

3
i=0

�
, are the components of the vector OM:

The general results hold and observers can de�ne a standard chart as seen in RG. However this

chart is usually not de�ned by a frame
�
O; ("i)

3
i=0

�
. Observers can label points which are in their

present with their proper time. The role of the function fo (m) = t is crucial, because it de�nes the
3 dimensional hypersurfaces 
3 (t) : They are not necessarily hyperplanes, but they must be space
like and do not cross each other : a point m cannot belong to 2 di¤erent hypersurfaces. These
hypersurfaces de�ne the vector �eld "0 (m) to which belongs the velocity of the observer (up to c).
In SR one can compare vectors at di¤erent points, and usually the vectors "0 (m) are di¤erent from
one location to another. They are identical only if 
3 (t) are hyperplanes normal to a vector "0;
which implies that the world line of the observer is a straight line, and because the proper time is
the parameter of the �ow, if the motion of the observer is a translation at a constant spatial speed.
These observers are called inertial. Notice that this de�nition is purely geometric and does not
involve gravitation or inertia : inertial observers are such that their velocity is a constant vector. A
frame can be associated to an observer only if this is an inertial observer.
For inertial observers the integral curves are straight lines parallel to "0: Any spatial basis ("i)

3
i=1

of 
 (0) can be transported on 
3 (t) : The standard chart is then similar to a frame in the 4

dimensional a¢ ne space
�
O (0) ; ("i)

3
i=0

�
with origin O (0), the 3 spatial vectors ("i)

3
i=1 and the

time vector "0: The coordinates of a point m 2 
3 (t) are :�����!
O (0)m = ct"0 +

P3
i=1 �

i"i where
����!
O (t)m =

P3
i=1 �

i"i

The transition maps which give the coordinates of m in another frame
�
A; (e"i)3i=0� are then

given by the product of a �xed translation and a �xed rotation in the Minkovski space (an element
of the Poincaré group) :

OM =
P3
i=0 xi"i

AM =
P3
i=0 exie"i

OM = OA+AM =
P3
i=0 Li"i +

P3
i=0 exie"ie"i =P3

j=0 [�]
j
i "i; [�] 2 SO (3; 1)

This result holds only for two inertial observers. Usually they are characterized as that they do
not feel a change in the inertial forces to which they are submitted. This is similar to the Galilean
observers of Classic Mechanics.
A representation which is valid only for the study of bodies in uniform translation is of little

interest. As we have proven in this chapter, Relativist Geometry can be explained, in a rigorous and
quite simple way, without the need of inertial observers. And these are required only for the use of
frames. It would be a pity to loose the deep import of Relativity in order to keep a familiar, but not
essential, mathematical tool. As a consequence the role assigned to the Poincaré�s group must be
revisited.
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3.3 MOTION

So far we have considered only particles, with no internal structure. The concept of a �material
point� which occupies a geometric point, that is with no spatial extension, used to be shocking
for many physicists. Actually Mechanics is built around the concept of solids, which can be rigid
or deformable, but have an extension, and a particle is seen as an in�nitesimal small solid. Solids
bring a feature additional to their location, they have an �arrangement�, which is represented by
an orthonormal basis. As a consequence the motion of a solid encompasses not only a change in its
location, but also a rotational motion. Motion, translational and rotational, is a purely geometric
concept which is measured by geometric protocols. And we are lead to extend these properties to
material points, that is particles : they have a location and an attached orthonormal basis.
The Relativist framework requires a new formalism to represent the motion of a material body,

but it is useful to remind how this is done in Galilean Geometry.

3.3.1 Motion of a solid in Galilean Geometry

Rotation in Galilean Geometry

The concept of rotation is well de�ned in Mathematics : this is the operation which transforms the
orthonormal basis of a vector space into another. From a physical point of view the rotation is the
operation which transforms the orthonormal basis of the observer to an orthonormal basis which
is attached to the material body : it measures the arrangement of the body with respect to the
observer.
The operation belongs to the orthogonal group, in Galilean Geometry to SO (3) and is represented

by a matrix R: This is a 3 dimensional Lie group of matrices such that RtR = I: Because of this
relation the Lie algebra so (3) = T1SO (3) is the vector space of 3� 3 real antisymmetric matrices.
If we take the following matrices as basis of so(3) :

�1 =

240 0 0
0 0 �1
0 1 0

35 ;�2 =
24 0 0 1
0 0 0
�1 0 0

35 ;�3 =
240 �1 0
1 0 0
0 0 0

35
then any matrix of so(3) reads :P3
i=1 r

i [�i] = [j (r)] with the operator

j : R3 ! L (R; 3) :: [j (r)] =

24 0 �r3 r2
r3 0 �r1
�r2 r1 0

35 (3.29)

The operator j is very convenient to represent quantities which are rotated 5 . It has many nice
algebraic properties (see formulas in the Annex) and we will use it often in this book.
For any vector u :

P3
ij=1 [j (r)]

i
j u

j"i =
�!r ��!u with the cross product �:

The group SO(3) is compact, thus the exponential is onto and any matrix of SO (3) can be
written as :
exp [j (r)] = I3 +

sin
p
rtrp

rtr
[j (r)] + 1�cos

p
rtr

rtr [j (r)] [j (r)]

The vector r is just the components of a vector in a Lie algebra, using a speci�c basis �: However
there is a natural correspondence between r and geometric characteristics of a rotation.
The axis of rotation is by de�nition the unique eigen vector of [g] with eigen value 1 and norm

1 in the standard representation of SO(3), it has for components

24 r1

r2

r3

35 =prtr
Similarly one can de�ne the angle � of the rotation resulting from a given matrix, and � =

p
rtr

5 It is similar to the Levi-Civitta tensor � but, in my opinion, much easier to use.
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Proof. For any vector u of norm 1 : hu; [g]ui = cos � where � is an angle which depends on
u and [g] = exp [j (r)]. With the formula above, and using [j (r)] [j (r)] = [r] [r]

t � hr; ri I and
hu; [j (r)]ui = 0 we get :
hu; [g]ui = 1 +

�
hu; ri2 � hr; ri

�
1�cos

p
rtr

rtr

which is minimum for hu; ri = 0 that is for the vectors orthogonal to the axis, and :
cos � = cos

p
rtr

Rotational motion

We use freely the same word �rotation� for the operation to go from one orthonormal basis to
another (the arrangement of a basis with respect to another), and for the motion (the instantaneous
rotation around an axis), but they are two distinct concepts and the distinction is essential.
If 2 orthonormal bases (with same origin) are in relative motion, at any time t we have some

rotation R (t) 2 SO (3) and naturally the instantaneous rotation is de�ned through the derivative
dR
dt :

The usual convention is to represent the instantaneous rotational motion by R (t)�1 dRdt 2 so (3) ;
which takes as starting point the frame rotated by R(t): Then it can be represented by a single vector :
R (t)

�1 dR
dt = j (r) : This choice is not without consequence : in a change of observer, corresponding

to R ! eR = g � R : R (t)
�1 dR

dt does not change : in Galilean Geometry a rotational motion is
observer independent. The instantaneous rotational motion can be assimilated to a rotation with
constant axis r and rotational speed

p
rtr : R (t) = exp tj (r) :

So we have a very satisfying representation of geometric rotations : a rotation R can be de�ned
by a single vector, which is simply related to essential characteristics of the transformation, and an
instantaneous rotational movement can also be represented by a single vector r: But, as one can see,
this model is less obvious than it seems. It relies on the fortuitous fact that the Lie algebra has the
same dimension as the Euclidean space (the dimension of so (n) is n(n�1)2 ) and is compact.

Spin group

Moreover this mathematical representation is not faithful. The same rotation can be de�ned equally
by the opposite axis, and the opposite angle. This is related to the mathematical fact that SO(3) is
not the only group which has so(3) as Lie algebra. The more general group is the Spin group Spin(3)

which has also for elements the scalars + 1 and - 1, so that R(t), corresponding to
�
r;
p
rtr
�
and

�R(t), corresponding to
�
�r;�

p
rtr
�
can represent the same physical rotational motion. Actually,

the group which should be used to represent rotations in Galilean Geometry is Spin(3), which makes
the distinction between the two rotations, and not SO(3). In Physics the distinction matters : in the
real world one goes from one point to another along a path, by a continuous transformation which
preserves the orientation of a vector, thus the orientation of �!r is signi�cant 6 . A single vector of R3
cannot by itself properly identify a physical rotation, one needs an additional parameter which is
�1 to tell which one of the two orientations of �!r is chosen, with respect to a direction, the spatial
speed on the path.

Motion of a rigid solid in Galilean Geometry

One can choose any point G, a �xed orthonormal basis (ei)
3
i=1 attached to the solid, and represent

the arrangement of the rigid solid at a given time as the operation to go from a �xed orthogonal

frame
�
O; ("i)

3
i=1

�
to
�
G; (ei)

3
i=1

�
: It combines a translation D; belonging to the abelian group

6 In his book "The road to reality" Penrose gives a nice, simple trick with a belt and book to show this fact.
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T
�
R3
�
and a rotation R 2 SO (3) ; and belongs to the group of displacement, which is the semi-

direct product T
�
R3
�
nSO (3) : The �semi�implies some relations which make the structure of the

group of displacements more complicated than the direct product T
�
R3
�
� SO (3) :

The motion (translational and rotational) of a rigid solid is then represented by the derivative
of the displacement, or more conveniently by the value

�
dD
dt ; R

�1 dR
dt

�
of the corresponding elements

in the Lie algebra T1
�
T
�
R3
�
n SO (3)

�
; which is not the direct product

�
T
�
R3
�
� so (3)

�
: This is

convenient because we can represent the motion by two vectors : �!v G = d
��!
OG
dt ; r such as R

�1 dR
dt =

[j (r)], however the formulas are a bit complicated (as can be seen in the law for the composition of
speeds for rotating bodies) because the displacement is not a direct product.
So the representation of the motion of a rigid solid in Galilean Geometry implies :

- the location of G and its speed �!v G = d
��!
OG
dt

- the rotation R of
�
G; (ei)

3
i=1

�
and its instantaneous change R�1 dRdt

The motion is de�ned by 6 scalar parameters, or two 3 dimensional vectors.

Deformable solid

A deformable solid is a material body which keeps some integrity : its material points stay close to
each other. It can be conveniently represented as follows.
The body occupies at the time t a compact area ! (t) � R3: Each material point is identi�ed by

its location q at a time t = 0: It is assumed that there is a di¤erentiable map : � : ! (0)�R! ! (t) ::
x = � (q; t) which gives the location of the material point q at t. The map � is the representation of
the continuity of the body.
The orthonormal basis ("i)

3
i=1 of R3 at t = 0 is transported as : ei (q; t) = �0q (q; t) "i which is

usually no longer orthonormal.
By derivation :
@
@tei (q; t) = �"qt (q; t) "i = �"qt (q; t)

�
�0q (q; t)

��1
ei (q; t)

and the matrix  =
h
�"qt (q; t)

�
�0q (q; t)

��1i
is the deformation tensor. It can be decomposed in

a symmetric matrix 1
2 ( + 

t) = s and an antisymmetric matrix 1
2 ( � 

t) = j (!) which measures
the torsion. s has real eigen values and represents similitudes in the 3 axes (a �dilation�). j (!) can
be seen as a rotation with vector ! (a �shear�); and the deformation tensor is the sum of a shear
j (!) and a dilation s:

� de�nes the manifolds ! (t) = � (:; t) embedded in R3 endowed with the induced metric :
gij =

P3
k=1

�
�0q (q; t)

�k
i

�
�0q (q; t)

�k
j
:

The distance between 2 close elements �q 2 Tq! (0) change as
qP

ij gij (�q)
i
(�q)

j

The volume form is $ =
p
det g"1 ^ "2 ^ "3 = det

�
�0q (q; t)

�
"1 ^ "2 ^ "3 and the volume changes

as det
�
�0q (q; t)

�
: the material points which occupy a volume "1 ^ "2 ^ "3 at t = 0 occupy a volume�

det
�
�0q (q; t)

��
"1 ^ "2 ^ "3 at t:

3.3.2 Motion in Relativist Geometry

The Poincaré�s group

The usual concept of rigid solid, as material body whose material points are at a constant distance,
does not hold any more in the Relativist framework. Experiments show that atoms and subatomic
particles have kinematic characteristics which look like rotation, and can be measured by quantities
which transform according to the rules of SO (3) ; with some complications, and this leads to the
concept of spin. So one needs to incorporate rotations in Relativity, in a way similar to what is done
with solids in Newtonian Mechanics, and this leads naturally to look for the Poincaré�s group, the
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semi product of the group SO(3; 1) of rotations and of the 4 dimensional translations. This is the
simple generalization of the group of displacements of Galilean Geometry. In Special Relativity (and
also in QTF) a law is deemed covariant if it is equivariant in a change of frame by the Poincaré�s group
: this is the implementation of the Principle of Relativity in a representation based on orthogonal
frames. Assuming that the 4 momentum p is an intrinsic characteristic of particles, it should be
equivariant. With the addition of some of the axioms of QM, this leads, by a demonstration due to
Wigner�s (see Weinberg for a full proof), to a broad classi�cation of particles.
However the use of the Poincaré�s group raises several serious issues.

The Poincaré�s group represents the operation to go from one orthonormal frame
�
O; ("i)

3
i=0

�
to

another
�
A; (ei)

3
i=0

�
: So its use is valid only in SR, and for inertial observers. It has been considered

in GR to use the group of isometries, that is of maps : f :M !M such that f 0 (m) 2 L (TmM ;TmM)
preserves the metric. However in Physics, to compare two bases located at di¤erent points one does
not jump, one follows a path and the path matters : the relativist universe is not isotropic7 . This
ampli�es the issue of the spin group and its 2 values �1:
According to the Principle of Locality the location (O) of the origin of the frame has no physical

meaning : we should compare two frames, located at the same point (as we did to prove the formulas
to go from one observer to another). A displacement introduces a variable (the translation of the
origin O of the frame to go from O to A) which has nothing to do in the matter : in the formulas
in a change of observers the spatial speed �!v is the relative speed with respect to a �copy�of the
observer who would be at the same location as the body. Indeed an element of the Poincaré�s
group is de�ned by 10 parameters (6 for the Lorentz group and 4 for the translation of the origin),
meanwhile 6 su¢ ce in Newtonian Mechanics to de�ne the motion of a solid, and there is no reason
why Relativity should add 4 parameters.
A group of displacement is not a direct product of groups, but a semi-direct product, and similarly

for the Lie algebras. This introduces complications in Newtonian Mechanics which are ampli�ed in
Relativity. The exponential is not surjective for SO (3; 1) ; which is not a compact group. We have
[�] = exp [K (w)] exp [J (r)] where [K (w)] ; [J (r)] 2 so (3; 1) thus the derivative d�

dt gives a more
complicated expression, where dw

dt ;
dr
dt are mixed with (w; r) : In particular appears

dw
dt , that is the

derivative of the spatial speed.

The Spin Bundle

Our purpose is to �nd an e¢ cient way to represent the motion, translational and rotational in the
General Relativity framework.
We start from the assumption that, to any material body, whatever its size, is attached a tetrad,

that is an orthonormal basis which represents its arrangement with respect to an observer. This is
an extension of the concept of particle, with additional physical properties, which must be accounted
for in their representation. In some way it gives relief to the Geometry. Many models in theoretical
physics involve a universe with more than 4 dimensions, to account for their physical properties
such as charges. One could consider to de�ne a material body by 4 coordinates, corresponding to
its location, and 6 additional coordinates for their arrangement. However the arrangement has a
meaning only locally, and with respect to a special basis : an orthonormal one (this is the only
sensible way to represent a rotation). So actually these properties are related to the metric, which
is the physical part of the Geometry.
The motion, as it is commonly understood in Physics, is the instantaneous motion, that is with

respect to the position (location and arrangement) of the object : this is clear in the rotational
motion [R]�1

�
dR
dt

�
: So, to be consistent, the de�nition of the motion should involve the derivative of

7All the more so that most of the measures are done through a signal, which propagates along special curves, as
we will see in the Chapter5 .
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the velocity, that is the spatial acceleration. And, indeed, an observer attached to a material body
can measure both a rotational motion and a change in its transversal motion.
To avoid confusion I will strive in the following to stick to :
- location : this is the point in M where is the particle
- arrangement : this is the arrangement of the tetrad of the particle with respect to the tetrad

of an observer located at the same point
- position : is the combination of a location and an arrangement
- motion : is the instantaneous change of position with respect to the previous one.
To represent these concepts, we start from 4 facts :
i) We do not need the Poincaré�s group : it is de�ned only in SR and for inertial observers. The

origin O of the frame has no physical meaning, the measures should be done at the same location.
ii) The only clear concept of rotation is done by comparing the arrangement of two orthonormal

bases, located at the same point. And in the relativist context this requires to consider a group
which preserves the Lorentz scalar product.
iii) The right group to consider is the spin group. This holds already in Galilean Geometry, and

in Relativist Geometry any observer can distinguish the orientation of the axis of a spatial rotation
with respect to his own velocity. The spin groups Spin (3; 1) ; Spin (1; 3) are isomorphic so on this
point the signature does not matter.
iv) The convenient tool to compare orthonormal bases at a point is a principal �ber bundle.
We have already assumed the existence of a principal bundle PG (M;SO (3; 1) ; �), so we make

the assumption :

Proposition 54 There is a principal bundle PG (M;Spin0 (3; 1) ; �G) which has for �ber the con-
nected component of the identity of the Spin group, for trivialization the map :

'G :M � Spin0 (3; 1)! PG :: p = 'G (m; s) :
The standard gauge used by observers is p (m) = 'G (m;1)

A section � 2 X (PG) is de�ned by a map: � :M ! Spin (3; 1) such that : � (m) = 'G (m;� (m))
and in a change of gauge :

p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
� (m) = 'G (m;�) = e'G (m;� (m) � e�) : e� = � (m) � � (3.30)

Motion of two orthonormal bases

Orthonormal bases are de�ned in the vector bundle associated to PG: The arrangement of an ortho-
normal basis (ei (m))i=0::3 is measured with respect to the tetrad ("i (m))i=0::3 of an observer by an
element [�] of PG located at m:

ei (m) =
�
'G (m; 1) ;

P3
j=0 [� (m)]

j
i "j

�
The vectors "j are �xed. The motion is given by the derivative
d
dtei (m) =

�
'G (m; 1) ;

P3
j=0

�
d
dt� (m)

�j
i
"j

�
and represented by

�
d
dt� (m)

�
; that is by the derivatives of the components of ei (m) in the �xed

basis "j : the change of the tetrad (that is dP
dt ) is not involved. The time axis e0 is related to the

velocity, w is related to the spatial speed �!v , and r to the rotation of the spatial axes. The time vector
is necessarily oriented as the velocity. So with a map : R! PG :: 'G (q (t) ; � (t)) the arrangement
and the motion can be e¢ ciently represented. The motion depends on two vectors r; w of R3 and
their derivatives. However the relation [�] = [expK (w)] [exp J (r)] is not convenient, and the group
which is involved is the Spin group and not SO (3; 1). In order to get a good understanding of this
representation and more convenient tools, we need to learn more about Cli¤ord Algebras, which are
at the root of the Spin groups. This is the topic of the next section.
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3.4 CLIFFORD ALGEBRAS

Cli¤ord algebra is a fascinating algebraic structure on vector spaces which is seen in details in
Maths.9. The results which will be used in this book are summarized in this section, the proofs are
given in the Annex. This mathematical section is long, but it provides many practical tools which
are very convenient for the computations in the GR context.

3.4.1 Cli¤ord algebra and Spin groups

Cli¤ord Algebras

A Cli¤ord algebra Cl (F; hi) is an algebraic structure, which can be de�ned on any vector space
(F; hi) on a �eld K (R or C) endowed with a bilinear symmetric form hi : The set Cl (F; hi) is de�ned
from K; F and a product, denoted � , with the property that for any two vectors u; v :

8u; v 2 F : u � v + v � u = 2 hu; vi (3.31)

A Cli¤ord algebra is then a set which is larger than F : it includes all vectors of F , plus scalars,
and any linear combinations of products of vectors of F . A Cli¤ord algebra on a n dimensional
vector space is a 2n dimensional vector space on K, and an algebra with �: Cli¤ord algebras built
on vector spaces on the same �eld, with same dimension and bilinear form with same signature are
isomorphic. On a 4 dimensional real vector space (F; hi) endowed with a Lorentz metric there are
two structures of Cli¤ord Algebra, denoted Cl (3; 1) and Cl (1; 3) ; depending on the signature of the
metric, and they are not isomorphic. In the following we will state the results for Cl (3; 1), and for
Cl (1; 3) only when they are di¤erent.
The easiest way to work with a Cli¤ord algebra is to use an orthonormal basis of F . On any 4

dimensional real vector space (F; hi) with a bilinear symmetric form of signature (3,1) or (1,3) we
will denote :

Notation 55 ("i)
3
i=0 is an orthonormal basis with scalar product : h"i; "ii = �ii

So we have the relation :

"i � "j + "j � "i = 2�ij (3.32)

A basis of the Cli¤ord algebra is a set comprised of 1 and all ordered products of "i; i = 0:::3:
In any orthonormal basis there is a fourth vector which is such that "i �"i = �1 (for the signature

(3; 1)) of +1 (for the signature (1; 3)). In this book we will always assume that the orthonormal
basis is such that "0 is the 4th vector : h"0; "0i = �1 with signature (3,1) and h"0; "0i = +1 with
signature (1,3).

Spin group

Some elements of the Cli¤ord algebra have an inverse for the product, and there are subsets which
have a group structure.
The group Pin(3; 1) is the subset of the Cli¤ord algebra Cl (3; 1):
Pin (3; 1) = fu1 � u2::: � uk; hup; upi = �1; up 2 Fg. Pin(3; 1) is a Lie group,
Spin(3,1) is its subgroup with an even number of vectors :
Spin (3; 1) = fu1 � u2::: � u2k; hup; upi = �1; up 2 Fg
Notice that the scalars �1 belong to the groups. The identity element is the scalar 1.
Pin(3; 1) and Pin(1; 3) are not isomorphic. Spin(3; 1) and Spin(1; 3) are isomorphic.
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Adjoint map

For any s 2 Pin(3; 1); the map, called the adjoint map :

Ads : Cl (3; 1)! Cl (3; 1) :: AdsX = s �X � s�1 (3.33)

is such that

8V 2 F : AdsV 2 F (3.34)

and it preserves the scalar product on F :

8u; v 2 F; s 2 Pin(3; 1) : hAdsu;AdsviF = hu; viF (3.35)

Moreover :

8s; s0 2 Pin(3; 1) : Ads �Ads0 = Ads�s0 (3.36)

Ad is distributive with respect to the addition and the product :
Ads (X � Y ) = s �X � Y � s�1 = s �X � s�1 � s � Y � s�1 = AdsX �AdsY
Because the action Ads of Spin(3; 1) on F gives another vector of F and preserves the scalar

product, it can be represented by a 4 � 4 orthogonal matrix. Using any orthonormal basis ("i)3i=0
of F , then Ads is represented by a matrix [h (s)] 2 SO (3; 1).

v =
P3
i=0 v

i"i ! ev = Adsv =P3
i=0 evi"ievi =P3

j=0 [h (s)]
i
j v

j

To two elements �s 2 Spin(3; 1) correspond a unique matrix [h (s)] : Spin(3; 1) is the double
cover (as manifold) of SO(3; 1). Spin(3; 1) has two connected components (which contains either
+1 or -1) and its connected component is simply connected and is the universal cover group of
SO0 (3; 1). So with the Spin group one can de�ne two physical rotations, corresponding to opposite
signs.

Lie algebra of the Spin group

As any algebra Cl (F; hi) is a Lie algebra with the bracket :
8X;X 0 2 Cl (F; hi) : [X;X 0] = X �X 0 �X 0 �X
which is a bilinear, antisymmetric operation (but not associative) with the Jacobi identity :
[X; [Y;Z]] + [Y; [Z;X]] + [Z; [X;Y ]] = 0
The group Spin (3; 1) has a Lie algebra T1Spin (3; 1) which is a subset of the Cli¤ord algebra.

Its elements can be written as linear combinations of pairs of elements "i � "j .
The map : � : so(3; 1) ! T1Spin (3; 1) is an isomorphism of Lie algebras which reads with any

orthonormal basis ("i)
3
i=0 of F : �([�]) = 1

4

P3
i;j=0 ([�] [�])

i
j "i � "j

so that any element of T1Spin (3; 1) is the linear combinations of the ordered products of all the
four vectors of a basis. With any orthonormal basis and the following choices of basis (�!� a)6a=1 of
T1Spin (3; 1) then � takes a simple form with an adequate ordering of the vectors :
�([�1]) =

�!� 1 = 1
2"3 � "2;

�([�2]) =
�!� 2 = 1

2"1 � "3;
�([�3]) =

�!� 3 = 1
2"2 � "1;

�([�4]) =
�!� 4 = 1

2"0 � "1;
�([�5]) =

�!� 5 = 1
2"0 � "2;

�([�6]) =
�!� 6 = 1

2"0 � "3
where ([�a])

6
a=1 is the basis of so(3; 1) already noticed such that :

[�] = K (w) + J (r) =
P3
a=1 r

a [�a] + w
a [�a+3]

We will use extensively the convenient (the order of the indices matters) :
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Notation 56 for both Cl (3; 1) ; Cl (1; 3) :

� (r; w) =
1

2

�
w1"0 � "1 + w2"0 � "2 + w3"0 � "3 + r3"2 � "1 + r2"1 � "3 + r1"3 � "2

�
(3.37)

With this notation, whatever the orthonormal basis ("i)
3
i=0, any element X of the Lie algebras

T1Spin (3; 1) or T1Spin (1; 3) reads :

X = � (r; w) =
3X
a=1

ra�!� a + wa�!� a+3 (3.38)

The bracket on the Lie algebra reads :
[� (r; w) ; � (r0; w0)]

= � (r; w) � � (r0; w0)� � (r0; w0) � � (r; w)
= � (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0)
With signature (1,3) :
[� (r; w) ; � (r0; w0)] = �� (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0)

Expression of elements of the spin group

Theorem 57 The elements of the Spin groups read in both signatures, with the related a; (wj ; rj)3j=1; b
real scalars and "5 = "0 � "1 � "2 � "3

s = a+ � (r; w) + b"5
a2 � b2 = 1 + 1

4 (w
tw � rtr)

ab = � 14r
tw

(a+ � (r; w) + b"5)
�1
= a� � (r; w) + b"5

(3.39)

The exponential is not surjective on so(3; 1) or T1Spin(3; 1) : for each � (r; w) 2 T1Spin(3; 1)
there are two elements � exp � (r; w) 2 Spin (3; 1) :
exp t� (r; w) = ��w (t) � �r (t) with opposite sign 8 :

�w (t) =
q
1 + 1

4w
tw sinh2 12 t

p
wtw + sinh 12 t

p
wtw� (0; w)

�r (t) =
q
1� 1

4r
tr sin2 t 12

p
rtr + sin t 12

p
rtr� (r; 0)

The product s � s�reads with the operator j introduced previously :
(a+ � (r; w) + b"5) � (a0 + � (r0; w0) + b0"5) = a" + � (r"; w") + b""5
with :
a" = aa0 � b0b+ 1

4 (w
tw0 � rtr0)

b" = ab0 + ba0 � 1
4 (w

tr0 + rtw0)

and in Spin(3; 1) :
r" = 1

2 (j (r) r
0 � j (w)w0) + a0r + ar0 � b0w � bw0

w" = 1
2 (j (w) r

0 + j (r)w0) + a0w + aw0 + b0r + br0

and in Spin(1; 3) :
r" = 1

2 (j (r) r
0 � j (w)w0) + a0r + ar0 + b0w + bw0

w" = � 12 (j (w) r
0 + j (r)w0) + a0w + aw0 + b0r + br0

8These quite awful formulas show the interest to use the Cli¤ord algebra representation and not the group SO(3,1)
itself.
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Scalar product on the Cli¤ord algebra

There is a scalar product on Cl (F; hi) de�ned by :
hui1 � ui2 � ::: � uin ; vj1 � vj2 � ::: � vjni = hui1 ; vj1i hui2 ; vj2i ::: huin ; vjni
It does not depend on the choice of a basis, and any orthonormal basis de�ned as above is

orthonormal :
h"i1 � "i2 � ::: � "in ; "j1 � "j2 � ::: � "jni = �i1j1 :::�injn
This scalar product on Cl (3; 1) ; Cl (1; 3) has the signature (8; 8) : it is non degenerate but neither

de�nite positive or negative. It is invariant by Ad.

8w;w0 2 Cl (F; hi) : hAdsw;Adsw0iCl(E;hi) = hw;w
0iCl(E;hi) (3.40)

(Cl (3; 1) ;Ad) is a representation of Spin(3; 1) and (Cl (1; 3) ;Ad) a representation of Spin(1; 3):
The basis of the Lie algebra is orthogonal.

T1Spin(3; 1) : h� (r; w) ; � (r0; w0)iCl = 1
4 (r

tr0 � wtw0)
T1Spin(1; 3) : h� (r; w) ; � (r0; w0)iCl = � 14 (r

tr0 � wtw0) (3.41)

Derivatives of translations

As in any Lie group, the translations on Spin (3; 1) are :
Lgh = g � h;Rgh = h � g
and their derivatives :
L0gh : ThSpin (3; 1)! Tg�hSpin (3; 1)
R0gh : ThSpin (3; 1)! Th�gSpin (3; 1)
Because the Lie algebra and the group belong both to the Cli¤ord algebra, these relations take

a simple form :
Xh 2 ThSpin (3; 1) : L0gh (Xh) = g �Xh; R

0
gh (Xh) = Xh � g

And the usual adjoint map of Lie groups :
Adg : T1Spin (3; 1)! T1Spin (3; 1) ::
AdgX = d

dg

�
g �X � g�1

�
jg=1 = L0gg

�1 �R0g�11 (X) = R0g�1g � L0g1 (X)
is just the map Ad :

AdgX =
d

dg

�
g �X � g�1

�
jg=1 = AdgX (3.42)

Moreover the product is well de�ned for any element of the Cli¤ord algebra, so the identities
hold for any X.
The map : Ad : Spin (3; 1)! L (T1Spin (3; 1) ;T1Spin (3; 1)) itself is di¤erentiable with respect

to g:

(AdgX)
0
= Adg

�
X 0 +

�
g�1 � g0; X

��
(3.43)�

Adg�1X
�0
= Adg�1

��
X; g0 � g�1

�
+X 0�

where g0 = d
dxg (x) for x belonging to any manifold.

Theorem 58 8X;Y; Z 2 Cl (3; 1) : hX; [Y; Z]iCl = h[X;Y ] ; ZiCl
Proof.



Adg(x)X;Adg(x)Y

�
Cl
= hX;Y iCl

Take the derivative with respect to x :

Adg

��
g�1 � g0; X

��
;AdgY

�
Cl
+


AdgX;Adg

��
g�1 � g0; Y

���
Cl
= 0
�

g�1 � g0; X
�
; Y
�
Cl
+


X;
�
g�1 � g0; Y

��
Cl
= 0

g�1 � g0 = Z
h[Z;X] ; Y iCl + hX; [Z; Y ]iCl = 0
hY; [Z;X]iCl � hX; [Y; Z]iCl = 0
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3.4.2 Symmetry breakdown

Cli¤ord algebra Cl(3)

The elements of SO(3; 1) are the product of spatial rotations (represented by exp J(r)) and boosts,
linked to the speed and represented by expK(w). We have similarly a decomposition of the elements
of Spin(3; 1). But to understand this topic, from both a mathematical and a physical point of view,
we need to distinguish the abstract algebraic structure and the sets on which the structures have
been de�ned.
From a vector space (F; hi) endowed with a scalar product one can built only one Cli¤ord algebra,

which has necessarily the structure Cl (3; 1) : as a set Cl (3; 1) must comprise all the vectors of F .
But from any vector subspace of F one can built di¤erent Cli¤ord algebras : their algebraic structure
depends on the dimension of the vector space, and on the signature of the metric induced on the
vector subspace. To have a Cli¤ord algebra structure Cl (3) on F one needs a 3 dimensional vector
subspace on which the scalar product is de�nite positive, so it cannot include any vector such that
hu; ui < 0 (and conversely for the signature (1; 3) : the scalar product must be de�nite negative).
The subsets of F which are a 3 dimensional vector subspace and do not contain any vector such that
hu; ui < 0 are not unique 9 . So we have di¤erent subsets of Cl(3; 1) with the structure of a Cli¤ord
algebra Cl (3) ; all isomorphic but which do not contain the same vectors. Because the Spin Groups
are built from elements of the Cli¤ord algebra, we have similarly isomorphic Spin groups Spin(3),
but with di¤erent elements. The simplest way to deal with these issues is to �x an orthonormal
basis.

Decomposition of the elements of the Spin group

Let us choose an orthonormal basis of F: It contains one vector such that h"i; "ii = �1 (or +1
with the signature (1; 3)). Then there is a unique vector subspace F? orthogonal to "0; where the
scalar product is de�nite positive, and from

�
F?; hi

�
one can build a unique set which is a Cli¤ord

algebra with structure Cl (3) : Its spin group has the structure Spin (3) which has for Lie algebra
T1Spin (3) : As proven in the Annex it can be identi�ed with the subset of Spin(3; 1) such that :
Adsr"0 = sr � "0 � s�1r = "0 and it reads :

Spin (3) =

(
sr = �

r
1� 1

4
rtr + � (r; 0) ; r 2 R3; rtr � 4; � = �1

)
(3.44)

Spin(3) is a compact group, with 2 connected components. The connected component of the
identity consist of elements with � = 1 and can be assimilated to SO (3) : 10

The elements of Spin(3) are generated by vectors belonging to the subspace F ("0) spanned by
the vectors ("i)

3
i=1 : They have a special physical meaning : they are the spatial rotations for an

observer with a velocity in the direction of "0: In the tangent space TmM of the manifold M all
rotations (given by Spin (3; 1)) are on the same footing. But, because of our assumptions about
the motion of observers (along time like lines), any observer introduces a breakdown of symmetry :
some rotations are privileged. Indeed the spatial rotations are special, in that they are the ones for
which the axes belongs to the physical space.
For a given "0; and then set Spin (3) ; one can de�ne the quotient space SW = Spin (3; 1) =Spin (3) :

This is not a group (because Spin(3) is not a normal subgroup) but a 3 dimensional manifold, called
a homogeneous space. It is characterized by the equivalence relation :
8s; s0 2 Spin (3; 1) : s � s0 , 9sr 2 Spin(3) : s0 = s � sr
9The set of 3 dimensional vector subspaces of F with a de�nite positive (or negative) metric is a 3 dimensional

smooth manifold, called a Stiefel manifold, isomorphic to the set of matrices SO(4)=SO(1) ' SO (3) :
10 It is formally SO(3) plus +1
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Then, for a given vector "0, any element s 2 Spin (3; 1) can be written uniquely (up to sign) :
s = sw � sr with sw 2 SW; sr 2 Spin (3) :

8s = a+ � (r; w) + b"5 2 Spin (3; 1) : s = � (aw + � (0; w)) � � (ar + � (r; 0)) (3.45)

with : ar =
q
1� 1

4r
tr; aw =

q
1 + 1

4w
tw

In each class of SW there are only two elements of Spin (3; 1) which can be written as : sw =
aw + � (0; w) ; and they have opposite sign : �sw belong to the same class of SW; they are speci�c
representatives of the projection of s on the homogeneous space SW .
The elements of SW = Spin (3; 1) =Spin (3) are coordinated by w. The elements sr 2 Spin (3)

are coordinated by r.
Physically it means that we choose �rst a world line (represented by a vector "0) which provides

sw 2 SW; then a rotation in the space represented by a rotation sr 2 Spin (3) :
� (r; 0) is represented in so (3; 1) by a matrix [J (r)] and � (0; w) by a matrix [K (w)] : So we replace

the cumbersome formula in a change of gauge [�] = exp [K (w)] exp [J (r)] by s = sw � sr:with two
elements which are simply related to the velocity (by w) and the rotation (by r). The decomposition
depends on the choice of "0:

Decomposition of the elements of the Lie algebra

Similarly we have the same decomposition in the Lie algebra (see Annex). In any orthonormal basis
an element of T1Spin (3; 1) reads :

X = � (r; 0) + � (0; w) and � (r; 0) 2 T1Spin (3) ; � (0; w) 2 T1SW
The vectors r; w depends on the basis (they are components), however the elements � (r; 0) ; � (0; w) 2

T1Spin (3; 1) depend only on the choice of "0
T1Spin (3; 1) = L0 � P0
L0; P0 and the decomposition depend only on the choice of "0 and L0 = T1Spin (3) ; P0 ' T1SW:
L0; P0 are globally invariant by Spin (3) ; the scalar product is de�nite (positive or negative) and

preserved byAd; so L0; P0 are 3 dimensional Hilbert spaces, and for each choice of "0 (L0;Ad) ; (P0;Ad)
are 3 dimensional unitary representations of Spin (3) : Then there is a norm on T1Spin (3; 1) :

3.4.3 Change of basis

The operator : Ad :Spin (3; 1)� Cl (3; 1)! Cl (3; 1) :: AdsX = s �X � s�1 takes a di¤erent matrix
form depending on X. See Annex for the computations.

Expression of the action Ads on vectors

The action of Spin (3; 1) on vectors of F is :
v =

P3
i=0 v

i"i ! ev = Adsv =P3
i=0 v

is � "i � s�1 =
P3
i=0 evi"ievi =P3

j=0 [h (s)]
i
j v

j

With the expression of the elements of the Spin group s = a+� (r; w)+ b"5 the matrix [h (s)] is :
[h (s)] =�
a2 + b2 + 1

4 (r
tr + wtw) awt � brt + 1

2w
tj (r)

aw � br + 1
2j (r)w a2 + b2 + 1

4 (r
tr + wtw) + aj (r) + bj (w) + 1

2 (j (r) j (r) + j (w) j (w))

�
[h (s)] 2 SO (3; 1) : [h(s)]t [�] [h(s)] = [�] :
For a product : Ads �Ads0 = Ads�s0 ! [h (s:s0)] = [h (s)] [h (s0)]
Then if s = sw � sr : [h (s)] = [h (sw)] [h (sr)]
If s = aw + � (0; w)

[h(s)] =

�
2a2w � 1 aww

t

aww 2a2w � 1 + 1
2j (w) j (w)

�
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If s = ar + � (r; 0)

[h(s)] =

�
1 0
0 1 + arj (r) +

1
2j (r) j (r)

�
[C (r)] = 1 + arj (r) +

1
2j (r) j (r) 2 SO (3) and we have :

[C (r)] = exp j (�) = I3 +
sin
p
�t�p

�t�
[j (�)] +

1�cos
p
�t�

�t� [j (�)] [j (�)]

with : � = r 1p
rtr
arccos

�
1� 1

2r
tr
�

Expression of the Action Ads on the Lie algebra

The action of Spin (3; 1) is :
Z =

P6
a=1 Za

�!� a !eZ =P6
a=1 ZaAds (

�!� a) =
P6
a=1 Zas� (

�!� a) � s�1 =
P6
a=1 Za

g�!� a =P6
a=1

eZa�!� a
With :
Z = � (X;Y )! eZ = �

� eX; eY �" eXeY
#
= [Ads]

�
X
Y

�
where [Ads] is a 6� 6 matrix with s = a+ � (r; w) + b"5 :
[Ads] =�
1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w)) �
�
aj (w) + bj (r) + 1

2 (j (r) j (w) + j (w) j (r))
�

aj (w) + bj (r) + 1
2 (j (r) j (w) + j (w) j (r)) 1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w))

�
[Ads�s0 ] = [Ads] [Ads0 ]

With sw = aw + � (0; w)

[Ads] =

� �
1� 1

2j (w) j (w)
�

� [awj (w)]
[awj (w)]

�
1� 1

2j (w) j (w)
� � = � A �B

B A

�
and the identities :
A = At; Bt = �B;AB = BA

A2 +B2 = I

[Adsw ]
�1
=
h
Ads�1w

i
=

�
A B
�B A

�
With sr = ar + � (r; 0)

[Ads] =

� �
1 + arj (r) +

1
2j (r) j (r)

�
0

0
�
1 + arj (r) +

1
2j (r) j (r)

� � = � C 0
0 C

�
and the identities :
CCt = CtC = I3

[Adsr ]
�1
=
h
Ads�1r

i
=

�
Ct 0
0 Ct

�

Change of basis in F

A change of orthonormal basis of F can be expressed by an action of the Spin group :
s = a+ � (r; w) + b"5 2 Spin(3; 1): "i ! e"i = Ads�1"ie"i =P3

j=0

�
h
�
s�1
��j
i
"j

Then the vectors of F and T1Spin (3; 1) stay the same, but their components change according
to the inverse of the operations see above (as it is usual in any vector space).

v =
P3
i=0 v

i"i =
P3
i=0 evie"i with evi =P3

j=0 [h (s)]
i
j v

j

� (X;Y )! e� � eX; eY � with " eXeY
#
= [Ads]

�
X
Y

�
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3.4.4 Complex structure on the Cli¤ord algebra

The subspaces L0; P0 are crucial in the properties of T1Spin (3; 1) ; as seen in the notation � (r; w) :
The computations can be made easier by de�ning on Cl (3; 1) and Cl (1; 3) a complex structure :
the set does not change but it is split in a real and an imaginary part. It is convenient to make
computations in the Cli¤ord Algebra.

Complex structure

This is done by a linear map such that : J2 = �Id: Then the product iX is de�ned as iX = Xi =
J (X) :
Take J (X) = X � "5 with "5 = "0 � "1 � "2 � "3 then J2 (X) = X � "5 � "5 = �X: It holds on Cl (1; 3)

and Cl (3; 1) :
The distinction between the real and imaginary vector subspaces is done by splitting any ortho-

normal basis as follows.
Cl (3; 1) :2666666666666664

real imaginary
Ej Ej � "5 = iEj = Eji "5 � Ej
1 "5 "5
"1 "0 � "3 � "2 �"0 � "3 � "2
"2 "0 � "1 � "3 �"0 � "1 � "3
"3 "0 � "2 � "1 �"0 � "2 � "1

"3 � "2 "0 � "1 "0 � "1
"1 � "3 "0 � "2 "0 � "2
"2 � "1 "0 � "3 "0 � "3

"1 � "2 � "3 "0 �"0

3777777777777775
Cl (1; 3) :2666666666666664

real imaginary
E0j E0j � "5 = iE0j "5 � Ej
1 "5 "5

"0 � "3 � "2 "1 �"1
"0 � "1 � "3 "2 �"2
"0 � "2 � "1 "3 �"3
"0 � "1 "2 � "3 "2 � "3
"0 � "2 "3 � "1 "3 � "1
"0 � "3 "1 � "2 "1 � "2
"0 "1 � "2 � "3 �"1 � "2 � "3

3777777777777775
So we have for any vector of the Cli¤ord algebra :
X =

P8
j=1

�
XjEj + Y

jiEj
�
=
P8
j=1

�
Xj + iY j

�
Ej =

P8
j=1 Z

jEj
and the Cli¤ord algebra becomes a 8 dimensional complex vector space Cl (3; 1)C . The complex

structure does not depend on the choice of a basis : a change of basis is the application of Ads and
the operation commutes with the product by "5 :

"5 ! e"5 = Ads"5 = "5:
Ej = "p � "q ! eEj = Ads"p �Ads"q = Ads ("p � "q) = AdsEjeEj � e"5 = AdsEj � "5 = Ads (Ej � "5)
The conjugate is ReX + i ImX = ReX � i ImX:
The complex formalism can be used to represent any element of the Cli¤ord algebra, however we

will use it essentially for the elements of the Spin group and the Lie algebra.

Lie algebra

The basis of T1Spin (3; 1) is :
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�!� 1 = 1
2"3 � "2;�!� 2 = 1
2"1 � "3;�!� 3 = 1
2"2 � "1;

and
�!� 4 = 1

2"0 � "1 = i�!� 1�!� 5 = 1
2"0 � "2 = i�!� 2�!� 6 = 1
2"0 � "3 = i�!� 3

So we can write :

� (r; w) =
3X
a=1

(ra + iwa)
�!� a =

3X
a=1

Za�!� a = Z (3.46)

The product by i commutes with the product of vectors �a :
a = 1; 2; 3 : "5 � �a = �a � "5
) i (�a � �b) = �a � �b � "5 = �a � "5 � �b = (i�a) � �b = �a � (i�b)
i (� (r; w)) =

�P3
a=1 ra�a + wa�a � "5

�
� "5

=
�P3

a=1 ra�a � "5 � wa�a
�
=
P3
a=1 (ira � wa)�a =

P3
a=1 i (ra + iwa)�a = � (�w; r)

With this complex notation :

Z 0 � Z = �1
4
ZtZ 0 +

1

2
j (Z 0)Z (3.47)

Proof. � (r0; w0) � � (r; w)
= 1

4 (w
tw0 � rtr0) + 1

2� (�j (r) r
0 + j (w)w0;�j (w) r0 � j (r)w0)� 1

4 (w
tr0 + rtw0) "5

= 1
4

�
(ImZ)

t
ImZ 0 � (ReZ)tReZ 0

�
+ 1
2� (�j (ReZ)ReZ

0 + j (ImZ) ImZ 0;�j (ImZ)ReZ 0 � j (ReZ) ImZ 0)
� 14 i

�
(ImZ)

t
ReZ 0 + (ReZ)

t
ImZ 0

�
= � 14Z

tZ 0 + 1
2 ((�j (ReZ)ReZ

0 + j (ImZ) ImZ 0)� j (i ImZ)ReZ 0 � j (ReZ) i ImZ 0)
= � 14Z

tZ 0 + 1
2 (�j (Z)ReZ

0 � j (Z) i ImZ 0)
The bracket reads in Cl(3; 1) :

[� (r; w) ; � (r0; w0)] = j (Z)Z 0 (3.48)

Proof. [� (r; w) ; � (r0; w0)] = � (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0)
= j (r) r0 � j (w)w0 + i (j (w) r0 + j (r)w0)
= j (r) r0 + j (iw) iw0 + j (iw) r0 + j (r) iw0

= j (r) (r0 + iw0) + j (iw) (iw0 + r0)
and in Cl (1; 3) : [� (r; w) ; � (r0; w0)] = �j (Z)Z 0
In any Lie algebra the bracket is an antisymmetric bilinear map, which reads :
[X;Y ] =

P
a;b;c C

a
bcX

bY c�!� a
where the scalars Cabc are the structure constants, with C

a
bc = �Cacb:

From the expression above, we have in complex notation :
[Z;Z 0]

a
= [j (Z)Z 0]

a
=
P3
b=1 [j (Z)]

a
c Z

0c = �
P3
b=1 � (a; c; b)Z

bZc =
P3
b=1 � (a; b; c)Z

bZc

Cabc = � (a; b; c) (3.49)

with

Notation 59 � (j; k; l) = the signature of the permutation of the three di¤erent integers i; j; k; 0 if
two integers are equal
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The scalar product reads :
h� (r; w) ; � (r0; w0)i = ZtZ 0 = 1

4 (r + iw)
t
(r0 + iw0)

We can de�ne the hermitian form :
(� (r; w) ; � (r0; w0)) =

D
� (r; w); � (r0; w0)

E
Cl
= h� (r;�w) ; � (r0; w0)i = 1

4 (r � iw)
t
(r0 + iw0)

and, with the complex structure T1Spin (3; 1)C and T1Spin (1; 3)C are both 3 dimensional com-
plex Hilbert space.
With a choice of "0 the vector space T1Spin (3) = ReT1Spin (3; 1)C is a 3 dimensional real Hilbert

space.

Spin group

For g = a+ � (r; w) + b"5 2 Spin (3; 1)

g = a+ � (r; w) + b"5 = A+ Z (3.50)

with
A = a+ ib
Z = � (r; w)
The identities
a2 � b2 = 1 + 1

4 (w
tw � rtr)

ab = � 14r
tw

read :
A2 = a2 � b2 + 2iab
ZtZ = (r + iw)

t
(r + iw) = rtr�wtw+2irtw = 4

�
1� a2 + b2

�
+2i (�4ab) = 4

�
1� a2 + b2 � 2iab

�
=

4
�
1�A2

�
,

A2 = 1� 1
4
ZtZ (3.51)

Z 2 R3 , A+ Z 2 Spin (3)
g�1 = a� � (r; w) + b"5 = A� Z
g � g0 = (A+ Z) � (A0 + Z 0) = AA0+A0Z +AZ 0+Z �Z 0 = AA0+A0Z +AZ 0� 1

4Z
0tZ + 1

2j (Z)Z
0

Expression of the derivatives on the Spin group

Theorem 60 Let : � : F ! Spin (3; 1) :: � (x) be a di¤erentiable map with any argument x: Then
��1 � @�@x ;

@�
@x � �

�1 2 T1Spin (3; 1) and we have with � = A+ Z :

@�
@x � �

�1 = [D (Z)] @Z@x
��1 � @�@x = [D (�Z)]

@Z
@x

D (Z) = 1
A +

1
2j (Z) +

1
4Aj (Z) j (Z)

(3.52)

Proof. In the complex formalism :
� = A+ Z and A2 = 1� 1

4Z
tZ

��1 � @�@x = (A� Z) �
�
@A
@x +

@Z
@x

�
= A@A

@x +A
@Z
@x �

@A
@xZ � Z �

@Z
@x

= A@A
@x +A

@Z
@x �

@A
@xZ +

1
4Z

t @Z
@x �

1
2j (Z)

@Z
@x

But : A@A
@x = �

1
4Z

t @Z
@x

��1 � @�@x = A@Z
@x +

1
4AZZ

t @Z
@x �

1
2j (Z)

@Z
@x

=
�
A+ 1

4AZZ
t � 1

2j (Z)
�
@Z
@x

=
�
A+ 1

4A (j (Z) j (Z) + Z
tZ)� 1

2j (Z)
�
@Z
@x
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=
�
1
A �

1
2j (Z) +

1
4Aj (Z) j (Z)

�
@Z
@x = D (�Z) @Z@x

Similarly @�
@x � �

�1 2 T1Spin (3; 1) and one can check that :
@�
@x � �

�1 =
�
1
A +

1
2j (Z) +

1
4Aj (Z) j (Z)

�
@Z
@x = D (Z) @Z@x

Moreover detD (Z) = 1
A ; [D (Z)]

�1
= A� 1

2j (Z)

[D (Z)] is a 3� 3 matrix on C3:
@�
@x � �

�1 =
P3
a=1 [D (Z)]

a
b
@Zb

@x
�!� a

The formulas are useful, because they relate easily the derivatives in the Spin group to the
derivatives of their scalar components : @Z@x =

�
@r
@x + i

@w
@x

�
which reads�

@r
@x + i

@w
@x

�
= �

�
@r
@x ;

@w
@x

�
2 T1Spin (3; 1) :

Moreover we have the identities :
@A
@x = �

1
4AZ

t @Z
@x

@Z
@x =

�
A� 1

2j (Z)
�
@�
@x � �

�1

D (Z) @Z@x =
1
A
@Z
@x +

1
2

�
Z; @Z@x

�
+ 1

4A

�
Z;
�
Z; @Z@x

��
@
@y

�
@�
@x � �

�1� = � @
@yD (Z)

�
@Z
@x +D (Z)

@
@y

@Z
@x

The adjoint map

Ad is a complex linear map :
Proof. 8s 2 Spin (3; 1) : Ads"5 = "5 , s � "5 = "5 � s
AdsX � "5 = s �X � "5 � s�1 = s �X � s�1 � "5 = Ads � "5 , AdsiX = iAdsX
The conjugate Adg is de�ned as the complex linear map :

8X 2 Cl (C; 3) : Adg (X) = Adg
�
X
�
= g �X � g�1 = g �X � g�1 = AdgX

so, because g 2 Spin (3) ) g = g the hermitian product (X;X 0)C =


X;X 0�

Cl
is preserved by

Spin (3) :
g 2 Spin (3) : (AdgX;AdgX 0)C =



AdgX;AdgX

0�
Cl
=


AdgX;AdgX

0�
Cl
=


X;X 0�

Cl

Theorem 61 Over the Lie algebra, the map : Ads� (r; w) = s �X � s�1 reads in matrix form :
Ads� (r; w) = (A+ Z) �X � (A� Z) = Ad (Z) [X] =

�
1 +Aj (Z) + 1

2j (Z) j (Z)
�
[X]

Proof. s = A+ Z; � (r; w) = X
Ads� (r; w) = (A+ Z) �X � (A� Z)
= A2X + 1

4AX
tZ � 1

2Aj (X)Z +AZ �X + 1
4 (X

tZ)Z � 1
2Z � j (X)Z

= 1
4A (X

tZ)� 1
4A (Z

tX) + 1
4 (X

tZ)Z +A2X +Aj (Z)X + 1
4j (Z) j (Z)X

= 1
4Z (Z

tX) +A2X +Aj (Z)X + 1
4j (Z) j (Z)X

= 1
4j (Z) j (Z)X + 1

4 (Z
tZ)X +A2X +Aj (Z)X + 1

4j (Z) j (Z)X
=
�
1�A2

�
X +A2X +Aj (Z)X + 1

2j (Z) j (Z)X
= X +Aj (Z)X + 1

2j (Z) j (Z)X
that we can write :

[Ads]C [X]C = [Ad (Z)] [X]C =

�
1 +Aj (Z) +

1

2
j (Z) j (Z)

�
[X]C (3.53)

with :
�
1 +Aj (Z) + 1

2j (Z) j (Z)
��1

= [Ads�1 ]C =
�
1�Aj (Z) + 1

2j (Z) j (Z)
�

And we have the identity, with the matrix D (Z) :

[Ad (Z)] [D (Z)] =

�
1�Aj (Z) + 1

2
j (Z) j (Z)

�
D (Z) = D (�Z) = 1

A
� 1
2
j (Z) +

1

4A
j (Z) j (Z)

(3.54)
, [Ad��1 ]

@�
@x � �

�1 = ��1 � @�@x
) Ad (Z) = D (�Z)D (Z)�1 = D (�Z)

�
A� 1

2j (Z)
�



3.4. CLIFFORD ALGEBRAS 129

3.4.5 Coordinates on the Cli¤ord Algebra

The Cli¤ord Algebra is a vector space, and any element can be represented as a vector with its
components in the canonic basis.
The Lie Algebra is a vector subspace, and we have the choice between :
� (Xr; Xw) =

P3
a=1X

a
r
�!� a +

P6
a=4X

a�3
w
�!� a

and the complex representation : Z =
P3
a=1 Z

a�!� a
The Spin Group is not a vector space, but a 6 dimensional manifold embedded in the Cli¤ord

Algebra. Its elements depend on 2 vectors of R3 : r; w but their meaning depend on the chart used.
i) The simplest chart is :
� : R3 � R3 ! Spin (3; 1) :: � = a+ � (r; w) + b"5
with a2 � b2 = 1 + 1

4 (w
tw � rtr)

ab = � 14r
tw

ii) The decomposition :
� : R3 � R3 ! Spin (3; 1) :: � = �w � �r = (aw + � (0; w)) � (ar + � (r; 0))
with :
a2w = 1 +

1
4w

tw
a2r = 1� 1

4r
tr

Then �w; �r are de�ned up to the sign.
iii) The complex representation :
� : C3 ! Spin (3; 1) :: � = A+

P3
a=1 Z

a�!� a
with : A2 = 1� 1

4Z
tZ;Z = r + iw

We go from one to the other by :
�w � �r = (aw + � (0; w)) � (ar + � (r; 0)) = awar + �

�
awr;

1
2j (w) r + arw

�
� 1

4 (w
tr) "5 = A+ Z

The choice of the chart can be �tted to the problem at hand. And we will also write � (r; w)
when no choice has been done.
Notice that w corresponds to a pure translational motion only in the second chart : �w � �r =

(aw + � (0; w)) � (ar + � (r; 0)) :
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3.5 REPRESENTATIONOF THEMOTION INGENERAL
RELATIVITY

We have now the mathematical tools to build a representation of the motion of material bodies in
the Geometry of GR. It is based upon the existence :
- of a tetrad attached to each particle, or material point,
- of a tetrad for any observer at each point,
- of a relation between the velocity of the particle and its tetrad.

3.5.1 Description of the �ber bundles

Associated vector bundles

From the principal bundle is PG (M;Spin (3; 1) ; �G) other �ber bundles can be de�ned.

De�nition 62 The vector bundle TM de�ned through the tetrad of an observer is P
G

�
R4;Ad

�
:

"i (m) = (p (m) ;"i)

In a change of observer :

p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
(p (m) ; u) �

�ep (m) ;Ad�(m)u�
"i (m) = (p (m) ; "i)! e"i (m) = Ad�(m)�1"i (m) =P3

j=0

h
h
�
� (m)

�1
�ij

i
"j (m)

(3.55)

The formulas are the same as previously, the relation between "i (m) ; e"i (m) is just explicit with
Ad. In P

G

�
R4;Ad

�
the components of vectors are measured in orthonormal bases.

"0 (m) = (p (m) ;"0) is the 4th vector both in the Cli¤ord algebra and in the tangent space TmM:
It corresponds to the velocity of the observer : "0 (qo (t)) = 1

c
dqo
dt is �xed along his world line.

The Lorentz scalar product on R4 is preserved by Ad thus it can be extended to P
G

�
R4;Ad

�
:

The gauge of an observer is de�ned by his tetrad : it is the physical link between the abstract
�ber bundle PG and the measures involving PG:

De�nition 63 The adjoint bundle is the associated vector bundle PG [T1Spin (3; 1) ;Ad]

Because M is endowed with the structure of the principal bundle PG; there is a structure of
Cli¤ord bundle Cl (TM) : a structure of Cli¤ord algebra Cl ((TmM; g (m))) at each point m 2M;
whose elements are de�ned through products of vectors "i (m) ; and it is isomorphic to Cl (3; 1)
(Maths.2106). Pointwise the Cli¤ord product holds with the usual properties, and with the vectors
de�ned in the tetrad.

De�nition 64 The Cli¤ord bundle Cl (TM) is the associated vector bundle PG [Cl (3; 1) ;Ad]
de�ned through the basis ("i (m))

3
i=0 :

In a change of gauge on PG the elements of Cl(TM) transforms as :

p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1
(p (m) ; X) �

�ep (m) ;Ad�(m)X� (3.56)

A basis of Cl (TmM) is given by 1 and ordered products of "0; "1; "2; "3. It changes as e"i (m) =
Ad�(m)�1"i (m) and the components change as

�
Ad�(m)

�
X; the matrix

�
Ad�(m)

�
depending on X.
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Fundamental symmetry breakdown

The observer uses the frame
�
O; ("i)

3
i=0

�
to measure the components of vectors of TM . The break-

down, speci�c to each observer, comes from the distinction of his present, and is materialized in
his standard basis by the vector "0 (m) :This choice leads to a split of the Spin group between the
spatial rotations, represented by Spin(3), and the homogeneous space SW = Spin (3; 1) =Spin (3) :

We have an associated �ber bundle :
PW = PG [SW; �] : (p (m) ;sw) = ('G (m; 1) ; sw) �

�
'G (m; s) ; �

�
s�1; sw

��
with the left action :
� : Spin (3; 1)� SW ! SW : � (s; sw) = �w (s � sw)
On the manifold PG there is a structure of principal �ber bundle
PG (PW ; Spin (3) ; �R) with trivialization :
'R : PW � Spin (3)! PG ::

'R ((p (m) ;sw) ; sr) = 'G (m; sw � sr) = 'R
��
'G (m; s) ; �

�
s�1; sw

��
; sr
�

As the latest trivialization shows, for a given s; sr depends on sw in that it is a part of s 2
Spin (3; 1) :

Any section � 2 X (PG) can be decomposed, for a given vector �eld "0 and a �xed � = �1; in
two sections :

��w 2 X (PW ) ; ��r 2 X (PR) with � (m) = ��w (m) � ��r (m)
The set of vectors of TmM used to build Spin(3) is de�ned by "0 (m) :

3.5.2 Motion of a particle

The motion is de�ned as the change of position with respect to a present position, as in the instan-
taneous rotation R�1 dRdt ; so we need �rst to de�ne the position, and this is done through the tetrad
attached to the particle.

Arrangement of the particle

The fundamental assumption is the existence of an orthonormal basis (ei)
3
i=0 attached to the particle.

At each point it is measured in the vector bundle P
G

�
R4;Ad

�
: The basis (ei)

3
i=0 is deduced from

the tetrad ("i)
3
i=0 of the observer by an element � 2 Spin (3; 1) such that :

ei = Ad�"i , ei (q (t)) =
�
p (q (t)) ;Ad�(t)"i

�
and we de�ne the arrangement of the particle with respect to the observer O by �:
The velocity dq

dt of the particle reads for an observer :

- in the basis of the standard chart :V = dq
dt =

P3
�=0 V

�@�� = c"0 +
�!v

- in the tetrad at each point : U =
P3
j=0 U

j"j = c ("0 +
�!u )

(Notice that we have �!v but c�!u for convenience in further computations)
and V = U = dq

dt as vectors.
Because the velocity V of the particle is proportional to e0 we have :
V =

p
�hV; V ie0 , U =

p
�hU;UiAd�"0

and
hU; "0iCl =

Dp
�hU;UiAd�"0; "0

E
Cl
= hc ("0 +�!u ) ; "0iCl = hc"0; "0iCl = �cp

�hU;Ui = �c 1
hAd�"0;"0iCl

U = �c 1
hAd�"0;"0iCl

Ad�"0

hAd�"0; "0iCl is the scalar product in the tetrad, so hAd�"0; "0iTM = hAd�"0; "0iCl and does
not depend on the metric. Notice that Ad�"0; "0 are both vectors in the �xed vector space R4
)
p
�hV; V i = � c

hAd�"0;"0iCl
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In a change of gauge : p (m) = 'G (m; 1) ! ep (m) = p (m) � � (m)�1 the vector ei does not
change, but its components change, and thus � changes as a section of PG :

ei (m) = (p (m) ;Ad�"i) �
�
p (m) � � (m)�1 ;Ad�(m)Ad�"i

�
=
�ep (m) ;Ad�(m)��"i�

Notice that the vector "i 2 R4 and never changes.
These formulas are just the expression, in the Cli¤ord algebra, of the classic relations in a change

of basis between two observers (51).

ei = Ad�"i
V = dq

dt = c"0 +
�!v = U = � c

hAd�"0;"0iCl
Ad�"0

(3.57)

With the chart : � = �w � �r = � (aw + � (0; w)) � � (ar + � (r; 0)) with � = �1
Up

�hV;V i
= e0 = Ad�w��r"0 = Ad�wAd�r"0 = Ad�w"0 because �r 2 T1Spin (3) so :

Up
�hV;V i

= Ad�w"0

The matrix of Ad�w is :

[h (�w)] =

�
2a2w � 1 aww

t

aww 2a2w � 1 + 1
2j (w) j (w)

�
Ad�"0 =

�
2a2w � 1

�
"0 + aw

P3
i=1 wi"i

hAd�"0; "0i = �
�
2a2w � 1

�
U = � c

hAd�"0;"0iCl
Ad�"0 = c

�
"0 +

aw
2a2w�1

P3
i=1 wi"i

�
p
�hU;Ui = c

2a2w�1

utu =
�

2aw
2a2w�1

�2 �
a2w � 1

�
V = c

P3
�=0

�
P�0 (q (t)) +

aw
2a2w�1

P3
i=1 wi (t)P

�
i (q (t))

�
@��

�!v = 0, w = 0
U is determined by �w only: Meanwhile � is uniquely de�ned by (ei)

3
i=0 ; �w is de�ned up to the

sign. In all cases we have aw
P3
i=1 wi"i = aw

�!w in the same direction as the spatial velocity, but
this can be achieved either by �!w in the same direction as the spatial velocity and aw > 0 or by ��!w
and �aw: �r is similarly de�ned up to the sign.

U = c
�
"0 +

P3
a=1

aw
2a2w�1

wa"a

�
(3.58)

With the complex chart :
� = A+

P3
a=1 Z

a�!� a = a+ � (r; w) + b"5
A = a+ ib
A2 = 1� 1

4Z
tZ

The matrix [h (�)] has been given previously and :
Ad�"0 = [h (s)] =

�
a2 + b2 + 1

4 (r
tr + wtw)

�
"0 +

�
aw � br + 1

2j (r)w
�

hAd�"0; "0iCl = �
�
a2 + b2 + 1

4 (r
tr + wtw)

�
U = � c

hAd�"0;"0iCl
Ad�"0 = c"0 +

c

(a2+b2+ 1
4 (r

tr+wtw))

�
aw � br + 1

2j (r)w
�

utu = 1� 1

(a2+b2+ 1
4 (r

tr+wtw))
2 = 1� 1

AA+ 1
4Z

tZ

AA+ 1
4Z

tZ = a2 + b2 + 1
4 (r

tr + wtw)
aw � br + 1

2j (r)w = ReA ImZ � ImAReZ +
1
2j(ReZ) ImZ

j (Z)Z = �2ij (ReZ) (ImZ)
AZ = (ReA)ReZ � i (ReA) ImZ + i ImAReZ + ImA ImZ
aw � br + 1

2j (r)w = � Im
�
AZ + 1

4j (Z)Z
�
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U = c"0 � c
AA+ 1

4Z
tZ
Im
�
AZ + 1

4j (Z)Z
�

U = c
�
"0 � 1

AA+ 1
4Z

tZ
Im
��
A+ 1

4j (Z)
�
Z
	�

(3.59)

Motion

The tetrad attached to the particle is de�ned in the tetrad of the observer, and the motion is de�ned
by derivation with respect to a �xed observer, that is with respect to a �xed tetrad. To underline
this fact it is useful to use the vector U; de�ned in the tetrad. Which is equivalent to consider the
vector U (m) = (p (m) ; U) in the associated vector bundle with U 2 R4:
A continuous motion is such that the map : � : R! Spin (3; 1) with respect to the time t of the

observer is smooth. From the de�nitions above :
8i = 0::3 : ei = Ad�"i
dei
dt =

d
dtAd�"i = Ad�

�
��1 � d�dt ; "i

�
=
�
d�
dt � �

�1;Ad�"i
�
=
�
d�
dt � �

�1; ei
�

8i = 0::3 : deidt =
�
d�
dt � �

�1; ei
�

U =
p
�hU;UiAd�"0 =

p
�hU;Uie0

dU
dt =

d
dt

p
�hU;Uie0 +

p
�hU;Uide0dt

=

�
1p

�hU;Ui
d
dt

p
�hU;Ui

�p
�hU;Uie0 +

p
�hU;Ui

�
d�
dt � �

�1; e0
�

dU
dt =

�
1p

�hU;Ui
d
dt

p
�hU;Ui

�
U +

�
d�
dt � �

�1; U
�

d
dt

p
�hU;Ui = c

(hAd�"0;"0iCl)
2
d
dt hAd�"0; "0iCl

1p
�hU;Ui

d
dt

p
�hU;Ui

= � 1
hAd�"0;"0iCl



d
dtAd�"0; "0

�
Cl

= � 1
hAd�"0;"0iCl


�
d�
dt � �

�1;Ad�"0
�
; "0
�
Cl

= 1
c


�
d�
dt � �

�1;U
�
; "0
�
Cl

dU
dt =

U
c


�
d�
dt � �

�1;U
�
; "0
�
Cl
+
�
d�
dt � �

�1; U
�

And we de�ne the motion (both translational and rotational) of the particle by d�
dt � �

�1 2
T1Spin (3; 1) :

�R� =
d�
dt � �

�1 is the right logarithmic derivative, and �L� = ��1 � d�dt is the left logarithmic
derivative. They both belong to T1Spin (3; 1) and are related by Ad� : �R� = Ad��L� , �L� =
Ad��1�R�:

d�
dt � �

�1 = � (Xr; Xw) 2 T1Spin (3; 1)
8i = 0::3 : deidt = [� (Xr; Xw) ; ei]

dU
dt =

U
c h[� (Xr; Xw) ;U ] ; "0iCl + [� (Xr; Xw) ; U ]

(3.60)

With � = �w � �r = � (aw + � (0; w)) � � (ar + � (r; 0))
d�
dt � �

�1 = � (Xr; Xw) with

Xr = � 12j (w)
dw
dt +

�
1� 1

2j (w) j (w)
� �

1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw =
1
aw

�
1� 1

4j (w) j (w)
�
dw
dt + [awj (w)]

�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

and the inverse relation reads, with some computation :
dr
dt =

�
1
ar
� 1

2j (r) +
1
4ar

j (r) j (r)
��

Xr +
1
2
1
aw
j (w)Xw

�
dw
dt = �j (w)Xr +

�
aw � 1

4aw
j (w) j (w)

�
Xw
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dV
dt = cXw +

�
j (Xr)� (Xt

wv)
1
c

�
v with : V = c"0 + v

d�
dt � �

�1 = � (Xr; Xw)

Xr = � 12j (w)
dw
dt +

�
1� 1

2j (w) j (w)
� �

1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw =
1
aw

�
1� 1

4j (w) j (w)
�
dw
dt + [awj (w)]

�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

dU
dt = cXw +

�
j (Xr)� (Xt

wv)
1
c

�
v

(3.61)

With � = A+
P3
a=1 Z

a�!� a = A+ Z
d�
dt � �

�1 = D (Z) dZdt = Yr + iYw

[D (Z)]
�1
= A� 1

2j (Z)
dZ
dt = [D (Z)]

�1
(Yr + iYw) =

�
A� 1

2j (Z)
�
(Yr + iYw)

d�
dt � �

�1 = D (Z) dZdt = Yr + iYw
dZ
dt =

�
A� 1

2j (Z)
�
(Yr + iYw)

dU
dt = cYw +

�
j (Yr)�

�
[Yw]

t
[v]
�
1
c

�
v

(3.62)

To sum up

The geometric characteristics of a particle can be represented by a map :
� : R! PG :: � (t) = 'G (q (t) ; � (t))
It de�nes :
- its trajectory : q (t) = �G (� (t))
- its arrangement in the tetrad of the observer : ei (t) = Ad�(t)"0 (q (t)) =

�
p (q (t)) ;Ad�(t)"0

�
- its velocity, with respect to the observer in his standard chart :

U (t) = � c

hAd�(t)"0;"0iCl
Ad�(t)"0 (q (t)) =

�
p (q (t)) ; c

hAd�(t)"0;"0iCl
Ad�(t)"0

�
V � (t) =

P3
i=0 P

�
i (q (t))U

i (t)

V (t) = dq
dt = c"0 +

�!v
and by construct V (t) is a time vector, future oriented.
Both the arrangement and the trajectory are fully de�ned by � : the derivatives are not involved.

The tetrad is involved when one needs the components of the velocity or of the tetrad of the particle
in the holonomic basis. The vectors V;U are the same geometric quantity, de�ned in 2 di¤erent
bases : V � =

P3
i=0 [P

0]
�
i U

i:
- its motion is then, with respect to the observer at q (t) :
8i = 0::3 : deidt =

�
d�
dt � �

�1; ei
�

dU
dt =

U
c


�
d�
dt � �

�1;U
�
; "0
�
Cl
+
�
d�
dt � �

�1; U
�

V � =
P3
i=0 [P

0]
�
i U

i and because the tetrad is assumed to be �xed in the motion :

dV �

dt
=

3X
i=0

[P 0]
�
i

dU i

dt
(3.63)

so the relations above give the derivatives of the components V � and not the derivative of the
vectors V 2 TM; which would be de�ned in the bitangent bundle TM2:
- the motion, continuous or not, is represented by � (Xr; Xw) in the Lie algebra T1Spin (3; 1) ;

that is by 6 components in the basis �!� a: 3 to represent the translational motion (the imaginary
part) and 3 to represent the rotational motion (the real part), or equivalently by 2 vectors of R3 as
in Galilean Geometry.
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Spatial Speed

i) U = c ("0 +
�!u ) = � c

hAd�"0;"0iCl
Ad�"0

�!u = �c"0 � c
hAd�"0;"0iCl

Ad�"0

h�!u ;�!u i = 1�
�

1

hAd�"0; "0iCl

�2
(3.64)

ii) In dU
dt =

U
c


�
d�
dt � �

�1;U
�
; "0
�
Cl
+
�
d�
dt � �

�1; U
�
the value of

�
d�
dt � �

�1; U
�
is a vector, which is

expressed (see Annex) :�
d�
dt � �

�1;U
�
= c (Xw + fXt

wug "0 + j (Xr)u) where d�
dt � �

�1 = � (Xr; Xw) ; U = c"0 + cu
dU
dt = c (Xw (1� (utu)) + j (Xr)u� j (u) j (u)Xw) = cdudt

ut
du

dt
=
�
1�

�
utu
�� �

utXw

�
(3.65)

The motion is with a constant spatial speed ut dudt = 0 i¤ u
tXw = 0; so notably if

Xw = Im
d�
dt � �

�1 = 0, d�
dt � �

�1 2 T1Spin (3)

Spin

The spin is a rotational motion. The spatial basis of the particle is deduced from the spatial tetrad
by a rotation of SO (3) :

[h(�r)] =

�
1 0
0 1 + arj (r (t)) +

1
2j (r (t)) j (r (t))

�
and the rotational motion can be de�ned as : d�rdt � �

�1
r 2 T1Spin (3) :

In Galilean Geometry the rotation of the spatial basis is usually measured by a matrix R (t) 2
SO (3) based also on a vector � 2 R3 :

R (t) = exp j (� (t)) = I3 +
sin
p
�t�p

�t�
[j (�)] +

1�cos
p
�t�

�t� [j (�)] [j (�)]

so : [h(�r)] =
�
1 0
0 I3 + arj (r) +

1
2j (r) j (r)

�
=

�
1 0
0 R (t)

�
I3 +

sin
p
�t�p

�t�
[j (�)] +

1�cos
p
�t�

�t� [j (�)] [j (�)] = 1 + arj (r) +
1
2j (r) j (r)

I3 + arj (r) +
1
2j (r) j (r) has for eigen vector r with eigen value 1

exp j (� (t)) has for eigen vector � with eigen value 1
thus r = ��
The sign of ar is �xed by �; that is the orientation of w.

� = �

r
2
1�cos

p
�t�

�t�

And : �r = �

0@ sin
p
�t�r

2
�
1�cos

p
�t�

� + �
 r

2
1�cos

p
�t�

�t� ; 0

!1A
Meanwhile for the representation of the decomposition of � we have the choice of � and (r; w) �

(�r;�w) ; the rotational motion d�r
dt � �

�1
r does not depend on �; but introduces a new factor with

the derivative. In Galilean Geometry the convention is that �� represents the opposite spin, with
the same axis. In the Relativist framework, one can distinguish the two rotations, because there is
always a privileged direction (that of the velocity). One can distinguish the two spin elements ��r
(which correspond to the same matrix of SO (3; 1)) and di¤erentiate the rotational motion from its
opposite by �xing �: If we impose that �!w is in the direction of �!v ; then +� and �� represent spinning
with the same axis, but opposite rotations, or equivalently, to keep the usual convention, rotations
with opposite axis. These opposite rotational motions are usually called polarization (spin �up�or
�down�).
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In Galilean Geometry two opposite rotational motions are the image of each other in a space
inversion (a symmetry with respect to a plan). In the Relativist Framework such an operation is a
symmetry with respect to a spatial vector (and not the space inversion which is a symmetry with
respect to 
3 (t)): And actually this is done through the choice of an orientation for

�!w .
The vector r (t) 2 R3, however the characteristic of the spin is d�rdt ��

�1
r = � (Xr; 0) 2 T1Spin (3)

and we have seen that � (Xr; 0) does not depend on the choice of a spatial basis. So we have the
known paradox : we have a quantity, the spin, which looks like a rotation, which can be measured
as a rotation, but is not related to a precise basis, even if its measure is done in one ! Notice that
this paradox exists already in Galilean Geometry : when the instantaneous rotation is represented
by R�1 dRdt this quantity does not depend on the frame of the observer.

Units

We represent the motion by d�
dt � �

�1 = � (Xr; Xw) with :

Xr = � 12j (w)
dw
dt +

�
1� 1

2j (w) j (w)
� �

1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw =
1
aw

�
1� 1

4j (w) j (w)
�
dw
dt + [awj (w)]

�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

In the formula above : V = c
�
"0 +

P3
a=1

aw
2a2w�1

wa"a

�
V has the dimension of a spatial speed,

and w is unitless, by the use of the universal constant c; which provides a natural standard: The
rotational motion is represented also by a vector r (t) 2 R3 which must also be unitless, and dr

dt has
the dimension [T ]�1 : A rotational motion is measured in rad=s; however in Galilean Geometry it is
conventionally represented by a rotation with constant axis � and rotational speed

p
�t� : R (t) =

exp tj (�) , R (t)
�1 dR

dt 2 so (3) : The advantage is that � is observer independent. The angle � of
the rotation resulting from a given matrix is � =

p
�t�: So a rotational motion of 2� rad=s (1 turn

/ s or 1 cycle / s that is 1 Hz) is represented by a vector � of one unit of length / s; or equivalently
2� rad=s � 1m=s:
The same rotation represented in Galilean Geometry by R (t) = exp j (� (t)) is represented here

by

�r = �

0@ sin
p
�t�r

2
�
1�cos

p
�t�

� + �
 r

2
1�cos

p
�t�

�t� ; 0

!1A
and r can be measured in cycles, without unit, and dr

dt in Hz.
Then r; w are unitless, and Xr; Xw have the dimension of [T ]

�1
: If we want to keep the usual

and natural convention of measuring the motion by the units [L] [T ]�1 we should introduce another
constant in front of d�dt � �

�1 = � (Xr; Xw). We will come back on these issues in the Chapter 6.

Estimates

It is useful to have estimates for w; using the spatial speed.

Let us denote : x = 1� k
�!v k2
c2

With the representation � = �w � �r = (aw + � (0; w)) � (ar + � (r; 0))

aw = �

r
1
2

�
1p
x
+ 1
�
= � 1p

2
x�1=4 (1 +

p
x)
1=2

w = �
p
2

 
1� k

�!v k2
c2 +

r
1� k

�!v k2
c2

!�1=2
�!v
c = �

p
2x�1=4 (1 +

p
x)
�1=2 �!v

c

Usually k
�!v k2
c2 � 1 and we have the estimates :

aw ' �
�
1 + 1

8

k�!v k2
c2

�
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w ' �
�
1 + 3

8

k�!v k2
c2

�
�!v
c

V ' c
�
"0 + �

�
1� 3

8

k�!v k2
c2

�
�!w
�

A ' �ar
�
1 + 1

8

k�!v k2
c2

�
� i14�r

t�!v
c

Z ' �
�
1 + 1

8

k�!v k2
c2

�
r + i

�
ar � 1

2j (r)
�
�
�!v
c

The derivative of w is given by the formula :
dw
dt =

��
2a2w+1
4a3w

�
j
��!v
c

�
j
��!v
c

�
+
�
2a2w+1
4a3w

� k�!v k2
c2 +

2a2w�1
aw

��
d
dt

�!v
c

�
dw
dt '

�
1 + 9

8

k�!v k2
c2 + 3

4j
��!v
c

�
j
��!v
c

���
d
dt

�!v
c

�
Xr ' � 12

�
1 + 3

4

k�!v k2
c2

�
j
��!v
c

��
d
dt

�!v
c

�
+
h
1� 1

2j
��!v
c

�
j
��!v
c

�i�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw '
�
1 +
k�!v k2
c2 � 1

2j
��!v
c

�
j
��!v
c

���
d
dt

�!v
c

�
+

�
1 + 1

2

k�!v k2
c2

�
j
��!v
c

��
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

3.5.3 Motion of material bodies

It is possible to extend the concept of deformable solid to the framework of RG.

Representation of collection of particles by sections of the �ber bundle

In Physics it is common to have a collection of particles with identical characteristics following
trajectories which do not cross, like in a beam. They can be represented by a section of PG:
Let be � ='G (m;� (m)) 2 X (PG) and a given observer who uses his standard gauge. Then the

relations :
m = �G (�)

U (m) = � c

hAd�(m)"0;"0iCl
Ad�(m)"0 (m) =

�
p (m) ;� c

hAd�(m)"0;"0iCl
Ad�(m)"0

�
V � (m) =

P3
i=0 P

�
i (m)U

i (m)
de�ne a vector �eld V 2 X (TM) :
V (m) is a timelike, future oriented vector :

hV; V i = hU;Ui =
�

c

hAd�(m)"0;"0iCl
Ad�(m)"0;

c

hAd�(m)"0;"0iCl
Ad�(m)"0

�
Cl

= �
�

c

hAd�(m)"0;"0iCl

�2
< 0

hV; "0 (m)i = hU; "0i = � c

hAd�(m)"0;"0iCl


Ad�(m)"0; "0

�
Cl
= �c < 0

V de�ne integral curves q (�) = �V (�; a) with a parameter � uniquely de�ned by a point
�V (0; a) = a: The map � ! q (�) = 'o (�0 (�) ; �1 (�) ; �2 (�) ; �3 (�)) is de�ned by the di¤erential
equations :

@��
@� = V � (q (�))) @�0

@� = V 0 (q (�)) = c) �0 (�) = c� + Ct
q (�) = 'o (c� + Ct; �1 (�) ; �2 (�) ; �3 (�))
which is equivalent to say that the parameter on the integral curves is the time t of the observer
V � (�V (t; a)) =

P3
i=0 P

�
i (�V (t; a))U

i (�V (t; a))
From � we have at each point an arrangement :
ei (m) = Ad�(m)"i (m) =

�
p (m) ;Ad�(m)"i

�
and the motion along an integral curve, the derivative being with respect to the time of the

observer :
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8i = 0::3 : deidt =
�
d�
dt � �

�1; ei
�

dU
dt =

U
c


�
d�
dt � �

�1;U
�
; "0
�
Cl
+
�
d�
dt � �

�1; U
�

dV �

dt =
P3
i=0 [P

0]
�
i
dUi

dt

So, a section � 2 X (PG) represents, in a given gauge, the motion of a collection of particles
which follow trajectories belonging to the same vector �eld.
The same section � 2 X (PG) is represented, in a change of gauge p (m)! ep (m) = p (m)�� (m)�1

by � ! e� = � (m) � � and de�nes the vector :eei (m) = �ep (m) ;Ade�(m)"i� = �p (m) � � (m)�1 ;Ad�(m)Ad�(m)"i�
�
�
p (m) ;Ad�(m)"i

�
= ei (m)

thus it represents the same motion.
Conversely, if we have such a collection of particles, then for a given observer, the tetrad of the

particles are measured as :
8i = 0::3 : ei (q (t)) = Ad�(q(t))"i (q (t))
and we can proceed to the same computations as in the �rst subsection :
� (q (t)) is de�ned through ei (q (t)) which are physical vectors, in a change of gauge : p (m) =

'G (m; 1)! ep (m) = p (m) � � (m)�1 : � ! e� = � (m) � �
ei (q (t)) = (p (m) ;Ad�"i) �

�ep (m) ;Ad�(m)Ad�"i� = (ep (m) ;Ade�"i)
and we have a section of PG:

Theorem 65 The motion of a collection of particles whose trajectories belong to a vector �eld can
uniquely be represented, for any observer, by a section of PG:
A section of PG can represent, for any observer, the motion of particles whose trajectories belong

to a vector �eld.

This representation is crucial : it is at the foundation of the concept of matter �eld that we will
develop in the next chapter.

Derivatives

With this representation one can address the problem of variable trajectories. The tetrad of the
observer is assumed to be �xed, so that the derivatives of V � =

P3
i=0 [P

0]
�
i U

i can be computed by

@�V
� (m) =

P3
i=0 [P

0]
�
i @�U

i (m)

With a computation as above :
@�U =

U
c


�
@�� � ��1;U

�
; "0
�
Cl
+
�
@�� � ��1; U

��
@�� � ��1; U

�
is computed in the Cli¤ord Algebra. The result is a vector.�

@�� � ��1; U
�
=
P3
j=0

�
@�� � ��1; U

�j
"j

@�V
� =

P3
j=0 P

�
j

n�
@�� � ��1; U

�j
+ Uj

c


�
@�� � ��1;U

�
; "0
�
Cl

o
= V �

c


�
@�� � ��1;U

�
; "0
�
Cl
+
P3
j=0 P

�
j

�
@�� � ��1; U

�j
Moreover : V 0 = c) @�V

0 = 0)

�
@�� � ��1;U

�
; "0
�
Cl
= �

P3
j=0 P

0
j

�
@�� � ��1;U

�j
@�V

� = �V �

c

P3
j=0 P

0
j

�
@�� � ��1;U

�j
+
P3
j=0 P

�
j

�
@�� � ��1; U

�j
� > 0 : @�V

� =
3X
j=0

�
P�j �

1

c
P 0j V

�

��
@�� � ��1;U

�j
(3.66)

@�� � ��1 = � (��Xr; ��Xw) depends on the chart used in the Cli¤ord algebra.
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Integral curves of the section

The vector �eld associated to a section has for components in a standard chart m = 'o (t; �) ; � =
(�1; �2; �3) :

� = 1; 2; 3 : V � (t; �) =
P3
j=1Q

�
j (t; �)U

j (t; �)
By construct, they do not depend on the gauge.
For instance with the Cli¤ord chart :
� = �w (m) � �r (m) = � (aw + � (0; w (m))) � � (ar + � (r (m) ; 0))
�w (m) is de�ned by a map w : R4 ! R3 :: w (t; �) and U (t; �) = aw

2a2w�1
[w (t; �)] = �

p
1+ 1

4w
tw

1+ 1
2w

tw
[w (t)] :

The integral curves passing through a point A = 'o
�
ct; �1; �2; �3

�
; have the equation :

q (�) = �V (�;A) = 'o (c (t+ �) ; f (�; �))
with � =

�
�1; �2; �3

�
f (�; �) = (f1 (�; �) ; f2 (�; �) ; f3 (�; �))
where the functions f� (�; �) are solution of the di¤erential equation :
� = 1; 2; 3 : V � (c (t+ �) ; f (�; �)) =

@f�
@�

f� (0; �) = ��
f� (�; �) = �� +

P3
j=1

R �
0
V � (t+ s; f (s; �)) ds

The integral curves depend only on �w (m) : So the product of � by any section s 2 Spin (3)
gives the same curves.

Representation of material bodies in GR

In Mechanics a material body is made of �material points�that is elements of matter whose location
is a single geometric point, and changes with time in a consistent way : their trajectories do not
cross, so that the material body keeps its cohesion. By adding a frame to each material point one
can models its deformation by a deformation tensor. The generalization to GR is immediate.

De�nition 66 A material body is a collection of particles whose trajectories are integral curves of
a time like, future oriented vector �eld V , and which belong, at some point on their trajectories to
a compact subset of a spatial hypersurface of M . It can be represented by a section � 2 PG with
compact support.

The vector �eld de�nes a parameter � which is the proper time of the material body. If at �0
all the particles are in !; then, because �V (�; a) ; a 2 ! is a di¤eomorphism, the image of ! at any
other time is still compact. The de�nition is independent of any observer.
The set b! �M swept by the particles is the support of �: It is such that its intersection by any

spatial hypersurface is still a compact hypersurface, but all the observers do not see the same body11

: they see b! \
3 (t) : They see always the same body if their velocity belongs to the vector �eld V .
Conversely, given a section � 2 X (PG) it de�nes a vector �eld of trajectories with respect to any

observer : the parameter on the integral curves is then the time of the observer, and � de�nes a
solid whose physical body ! at any time belongs to the present of the observer : ! (t) � 
3 (t) :
It is usually more convenient to de�ne a deformable solid from the point of view of an observer B

attached to the solid : "0 = 1p
�hV;V i

V; and do the computations in a spherical system of coordinates.

Then proceed to a change of gauge to represent the motion of the solid from the point of view of
another observer. It requires just the map � : B !O 2 Spin (3; 1) : The composition of motions in
the GR framework is thus easy.
Of course particles follow such trajectories only if they have similar physical properties, and are

submitted to adequate forces. We will come back on these issues in the following.

11This point is a the origin of many misunderstandings in simplist experiments based on material objects (usually
trains).
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This general de�nition applies to solids, in the usual meaning, but also to �uids, which are
composed of material points which travel along trajectories which do not cross.

Deformation tensor :
We can de�ne a deformation tensor, similar to what is done in Newtonian Mechanics. In Galilean

Geometry the deformation tensor is de�ned by the change @
@tei (q; t) of ei (q; t) with respect to

ei (q; t) :The equivalent in our framework is d�dt ��
�1 =

P3
�=0 V

�@�����1 whose matrix is [� (Xr; Xw)] =
[K (Xw)] + [J (Xr)] 2 so (3; 1) :

[K (Xw)] =

�
0 Xt

w

Xw 0

�
; [J (Xr)] =

�
0 0
0 j (Xr)

�
The deformation tensor has a symmetric ([K (Xw)]) and an antisymmetric ([J (Xr)]) part, as

the usual deformation tensor.

Rigid solid :
The arrangement of each individual particle, represented by �; is not necessarily identical. A rigid

solid can be de�ned as a solid such that the motion is identical at each point :
8x 2 ! (0) : d�dt � �

�1 (�V (t; x)) = � (Yr (t) ; Yw (t))

, � (�V (t; x)) = s (t) � � (�V (0; x)) with s (t) 2 Spin (3; 1)
and s (t) represents the arrangement of the rigid solid with respect to the observer: Then the

deformation tensor depends only on t.

3.5.4 Symmetries

Particle

The geometric characteristics of a particle can be represented by a map : � : R ! PG :: � (t) =
'G (q (t) ; � (t))

For a particle symmetric motions are essentially periodic motions, which can be understood in
two di¤erent, complementary, ways :
- periodic instantaneous motions : � (t+ T ) = � (t)

- periodic trajectories : q (t) = '0 (ct; � (t)) : � (t+ T ) = � (t) (there is no 4 dimensional loop in
a trajectory)

Periodic instantaneous motions
� (t+ T ) = 'G (q (t+ T ) ; � (t))

The motion is periodic if the arrangement is the same at q (t) and q (t+ T ) :
The arrangement � (t) can be equivalently de�ned by the tetrad (ei (t) ; i = 0::3) attached to the

particle so : ei (q (t)) = Ad�(q(t))"i = ei (q (t+ T )) = Ad�(q(t+T ))"i
The vectors ei (q (t+ T )) ; ei (q (t)) have not necessarily the same components in the holonomic

chart, but they are de�ned by the same rotation with respect to the local tetrad:So the symmetry is
with respect to the tetrad at each point, and from this de�nition, it does not depend on the choice
of the tetrad.
The trajectory q : R!M :: q (t) = 'o (ct; � (t)) is de�ned separately.
A bonded particle is such that x (t) = Ct: So U = 0: In the chart � = �w ��r = � (aw + � (0; w)) �

� (ar + � (r; 0)) we have w = 0 and a periodic rotation if r (t+ T ) = r (t) ;
d�
dt � �

�1 = �
�
dr
dt ; 0

�
2 so (3) :

dei
dt =

�
�
�
dr
dt ; 0

�
; ei
�
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Periodic trajectories
Using the relations above :
U = � c

hAd�"0;"0iCl
Ad�"0 ) U (t+ T ) = U (t)) u (t+ T ) = u (t)

and in the standard chart :
V 0 (t) = [U (t)]

0
@�0 (q (t)) = c = @'o

@t
dx
dt (t) = v (t) =

P3
j;�=1Q

�
j (q (t))u

j (t) @��

�� (t+ T ) = �� (t) +
R t+T
t

P3
j;�=1Q

�
j (q (s))u

j (s) ds
So we do not have necessarily � (t+ T ) = � (t) ; that is a spatial periodic trajectory in 
3 (0) ;

but the spatial speed, u (t) as measured with respect to the tetrad, is periodic. If the metric does
not depend on t then the tetrad can be chosen such that it does not depend on t, and the spatial
trajectory is periodic ifR t+T

t

P3
j;�=1Q

�
j (q (s))u

j (s) ds = 0

Phase velocity
In our representation of the motion of a particle the 2 components r; w which de�ne � are inde-

pendent. The arrangement of the particle is only submitted to the orientation of its vector e0: And
a particle can have a periodic rotational motion without a periodic trajectory, as seen above. The
phase velocity is then de�ned as :

! (t) = 1
T

R t+T
t

p
hv (q (�)) ; v (q (�))i3d�

with the spatial speed v (q (�)) :
hv (q (�)) ; v (q (�))i3 = hu (�) ; u (�)i3 = [u (�)]

t
[g3 (q (�))] [u (�)]

In SR [g3 (q (�))] = I :

! (t) = 1
T

R t+T
t

q
[u (�)]

t
[u (�)]d�

In a periodic instantaneous motion the phase velocity is constant
For any motion one can compute the integral :b� (!) = 1p

2�

R
R

p
hv (q (�)) ; v (q (�))i3e�i!�d�

which gives the decomposition of the motion in instantenous periodic motions of period T = 2�
! :

Symmetries in motions de�ned by a section

For any observer, a section � 2 X (PG) de�nes a material body whose proper time is the same as
the time of the observer. Thus symmetries are de�ned with respect to a map : F :M !M , which
can be an isometry or not.

Spatial symmetries
There is a spatial symmetry if there is a map f : R3 ! R3 such that :
8t : � ('o (ct; f (�))) = � ('o (ct; �))
The vectors ei (m) and the velocity U (m) are identical at 'o (ct; �) and 'o (ct; f (�)) with respect

to the local tetrad. If moreover f is an isometry on 
3 (0) the components of the vectors are identical.
If f is a continuous action of a group G on 
3 (0) then the subsets 
3 (0) =R has the structure

of a manifold with dimension 3� dimG: We have structures similar to crystals.

Dynamic symmetries
They involve a map F which is not restricted to 
3 (0) : There is no loop for the trajectory of a

particle, so f (m) must be in the future of any observer, or equivalently the matrix (in any chart)
[F 0 (m)]

t
[g (m)] [F 0 (m)] must be de�nite negative.

The action F can be de�ned by the �ow of a vector �eld W 2 X (TM) : F (�) (m) = �W (�;m)
then this is an action of R along the integral curves of W (and not on M). A symmetry is then
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� (�W (�;m)) = � (m) which implies that W is identical to the vector �eld V induced by �; and
� = Ct:
More interesting are periodic motions along some integral curves de�ned by V . In the chart

� (m) = �w � �r = � (aw + � (0; w)) � � (ar + � (r; 0)) the integral curves have for equations :
q (t) = 'o (ct; � (t))h
d�
dt

i
= �

p
1+ 1

4w
tw

1+ 1
2w

tw

P3
j=1

h
Q�j (t; x (t))

i
[w (t; x (t))]

where w : R4 ! R3 is a given map.
If there is a map : � : R ! R3 which is periodic and solution of this di¤erential equation, then

the rotational motion given by ar+� (r (ct; � (t)) ; 0) is also periodic, with the same period. We have
a periodic motion (in the meaning above) along an integral curve q (t) = 'o (t; � (t)) passing through
the point O = 'o (0; � (0)) :
There is not necessarily a solution, and each one is valid for curves passing through the point

'o (0; y (0)) : There can be several solutions, with di¤erent periods.
For any section � such that � (m) 2 Spin (3) the integral curves are q (t) = 'o (ct; �) with � = Ct.

Then the motion is periodic along the integral curve q (t) = 'o (ct; �) i¤ r (t+ T; �) = r (t; �) :

One can build a generic periodic section as follows. Let w : R! R3 be any map, and y : R! R3

a solution of the di¤erential equation :
h
dy
dt

i
= �

p
1+ 1

4w
tw

1+ 1
2w

tw
w (t) :

De�ne the path : q : R!M by q (t) = 'o (ct; � (t)) with :

� (t) = � (0) +
R t
0

P3
j=1

h
Q�j (s; y (s))

i
[y (s)] ds

) d�
dt = �

p
1+ 1

4w
tw

1+ 1
2w

tw

P3
j=1

h
Q�j (s; y (t))

i
[w (t)]

Then the corresponding curves are integral curves of the section s ('o (ct; �)) = aw + � (0; w (t)) :
Take any map : T : 
3 (0)! R
and any map : r : R4 ! R3 periodic with respect to t :
8x 2 
3 (0) ; x = '
 (�) : r (t+ T (�) ; �) = r (t; �)
and de�ne the section �r ('o (ct; �)) = ar + � (r (t; �) ; 0) ; : Then the section � = s � �r has the

path q (t) = 'o (ct; � (t)) = �V (t; � (0)) as integral curves (they depend only on s), and for each
'o (ct; � (0)) the instantaneous motion is periodic with period T (�) depending on x: And if w is
periodic then the full motion is periodic. Of course there could be many variant in this construct.

Fourier transform on Cl (3; 1)

The complex vector subspace F of Cl (3; 1) generated by the vectors (1;�!� a; a = 1; 2; 3) :
F =

n
A+

P3
a=1 Z

a�!� a
o

is a 4 dimensional complex Hilbert space with the hermitian scalar product :
h�1; �2i = A1A2 + Zt1Z2
The set of maps :
� : R ! F :: � (t) = A (t) + Z (t) such that

R
R h� (t) ; � (t)i dt < 1 is a complex Hilbert space,

in�nite dimensional and separable. So one can de�ne Fourier integrals :b� (!) = 1p
2�

R
R � (t) e

�i!tdt

with all the usual properties (derivation, ...).
Any map : � : R ! Spin (3; 1) can be written as a map : � : R ! F with the condition

A (t)
2
= 1� 1

4Z (t)
t
Z (t) : However the Fourier transform b� usually does not belong to Spin (3; 1) :

Any periodic map : � : t! F :: � (t+ T ) = � (t) can be expressed as a Fourier series.
� : R ! Spin (3; 1) :: � (t) = A (t) + Z (t) where Z (t+ T ) = Z (t) for some �xed period. Then

A2 (t+ T ) = 1� 1
4Z (t+ T )

t
Z (t+ T ) = A2 (t)

Z can be written :
Z (t) =

P
n2Z

bZ (n) exp in!t with bZ (n) = 1
T

R T
0
Z (t) exp (�in!t) dt and ! = 2�

T



3.5. REPRESENTATION OF THE MOTION IN GENERAL RELATIVITY 143

Z (0) =
P
n2Z

bZ (n)
A (t) =

P
n2Z

bA (n) exp in!t with bA (n) = 1
T

R T
0
A (t) exp (�in!t) dt and ! = 2�

T

A (t)
2
= 1� 1

4Z (t)
t
Z (t)

Z (t)
t
Z (t) =

P
n2Z

P
p2Z

bZ (n� p)t bZ (p) exp in!t = 4�1�Pn2Z
P
p2ZA (n� p)A (p) exp in!t

�
n 6= 0 :

P
p2Z

bZ (n� p)t bZ (p)� 4A (n� p)A (p) = 0P
p2Z

bZ (�p)t bZ (p)� 4A (�p)A (p) = 4bA (n)+ bZ (n) 2 F; but we do not have necessarily bZ (n)t bZ (n) = 4�1� bA (n)2� so bA (n)+ bZ (n) 2
Cl (3; 1) but does not necessarily belong to Spin (3; 1) :
We have similarly :
d�
dt � �

�1 = �Z (t) =
P
n2Z

c�Z (n) exp in!t
with c�Z (n) = 1

T

R T
0
�Z (t) exp (�in!t) dt

In a continuous motion :
�Z (t) = D (Z (t)) dZdtP
n2Z

c�Z (n) exp in!t = i!D (Z (t))
P
n2Z n

bZ (n) exp in!tc�Z (n) = i!nD (Z (t)) bZ (n)
3.5.5 Jet Bundles

The arrangement is represented by an element of the Spin Group and the motion by an element
of the Lie Algebra and both are related by the derivatives. Moreover one goes from the associated
vector bundle PG

�
R4;Ad

�
to the holonomic basis by the tetrad. It is useful to combine all this

in a formalism which underlines their relation. This is done by Jet Bundles which is a general
Mathematical Theory with many applications. This is the classic formulation of lagrangians, the
framework used in di¤erential equations and variational derivatives, and it enables to represent non
continuous processes.

De�nition

In Di¤erential Geometry one avoids as much as possible the coordinates expressions. But this is
di¢ cult when dealing with partial derivatives. The r-jet formalism provides a convenient solution,
which goes beyond the computational issue. See Maths.26 for more.
For any r di¤erentiable map f 2 Cr (M ;N) between manifolds, the partial derivatives @sf

@��1 :::@��s

at a point m are s symmetric linear maps from the tangent space TmM to the tangent space TpN:
As any linear map their expression in holonomic bases is a set of scalars f i�1:::�s , symmetric in the
indices �1; ::�s:
The relation of equivalence on Cr (M ;N) :
f � g , f (m) = g (m) = p; :::: @sf

@��1 :::@��s (m) =
@sg

@��1 :::@��s (m) ; s = 1:::r; �k = 1::dimM
de�nes classes of equivalences of maps f; g which have the same value and partial derivative at

m up to the order r. They are characterized by the set of scalars :
jr =

�
zi�1:::�s 2 R; s = 1:::r; �k = 1::dimM; i = 1::dimN

�
2 Jrm (M;N)p

zi�1:::�s symmetric in the indices �1; ::�s
The set Jrm (M;N)p is a vector space. The z

i
�1:::�s are the components of symmetric tensors

belonging to �sTmM� 
 TpN:
A r jet with source m and target p is a set jrm;p = (m; p; j

r) and more generally a r jet is a map
jr (m) = (m; p (m) ; jr (m))
The r jet prolongation of f is the map :

Jrf (m) =
�
m; f (m) ; @sfi

@��1 :::@��s (m) ; s = 1:::r; �k = 1::dimM; i = 1::dimN
�
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A key point is that any map f has a r jet prolongation, which is a r jet, but conversely in
a r jet there is a priori no relation between the zi�1:::�s (m) : they do not correspond necessarily

to the derivatives of the same map f . The distinction between @fi

@��1 :::@��s and z
i
�1:::�s is useful : a

di¤erential equation is a relation between components of a r-jet : L
�
m; z; zi�1:::�s

�
= 0 and a solution

is a map f of Cr (M ;N) such that L
�
m; f (m) ; @sf

@��1 :::@��s

�
= 0:

Fiber bundles P (M;E; �) are manifolds, so we can implement the principle above by taking as
maps sections on P . They are de�ned by :

S :M ! P :: S (m) = 'P (m; z (m))
and r jets on P are de�ned by r jets prolongations of z.
The coordinates of z (m) 2 E are zi; i = 1::: dimE in a chart

�
zi
	
= 'E (z) of E:

The partial derivatives @sz
@��1 :::@��s are linear maps whose components in charts ofM;E are scalars

: zi�1:::�s with the condition that they are symmetric in the indices �1; :::�s:
The r jet prolongation JrP of the �ber bundle P (M;E; �) is the vector bundle :
JrP

�
P; Jr0

�
RdimM ; E

�
0
; �r
�
with basis P; �ber the vector space :

Jr0
�
RdimM ; V

�
0
=
�
zi�1:::�s 2 R; s = 1:::r; �k = 1::dimM; i = 1::dimE

	
and projection : �r :

JrP ! P:
A section on JrP is a map : jrp (m) =

�
p (m) ; zi�1:::�s (m)

�
A section S on P gives a section on JrP : JrS =

�
S (m) ; @szi

@��1 :::@��s (m)
�

Two sections S; S0 belong to the same r jet if the value of z; z0 and their r derivatives are equal.
J1P is an a¢ ne bundle with �ber TM� 
 V E where V E is the vertical bundle (isomorphic to

TE) :
j1p (m) =

�
p (m) ; zi (m) ; zi� (m) ; � = 1::dimM; i = 1::dimE

�
It has an a¢ ne structure because the element p (m) is common.

Jet prolongation of a vector bundle

The r-jet prolongation of a vector bundle (associated or not) E (M ;V ;�) is a vector bundle. A
section X 2 X (E) is de�ned by a map :
X :M ! E :: X (m) = (m;

Pn
i=1 ui (m) ei)

r-jets are de�ned from the components in the charts, so here the partial derivatives of the map :
X :M ! V where V is a �xed vector space. The r-jet prolongation of X is then de�ned by�

m;ui; Xi
�1:::�s ; �p = 0:::3; i = 1:::dimV; s = 0:::r

	
The holonomic basis of the vector bundle JrE is the set of vectors
fei; e�1:::�si ; �p = 0:::3; i = 1::: dimV; s = 0:::rg localized at m 2 M: For the 1st jet prolongation

this is just : fei; e�i ; � = 0:::3; i = 1:::dimV g and one can write :
J1X = fm;X (m) ; ��X (m) ; � = 0:::3g with : ��X (m) =

Pn
i=1 ��Xie

�
i

, J1X = fm;X (m) ; �X (m)g with : �X (m) =
P3
�=0

Pn
i=1 ��Xie

�
i

or equivalently ��X (m) =
P3
�=0

Pn
i=1 ��Xiei: A section of J1E is then equivalent to 5 inde-

pendent sections of E.
The jet prolongation of maps : X : [0; T ] ! E :: X (t) is a map : [0; T ] ! J1E :: J1X =�

q (t) ; X (t) ; dXdt
�
and to a section of J1E corresponds a map : [0; T ]! J1E :: J1X = (q (t) ; X (t) ; �X)

where �X is independent from X.
The great advantage of the r-jet formalism in Physics, and specially in GR, is that it provides a

tool to deal with the derivatives of the components and not :
d
dtX (t) =

d
dt (
Pn
i=1 ui (t) ei (q (t)))

valued in the tangent bundle of E; which involves the derivative d
dtei (q (t)) :

If the vector bundle is associated to a principal bundle, the link is done through maps :
ei (m) = 'E (p (m) ; ei) = (p (m) ; ei)
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For instance with PG
�
R4;Ad

�
the link is done through the tetrad :

"i (m) = 'E (p (m) ; "i) = (p (m) ; ei) =
P3
�=0 P

�
i (m) @��

Then the 1st jet extension can be similarly de�ned as :
J1X = fm;X (m) ; ��X (m) ; � = 0::3g with ��X (m) =

P3
�=0

P3
i=1 ��Xi (m) "i (m)

��X (m) =
P3
�=0

P3
i=1 ��Xi (m)

P3
�=0 P

�
i (m) @�� =

P3
�;�;i=0 ��Xi (m)P

�
i (m) @��

Di¤erential operators

The principal application of the r-jet formalism is in Di¤erential Equations and Di¤erential Opera-
tors.
A r di¤erential operator is a base preserving morphism D : X (JrE1) ! X (E2) between two

vector bundles (Maths.32). It maps �berwise Z(m) in JrE1 to Y (m) in E2:It is local : its com-
putation involves only the values at m, and provides a result at m. By itself D does not involve
any di¤erentiation (it is de�ned for any section of the r-jet bundle JrE1). Combined with the map
: Jr : X (E1)! X (JrE1) ; D � Jr maps sections on E1; to sections on E2:
A linear r-di¤erential operator is a linear, base preserving morphism, between two vector bundles

(associated or not to a principal bundle, this does not matter here) : E1 (M;V1; �1) ; E2 (M;V2; �2).
The coordinates of a section Z 2 X (JrE1) read : Z =

�
m; zi�1:::�s ; i = 1:::n; s = 0; :::; r

�
and DZ

reads :
DZ =

Pr
s=0

Pm
�i=1

Pn
i=1

Pp
j=1A (m)

j;�1:::�s
i zi�1:::�s (m) e2j (m)

with a basis (e2j (m))
p
j=1of E2 , scalars A (m)

j;�1:::�s
i ;

and for a section Z 2 X (E1) : zi�1:::�s (m) =
@szi

@��1 :::@��s

In this framework it is easy to study the properties of Di¤erential Operators such as action on
distributions, adjoint of an operator, symbol, Fourier transform...

3.5.6 Jet representation of the motion

Jet prolongation of PG

A section � of a principal bundle P (M;G; �) is given by a map : g :M ! G :
� (m) = 'P (m; g (m))
The tangent space TgG is isomorphic to the Lie algebra T1G so it is more natural to de�ne the

1st jet prolongation by the left or the right derivatives, L0g�1g (X) or R
0
g�1g (X) which belong to the

Lie algebra. For the principal bundle the Lie algebra T1Spin(3; 1) belongs to the Cli¤ord Algebra.
The Spin Group, is not a vector space, but a 6 dimensional manifold embedded in Cl (3; 1) :
At each point we have a copy of the Cli¤ord algebra with the Cli¤ord bundle Cl(TM); which is

a vector bundle.
An element of the 1st jet extension J1Cl (TM) can be represented by (m;X; Y�; � = 0::3) where

X;Y� are vectors of the Cli¤ord algebra.
The 1st jet prolongation of a section � 2 X (PG) can be represented by :
J1� (m) =

�
m;�; @�� � ��1; � = 0::3

�
2 J1Cl (TM)

and a section of J1Cl (TM) such as :
j1� (m) = (m;�; � (Xr�; Xw�) ; � = 0::3) 2 J1Cl (TM)
can represent a section of J1PG:
Cl (TM) is a vectorial bundle associated to PG; so the components �; � (Xr�; Xw�) belong to

the �xed vector space Cl (3; 1) and change according to the usual rules in a change of gauge.

Motion of a deformable solid

A deformable solid can be represented by a section � 2 X (PG) : By de�nition the motion is continu-
ous, and the section � 2 X (PG) de�nes the section J1� 2 X

�
J1PG

�
thus : � (Xr� (m) ; Xw� (m)) =
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@�� � ��1 and in the jet formalism we have

� 2 X (PG)! J1� =
�
m;� (m) ; @�� � ��1; � = 0:::3

�
2 J1Cl (TM)

and a section of J1Cl (TM) corresponding to the motion of a deformable solid reads :

j1� :M ! J1Cl (TM) :: j1� (m) = (m;� (m) ; � (Xr� (m) ; Xw� (m)) ; � = 0:::3) (3.67)

The trajectories and the arrangement are de�ned by � (m) as above,
U = � c

hAd�"0;"0iCl
Ad�"0

V � =
P3
i=0 [P

0]
�
i U

i

V = dq
dt = c"0 +

�!v
which does not involve the derivatives:
The motion itself is such that :
8i; � = 0::3 :
��ei = [� (Xr�; Xw�) ; ei]
��U =

U
c h[� (Xr�; Xw�) ;U ] ; "0iCl + [� (Xr�; Xw�) ; U ]

��V
� =

P3
i=0 [P

0]
�
i ��U

i

so the motion is not necessarily continuous : the trajectory is di¤erentiable, in the meaning
that the tangent V is always de�ned through �; but not necessarily continuously di¤erentiable :
physically it addresses the case where the particle takes, at a point, another direction.
This representation is useful to model discontinuous processes, but also necessary, at least from

a mathematical point of view, when the trajectories are themselves a variable in a model (such as
with a lagrangian).

Particles

The representation depends on the problem.
i) If one considers single, isolated particles, then the motion is represented by a map :
� : R! P1G : � (t) = 'G (q (t) ; � (t))
And by extension we will write :
J1� =

�
q (t) ; � (t) ; d�dt � �

�1� 2 J1Cl (TM)
j1� : R! J1Cl (TM) :: j1� (t) = (q (t) ; � (t) ; � (Xr (t) ; Xw (t)))
If the motion is continuous then � (Xr (t) ; Xw (t)) =

d�
dt � �

�1:
This assumes that the trajectory is known, which is the case for bonded particles (they are

spatially immobile, then w = 0 and the motion is limited to a rotation).
ii) Usually the trajectory is itself part of the problem. Then the convenient representation is

actually through a section of PG: It provides a vector �eld, to which the trajectory must belong,
that is a �general solution�which is adjusted to the problem at hand through the initial conditions
(which covers location, arrangement and tangent to the trajectory) . So it can address all the cases,
but the section is not necessarily unique. However we will see that actually, in a given physical
environment (that is for a given value of the �elds), the motion of particles which have the same
physical characteristics can be represented by the same section of PG: This is the foundation for the
idea of �matter �eld�. Of course this representation holds for a collection of particles which have
trajectories belonging to the same vector �eld.
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3.6 SOME ISSUES ABOUT RELATIVITY

It is useful to review here some issues which arise frequently about Relativity.

3.6.1 Preferred frames

Relativity is often expressed as �all inertial frames are equivalent for the Physical Laws�. We have
seen above that actually inertial frames are required only to de�ne coordinates in a¢ ne space : this is
a non issue in GR, and in SR it is possible to achieve the usual results with the use of standard charts
which are not given by orthogonal frames. But, beyond this point, this statement is misleading.
The Theory of Relativity is more speci�c than the Principle of Relativity, it involves inertia and

gravitation but this is at �rst a Theory about the Geometry of the Universe, and it shows that
the geometric measures (of lengths and time) are speci�c to each observer. The Universe which is
Scienti�cally accessible - meaning by the way of measures, data and �gures - depends on the observer.
We can represent the Universe with 4 dimensions, conceive a 4 dimensional manifold which extends
over the past and the future, but we must cope with the fact that we are stuck into our present,
and it is di¤erent for each of us. The reintegration of the observer in Physics is one of the most
important feature of Relativity, and the true meaning of the celebrated formulas for a change of
frames. An observer is an object in Physics, and as such some properties are attached to it, among
them the free will : the possibility to choose the way he proceeds to an experiment, without being
himself included in the experiment. But as a consequence the measures are related to his choice.
Mathematics give powerful tools to represent manifolds, in any dimensions. And it seems easy to

formulate any model using any chart as it is commonly done. This is wrong from a physical point of
view. There is no banal chart or frame : it is always linked to an observer, there is a preferred chart,
and so a preferred frame for an observer. It is not related to inertia : it is a matter of geometry, and
a consequence of the fundamental symmetry breakdown. The observer has no choice in the selection
of the time vector of his orthonormal basis, if he wants to change the vector, he has to change his
velocity, and this is why the formulas in a change of frames are between two di¤erent observers
moving with respect to each other. And not any change is possible : an observer cannot travel in the
past, or faster than light. These features are clear when one sticks to a chart of an observer, as we
will do in this book. Not only they facilitate the computations, they are a reminder of the physical
meaning of the chart. This precision is specially important in the �ber bundle formalism, which is,
from this point of view, a wise precaution as compared to the usual formalism using undi¤erentiated
charts.

3.6.2 Time travel

The distinction between future and past oriented vectors come from the existence of the Lorentz
metric. As it is de�ned everywhere, it exists everywhere, and along any path. It is not di¢ cult
to see that the border between the two kinds of vectors is for null vectors hu; ui = 0: So a particle
which would have a path such that its velocity is past oriented should, at some point, have a null
velocity, and, with respect to another observer located at the same point, travel at the speed of
light. Afterwards its velocity would be space like (hu; ui > 0) before being back time like but past
oriented. Clearly this would be a discontinuity on the path and "Scotty engages the drive" from
Star Treck has some truth.
But the main issue with time travel lies in the fact that, if ever we would be able to come back to

the location where we have been in the past (meaning a point of the universe located in our past),
we would not �nd our old self. The idea that we exist in the past assumes that we exist at any
time along our world line, as a frozen copy of ourselves. This possibility is sometimes invoked, but
it raises another one : what makes us feel that each instant of time is di¤erent ? If we do not travel
physically along our world line, what does move ? And of course this assumption raises many other
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issues in Physics, among them the potential violations of the Principle of Causality which are the
bread and butter of science �ction books on time travel.

3.6.3 Twins paradox

The paradox is well known : one of the twins embarks in a rocket and travels for some time, then
comes back and �nds that he is younger than his twin who has stayed on Earth. This paradox is
true (and has been checked with particles) and comes from two relativist features : the Universe is
4 dimensional, and the de�nition of the proper time of an observer.
To go from a point A to a point B there are several curves. Each curve can be travelled according

to di¤erent paths. We have assumed that observers move along a curve according to a speci�c path,
their world line, and then : `AB = c (�B � �A) : Because the curves are di¤erent, the elapsed proper
time is usually di¤erent.
The proper time is the time measured by a clock attached to the observer, it is his biological time.

Assuming that all observers travel along their world lines with a velocity such that at
D
dpo
d� ;

dpo
d�

E
=

�c2 is equivalent to say that, with respect to their clock, they age at the same rate. So if they travel
along di¤erent curves there is no reason for the total duration of their travel to be the same.
Whom of the two twins would have aged the most ? It is not easy to do the computation in GR,

but simpler in the SR context.

We can de�ne a �xed frame
�
O; ("i)

3
i=0

�
with origin O at the time t = 0, A is spatially immobile

with respect to this frame, moves along the time axis and his coordinates are then : OA : pA (�A) =
c�A"0
The twin B moves in the direction of the �rst axis. His coordinates are then : OB : pB (�B) =

c�B"0 + xB (�B) "1
The spatial speed of B with respect to A is : dOBd�A

= V (�B) "1

The velocity of B is : uB = dOB
d�B

= 1q
1�V 2

c2

(V "1 + c"0)

To be realistic we must assume that B travels at a constant acceleration, but needs to brake
before reaching �rst his turning point, then A. In the �rst phase we have for instance :

V = c�B with  = 1q
1�V 2

c2

pB (�B) =
R �B
0

cp
1�(t)2

(t"1 + "0) dt =
c


hp
1� y2"1 + "0 arcsin y

i�B
0

A full computation gives : �A
�B
= arcsin vM

vM
where vM is the maximum speed in the travel, which

gives for vM = c : �A�B = 1: 57 that is less than what is commonly assumed.
The Sagnac e¤ect, used in accelerometers, is based on the same idea : two laser beams are sent

in a loop in opposite direction : their 4 dimensional paths are not the same, and the di¤erence in
the 4 dimensional lengths can be measured by interferometry.

3.6.4 Can we travel faster than light ?

The relation in a change of gauge gives the transformation of the components of vectors in the gauges

of two observers at the same point. The quantity
q
1� kvk2

c2 tells us that, under the assumptions
that we have made, the relative spatial speed of two observers must be smaller than c. It is also well
known, and experimentally checked, that the energy required to reach c would be in�nite. But the
real purpose of the question is : can we shorten the time needed to reach a star ? As we have seen
in the twins paradox, this time is :

R B
A
d� = c (�B � �A) that is the relativist distance between two

points A;B. So it depends only on the path, whatever we do, even with a �drive�... The issue is
then : are there shortcuts ? The usual answer is that light always follows the shortest path. However
it relies on many assumptions. We will see that even if light propagates at c, this does not imply
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that the �eld uses the shortest path, which is another issue. And asking the backing of photon does
not bring much, as the path followed by a photon is just another assumption. The answer lies in our
capability to compute the trajectory of a material body. It is possible to model the trajectories of
particles in GR (this is one of the topic of Chapter 7), but their solutions rely on the knowledge of
the gravitational �eld, which is far from satisfying, all the more so in interstellar regions. So, from
my point of view, the answer is : perhaps.

3.6.5 Cosmology

General Relativity has open the way to a �scienti�c Cosmology�, that is the study of the whole
Universe and in particular of its evolution, through mathematical models. These theories will never
achieve a full scienti�c status, because they lack one of the key criteria : the possibility to experiment
with other universes. They can provide plausible explanations, but not falsi�able ones. This is
re�ected in the choice of the parameters which are used in the models : one can �ne tune them in
order to �t with observations, essentially astronomical observations, and represent in a satisfying
way �what it is�, but not tell �why is it so�.
One of the issue of Cosmology is that of the observer, who is an essential part of Relativity.

Particles (and galaxies can be considered as particles at this scale) follow world lines. Their location,
which is absolute in GR, is precisely de�ned with respect to a proper time, but this time is speci�c
to each particle. An observer can follow particles which are in his present, and establish a relation
between his proper time and that of these particles. A Cosmological model is a model for an observer
who would have access to the locations of all the particles of the universe, and indeed the existence
of a universal time, which provides a foliation in hypersurfaces analogous to 
3 (t) ; is one of their
key component.

3.6.6 The expansion of the Universe

A manifold by itself can have some topological properties. It can be compact. It can have holes,
de�ned through homotopy : there is a hole if there are curves in M which cannot be continuously
deformed to be reduced to a point. A hole does not imply some catastrophic feature : a doughnut
has a hole. Thus it does not imply that the charts become singular. But there are only few purely
topological features which can be de�ned on a manifold, and they are one of the topics of Di¤erential
Geometry. In particular a manifold has no shape to speak of.
The metric on M is an addition to the structure of the Universe. It is a mathematical feature

from which more features can be de�ned on M , such that curvature. In GR the metric, and so
the curvature of M at a point, depends on the distribution of matter. It is customary (see Wald)
to de�ne singularities in the Universe by singularities of geodesics, but geodesics are curves whose
de�nition depends on the metric. A singularity for the metric, as Black holes or Bing Bang, is not
necessarily a singular point for the manifold itself.
From some general reasoning and Astronomical observations, it is generally assumed that the

Universe has the structure of a �ber bundle with base R (a warped Universe) which can be seen as
the generalization of Mo; that we have de�ned above for an observer. Thus there is some universal
time (the projection from M to R) and a foliation of M in hypersurfaces similar to 
3 (t), which
represent the present for the observers who are located on them (see Chapter 4 and Wald and Peebles
for more on this topic). This is what we have de�ned as a material body : the part of the universe
on which stands all matter would be a single body moving together since the Big Bang (the image of
an in�ating balloon). So there would not be any physical content before or after this 
3 (t) (inside
the balloon), but nothing can support this interpretation, or the converse, and probably it will never
be.
The Riemannian metric $3 (t) on each 
3 (t) is induced by the metric on M , and therefore

depends on the universal time t. In the most popular models it comes that the distance between two



150 CHAPTER 3. GEOMETRY

points on 
3 (t) ; measured by the Riemannian metric, increases with t, and this is the foundation of
the narrative about an expanding universe, which is supported by astronomical observations. But,
assuming that these models are correct, this needs to be well understood. The change of the metric
on 
3 (t) makes that the volume form $3 (t) increases, but the hypersurfaces 
3 (t) belong to the
same manifold M , which does not change with time. The physical universe would be a deformable
body, whose volume increases inside the unchanged container. And of course material points do not
swell, only the vacuum, which separates material bodies, dilates.

3.6.7 For a full understanding of motion

We have built a comprehensive and consistent Geometry of General Relativity starting from the
way one proceeds to measures, some general principles of Physics, and the concepts of space, time,
material bodies and their motion, with their characteristic properties. We have not started from
scratch, but from the usual, well known and proven formalism of Galilean Geometry. Relativity
extends the framework, it does not negate it. And it leads to uncover some troubling facts which
were actually already present in Galilean Geometry.
Exploring the concept of motion, we have seen that the idea of an orthonormal frame is actually

present in our perception and understanding of the motion of a material body. We are so well used
to deal with rotation that we forget two signi�cant features : it is a property of material bodies,
and it adds 3 parameters to characterize, geometrically, a material body, even in Galilean Geometry.
Observers use a tetrad, but actually a tetrad is attached to any material body, and it must be seen as
a property of matter, whatever the scale. The tetrad is orthonormal, and thus de�ned with respect
to the metric, which is of physical nature. As well as particles travel with constant velocity, the
tetrad attached to a material body must adjust (in a chart), to adapt to a changing metric. This is
where the use of the tetrad formalism �nds all its worth, compared to the usual computations with
banal charts : it has a physical meaning, and is closer to the way measures are done.
The right way to deal with a metric is by principal bundles. But the representation of the concept

of motion leads to see the Cli¤ord bundle as the natural, and physical, framework to represent any
change in the geometric state of a material body, be it its location or its arrangement. The Cli¤ord
bundle replaces the tangent bundle TM as the true physical domain where any change in the
geometric characteristics of material bodies occurs.
Moreover the motion is essentially characterized by two vectors r; w 2 R3 which have a clear

physical meaning, and related to the 6 parameters used in Galilean Geometry. With all the tools
of Cli¤ord Algebra, it is then easy to work on and compute all the geometric problems in RG, even
problems involving rotation which would have been intractable in the usual framework. Actually in
the most part of the computations one can forget the chart, and the @��; d�� which have been the
nightmare of Physicists.



Chapter 4

KINEMATICS

Fields acts on particles by forces which change the motion of particles, according to kinematic
characteristics of these particles. They are expressed as mass and inertial tensors, from which are
de�ned translational and rotational momenta. Newtonian Mechanics has developed a comprehensive
and sophisticated theory of Kinematics, and Analytic Mechanics has provided much of the initial
framework for QM. Relativity introduces a totally new concept of motion, which is now absolute
in a quadridimensional universe, and the usual concept of rigid solid does not hold any longer. If
the usual concepts of Kinematics can more or less be �tted to Special Relativity, General Relativity
requires a totally new approach, with spinors, which have been introduced, by a very di¤erent way,
in the Quantum Theory of Fields.
As we have done for the Geometric concepts, it is useful to rediscover the main concepts of

Kinematics in Newtonian Mechanics.

151
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4.1 USUAL REPRESENTATIONS IN KINEMATICS

4.1.1 In Newtonian Mechanics

Motion and momentum are two di¤erent, but related, physical quantities. They are measured by
di¤erent protocols. Momenta can be computed but actually this is the change in the value of the
momenta which is measured, through inertial forces which express the resistance of a material body
to change its motion.
As for motion, there is a translational momentum and a rotational momentum, to which are

associated linear forces (or �forces�) and torques.
The balance of energy exchanged by a material body with the forces exercised on it is then

expressed by the kinetic energy, and there are a translational and a rotational kinetic energy.
The picture is clear for rigid solids, but can be extended to deformable solids, which are of a

greater interest because they can be de�ned in the relativist context.

Translational Momentum

To a material point with mass m and speed �!v = dq
dt is associated the translational momentum

�!p = m�!v : And the Fundamental Law of Mechanics states the relation �!F = d�!p
dt between a force

exercised on the material point and the change of its momentum. The assumption that m is a scalar
constant leads then to a direct relation between the force and the motion. So a change of motion
can be measured (by accelerometers as in smartphones) without any measure of the motion, even
by an observer attached to the material body. And if

�!
F = 0 then the momentum is constant.

For a system of material points the picture is more complicated, because actually the forces are

localized quantities : they should be represented, not by a single vector
�!
F ; but by a couple

�
q;
�!
F
�
:

However Galilean Geometry has the special feature that one can de�ne a center of mass G for any
system of material points : (

P
ama)

��!
OG =

P
ama

��!
OMa: Then the system is equivalent to a particle

of mass
P
ama located at G and the sum

�!
F G =

P
a

�!
F a, exercised at G, has a physical meaning.

And the Law of Mechanics can be written :P
a
d�!p a
dt = d�!p G

dt =
�!
F G

Torque

Another consequence of the localization of the forces is the existence of torques, similar to forces,
but which are distinct physical quantities.

For a force
�
Ma;
�!
Fa

�
the torque is de�ned with respect to any �xed point O by �a (O) =

���!
OMa�

�!
Fa

with the cross product. �a (O) reads : �a (O) = j
����!
OMa

��!
Fa = j

��!
Fa

����!
MaO so this is actually an

operator, acting on O, with an antisymmetric matrix, which can then be represented by a vector of
R3 with the usual convention. As with the translational momentum, the rotational momentum is
then de�ned by :

�a (O) = j
����!
OMa

��!pa = maj
����!
OMa

��
d
dt

��!
OMa

�
d
dt�a (O) = j

�
d
dt

���!
OMa

��!pa + j ����!OMa

�
d
dt
�!pa = d

dt�a (O)

Because in Galilean Geometry one can de�ne a center of mass :

�a (O) = j
���!
OG
��!pa + j ����!GMa

��!paP
a �a (O) = j

���!
OG
�P

a
�!pa +

P
a j
����!
GMa

��!pa =Pa j
����!
GMa

��!pa
=
P
a j
����!
GMa

�
ma

�
d
dt

��!
OG+ d

dt

��!
GMa

�
=
P
a j
����!
GMa

�
ma

d
dt

��!
GMa =

P
a �a (G)

and one can de�ne a total torque :
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� =
P
a �a (O) =

P
a �a (G)

For a rigid solid :��������!
G (t)Ma (t) = R (t)

�!
Xa with

�!
Xa = CtP

a �a (G) =
P
amaj

����!
GMa

�
d
dt

���!
GMa =

P
amaj

�
R (t)

�!
Xa

�
dR
dt

�!
Xa

=
P
amaj

�
R (t)

�!
Xa

�
R (t)R (t)

�1 dR
dt

�!
Xa

= R (t)
P
amaj

��!
Xa

�
R (t)

�1 dR
dt

�!
Xa

= �R (t)
P
amaj

��!
Xa

�
j
��!
Xa

�
r (t)

[J ] = �
P
amaj

��!
Xa

�
j
��!
Xa

�
is a �xed symmetric matrix, the inertial tensor, and [J ] r (t) is

the rotational momentum.1P
a �a (G) = R (t) [J ] r (t)

and
P
a �a (G) =

dR
dt [J ] r (t) +R [J ]

dr
dt = R

�
j (r) [J ] r + [J ] drdt

�
Kinetic energy

Mechanical Energy is de�ned as the work done by a force along a path : W =
R q2
q1

D�!
F ;
�!
dq
E
thus

with
�!
F = d�!p

dt :

W =
R t2
t1

1
m

D�!p ; d�!pdt E dt = 1
2

R t2
t1

1
m

d
dt h
�!p ;�!p i dt which leads to the de�nition of the variation of

kinetic energy : �K = 1
m

D�!p ;�!�pE ; that is the energy that the body exchanges with the exterior in
a change

�!
�p of momentum, and the kinetic energy K = 1

2m h
�!p ;�!p i when, in a continuous motion,

�!
�p = d�!p

dt : It is de�ned with respect to an observer, as well as
�!p :

Kinetic energy being a scalar, one can sum the kinetic energy related to the translational mo-
mentum of a set of material points :

K =
P
a

1
2ma
h�!pa;�!pai

=
P
a
1
2ma

D
d
dt

��!
OG+ d

dt

��!
GMa;

d
dt

��!
OG+ d

dt

��!
GM

E
= 1

2M k
�!vGk2 +

P
a
1
2ma

D
d
dt

��!
GMa;

d
dt

���!
GMa

E
For a solid :��������!
G (t)Ma (t) = R (t)

�!
XaD

d
dt

��!
GMa;

d
dt

���!
GMa

E
=
D
dR
dt

�!
Xa;

dR
dt

�!
Xa

E
=
D
R�1 dRdt

�!
Xa; R

�1 dR
dt

�!
Xa

E
=
D
j (r)

�!
Xa; j (r)

�!
Xa

E
=
D
j
��!
Xa

�
r; j
��!
Xa

�
r
E
= � [r]t

h
j
��!
Xa

�i h
j
��!
Xa

�i
[r]P

a
1
2ma

D
d
dt

��!
GMa;

d
dt

���!
GMa

E
= 1

2 [r]
t
[J ] [r]

K = 1
2M k

�!vGk2 + 1
2 [r]

t
[J ] [r]

And the variation of rotational kinetic energy is :
d
dt

�
1
2 [r]

t
[J ] [r]

�
= 1

2

�
dr
dt

�t
[J ] [r] + 1

2 [r]
t
[J ]
�
dr
dt

�
The torque on the solid :
� (G) =

P
a �a (G) =

d
dt (R (t) [J ] r (t)) = R

�
j (r) [J ] r + [J ] drdt

�
[J ] drdt = Rt [� (G)]� j (r) [J ] r
1
2

�
dr
dt

�t
[J ] [r] = 1

2

�
[� (G)]

t
R+ [r]

t
[J ] j (r)

�
[r]

1
2 [r]

t
[J ]
�
dr
dt

�
= 1

2 [r]
t
�
[R]

t
[� (G)]� j (r) [J ] [r]

�
1Matrices like j (X) j (X) have negative eigen values, so the minus sign induces positive momenta along the eigen

vectors.
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d
dt

�
1
2 [r]

t
[J ] [r]

�
= 1

2 [� (G)]
t
[R] [r] + 1

2 [r]
t
[J ] j (r) [r] + 1

2 [r]
t
[R]

t
[� (G)]� 1

2 [r]
t
j (r) [J ] [r]

= [r]
t
[R]

t
[� (G)] is the work done by the torque � (G)

�K = 1
m

D�!p ;��!�pGE+ [r]t [R]t [�� (G)]
The representation and computations above rely heavily on the existence of a center of mass, the

fact that SO (3) has the same dimension as the space R3; and on the properties of solids. However
the de�nitions can be extended to deformable solids.

Units

The formula : K = 1
2M k

�!vGk2 + 1
2 [r]

t
[J ] [r] is consistent if the rotational motion is measured by [r]

with the same units as �!vG;, as noticed before, then [J ] has the dimension of a mass. The rotational
momentum [J ] r (t) is measured in the same units as the translational momentum M�!vG: However
the torque �a (O) =

���!
OMa �

�!
Fa is not measured with the same units as the force

�!
Fa:

Density

Material bodies are comprised of material points, so it is natural to introduce a density �, seen as
the number of identical material points at the same location x at the time t : � (x; t). The density
de�nes, with a volume form $3 = "1 ^ "2 ^ "3 a measure �$3 such that the mass of the material
body in an area 
 at t is M (t) =

R


� (x; t)$3 (x) :

In the model of deformable solid introduced previously a material point is labeled by its position
q at t = 0 and its position at t is given by a di¤erentiable map : X (q; t) = � (q; t) : A basis, ei
attached at q, orthonormal at t = 0 is transported by �0q (q; t) : ei (q; t) = �0q (q; t) ei (q; 0) : It is
no longer orthonormal at t and de�nes a metric gij (q; t) = hei (q; t) ; ej (q; t)i and a volume form
$ (q; t) =

p
det g"1 ^ "2 ^ "3 = det�0q (q; t) "1 ^ "2 ^ "3:

$ (q; t) is just the push forward of$3 by �. The material points which occupy a volume "1^"2^"3
at t = 0 occupy a volume det�0q (q; t) "1 ^ "2 ^ "3 at t: Then the conservation of mass, which is
equivalent to the conservation of the number of particles, leads to :

@
@t

�
� (q; t) det�0q (q; t)

�
= 0

@�
@t det�

0
q + �

�
det�0q

�
Tr
��

@
@t�

0
q

� �
�0q
��1�

= 0

The trajectories of the particles are : @
@tX (q; t) =

@
@t� (q; t)

Let us de�ne : V : R3 � R ! R3 ::
�!
V (x; t) such that :

�!
V (X (q; t) ; t) = @

@tX (q; t) : It is called
the ��ow velocity".
) @2�i

@t@qk
(q; t) = @Vi

@qk
=
P3
j=1

@Vi
@xj

@xj
@qk

=
P3
j=1

@Vi
@xj

@�j
@qk

)
�
@
@t�

0
q

�
=
�
@V
@x

� h
@�
@q

i
Tr
��

@
@t�

0
q

� �
�0q
��1�

= Tr
�
@V
@x

�
= div

�!
V

and we get the continuity equation : @�@t + �div
�!
V = 0:

The reasoning is done usually for �uids but it holds for a deformable solid.

Stress tensor, Energy-momentum tensor

The motion of each material point of a deformable solid can be represented by :
- a translation, given by dq

dt =
@
@t� (q; t) =

�!
V (X (q; t) ; t)

- a deformation of its orthonormal basis (ei (q; t))
3
i=1 given by :

@
@tei (q; t) = [ (q; t)] ei (q; t)

with the deformation tensor [] =
�
�"qt (q; t)

� �
�0q (q; t)

��1
= [@xV ] which can be decomposed in a

symmetric part [s] = 1
2

�
[] + []

t
�
and an antisymmetric part [j (�)] = 1

2

�
[]� []t

�
The usual momentum of the material point is : �!p (q; t) = � (q; t) dqdt = � (q; t)

�!
V (X (q; t) ; t) :
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The deformation of the solid is the e¤ect of forces, or conversely the solid opposes forces to its
deformation. From :

d
dt (� (q; t)V (X (q; t) ; t)) =

d�
dt V + � ([@xV ] [�

0
t] + [@tV ]) =

d�
dt V + � (([s] + [j (�)])V + [@tV ])

one can identify :

- a force corresponding to a variation of the translational momentum : �
h
@t
�!
V
i

- the forces, similar to a pressure (they act symmetrically), opposed to the variation of the volume
:

d�
dt V + � [s]V = � ([s]� divV )V
- a torque � [j (�)]V
The variation of the kinetic energy can be computed as above.
dK
dt =

1
2
1
�


�!p (q; t) ; ddt�!p (q; t)� = 1
2 [V ]

t f� [@tV ] + � ([s]� divV )V + � [j (�)]V g
= 1

2� [V ]
t
[@tV ] +

1
2� [V ]

t
[s] [V ]� 1

2� (divV ) [V ]
t
[V ] + � 12 [V ]

t
[j (�)]V

and we have a kinetic energy corresponding to the rotational momentum �12 [j (V )] �:

This is usually written with a �stress tensor�T = T ij "
j 
 "i such that the forces, on the surface

d� with normal �!n ; opposing the deformation (the �stress�), are �!dF = T (�!n ) =
P3
i;j=1 [T ]

i
j [n]

j
"id�:

By considering a small volume 
 with border @
 :
- the sum of the stress on 
 is :R
@


P3
i;j=1 [T ]

i
j [n]

j
"id� =

R
@


DP3
i=1 [T ]

i
"i;
�!n
E
d� =

R



��!
dFv$3 that is a force by unit of volume

�!
dF v =

P3
j=1 div

�P3
i=1 [T ]

i
j "i

�
"j

- the torque with respect to the origin :

� (O) =
R
@


�!
X �

P3
i;j=1 [T ]

i
j [n]

j
"id� =

R
@


D
j (X)

P3
i=1 [T ]

i
"i;
�!n
E
d� =

R


d�$3

with the �xed orthonormal basis "j

d� =
P3
i;j=1 div

�
j (X)

P3
i=1 [T ]

i
j "i

�
"j =

P3
i;j=1

@
@xi

�h
j (X) [T ]j

i�i
"j =

P3
i;j=1 j ("i) [T ]j "j +

j (X)
P3
i;j=1

�h
@
@xi

T
ii
j

�
"j

=
P3
i;j=1 j ("i) [T ]

i
j "j +

�!
X ��!dF v

Thus there is an elementary torque located at X equal to
P3
i;j=1 j ("i) [T ]

i
j "j

Symmetries

In Kinematics symmetries of a solid can be understood as symmetries of the density � : R3 ! R;
and as symmetries in the momentum. For instance the instantaneous rotation of a solid, represented
by [R]�1

�
dR
dt

�
= j (r) with a matrix [R] 2 SO (3) ; does not change in a change of observer given by

a global rotation g 2 SO (3) :
R! eR = gR;

R�1 dRdt = j (r)! eR�1 d eRdt = j (r)

but the rotational momentum :
P
a �a (G) = R (t) [J ] r (t) changes,as :P

a �a (G)!]R (t) [J ] r (t) = g
P
a �a (G)

So that all rotational motions are not equivalent, as all engineers know. There is a symmetry if :
gR (t) [J ] r (t) = R (t) [J ] r (t)

that is if R (t) [J ] r (t) is an eigen vector of g: The only real eigen vector of g is given by the axis
with the eigen value 1. The matrix [J ] is symmetric, and has 3 orthogonal eigen vectors ra, with
real eigen values �a. If the motion is a constant rotation with axis one of this eigen vectors ra, then
R (t) [J ] r (t) = �a (exp tra) ra = �ara and there is a symmetry for g = exp ra .
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Energy momentum tensor

A more general way to deal with these issues is with the �Energy-Momentum�tensor, which comes
from the Principle of Least Action. A system represented by variables zi (m) ; i = 1:::N de�ned over a
manifold with coordinates (��)

3
�=1 ; and their �rst partial derivatives z

i
� (m) is endowed with a scalar

lagrangian such that the equilibrium is reached when the functional
R


L
�
zi (m) ; zi� (m)

�
$ (m) is

stationary. Then the quantity :
T =

P
i��

@L
@zi�

z�i @�� 
 d��
is a tensor, called the Energy-Momentum tensor. The Lagrangian has the meaning of the energy

of the system, and a change �zi =
P
� z

i
��v

� of the variables zi (m) along �v =
P3
�=0 v

���� changes
the energy by �` =

R


div (T (�v))$ (this is seen in more details in the Chapter 6) so that T (�v)

can be seen as a reaction of the system to a change by �v; that is as a force. Then the quantities
�i =

P
��

@L
@zi�

z�i @�� 
 d�� are the momenta associated to the scalar variable zi. They are the
generalized de�nition of the translational and rotational momenta, as they apply to any motion. If
z =

�
zi
�n
i=1

are the components of a vector in some vector space E then there is a momentum �z

expressed as a tensor valued in the dual space E�: For a system with Lagrangian L
�
zi (t) ;

�
zi
�
and

variables depending on t only, the in�nitesimal variations are �
�
z
i
= dzi

dt �t and �i =
@L

@
�
z
i
dzi

dt :

To sum up, in Newtonian Mechanics :
i) The kinematic of a material body is represented by a translational momentum and a rotational

momentum, which are distinct and read : �!p = m�!v ; � = R (t) [J ] r

ii) Each momentum is related to the motion, and overall the kinematic characteristics of a solid
are represented by 7 independent scalars (the mass and 6 parameters for [J ]).
iii) The momenta can be computed, but this is the change in the momenta which is measured,

through the inertial forces.
iv) The representation of the momenta by vectors of R3 is conventional. If it is natural for �!p ;

the vector R (t) [J ] r has no direct relation with a physical basis �!" i:
v) For deformable solids and systems the de�nition of momenta is less straightforward and comes

from the identi�cation of the forces, inertial and external, acting on the body. The representation
of momenta and forces is given through the lagrangian.
vi) The conservation of the momentum in the transformation of a system is only a special case

of the laws of the transformation, meanwhile the conservation of energy is just the balance of the
energy exchanged by its di¤erent components.

4.1.2 Usual representations in the relativist framework

Translational momentum

The translational momentum is de�ned as the 4 dimensional vector : P = mV: It depends on the
observer, and here it means the choice of the time t in the derivative V = dq

dt :

In the relativist context location and motion are absolute. So there is an intrinsic de�nition of
the momentum, for an observer who is attached to the particle with the proper time and velocity
u = dq

d� : p = mu: Then, if we take the same de�nition for the kinetic energy, with respect to this
observer, it is constant : K = 1

m hp; pi = �mc
2:

For any other observer :

P = mV = pd�dt = p

r
1� k

�!v k2
c2

� 1
m hP; P i = �

�
1� k

�!v k2
c2

�
mc2 =

�
1� k

�!v k2
c2

�
K � K
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p = m 1r
1�k

�!v k2
c2

(c"0 (q (t)) +
�!v ) is a 4 dimensional vector. However the common practice is to

distinguish its spatial and time components. The spatial part : �!pr = m
�!vr

1�k
�!v k2
c2

which is similar to

the usual translational momentum, and m cr
1�k

�!v k2
c2

is then related to the energy E, de�ned by :

E = c2m 1r
1�k

�!v k2
c2

= hPc; "0i = mc
D
dq
d� ; "0

E
) E2 = c2 k�!p rk2 +m2c4 which is just hpc; pci = �m2c4 = c2 k�!p rk2 � E2
The advantage of this expression is that for small speed it gives :

E = c2m 1r
1�k

�!v k2
c2

' c2m
�
1 + 1

2

k�!v k2
c2

�
= 1

2m k
�!v k2 +mc2

The total energy of the particle E has one part corresponding to a kinetic energy and another
one to an �energy at rest�. So keep the principle of conservation of energy leads to accept that mass
itself can be transformed into energy, according to the famous relation E = mc2:

However it mixes two concepts - momentum and energy - which are usually seen as distinct and
are measured by di¤erent protocols.
The de�nition of rigid solid of Newtonian Mechanics does not extend to the relativist Geometry,

and there is no satisfying de�nition for the rotational momentum.
In GR what is considered is the energy-momentum tensor T , which is a key part of the Einstein

equation. There is no general formula to specify T , only phenomenological laws. The most usual
are based on the behavior of dust clouds, including sometimes thermodynamic components.

The Dirac�s equation

In writing pc = (c�!pr ; E) the energy E and pr are two separate quantities which can be measured
2 . In the usual interpretation of QM to E and pr are associated operators acting on scalar wave
functions  .
In common QM, �quantization�is just an operation where mathematical symbols are substituted

to other symbols. Starting from : E2 = c2 k�!p rk2 +m2c4 the �minimal substitution rule� : E !
i~ @@t ; pr� ! �i~@� gives the Klein-Gordon equation :

�
�+m2

�
 = 0 which, checked for the

spectrum of Hydrogen, provides wrong results.
In order to have �rst order derivatives Dirac proposed another equation, starting from E =q
c2 k�!p rk2 +m2c4 assuming that :

E = A:pr +Bm the substitution gives : i~@ @t = (Ai~r+B�) 
But one can check that this is possible only if  is a vectorial quantity (and no longer a scalar

function). Moreover to be Lorentz equivariant A;B must be 4�4 complex matrices, built from a set
of matrices  = (j)j=0::3 with the relation : ij +ji = 2�ijI4: The wave functions  (t; �1; �2; �3)
are then vectors, called spinors, belonging to a 4 dimensional complex vector space F , and (F; ) is
the representation of the Lorentz group with action given by the matrices :
The Dirac�s equation then reads :
i@ @t = �i

P3
�=1 �

@ 
@��

+m0 

and can be seen as a propagation equation for  or, in the usual QM, as a substitute for the
Schrödinger equation. Its eigen values correspond to the energy. Its eigen vectors, which provide a
basis for observables quantities, correspond to �plane waves�:

2Actually only the change of momentum and energy can be physically measured.
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with positive energies :

2664
1
0
0
0

3775 exp (�imt) ;
2664
0
1
0
0

3775 exp (�imt)

with negative energies :

2664
0
0
1
0

3775 exp (imt) ;
2664
0
0
0
1

3775 exp (imt)
The existence of the last two solutions leads to antiparticles. The proof of their existence has not

closed the issue of the interpretation of these solutions, the most common being that antiparticles
are �holes�in a sea of virtual particles, and that they moved backwards in time.

 (t; x) is such that � =  (t; x)
�
 (t; x) gives the probability to �nd the particle at (t; x) : Then

the Dirac�s currents ja =  
t
a gives the probability to �nd the particle in �a; a = 1; 2; 3 and the

solutions of the Dirac�s equation meet the continuity equation :
@�
@t +

P3
�=1

@j�
@��

= 0
The scheme has been extended to account for the action of the �elds, and leads to the standard

model. But its construction is totally abstract, and justi�ed only by the results that it provides,
through complicated computations.

So in the Relativist context we have two representations which proceed form totally di¤erent
principles. And this is at the core of the belief that QM and GR are not reconciliable.
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4.2 MOMENTA REVISITED

Our purpose is to �nd an e¢ cient way to represent the kinematic characteristics of particles and
material bodies in the framework of General Relativity. We focus on the properties assigned to
momenta of material bodies :
- momenta are physical quantities, related to the motion but distinct, and a change in the value

of the momenta can be physically measured through the inertial forces, by speci�c protocols;
- they are computed from their properties. A particle is de�ned not only by its location and

transversal motion, but also by an orthonormal basis attached to it, with its rotational motion. So
we must consider translational and rotational momenta.
- they must be expressed in a format which is equivariant with respect to the group Spin (3; 1) :
- momenta are localized quantities : a momentum is de�ned at each location q (t) of the particle.
- momenta are expressed by vectorial quantities : the linear combination of momenta at the same

point has a physical meaning (such as in a collision).
- in a continuous motion the momenta are related to the motion by some �xed relation.
- for a free particle, which is not submitted to any force, the momenta are constant along its

world line.
We will naturally look for a �ber bundle representation. It should be a vector bundle associated

to a principal bundle based on Spin (3; 1) ; and the natural choice is PG [E; ] ; with some vector space
E and action : E is the vector space in which are represented forces and torques. In Newtonian
Mechanics they are represented by 2 distinct vectors in R3; but, at least for the torque, this is just
a convention. So we are quite free in the choice of the vector space E. It is legitimate to look for
two vectors in the Minkovski space, or a vector in a complex 4 dimensional space.
The motion d�

dt � �
�1 is represented in the Lie Algebra. The derivative 0 (1) provides a rep-

resentation of the Lie algebra T1Spin (3; 1) but with the bracket as internal operation, which has
little interest here, so we look for a representation (E; ) of the Cli¤ord algebra itself. This is con-
sistent with the assessment that the Cli¤ord bundle Cl (TM) is the right framework to represent
arrangement and motion of material bodies.
The motion is represented by (q; �; � (Xr; Xw)) in J1Cl (TM) :
The momentum is represented in the associated vector bundle PG [E; ]
The motion comes, in a continuous motion, from the derivation of the arrangement �: It is

then natural to consider a quantity S =  (�)S0 2 E representing the state of the particle, with a
�xed vector S0 representing the kinematic characteristics of the body, from which the momentum is
computed by derivation.

4.2.1 Representation of the Cli¤ord Algebra

Principles

A geometric representation (E; ) of a Cli¤ord algebra is an isomorphism  : Cl ! L (E;E) ::
[ (X)] where [ (X)] is the matrix of an endomorphism of E, represented in some basis. All the
operations in the Cli¤ord algebra (multiplication by a scalar, sum, Cli¤ord product) are reproduced
on the matrices. A representation is fully de�ned by the family of matrices, the generators, (i)

3
i=0 ;

representing each vector ("i)
3
i=0 of an orthonormal basis. The choice of these matrices is not unique

: the only condition is that [i] [j ] + [j ] [i] = 2�ij [I] and any family of matrices deduced by
conjugation ej = MjM

�1 with a �xed matrix M gives an equivalent representation. An element
of the Cli¤ord algebra is then represented by a linear combination of generators :

 (X) = 
�P

fi1:::irgX
i1:::ir"i1 � ::: � "ir

�
=
P

fi1:::irgX
i1:::iri1 :::ir

A Cli¤ord algebra has, up to isomorphism, a unique faithful algebraic irreducible representation
in an algebra of matrices. As can be expected the representations depend on the signature :
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for Cl (3; 1) this is R (4) the 4 � 4 real matrices (the corresponding spinors are the Majorana
spinors), acting on a 4 dimensional vector space;
for Cl (1; 3) this is H (2) the 2� 2 matrices with quaternionic elements.
So the choice of a representation raises the issue of the signature. However the vector space

E upon which are represented the momenta can be a 4 dimensional complex vector space. The
representation of complex Cli¤ord algebras are on complex vector spaces. Moreover some Cli¤ord
algebras present a speci�c feature : they are the direct sum of two subalgebras which can be seen
as algebras of left handed and right handed elements. This property depends on the existence of
an element !; which exists in any complex algebra, but not in Cl (1; 3) ; Cl (3; 1). As chirality is a
de�ning feature of particles and of the rotational motion, this is an additional argument for using a
complex Cli¤ord algebra.
The �rst step is to expand Cl (1; 3) ; Cl (3; 1) into Cl (C; 4) :

Complexi�cation of real Cli¤ord algebras

We have seen how to introduce a complex structure on the Cli¤ord algebra. There is another
method, more usual, by extending the set such that the operations hold with complex numbers
(Maths.6.5.2). One starts by he complexi�cation of the vector space F : it is enlarged by all vectors
of the form iu : FC = F � iF: The real scalar product is extended to a complex bilinear form hiC,
with the signature (+ + ++)3 , any orthonormal basis ("j)

3
j=0 of F is an orthonormal basis of FC

with complex components. There is a complex Cli¤ord algebra Cl (FC; hi) which is the complexi�ed
of Cl (F; hi) : In Cl (FC; hi) the product of vectors is :
8u; v 2 FC : u� v + v � u = 2 hu; viC
with the bilinear symmetric form hu; viC of signature (+ + + +). Cl (3; 1) and Cl (1; 3) have

the same complexi�ed algebraic structure Cl (C; 4). Any orthonormal basis of Cl (3; 1) or Cl (1; 3)
is an orthonormal basis of Cl (C; 4) and : "i � "j + "j � "i = 2�ij and "0 � "0 = +1

Cl (3; 1) and Cl (1; 3) are real vector subspaces of Cl (C; 4) :

There are real algebras morphisms (injective but not surjective) from the real Cli¤ord algebras
to Cl (C; 4) :
With the signature (3,1) let us choose as above a vector "0 2 F such that "0 � "0 = �1:
Let us de�ne the map :eC : (F; hi)! Cl (C; 4) :: eC (u) = (u+ h"0; uiF "0)� i h"0; uiF "0 = u+ h"0; uiF ("0 � i"0)
(this is just the map : eC ("j) = "j ; j = 1; 2; 3; eC ("0) = i"0)eC (u)� eC (v) + eC (v)� eC (u)
= (u+ h"0; uiF ("0 � i"0))� (v + h"0; viF ("0 � i"0))
+ (v + h"0; viF ("0 � i"0))� (u+ h"0; uiF ("0 � i"0))
= u� v + h"0; viF u� ("0 � i"0) + h"0; uiF ("0 � i"0)� v
+ h"0; uiF h"0; viF ("0 � i"0)� ("0 � i"0)
+v � u+ h"0; uiF v � ("0 � i"0) + h"0; viF ("0 � i"0)� u
+ h"0; viF h"0; uiF ("0 � i"0)� ("0 � i"0)
= 2 hu; viC + 2 h"0; viF hu; "0 � i"0iC + 2 h"0; uiF h"0 � i"0; viC
+2 h"0; uiF h"0; viF h"0 � i"0; "0 � i"0iC
= 2 hu+ h"0; uiF ("0 � i"0) ; v + h"0; viF ("0 � i"0)iC
= 2

D eC (u) ; eC (v)E
C

As a consequence, by the universal property of Cli¤ord algebras, there is a unique real algebra
morphism C : Cl (3; 1)! Cl (C; 4) such that eC = C � | where | is the canonical injection (F; hi)!
Cl (3; 1). We will denote for simplicity eC = C: The image C (Cl (3; 1)) is a real subalgebra of

3Actually the signature of a bilinear symmetric form is de�ned for real vector space, but the meaning will be clear
for the reader. We will always work here with bilinear form and not hermitian form.
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Cl (C; 4) ; which can be identi�ed with Cl (3; 1) so it does not depend on the choice of "0 (but the
map C depends on "0):
Similarly with eC 0 ("j) = i"j ; j = 1; 2; 3; eC 0 ("0) = "0 we have a real algebra morphism C 0 :

Cl (1; 3)! Cl (C; 4) and C 0 (Cl (1; 3)) is a real subalgebra of Cl (C; 4) :Moreover C 0 ("j) = �i�jjC ("j).

Chirality

In Cl (C; 4) the special element is : ! = �"0 � "1 � "2 � "3 2 Spin(C; 4): Thus there is a choice and
we will use : ! = "0 � "1 � "2 � "3:

! � ! = 1 and the map : f : Cl (C; 4) ! Cl (C; 4) :: f(X) = ! � X is linear and has for eigen
values �1: There are two eigen spaces, which are subalgebras :

Cl (C; 4) = ClR (C; 4)� ClL (C; 4) :
ClR (C; 4) = fX 2 Cl (C; 4) : ! �X = Xg ;
ClL (C; 4) = fX 2 Cl (C; 4) : ! �X = �Xg
denoted : Cl� (C; 4) ; � = �1
For the representation (E; ) of Cl (4;C) :
 (!)  (!) =  (1) = I and we have similarly : E = ER � EL with
ER = fS 2 E :  (!)S = Sg ; EL = fS 2 E :  (!)S = �Sg
and the projections : � (S) = 1

2 (S + � (!)S) :

For any homogeneous element X = v1 � v2:::� vk 2 Cl (C; 4) : ! �X = (�1)kX � !
)  (!)  (X) = (�1)k  (X)  (!)
 (!)  (X)S = (�1)k  (X)  (!)S
If  (!)S = �S :  (!)  (X)S = � (�1)k  (X)S. Thus for k even  (X) preserves both ER; EL;

for k odd  (X) exchanges ER; EL:

The choice of the representation 

A representation is de�ned by the choice of its generators i; and any set of generators conjugate by
a �xed matrix gives an equivalent representation. We can specify the generators by the choice of a
basis (ei)

4
i=1 of E . The previous result leads to a practical choice. Let e1; e2 be a basis of ER and

e3; e4 a basis of EL: Then :

 (!) = R � L =
�
I2 0
0 �I2

�
Denote : j =

�
Aj Bj
Cj Dj

�
with four 2� 2 complex matrices j = 0:::3.

 (!)  ("j) = � ("j)  (!) which imposes the condition :�
Aj �Bj
Cj �Dj

�
= �

�
Aj Bj
�Cj �Dj

�
) j =

�
0 Bj
Cj 0

�
The de�ning relations : jk + kj = 2�jkI4 lead to :�
BjCk +BkCj 0

0 CjBk + CkBj

�
= 2�jkI4

j 6= k : BjCk +BkCj = CjBk + CkBj = 0
j = k : BjCj = CjBj = I2 , Cj = B�1j
thus (i)

3
i=0 is fully de�ned by a set (Bi)

3
i=0 of 2� 2 complex matrices

j =

�
0 Bj

B�1j 0

�
meeting : j 6= k : BjB

�1
k +BkB

�1
j = B�1j Bk +B

�1
k Bj = 0

which reads :
BjB

�1
k = �

�
BjB

�1
k

��1 , �
BjB

�1
k

�2
= �I2

B�1j Bk = �
�
B�1j Bk

��1 , �
B�1j Bk

�2
= �I2
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Let us de�ne : k = 1; 2; 3 : Mk = �iBkB�10
The matrices (Mk)

3
k=1 are such that :

M2
k = �

�
BjB

�1
0

�2
= �I2

MjMk +MkMj = �BjB�10 BkB
�1
0 �BkB�10 BjB

�1
0

= �
�
�BjB�1k B0 �BkB�1j B0

�
B�10

= BjB
�1
k +BkB

�1
j = 0

that is k = 1; 2; 3 : MjMk +MkMj = 2�jkI2
Moreover :  (!) = 0123 )
B0B

�1
1 B2B

�1
3 = I2

B�10 B1B
�1
2 B3 = �I2

with Bk = iMkB0; B
�1
k = �iB�10 M�1

k

B0
�
�iB�10 M�1

1

�
(iM2B0)

�
�iB�10 M�1

3

�
= I2 = �iM�1

1 M2M
�1
3

B�10 (iM1B0)
�
�iB�10 M�1

2

�
(iM3B0) = �I2 = iB�10 M1M

�1
2 M3B0

which reads :
iM2 = �M1M3 =M3M1

�M�1
1 M�1

3 = iM�1
2 , iM2 =M3M1

M2M3 +M3M2 = 0 = iM1M3M3 +M3M2 , iM1 = �M3M2 =M2M3

M1M2 +M2M1 = 0 = iM3M2M2 +M2M1 ) iM3 = �M2M1 =M1M2

The set of 3 matrices (Mk)
3
k=1 has the multiplication table :2664

1n2 M1 M2 M3

M1 I iM3 �iM2

M2 �iM3 I iM1

M3 iM2 �iM1 I

3775
which is the same as the set of Pauli�s matrices :

�1 =

�
0 1
1 0

�
;�2 =

�
0 �i
i 0

�
;�3 =

�
1 0
0 �1

�
;�0 =

�
1 0
0 1

�
(4.1)

�2i = �0; For j 6= k : �j�k = � (j; k; l) i�l (4.2)

There is still some freedom in the choice of the i matrices by the choice of B0 and the simplest
is : B0 = �iI2 ) Bk = �k
Moreover, because scalars belong to Cli¤ord algebras, one must have the identity matrix I4 and

 (z) = zI4
Thus :

0 =

�
0 �i�0
i�0 0

�
; 1 =

�
0 �1
�1 0

�
; 2 =

�
0 �2
�2 0

�
; 3 =

�
0 �3
�3 0

�
; (4.3)

The matrices j are then unitary and Hermitian :

j = �j = �1j (4.4)

which is extremely convenient.
We will use the following (see the annex for more formulas) :

Notation 67 j = 1; 2; 3 : ej = ��j 0
0 �j

�
j 6= k; l = 1; 2; 3 : jk = �kj = i� (j; k; l) el
j = 1; 2; 3 : j0 = �0j = i

�
�j 0
0 ��j

�
= i5ej
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Representation of the real Cli¤ord Algebras

Notice that the choice of the matrices is done in Cl (C; 4) ; so it is independent of the signature. We
get the representations of the real algebras by the matrices C ("j) and C 0 ("j)

Cl (3; 1) : C ("j) = j ; j = 1; 2; 3; C ("0) = i0; C ("5) = i5
Cl (1; 3) : C 0 ("j) = ij ; j = 1; 2; 3; C

0 ("0) = 0; C
0 ("5) = 5

(4.5)

However, because C is a real, and not a complex map : C (�X) 6= �C (X) if � 2 C:
The representation that we have chosen here is not unique and others, equivalent, would hold.

However the de�ning relations are rather strong and the choices which give manageable matrices are
limited. In the Standard Model the representation of Cl (1; 3) is by the matrices : e0 = i0; ej =
j ; j = 1; 2; 3 and e5 = �ie0e1e2e3:
Invariant vector subspaces
(E; ) is a faithful, and thus irreducible, representation of Cl (4;C) ; and because C (Cl (3; 1)) ; C 0 (Cl (1; 3))

are real subalgebras of Cl (4;C) ; the set of vectors of E which are invariant by C is the set invariant
by C ("j) ; j = 0::3 and similarly with C 0.
Let be the vector subspaces :

E� =

��
SR
SL

�
2 E : SL = �iSR =

�
u
v

�
2 C2

�
; � = �1

then :
with Cl (3; 1)

i0

�
SR
�iSR

�
=

�
0 �0
��0 0

� �
SR
�iSR

�
=

�
i�SR
�SR

�
=

�
i�SR

�i (i�SR)

�
j

�
SR
�iSR

�
=

�
0 �j
�j 0

� �
SR
�iSR

�
=

�
i��jSR
�jSR

�
=

�
i�SR�j

�i� (i��jSR)

�
S0 2 E� ) 0C ("0)S0 2 E�; j = 1; 2; 3 : C ("j)S0 2 E��
with Cl (1; 3)

0

�
SR
�iSR

�
=

�
0 �i�0
i�0 0

� �
SR
�iSR

�
=

�
�SR
iSR

�
=

�
�SR

i� (�SR)

�
ij

�
SR
�iSR

�
=

�
0 i�j
i�j 0

� �
SR
�iSR

�
=

�
���jSR
i�jSR

�
=

�
���jSR

��i (���jSR)

�
S0 2 E� ) 0C

0 ("0)S0 2 E�; j = 1; 2; 3 : C 0 ("j)S0 2 E��
So the set E0 = E+[E� is globally invariant by both Cl (3; 1) ; Cl (1; 3) : It is not a vector space.

Expression of the  matrices

Complex notation with the Dirac�s matrices
With complex vector spaces the following notation is very convenient.
De�ne, for any z 2 C3 :

Notation 68
P3
a=1 za�a = � (z) with z 2 C3

� (z) =

�
z3 z1 � iz2

z1 + iz2 �z3

�
2 sl (C; 2)

Then we have the identities (see Formulas in the Annex for more) :
(� (z))

�
= � (z)

� (z)� (z0) = � (j (z) z0) + ztz0�0
� (z)� (z0)� � (z0)� (z) = � (j (z) z0)� � (j (z0) z) = 2� (j (z) z0)
� (z0)� (z)� (z0) =

�
(z0)

t
z0
�
� (z)
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Representations of the elements of the Lie algebras

In Cl(3,1) :

C (� (r; w)) = �1
2
i

�
� (r + iw) 0

0 � (r � iw)

�
= �1

2
i

�
� (Z) 0
0 �

�
Z
�� (4.6)

In Cl(1,3) :

C 0 (� (r; w)) =
1

2
i

�
� (r � iw) 0

0 � (r + iw)

�
(4.7)

Representations of the elements of the Spin group
C (a+ � (r; w) + b"5) = aI4 + C (� (r; w)) + b5
In Cl(3,1) :

C (a+ � (r; w) + b"5) =

�
a+ ib� 1

2 i� (r + iw) 0
0 a� ib� 1

2 i� (r � iw)

�
=

�
A� 1

2 i� (Z) 0
0 A� 1

2 i�
�
Z
� �

In Cl(1,3) :

C 0 (a+ � (r; w) + b"5) =

�
a� ib+ 1

2 i� (r � iw) 0
0 a+ ib+ 1

2 i� (r + iw)

�
=

�
A� 1

2 i�
�
Z
�

0
0 A� 1

2 i� (Z)

�

Some properties of the C (�) matrices
Because C is a representation of the Cli¤ord algebra, the operations on Spin (3; 1) extend to the

matrices with the exception of the multiplication by a complex number.
C (A+ Z)

�1
= C (A� Z)

C (A1 + Z1) C (A2 + Z2) = C ((A1 + Z1) � (A2 + Z2))
C
�
��1 � @��

�
= C

�
D (�Z) @Z@x

�
= C (D (�Z)) C

�
@Z
@x

�
C
�
@�
@x � �

�1� = C
�
D (Z) @Z@x

�
= C (D (Z)) C

�
@Z
@x

�
C (AdgX) = C

��
1 +Aj (Z) + 1

2j (Z) j (Z)
�
[X]
�

4.2.2 Scalar product of Spinors

We need a scalar product on E, preserved by a gauge transformation, that is by Spin(3; 1); Spin(1; 3).

Theorem 69 The only scalar products on E, preserved by fC (�) ; � 2 Spin(3; 1)g are G =
�

0 k�0
k�0 0

�
with k 2 C

Proof. The scalar product is represented in the basis of E by a 4� 4 Hermitian matrix G such that
: G = G�

8s 2 Spin(3; 1) : [C (s)]�G [C (s)] = G
or 8s 2 Spin(1; 3) : [C 0 (s)]�G [C 0 (s)] = G

[C (s)]
�
[G] = [G] [C (s)]

�1
= [G]

�
C
�
s�1
��
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[C (s)] = C (A+ Z) =

�
A�0 � 1

2 i� (Z) 0
0 A�0 � 1

2 i�
�
Z
��

[C (s)]
�
=

�
A�0 +

1
2 i�

�
Z
�

0
0 A�0 +

1
2 i� (Z)

�
�
C
�
s�1
��
= C (A� Z) =

�
A�0 +

1
2 i� (Z) 0
0 A�0 +

1
2 i�

�
Z
��

G =

�
M P
P � N

�
; with M =M�; N = N�

[G] [C (s)]
�1
= [G]

�
C
�
s�1
��
,� �

A�0 +
1
2 i�

�
Z
��
M

�
A�0 +

1
2 i�

�
Z
��
P�

A�0 +
1
2 i� (Z)

�
P �

�
A�0 +

1
2 i� (Z)

�
N

�
=

�
M
�
A�0 +

1
2 i� (Z)

�
P
�
A�0 +

1
2 i�

�
Z
��

P �
�
A�0 +

1
2 i� (Z)

�
N
�
A�0 +

1
2 i�

�
Z
�� �

We must have the identities, 8Z :�
A�0 +

1
2 i�

�
Z
��
M =M

�
A�0 +

1
2 i� (Z)

��
A�0 +

1
2 i�

�
Z
��
P = P

�
A�0 +

1
2 i�

�
Z
���

A�0 +
1
2 i� (Z)

�
P � = P �

�
A�0 +

1
2 i� (Z)

��
A�0 +

1
2 i� (Z)

�
N = N

�
A�0 +

1
2 i�

�
Z
��

Let us consider �rst s 2 Spin (3), A;Z 2 R
The conditions read
� (Z)M =M� (Z)
� (Z)P = P� (Z)
� (Z)P � = P �� (Z)
� (Z)N = N� (Z)
The only matrices which commute with all Dirac matrices are scalar, thus :
M = m�0; N = n�0; P = p�0

G =

�
m�0 p�0
p�0 n�0

�
; with m;n 2 R

Then for s 2 Spin (3; 1) the conditions become :�
A�0 +

1
2 i�

�
Z
��
m = m

�
A�0 +

1
2 i� (Z)

��
A�0 +

1
2 i�

�
Z
��
p = p

�
A�0 +

1
2 i�

�
Z
���

A�0 +
1
2 i� (Z)

�
p = p

�
A�0 +

1
2 i� (Z)

��
A�0 +

1
2 i� (Z)

�
n = n

�
A�0 +

1
2 i�

�
Z
��

Am = mA) m = 0
An = nA) n = 0
The only solution is :

G =

�
0 k�0
k�0 0

�
The scalar product will never be de�nite positive, so we can take k = �i that is G = 0: And it

is easy to check that it works also for the signature (1,3).

Any vector of E reads :

S =
P4
i=1 S

iei =

�
SR
SL

�
with 2 vectors SR; SL 2 C2

The scalar product of two vectors S; S0 of E is then:

hS; S0iE = [S]
�
[0] [S

0] = i
�
[SL]

�
[S0R]� [SR]

�
[S0L]

�
(4.8)

It is not de�nite positive but :
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[SL]
�
[SR] =

�
[SL]

�
[SR]

�t
= [SR]

t
[SL] =

�
[SR]

�
[SL]

�
) �

hS; SiE = �2 Im
�
[SL]

�
[SR]

��
(4.9)

And if S 2 E� : SL = �iSR : hS; SiE = �2 Im
�
��i [SR]� [SR]

�
= 2� [SR]

�
[SR] thus the scalar

product is de�nite positive on E+ and de�nite negative on E�: These two vector spaces are Hilbert
spaces.
An orthonormal basis is :

1p
2
(e1 + ie3) ;

1p
2
(e2 + ie4) ;

1p
2
(�e1 + ie3) ; 1p

2
(�e2 + ie4) : 1p

2

2664
1 0 �1 0
0 1 0 �1
i 0 i 0
0 i 0 i

3775
Norm on the space of spinors

E� are Hilbert spaces, so normed vector spaces. More generally there is a norm on E : kSk =
p
[S]

�
[S]
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4.3 THE SPINOR REPRESENTATION OF MOMENTA

4.3.1 The Spinor bundle

Because M is endowed with the structure of the principal bundle PG; there is a structure of spin
bundle (Maths.2110), an associated vector bundle PG [E; C] such that, at each point of M , any
element of Cl (3; 1) acts on the vectors of PG [E; C] through C:

De�nition 70 The Spinor bundle is the associated vector bundle PG [E; C]

Its elements S are spinors. They are measured by observers in the standard gauge de�ned
through the holonomic basis : ei (m) = (p (m) ;ei)
In a change of gauge the holonomic basis becomes :

p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
ei (m) = (p (m) ; ei)! eei (m) = C

�
� (m)

�1
�
ei (m)

(p (m) ; S) � (ep (m) ; C (� (m))S) (4.10)

(ei (m))
4
i=1 ; are de�ned through the standard gauge p (m) chosen by the observer.

A jet in J1PG [E; C] is represented by : j1S = (m;S; ��S; � = 0::3) where S; ��S 2 E and
change as in PG [E; C] :
The scalar product on E is preserved by C thus it can be extended to P

G
[E; C] and to the

space of sections X (P
G
[E; C]) by :


S;S0
�
=
R





S (m) ;S0 (m)

�
E
$4 (m)

4.3.2 De�nition of the Momenta

De�nition

Proposition 71 The kinematic characteristics of a particle are represented in the �rst jet extension
J1PG [E; C] :
Along any trajectory by a map j1S : R!J1PG [E; C] :: j1S (t) = (q (t) ; S (t) ; �S (t))
S (t) ; �S (t) 2 PG [E; C] are located at q (t) :
In a continuous motion j1S is a the �rst jet prolongation of a map :
S : R!J1PG [E; C] ::

�
q (t) ; S (t) ; dSdt (t)

�
Momenta and motion are two distinct concepts. The maps :
j1� : R!J1PG :: (q (t) ; � (t) ; � (Xr; Xw))
j1S : R!J1PG [E; C] :: (q (t) ; S (t) ; �S (t))
are a priori distinct. The main physical assumption is that there is a relation between the

motion and the momentum. In the usual representations the relation is given, for the translational
momentum by a scalar, the mass, and for the rotational momentum by a matrix, the inertial tensor.
Because we assume that to any particle is associated an orthonormal basis, the momentum requires
more than a scalar.
We compute momenta, and measure change of momenta. For any observer p (q (t)) = 'G (q (t) ; 1)

the motion of the body is along the trajectory : (q (t) ; � (t) ; � (Xr; Xw)) : The position of the particle
is � (t) ; its motion is � (Xr; Xw) ; which, in continuous motion, is d�dt � �

�1:
The changes of momenta are related to the instantaneous motion with respect to the previous

state of the particle and they are measured by forces and torques. The momenta are then related
to the position of the particle, that is to � (t) :
We assume that 9S0 2 E : S (t) = C (� (t))S0
In a continuous motion, the observer measures the change, through inertial forces :
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d
dtS (t) = C

�
d
dt� (t)

�
S0 = C

�
d
dt� (t) � � (t)

�1
�
C (� (t))S0 = C

�
d
dt� (t) � � (t)

�1
�
S (t)

And we generalize as : for a, not necessarily continuous, motion (q (t) ; � (t) ; � (Xr; Xw)) the
momenta follow :
(q (t) ; S (t) = C (� (t))S0; �S (t) = C (� (Xr; Xw))S (t))

Proposition 72 For any particle there is a �xed di¤erential operatorM such as, for the motion
j1� = (q (t) ; � (t) ; � (Xr; Xw)) :

M : J1Cl (TM)! J1PG [E; C] ::
M (q (t) ; � (t) ; � (Xr; Xw)) = (q; S = C (�)S0; �S = C (� (Xr; Xw))S)

(4.11)

where S0 2 E is a �xed vector called the inertial spinor.

In a change of gauge :
p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
� ! e� = � � �
(p (m) ; � (Xr; Xw)) �

�ep (m) ;Ad�(m)� (Xr; Xw)
�
, ^� (Xr; Xw) = Ad�(m)� (Xr; Xw)

S ! eS = C (� (m))S

�S ! f�S = C (� (m)) �S

(q (t) ; S (t) ; �S (t))!
�
q (t) ; eS (t) ;f�S (t)�

and :eS = C (�)S = C (�) C (�)S0 = C (� � �)S0 = C (e�)S0f�S = C (�) �S = C (�) C (� (Xr; Xw))S = C (�) C (� (Xr; Xw)) C
�
��1

� eS
= C (Ad�� (Xr; Xw)) eS = C

�
^� (Xr; Xw)

� eS
So S0 does not change : this is an intrinsic property of the particle, which is measured by an

observer through S = C (�)S0:And � = 1 for an observer attached to the particle.
The spinor, which characterizes the momentum (corresponding to m�!v ), is S = C (�)S0:
The change of momentum, equal to the inertial forces (corresponding tom�! ), is �S = C (� (Xr; Xw))S

�SR =
P3
�=0 C (� (Xr; 0))S is the equivalent of a change of rotational momentum or an inertial

torque.
�ST =

P3
�=0 C (� (0; Xw))S is the equivalent of a change of translational momentum or a

translational inertial force.

Forces, torques and Spinors

i) The motion is represented in the real Cli¤ord algebra. It is legitimate to assume that S0 belongs
to a subset which is invariant by Cl (3; 1) (or similarly by Cl (1; 3)): So we can state :

Proposition 73 For particles the inertial spinor S0 belongs to the set of vectors :

E0 =

��
SR
SL

�
2 E : SL = �iSR

�
Then 8s 2 Cl (3; 1) : C (s)S0 2 E0 and idem for Cl (1; 3) because the set is globally invariant.
ii) (E; ) is a faithful representation of Cl (4;C) and (E; C) is a faithful representation of

Cl (3; 1) :
8X;X 0 2 Cl (3; 1) ; S 2 E : C (X)S = C (X 0)S , X = X 0

iii) A vector of E, with 4 complex components, can represent :
either a combination of a translational and rotational momentum (S)
or a combination of force and torque (�S) :
Forces and torques are measured through the change of motion of known particles.
The action of the �elds is represented by a di¤erential operator acting on j1S :
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DF : J
1PG [E; C]! J1PG [E; C]

The relation � ! S through S0 is the mathematical expression of the continuity of the particle.
The condition : S (t) = C (� (t))S0 provides di¤erential equations with respect to � which give the
motion. Their solutions depend on the value of S0, which enables to estimate S0:
The vectors ei of the basis of E have no universal physical meaning : it depends on the system (as

it can be seen in the measure of the spin of an atom by an analyzer). Actually forces and torques are
identi�ed by the change of motion with which they are associated, that is by � (Xr; Xw) in the basis
of T1Spin (3; 1) and not to vectors of the basis "i as in Newtonian Mechanics : forces correspond
to � (0; Xw) and torques to � (Xr; 0) : And the identi�cation of the axes ei can be done, for a rigid
solid, through the inertial vector as we will see.

4.3.3 Mass and Kinetic Energy

Mass

The scalar product is invariant by the action of ; thus :
hS (t) ; S (t)i = hC (� (t))S0; C (� (t))S0i = hS0; S0i = �2 Im

�
[SL]

�
[SR]

�
By similarity with hP; P i = �M2

p c
2 it is then natural to state that hS0; S0i represents the square

of the mass of the particle, up to a constant depending on the units.
With the proposition above : [SL] = �i [SR]) hS0; S0i = 2� [SR]� [SR]
This quantity can be positive or negative. We will come back on this issue later and de�ne the

mass �at rest�of the particle by :

Mp =
p
jhS0; S0ij =

q
2
��Im �[SL]� [SR]��� =q2 [SR]� [SR] (4.12)

Then SR reads :

SR =
Mpp
2

�
a
b

�
and 1 = jaj2 + jbj2

It is customary to represent the polarization of the plane wave of an electric �eld by two complex
quantities (the Jones vector) :

Ex = E0xe
i�x

Ey = E0ye
i�y

where (E0x; E0y) are the components of a vector E0 along the axes x; y.
And we can write similarly :

SR =
Mpp
2

�
ei�1 cos�0
ei�2 sin�0

�
(4.13)

Kinetic Energy
d
dt hS (t) ; S (t)i = 0 =



d
dtS (t) ; S (t)

�
+


S (t) ; ddtS (t)

�
thus



S (t) ; ddtS (t)

�
is pure imaginary.

The variation of the kinetic energy is de�ned in Newtonian Mechanics as :

�K = 1
m

D�!p ;��!�pGE+ [r]t [R]t [�� (G)]
It involves both the present state of momentum and its evolution. The natural generalization is
�K = 1

Mp

1
i hS; �Si =

1
Mp

1
i hC (�)S0; C (� (Xr; Xw)) C (�)S0i

= 1
Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i

In a continuous motion along the trajectory :
� (Xr; Xw) =

d�
dt � �

�1

dK
dt =

1
Mp

1
i



C (�)S0; C

�
d�
dt � �

�1� C (�)S0� = 1
Mp

1
i



S0; C

�
��1 � d�dt

�
S0
�

�K = 1
Mp

1
i hS; �Si =

1
Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i

dK
dt =

1
Mp

1
i



S0; C

�
��1 � d�dt

�
S0
� (4.14)
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The scalar product does not depend on the observer, however in a continuous motion the observer
is involved in the de�nition of t.
Ad��1� (Xr; Xw) =

P6
a=1 �X

a�!� a is the instantaneous change of motion
�Ka =

1
Mp

1
i hS0; C (�X

a�!� a)S0i is the variation of kinetic energy due to a change of motion
�Xa in the direction �!� a:

Inertial vector

Let us denote [S0] =
�
SR
SL

�
,Z 2 T1Spin (3; 1) in the complex formalism.

C (Z) [S0] = � i
2

�
� (Z) 0
0 �

�
Z
�� � SR

SL

�
hS0; C (Z)S0i = � i

2

�
S�R S�L

� � 0 �i�0
i�0 0

� �
� (Z)SR
�
�
Z
�
SL

�
= 1

2

�
�S�R�

�
Z
�
SL + S

�
L� (Z)SR

�
S�L� (Z)SR = (S

�
L� (Z)SR)

t
= StR [� (Z)]

t
SL = S

t

R[� (Z)]
t
SL = S�R�

�
Z
�
SL

hS0; C (Z)S0i = 1
2

�
�S�L� (Z)SR + S�L� (Z)SR

�
= i ImS�L� (Z)SR

Denote the vector : k 2 C3 : ka = S�L�aSR then S
�
L� (Z)SR =

P3
a=1 Z

aS�L�aSR = ktZ: And

one can check that : ktk =
�
[SL]

�
[SR]

�2
hS0; C (Z)S0i = i Im ktZ

a = 1; 2; 3
Take � (Xr; Xw) =

�!�a
hS0; C (�!�a)S0iE = i Im ka = � 12 i hS0; eaS0iE
Im ka = � 12 hS0; eaS0iE
�Ka =

1
Mp

1
i hS0; C (

�!� a)S0i = 1
Mp
Im ka

Take � (Xr; Xw) =
��!�a+3

hS0; C (��!�a+3)S0iE = hS0; C (i
�!�a)S0iE = i Im ika = iRe ka = 1

2 i hS0; 0aS0iE
Re ka = 1

2 hS0; 0aS0iE
�Ka+3 =

1
Mp

1
i hS0; C (

�!� a)S0i = 1
Mp
Re ka

ka = 1
2 hS0; 0aS0iE + i

�
� 12 hS0; eaS0iE� = 1

2 hS0; (0a � iea)S0iE
ka = 1

2 hS0; (0a � iea)S0iE corresponds to the Dirac�s current. It does not depend on the
trajectory or the motion.

So far k 2 C3; however when S0 2 E0 : SR = Mpp
2

�
ei�1 cos�0
ei�2 sin�0

�
; SL = i�SR :

ka = S�L�aSR = �i�S�R�aSR

k = �i�M
2
p

2

24 (sin 2�0) cos (�1 � �2)
� (sin 2�0) sin (�1 � �2)

cos 2�0

35 = �i�M2
p

2 k0

with kt0k0 = 1
Then
�K = 1

Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i = 1

Mp
Im ktAd��1� (Xr; Xw) �K

= ��Mp

2 k
t
0ReAd��1� (Xr; Xw)

In a continuous motion :
� (Xr; Xw) =

d�
dt � �

�1 , ��1 � d�dt = Ad��1� (Xr; Xw)
dK
dt =

1
Mp
Im kt

�
��1 � d�dt

�
= ��Mp

2 k
t
0Re

�
��1 � d�dt

�
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We sum up the results :

a = 1; 2; 3 : ka = S�L�aSR =
1
2 i hS0; (0a � ea)S0iE

�K = 1
Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i = 1

Mp
Im ktAd��1� (Xr; Xw)

S0 2 E0 : k = �i�
M2

p

2 k0

k0 =

24 (sin 2�0) cos (�1 � �2)
� (sin 2�0) sin (�1 � �2)

cos 2�0

35 ; kt0k0 = 1
�K = ��Mp

2 k
t
0ReAd��1� (Xr; Xw)

(4.15)

The vector k, that we will call the inertial vector, does not depend on the state or the motion
of the particle. In a change of gauge S0 does not change, so ka = S�L�aSR does not change. k and
hS0; S0i characterize the kinematic features of the material body. They are de�ned by 7 independent
parameters, as we have in Newtonian Mechanics, and 4 when S0 2 E0. Two material bodies such
that S00 = ei�S0 with � 2 R have the same kinematic characteristics.
In all practical applications this is the vector k0 which is involved, the basis (ei)

4
i=1 and the

inertial spinor S0 are only used to identify the forces and torques, and this is done in conventional
bases depending on the problem, as required (that is in relation with physical measures).

Units

We have seen that the motion, expressed as � (Xr; Xw) ; is measured in units [T ]
�1
: From Mp =p

jhS0; S0ij; S = C (�)S0 the spinor is measured in units [M ]
1=2, ka = S�L�aSR in units of mass

(as well as the inertial tensor [J ] in Newtonian Mechanics), and k0 = 2i�M�2
p k in units [M ]�1.

The Dirac�s current ka = �i�M
2
p

2 k
a
0 represents the �ow of matter through a plane orthogonal to

"a
The variation of kinetic energy :
dK
dt =

1
Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i = 1

Mp
Im ktAd��1� (Xr; Xw)

is measured in units of [M ] [L]2 [T ]�3 so we need a universal constant CI of units of energy
[E] = [M ] [L]

2
[T ]

�2
:

dK
dt = �CI�

Mp

2 k
t
0ReAd��1� (Xr; Xw)

The variation of kinetic energy due to the motion � (Xr; Xw) can be represented as a �ow and
��CI Mp

2 ReAd��1� (Xr; Xw) =
P3
a=1 �

a"a
and ka0�

a is the �ow of variation of kinetic energy measured through a plane orthogonal to "a.

4.3.4 Momenta of Deformable Solids

Spinor Fields

A section of PG can represent the motion of particles whose trajectories do not cross and have
similar behavior. And a section of PG [E; C] can represent the kinematic characteristics of identical
particles.

De�nition 74 A Spinor �eld is a section S 2 X
�
J1PG [E; C]

�
which represents the kinematics

characteristics of a particle. S = (m;S (m) ; ��S (m) ; � = 0::3)

From a Mathematical point of view the condition is that there is a section J1� 2 X
�
J1PG

�
and

an inertial spinor S0 such that :
S (m) = C (� (m))S0; ��S (m) = C (� (Xr� (m) ; Xw� (m)))S (m) : A necessary condition is

that : hS (m) ; S (m)iE = Ct:
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From a Physical point of view such a section represents particles which have the same kinematics
characteristics and whose trajectories do not cross. As a consequence the motion is continuous and
� (Xr� (m) ; Xw� (m)) = @�� � ��1:
Conversely a vector S0 2 E and a section J1� 2 X

�
J1PG

�
de�nes a spinor �eld.

Density

With a population of similar particles represented by a spinor �eld it is natural to consider a density
of particles, that is a function � :M ! R such that � (m) represents the number of identical particles
located at the same point. Then for any observer the conservation of the number of particles implies
that :
N (t)=

R

(t)

�3 (t; x)$3 = Ct

which can be written :R

(t)

iV (�$4) = Ct

where V is the vector �eld representing the trajectories, as it is deduced from � : V = � c
hAd�"0;"0iCl

Ad�"0:

Consider the manifold 
 ([t1; t2]) with borders 
 (t1) ;
 (t2) :
N (t2)�N (t1) =

R
@
([t1;t2])

iV (�$4) =
R

([t1;t2])

d (iV �$4)

d (iV �$4) = $V (�$4)� iV d (�$4) = $V (�$4)� iV (d� ^$4)� iV �d$4 = $V (�$4)
N (t2)�N (t1) =

R
!([t1;t2])

$V (�$4)

with the Lie derivative $. The conservation of the number of particles is equivalent to the
condition $V (�$4) = 0:
$V �$4

= d�
dt$4 + �$V$4

= d�
dt$4 + � (divV )$4

=
�
d�
dt + � (divV )

�
$4

and we retrieve the usual continuity equation :

d�

dt
+ �divV = 0 (4.16)

With :
divV =

P3
�=0

@V �

@�� +
1
2

1
det g

P3
�=0 V

�@� (det g)

V = c"0 +
P3
�;j=1Q

�
j U

j@�� because the motion is de�ned in the standard chart of the observer

� > 0 : @�V
� =

P3
j=0

�
P�j � 1

cP
0
j V

�
� �
@�� � ��1;U

�j
[g] =

�
�1 0
0 [g3]

�
because the observer uses his standard gauge

divV =
P3
�;j=1Q

�
j

n�
@�� � ��1;U

�j
+ 1

2
1

det gU
j@� (det g)

o
Let us de�ne :
T : TM 
 J1PG [E; C]! R ::
T (
P
� U

�@��) =
1
i

P3
�;�=0 � hS0; U�� (Xr� ; Xw�)i = � 12��k

t
0 Im

�P3
�;�=0

U�

c

�
��1 � @��

��
T is a tensor : its action is linear, and the result does not depend on the chart or the gauge. It

gives the resistance of the particle to change its motion by ��1 � @�� in the direction U�:This is the
energy-momentum tensor of the Spinor �eld.
The trace Tr (T ) of the tensor T is the tensor :
Tr (T ) (

P
� U

�@��) =
1
i

P3
�=0 � hS0; U�� (Xr�; Xw�)i

that is the kinetic energy (up to a constant).
Take � (Xr�; Xw�) = � (0; ��w)

Tr (T ) (
P
� U

�@��) = � 12��k
t
0

P3
�=0

U�

c ��w
can be seen as the pressure of the �ow of matter in the spatial direction ��w:
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Spinor �eld for a deformable solid

One can de�ne, for any observer, a deformable solid by a section � 2 PG: The particles travel on tra-
jectories V de�ned by �w with parameter the time of the observer: Adding a density �; and an inertial
spinor S0; then, because S is valued in the vector space E; the integral :

R
!(t)

� (m)S (m)$3 (t;m)

where ! (t) = �V (! (0) ; t) and ! (0) is a compact subset of 
3 (0) makes sense.

S (t) = C
�R

!(t)
� (m)� (m)$3 (m)

�
S0

� =
R
!(t)

� (m)� (m)$3 (m) 2 Cl (3; 1)
We have several cases of interest.

If the solid is rigid : � (�V (t; x)) = s (t) � g (�V (0; x)) with s (t) 2 Spin (3; 1). ThenR
!(t)

� (m)� (m)$3 (m) = s (t)
R
x2!(0) g (x)� ((�V (t; x)))$3 (�V (t; x))

and S (t) = C (s (t))SB (t) with SB (t) = C
�R

x2!(0) g (x)� ((�V (t; x)))$3 (�V (t; x))
�
S0:

The variation of SB (t) can be computed as above :

SB (t2)� SB (t1) =
R
!([t1;t2])

C ($V (g�$4))S0 =
R
!([t1;t2])

C
�
dg�
dt + g� (divV )

�
$4S0

=
R
!([t1;t2])

C
�
g
�
d�
dt + � (divV )

��
$4S0

With the continuity equation : SB (t) = Ct and S (t) = C (s (t))SB :

Theorem 75 From a kinematic point of view, a rigid solid can be replaced by a particle moving
along one integral curve of the vector �eld V with spinor S (t) = C (s (t))SB where SB is the
constant inertial spinor.

SB = C

 Z
x2!(0)

g (x)� (x)$3 (x)

!
S0 (4.17)

This is the generalization of the rule of Newtonian Mechanics.
The computation of the integral � =

R
x2!(0) g (x)� (x)$3 (x) 2 Cl (3; 1) can be done in any

chart, adjusted for the symmetries of the solid. And if S0 2 E0 then SB 2 E0: However � does not
necessarily belong to Spin (3; 1) :
A rigid solid has an inertial vector de�ned by SB :
ka0B =

1
i �

1
M2

B
hSB ; (0a � iea)SBiE with kt0Bk0B = 1

The Dirac�s current (0a � iea)SB can be identi�ed with the �ow of matter in the 3 spatial
directions corresponding to a =  ("a) :For any rigid solid in Newtonian Mechanics there is an
inertial tensor, represented by a symmetric matrix [J ] with 3 orthogonal eigen vectors and real eigen
values �a. So we can identify these vectors to "a and ka0B =

1pP3
a=1 �

2
a

�a:

Example : For an ellipsoid with mass m and axes of spatial lengths a; b; c

k0B =
1p

2
5

p
(a4+b4+c4+a2b2+a2c2+b2c2)

�
b2+c2

5 ; a
2+c2

5 ; b
2+a2

5

�
In the general case the deformation tensor is @�� � ��1: This is a 1 form on M valued in

T1Spin (3; 1) :

The stress tensor is then : C (@��)S0
 d�� = C
�
@�� � ��1

�
C (�)S0
 d��: This is a 1 form

on M valued in E: On a trajectory �U =
P3
�=0 �U

�@�� the inertial forces, similar to stress forces,
which preserve the integrity of the solid are :

�F =
P3
�=0 �U

���S 2 E:
We still have S (t) = C (� (t))S0 2 E0 if SB 2 E0:
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Symmetries

For particles symmetries are symmetries in the motion, and they are essentially periodic symmetries.
For periodic instantaneous motions the momentum and the kinetic energy are periodic.
Sections of PG [E; C] are de�ned by a section of PG and a constant spinor, so they have the

same symmetries than sections of PG:
For deformable solids, de�ned through S ('o (t; �)) = � ('o (t; �)) C (� ('o (t; �)))S0; the con-

tinuity equation involves the metric g: If both � and � have the same symmetry, the symmetry is
preserved over time if det g is constant. And in a periodic motion it implies that the metric itself is
periodic.

Classic Mechanics provides e¢ cient and simpler tools, and the use of spinors would be just
pedantic in common problems. However this approach can be used at any scale. It can be used
to study the deformation of nuclei, atoms or molecules. At the other end it can be useful in
Astrophysics, where trajectories of stars systems or galaxies are studied. The spinor can account
for the rotational momentum of the bodies, which is signi�cant and contributes to the total kinetic
energy of the system.
To go further in the study of Spinors for elementary particles we need to remind some results

about the representations of the groups Spin (3; 1) ; Spin (3) :

4.3.5 Representation of the Spin group

Functional Representations

Functional representations are representations on vector spaces of functions or maps. Any locally
compact topological group has at least one unitary faithful representation (usually in�nite dimen-
sional) of this kind, and they are common in Physics. The principles are the following (Maths.23.2.2).
Let H be a Banach vector space of maps ' : E ! F from a topological space E to a vector space

F , G a topological group with a continuous left action � on E : � : G� E ! E :: � (g; x)
De�ne the left action � of G on H : � : G�H ! H :: � (g; ') (x) = '

�
�
�
g�1; x

��
Thus G acts on the argument of ': Then (H;�) is a representation of G.
If H is a Hilbert space and G has a Haar measure � (a measure on G, all the groups that we will

encounter have one) then the representation is unitary with the scalar product :
h'1; '2i =

R
G
h� (g; '1) ;� (g; '2)iH � (g)

IfG is a Lie group and the maps ofH and � are di¤erentiable then
�
H;�0g (1; :)

�
is a representation

of the Lie algebra T1G where X 2 T1G acts by a di¤erential operator :
�0g (1; ') (X) (x) = �'0 (x)�0g (1; x)X = d

dt' (� (exp (�tX) ; x)) jt=0
For a right action � : E �G! E :: � (g; x) we have similar results, with
P : H �G! H :: P ('; g) (x) = ' (� (x; g))
P 0g ('; 1) (X) (x) = �'0 (x) �0g (x; 1)X = d

dt' (� (x; exp (�tX))) jt=0
H can be a vector space of sections on a vector bundle. In a functional representation each

function is a vector of the representation, so it is usually in�nite dimensional. However the repre-
sentation can be �nite dimensional, by taking polynomials as functions, if the set of polynomials is
algebraically closed under the action of the group.

Isomorphisms of groups

Most of the groups encountered in Physics are related to the group SL (C; 2) of 2 � 2 complex
matrices with determinant 1 (on these topics Maths.V.24). Its Lie algebra sl (C; 2) is the set of 2�2
complex matrices with null trace. They can be written :

� (Z) =

�
z3 z1 � iz2

z1 + iz2 �z3

�
with Z = (z1; z2; z3) 2 C3
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which is equivalent to take as basis the Dirac matrices.
The exponential is not surjective on sl(C; 2) and any matrix of SL(C; 2) reads :
exp� (Z) = I coshD + i sinhDD � (Z) with D2 = det� (Z) = ZtZ

The group SU(2) of 2� 2 unitary matrices (NN� = I) is a compact real subgroup of SL (C; 2) :
Its Lie algebra is the set of matrices � (ir) with r 2 R3: The exponential is surjective on SU(2) :
exp� (ir) = I cos

p
rtr � sin

p
rtrp

rtr
� (ir)

T1Spin (3; 1) is isomorphic to sl(C; 2) : � (r; w) ! � (r + iw) so with the complex structure
T1Spin (3; 1)C � sl(C; 2) and T1Spin (3; 1) ; T1Spin (1; 3) are isomorphic.

Spin(3; 1) is isomorphic to SL(C; 2) : A + Z ! exp� (Z) = I coshD + i sinhDD � (Z) with D2 =
ZtZ = 4

�
1�A2

�
and Spin (3; 1) is isomorphic to Spin (1; 3)

T1Spin(3) is isomorphic to su(2) : � (r; 0)! � (r) and so (3) : � (r; 0)! j (r)

Spin(3) is isomorphic to SU(2) :

ar + � (r; 0)! exp� (r) = I cosh
p
rtr + i sinh

p
rtr

rtr � (r)

Representations of Spin(3,1)

SL(C; 2); Spin(1; 3) and Spin(3; 1) have the same representations.
There is a unique (up to equivalence) non unitary, irreducible representation of dimension n,

which can be seen as the tensorial product of two �nite dimensional representations
�
P j 
 P k; Dj �Dk

�
of SU (2)� SU (2) (see below).
(Cl (3; 1) ;Ad) ; (Cl (1; 3) ;Ad) are 2 non equivalent non unitary representations of real dimension

16, they are reducible : (T1Spin (3; 1) ;Ad) is a 6 dimensional irreducible representation, isomorphic
to
�
P 1 
 P 1; D1 �D1

�
:

The only known unitary representations are over spaces of complex functions : they are in�nite
dimensional and each irreducible representation is parametrized by 2 scalars z 2 Z; k 2 R.

Representations of the group Spin (3)

SU(2) as Spin(3) are compact groups, so their unitary representations are reducible in a sum of
orthogonal, �nite dimensional, unitary representations. The usual irreducible, �nite dimensional,
unitary, representations, denoted

�
P j ; Dj

�
are on the space P j of degree 2j homogeneous polyno-

mials with 2 complex variables z1; z2, where conventionally j is an integer or half an integer. P j is
2j + 1 dimensional and the elements of an orthonormal basis are denoted :
jj;mi = 1p

(j�m)!(j+m)!
zj+m1 zj�m2 with �j � m � +j: And Dj is de�ned by :

g 2 U (2) : Dj (g)P

��
z1
z2

��
= P

�
[g]

�1
�
z1
z2

��
Thus the functions read : ' (z1; z2) =

P
j2 1

2Z
Pm=+j
m=�j '

jm jj;mi with complex constants 'jm

It induces a representation
�
P j ; dj

�
of the Lie algebras where dj is a di¤erential operator acting

on the polynomials P :

X 2 su(2) : dj (X) (P ) (z1; z2) = d
dtP

�
[exp (�tX)]

�
z1
z2

��
jt=0

which gives, for polynomials, another polynomial.
dj (X) is a linear map on P j ; which is also linear with respect to X, thus it is convenient to de�ne

dj by the action dj (�a) of a basis (�a)
3
a=1 of the Lie algebra and the three operators are denoted

Lx; Ly; Lz:They are expressed in the orthonormal basis jj;mi by square 2j +1 matrices (depending
on the conventions to represent the Lie algebra). The usage is to denote Lz jj;mi = m jj;mi :
The irreducible, unitary, representations of SO(3) are then given by

�
P j ; Dj

�
with j integer.

We have seen that (T1Spin (3)C ;Ad) is a unitary representation of Spin (3) : It is reducible : the
real and imaginary part, or equivalently the vector subspaces L0; P0 are invariant. (L0;Ad) ; (P0;Ad)
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are 3 dimensional unitary representations of Spin (3) ; parametrized by the choice of vector "0: They
are orthogonal and equivalent. So they are isomorphic to

�
P 1; D1

�
; and representations of SO(3):

4.3.6 Quantization of the Spinor

Quantization

The vector space E is normed, and E� are Hilbert spaces. In a model involving a particle the spinor
is represented by a map : J1S : [0; T ] � R! J1PG [E; C] for some S0 2 E0: The map is assumed
to be such that

R T
0
max (kS (t)k ; k�S (t)k) dt < 1 then it belongs to a separable Fréchet space F

and the theorems of the 2nd Chapter apply.
With the action :
� : Spin (3; 1)� F ! F :: � (g; S) (t) = C (g)S (t)
(F; �) is a representation of Spin (3; 1) : An observable of S is an irreducible representation,

characterized by 2 scalars a 2 R; z 2 Z:
Each map depends on the kinematic characteristics of the particle. We can assume that a is the

mass. Then there is a countable number of possible values for the inertial vector k; which can be
labeled by z:
The spin is represented by � (Xr (t) ; 0) 2 T1Spin (3) which is globally invariant by Spin (3) : Then

an observable of the spatial spinor Sr (t) = C (� (Xr (t) ; 0))S (t) corresponding to the rotational
momentum belongs to an irreducible representation of Spin (3) ; and is characterized by some j 2 1

2N:
The change Sr (t)! �Sr (t) is a discontinuous operation.
And we can state :

Theorem 76 An observable of the momentum of a particle is characterized by the mass and a scalar
z 2 Z:
An observable of the rotational momentum of a particle is characterized by a scalar j 2 1

2N::

Periodic states

We have seen that a periodic motion can be represented by a map :
� : R! Spin (3; 1) :: � (t) = A (t) + Z (t) where Z (t+ T ) = Z (t) for some �xed period
with :
Z (t) =

P
n2Z

bZ (n) exp in!t with bZ (n) = 1
T

R T
0
Z (t) exp (�in!t) dt and ! = 2�

T

Z (0) =
P
n2Z

bS (n)
A (t) =

P
n2Z

bA (n) exp in!t with bA (n) = 1
T

R T
0
A (t) exp (�in!t) dt

A (t)
2
= 1� 1

4Z (t)
t
Z (t)

The spinor is then :
S (t) = C (� (t))S0 =

P
n2Z

bS (n) exp in!t with bS (n) = 1
T

R T
0
S (t) exp (�in!t) dtbS (n) = C

� bA (n) + bZ (n)�S0
By derivation :
dS
dt =

P
n2Z in!

bS (n) exp in!t
we have necessarily the relation :cdS
dt (n) = in! bS (n)
and dS

dt jt=0 =
P
n2Z in!

bS (n)
The average energy on the trajectory is : 1

Mp

1
T

R T
0

1
i



S (t) ; ddtS (t)

�
dt

The variables belong to a Hilbert space H with scalar product :

hY1; Y2iH = 1
T

R T
0
hY1 (t) ; Y2 (t)iE dt =

P
n2Z

DcY1 (n) ;cY2 (n)E
E

Thus :
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1
T

R T
0

1
i



S (t) ; ddtS (t)

�
dt =

P
n2Z

DbS (n) ;cdSdt (n)E =Pn2Z in!
DbS (n) ; bS (n)EDbS (n) ; bS (n)E can be computed with : S0 = � SR

�iSR

�
and one gets :DbS (n) ; bS (n)E =M2

p

��
Re bA (n)�2 � �Im bA (n)�2 + 1

4

��
Re bZ (n)t bZ (n)�2 � �Im bZ (n)t bZ (n)�2��

dS
dt jt=0 =

P
n2Z in!

bS (n))P
n2Z

D
in! bS (n) ; in! bS (n)E = !2

P
n2Z n

2
DbS (n) ; bS (n)E <1

)
P
n2Z n

DbS (n) ; bS (n)ES�RSR <1
1
Mp

1
T

R T
0

1
i



S (t) ; ddtS (t)

�
dt

= !Mp

P
n2Z n

��
Re bA (n)�2 � �Im bA (n)�2 + 1

4

��
Re bZ (n)t bZ (n)�2 � �Im bZ (n)t bZ (n)�2��

Theorem 77 In a periodic motion of a particle the average kinetic energy is proportional to the
frequency.

From the previous theorem the trajectories are characterized by the mass and an integer z 2 Z:
Moreover, from the theorem 24, if we add the energy as variable each irreducible representation
belongs to a class of solutions which gives the same value to the average energy. From there we
can conclude that the frequencies are quantized : there is only a countable number of observable
frequencies in the periodic state of a particle, and each one corresponds to a level of energy.

4.3.7 Spinors for elementary particles

Particles and Anti-particles

The inertial spinor is a starting point in the identi�cation of �elementary particles�, that is the
ultimate constituent of matter.
The �rst natural requisite is that S0 2 E0: The value of � is related to a choice of a basis of E�: In

the usual cases � is purely conventional. However for elementary particles it is an issue because, for
a given value of the mass, there are a countable set of possible values for k0: The relation between
S0 and k0 is not linear and we cannot expect to �nd vector subspaces of elementary particles, but
the basis of E matters and one cannot discard �:
The logical explanation is that the value of � distinguishes particles and antiparticles. The mass

is M2
p = �2 [SR]

�
[SR] : Do antiparticles have negative mass ? The idea of a negative mass is still

controversial. Dirac considered that antiparticles move backwards in time and indeed a negative
mass combined with the �rst Newton�s law seems to have this e¤ect. But here the world line of
the particle is de�ned by �w; and there is no doubt about the behavior of an antiparticle : it
moves towards the future. The mass at rest Mp is somewhat conventional, the de�ning relation is
hS0; S0i = �2M2

p so we can choose any sign for Mp; and it seems more appropriate to take Mp > 0
both for particles and antiparticles.
The inertial spinor of particles is then :

S0 =
Mpp
2

2664
ei�1 cos�0
ei�2 sin�0
iei�1 cos�0
iei�2 sin�0

3775
and of antiparticles :

S0 =
Mpp
2

2664
ei�1 cos�0
ei�2 sin�0
�iei�1 cos�0
�iei�2 sin�0

3775
It is characterized by 4 parameters : Mp; �0; �1; �2:
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Chirality

In the Spinor representation particles have both a left SL and a right SR part, which are linked but
not equal. We have one of the known features of elementary particles : chirality. The representation
(E; ) has been chosen because of this property. If the real Cli¤ord algebras leave invariant E0; some
of their elements exchange E� and E��:

S0 2 E� ) 0C ("0)S0 2 E�; j = 1; 2; 3 : C ("j)S0 2 E�� with the same property in Cl (1; 3) :
So E� is preserved by X 2 T1Spin (3) ; � 2 Spin (3) :
Space reversal is the operation :
u = u0"0 + u

1"1 + u
2"2 + u

3"3 ! u0"0 � u1"1 � u2"2 � u3"3
corresponding to s = "0; s

�1 = �"0 in Cl(3; 1), s�1 = "0 in Cl(1; 3) so it preserves E�:
Time reversal is the operation :
u = u0"0 + u

1"1 + u
2"2 + u

3"3 ! �u0"0 + u1"1 + u2"2 + u3"3
corresponding to s = "1 � "2 � "3; with s�1 = "3 � "2 � "1 in Cl(3; 1), s�1 = "1 � "2 � "3 in Cl(1; 3) so

it exchanges E� and E��:
These results are consistent with what is checked in Particles Physics, and the Standard Model.

However the latter does not consider both signatures. This feature does not allow to distinguish one
signature as more physical than the other.

Inertial vector

The inertial vector is : k = �i�Mp

2 k0 = �i�
Mp

2

24 (sin 2�0) cos (�1 � �2)
� (sin 2�0) sin (�1 � �2)

cos 2�0

35 : Particles and an-
tiparticles with the same parameters Mp; �0; �1; �2 have opposite inertial vectors, and so opposite
momenta and kinematic behaviors.
Particles whose inertial vectors di¤er by a complex scalar of module 1 have the same kinematic

behavior. This is the starting point for the idea of rays in QM.

Spin

Spin (3) preserves E�; then (E�; C) ; (E�; C 0) are representations of Spin (3) : Moreover the scalar
product is de�nite positive or negative and preserved by Spin (3) so we have unitary representations,
which are isomorphic to one of the representations

�
P j ; Dj

�
with j 2 1

2N: Actually, for elementary
particles j = 1

2 and this is the origin of the name �particles of spin
1
2�:

Because the spatial spin is quantized, the rotational motion is itself quantized. The natural
representation is then by a periodic motion : the particle spins at a constant rotational speed. The
average rotational kinetic energy is proportional to the frequency. The speed does not change, but
the axis of rotation can change (by the action of Spin (3)): Moreover the spin can take the opposite
value, corresponding to � (Xr; 0)! � (�Xr; 0) : This is a discontinuous process (because the spin is
quantized, it cannot take intermediate values) which requires an external action and entails a change
of kinetic energy.
The variation of kinetic energy is dK

dt = CI
1
Mp
Im ktAd��1� (Xr; Xw) with a universal constant

CI which has the dimension of energy. Xr; Xw have the unit [T ]
�1 and we have seen the conventions

for the measure of rotations of solids. However this formula provides another point of view : CIXr

represents the variation of rotational energy, expressed in units [E] [T ]�1 or J=s: In the relation
E = h� of Quantum Physics the Plank�s constant h is expressed in Js and the frequency � in Hz,
or cycles / s. So, for atomic or subatomic particles CIXr can be measured as a multiple of hXr:
Their rotational motion is then measured in rad=s or in cycle / s that in Hz; in concordance with
our representation.
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To each particle corresponds an antiparticle with the same mass. And particles show polarization
characteristics similar to waves. The picture is similar to the Dirac�s spinors, with di¤erent de�nitions
of the  matrices.

Charge

Assume that we study a system comprising unknown particles p = 1:::N . The modeling of their
kinematic characteristics leads naturally to assume that these particles belong to some spinor �elds
: Sp 2 X (PG [E; C]) with di¤erent, unknown, inertial spinor.S0:
What the quantization theorem tells us is that the solutions must be found in maps : Sp : 
! E

which can be sorted out by the value of k; their inertial vector, but they belong also to classes of
maps characterized by z 2 Z: One can assume that the signed integer z is related to a charge. But
we see that any particle which has the same inertial vector k belongs to a de�nite class characterized
by the same z : these particles have the same behavior in a �eld. This is the starting point for the
representation of charged particles and we can guess that the inertial vector is more than a kinematic
feature.

4.3.8 Composite particles and Atoms

Representation by tensorial products

Stable combinations of elementary particles are represented by the tensorial product of the spinors, as
composite system, following the theorem 29 of QM. Then the motion is represented in the universal
enveloping algebra U of T1Spin (3; 1) : This is a vector space, built from tensorial powers of the Lie
algebra T1Spin (3; 1), such that the elements of the form : X 
 Y � Y 
 X � [X;Y ] � 0: A basis
of U consists of the ordered tensorial products of vectors of a basis of the Lie algebra. That is for
T1Spin (3; 1) : 1 and the tensorial products

�!� �1 
�!� �2 
 :::
�!� �n with �1 � �2 � ::: � �n:
Any representation (E; f) of the Lie algebra can be extended to a representation (E;F ) of its

universal enveloping algebra where the action is :

F
�
�n1i1 :::�

np
ip

�
= f (�i1)

n1 � ::: � f
�
�ip
�np

When the representation (E; f) comes from a functional representation, in the induced represen-
tation on U the action of F is represented by di¤erential operators of order n1 + n2 + :::+ np:
In the representation of T1Spin (3; 1) by matrices of so(3; 1) the universal enveloping algebra is

actually an algebra of matrices.

Casimir element

TheCasimir element is a special element 
 of U , de�ned through the Killing form. In an irreducible
representation (E; f) of a semi simple Lie algebra, as Spin(3; 1), the image of the Casimir element
acts by a non zero �xed scalar F (
)u = ku:In functional representations it acts by a di¤erential
operator of second order : F (
)' (x) = D2' (x) = k' (x) : ' is an eigen vector of D2: As a
consequence, if there is a scalar product on E : hF (
)u; F (
)ui = hku; kui = k2 hu; ui : And k has
the same value in all equivalent representations.
The Killing form on T1Spin(3; 1) is :
B (� (r; w) ; � (r0; w0)) = 4 (wtw0 � rtr0)
We have an orthonormal basis for B with the elements
�1 = � 18"3 � "2; �2 = �

1
8"1 � "3; �3 = �

1
8"2 � "1;

�4 =
1
8"0 � "1; �5 =

1
8"0 � "2; �6 =

1
8"0 � "3

and the Casimir element of U(T1Spin(3; 1)) is :

 =

P6
i=4 �i 
 �i �

P3
i=1 �i 
 �i

The action of the Casimir element in the representation (E; C) of Spin (3; 1) is :
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� (
)u =
�P6

i=4 (C (�i))
2 �

P3
i=1 (C (�i))

2
�
u = 3

2u

In the representation
�
P j ; dj

�
of T1Spin(3); if we denote Lx = f (�1) ; Ly = f (�2) ; Lz = f (�3)

with 3 arbitrary orthogonal axes :
F (
) jj;mi = L2 jj;mi =

�
L2x + L

2
y + L

2
z

�
jj;mi = j (j + 1) jj;mi

dj (�i)
�Pm=+j

m=�j X
mjj;m >

�
=
Pm=+j
m=�j X

mdj (�i) jj;m >

Measure of the spatial spin of a particle

An observable of the spatial spinor Sr (t) belongs to a vector space of maps isomorphic to some�
P j ; Dj

�
: Sr (t) =

P+j
p=�j S

p
r jj; p > where Spr are �xed scalars and jj; p > are, for a given system,

�xed maps jj; p >: 
 ! E0, images of vectors of the basis of P j by some isometry. Each vector
jj; p > is assimilated to a state of the particle, and j; p are the quantum numbers labeling the
state. The maps jj; p > are not polynomials (as in P j); they are used only to de�ne the algebraic
structure of the space. Under the action of Spin (3) the vectors Sr (m) transform according to the
same matrices as in Dj :

There is one important di¤erence in the behavior of the spin, according to the value of j.
Spin(3) is the double cover of SO (3) : to the same element g of SO(3) are associated two elements
�s of Spin(3). The actions of +s and �s give opposite results. The representations

�
P j ; Dj

�
with

j 2 N are also representations of SO(3). It implies that the vector spaces are invariant by �s: The
fact that j is an integer means that the particle has a physical speci�c symmetry : the rotations
�s give the same result. And equivalently, if j is half an integer the rotations by �s give opposite
results.
The measure is done by observing the behavior of the particle when it is submitted to a force

�eld which acts di¤erently according to the value of the spinor. This is similar to the measure of
the rotation of a perfectly symmetric ball by observing its trajectory when it is submitted to a
dissymmetric initial impulsion (golfers will understand). Most particles have a magnetic moment,
linked to their spinor (more precisely to the vector k). So the usual way to measure the latter is
to submit the particles to a non homogeneous magnetic �eld. This is the Stern-Gerlach analyzer
described in all handbooks, where particles have di¤erent trajectories according to their magnetic
moment. MRI uses a method based on the same principle with oscillating �elds whose variation is
measured. The device operates only on the spin : Sr (m) = C (�r (m))S0 and is parametrized by
a spatial rotation sr 2 Spin (3) ; and usually by a vector � 2 R3; corresponding to a rotation sr.
The �rst e¤ect is a breakdown of symmetry : sr has not the same impact for the particles with

spin up or down. This manifests by two separate beams in the Stern-Gerlach experiment.
The action of the device can be modelled as an operator L (�) acting on the space of vectors

jj; p >, and the matrices to go from one orientation �1 to another �2 are the same as in
�
P j ; dj

�
: It

reads :
L (�) (Sr) =

P+j
p=�j S

p
r [dj (�)] jj; p >

For a given beam we have a breakdown of the measures, corresponding to each of the states
labelled by p.
Arbitrary axes x; y; z are chosen for the device, and provide 3 measures Lx (Sr) ; Ly (Sr) ; Lz (Sr) ;

such that Lz (Sr) jj;mi = m jj;mi.
The Casimir operator 
 is such that L2 (Sr) =

�
L2x + L

2
y + L

2
z

�
(Sr) = j (j + 1) (Sr)

Atoms

QM has been developed from the study of atoms, with a basic model (Bohr�s atom) in which electrons
move around the nucleus. Even if this idea still holds, and this is how atoms are commonly viewed,
it had been quickly obvious that a classic model does not work.
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In our framework we can build a model of an Atom, comprising a nucleus, and N electrons.
We will not look at the physical laws which allow such a system to be stable, but focus on the
representation of the spinors of the electrons. In an atom they stay together, close to the nucleus
(at the atomic scale). Their trajectories qp (t) do not cross, so the natural model is to assume
that each electron p = 1:::N is represented by a map : Sp : R ! E+ with the same inertial spinor
S0 : Sp (t) = C (�p (t))S0; and that �p (t) = � (qp (t)) for a common section � 2 PG: It is reasonable
to assume that their motion is periodic. We have seen (Periodic Motion, chap.3) how to build �
from :
- a periodic map w : R ! R3 :: w (t+ T ) = w (t), the trajectories are then q : R ! M :: q (t) =

'o (ct; x (t)) with :
�
dx
dt

�
= �

p
1+ 1

4w
tw

1+ 1
2w

tw
w (t) ; they are integral curves of the section s ('o (ct; x (t))) =

aw + � (0; w (t)) passing through the point x (0)
- a periodic map : r : R4 ! R3 :: r (t+ Te (�) ; x) = r (t; �) which de�nes the section �r ('o (ct; �)) =

ar + � (r (t; �) ; 0) : The period Te (�) is itself given by a map : Te : 
3 (0) ! R: Thus it depends
on the initial location '
 (�) = x 2 
3 (0) : For instance we could assume that it depends on the
distance from the nucleus.
Then the section � = s � �r has the path q (t) = 'o (ct; � (t)) = �V (t; x (0)) as integral curves,

and for each 'o (ct; � (0)) the instantaneous motion is periodic with period T (� (0)) depending on
x (0) :
What is of a greater interest is the set of electrons, the electronic cloud. It constitutes a system in

itself, and most of the properties of the atom (notably in Chemistry) comes from its behavior. It is
represented by the maps w; r; which do not depend on the electron, and the initial location ap = xp (0)
of each electron. The state of an electron is an occurrence of the same map Sp (t) = C (� (qp (t)))S0
identi�ed by xp (0). We can apply the Theorems 32, 34. The states of the electronic cloud are then
represented by the tensorial product S1 
 S2:::
 SN = S (a1)
 S (a2) :::
 S (aN ) Electrons have a
Spin 1/2, so the representation is by antisymmetric tensor, to account for the action of Spin (3; 1)
on the spin. The stable states are then characterized by a class of conjugacy � represented by :
- a decomposition � of the integerN in p parts : � (N) = f0 � n1 � n2::: � np;n1 + n2 + ::np = Ng :
- a set of p distinct vectors  1;  2; ::: p of a hermitian basis of the space of maps S (t) ; which

together de�ne a vector subspace HJ :
- the states of the system are then represented by antisymmetric tensors belonging to ^n1HJ ^

::: ^np HJ

Each subset of nk elements is an �electron shell�, which is then characterized by nk di¤erent
states of the electrons. Two electrons which di¤er only by their spin are deemed to be in di¤erent
states. Of course the integral curves to which belong the electrons is one of their features, and each
shell corresponds to an integral curve, with the same period. We have seen that, for periodic motion,
the average kinetic energy is proportional to the frequency, so the shells correspond to di¤erent levels
of energy.
Additional observables must be added to di¤erentiate the shells. The spin of the electrons can

be represented in a �nite dimensional vector space isomorphic to P 1=2. Tensorial products of rep-
resentations

�
P j ; Dj

�
can be combined using Clebsch-Jordan coe¢ cients. The polynomials P j have

no physical meaning. However in this case it is usual to provide one. By a purely mathematical
computation it is possible to show that the representation

�
P j ; Dj

�
is equivalent to a representa-

tion on square integrable functions f(x) on R3; and from there on spherical harmonic polynomials
(Maths.V.24). It is then assumed that the arguments of the function f(x) are related to the coor-
dinates (in an euclidean frame) of the electron.
By adding a section to represent the nucleus we have a spinor representing the atom like a rigid

solid. One can compute a total spinor for the atom. The map w is then the proper rotation of the
atom, which can itself be represented by a spin.
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Chapter 5

FORCE FIELDS

The concept of �elds has appeared in the XIX� century, with the electromagnetism theory, to
replace the picture of action at a distance between particles. Gravitation, whose laws were known
since Kepler and Newton, can be easily �tted in the same framework. However it appeared that
Maxwell�s equations were not compatible with Galilean Geometry, and this was at the origin of
Einstein�s Special Relativity. All together they provide a consistent, well checked and e¢ cient
theory. New phenomena, essentially occurring in discontinuous processes, lead to come back to a
corpuscular interpretation of the EM �eld with the photon, and it appeared that the nuclear forces
could themselves be represented as new force �elds with corresponding charges. This extension
was made possible with a new mathematical tool : connection and gauge theories. From a totally
di¤erent point of view Einstein proposed a new Theory of Gravitation, based on the Geometry
of General Relativity. It if can be expressed in the framework of gauge theory, as we will show,
it relies on original physical assumptions. The facts that the strength of the gravitational �eld is
10�49 weaker than the EM �eld (a fact which by itself needs to be explained), but has additive
e¤ects which are felt at very long range, make that, for any experimental and practical purpose, a
Theory of Gravitation will always be special. But the same could be said about the nuclear forces.
The concept of �elds, and the mathematical apparatus of gauge theories, can be seen as somewhat
arti�cial, and the goal of a Great Uni�cation Theory a futile dream. But, if we want, one day, master
the di¤erent forces that exist, as well as we do for the EM �eld, it does not seem to be another path.
In the following by force �eld we mean one of the forces which interact with particles : the

strong interaction, the weak and the electromagnetic forces combined in an electroweak interaction,
gravitation being in one league by itself.
A force �eld is one object of Physics, which has distinctive properties :
i) Because particles are localized, a �eld must be able to act anywhere, that is to be present

everywhere. So the �rst feature of force �elds, as opposed to particles, is that, a priori, they are
de�ned all over the universe, even if their action can decrease quickly with the distance.
ii) A force �eld propagates : the value of the �eld depends on the location, this propagation

occurs when there is no particle, thus it is assumed that it results from the interaction of the force
�eld with itself.
iii) Force �elds interact with particles, which are themselves seen as the source of the �elds. This

interaction depend on charges which are carried by the particles.
iv) The interactions, of the �elds with themselves or with particles are, in continuous processes,

represented in a lagrangian according to the Principle of Least Action.
v) In some cases the force �elds can act in discontinuous processes, in which they can be repre-

sented as particles (bosons and gravitons).
Thus we need a representation of the charges and of the �elds. We will start with a short

presentation of the Standard Model, as this is the most comprehensive picture of the force �elds.
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5.1 THE STANDARD MODEL

In the Standard Model there are 4 force �elds which interact with particles (the gravitational �eld
is not included) :
- the electromagnetic �eld (EM)
- the weak interactions
- the strong interactions
- the Higgs �eld
and two classes of elementary particles, fermions and bosons1 , in distinct families.
They are the main topic of the Quantum Theory of Fields (QTF).

5.1.1 Fermions and bosons

Fermions

The matter particles, that we will call fermions, are organized in 3 generations with, for each one, 2
leptons and 2 quarks :
- First generation : quarks up and down; leptons : electron, neutrino.
- Second generation : quarks charm and strange; leptons : muon, muon neutrino
- Third generation : quarks top and bottom; leptons : tau and tau neutrino
Their stability decreases with each generation, the �rst generation constitutes the usual matter.

Each type of particle is called a �avor.
Fermions interact with the force �elds, according to their charge, which are :
- color (strong interactions) : each type of quark can have one of 3 di¤erent colors (blue, green,

red) and they are the only fermions which interact with the strong �eld
- hypercharge (electroweak interaction) : all fermions have an hypercharge (-2,-1,0,1,2) and

interact with the weak �eld
- electric charge (electromagnetic interactions) : except the neutrinos all fermions have an electric

charge and interact with the electromagnetic �eld.
All fermions have a weak isospin T3, equal to �1=2 and there is a relation between the isospin,

the electric charge Q and the hypercharge Y :
Y = 2 (Q� T3)
The total sum of weak isospin is conserved in interactions.
Each fermion (as it seems also true for the neutrinos) has a mass and interacts also with the

gravitational �eld. These kinematic properties are represented in the Standard Model by a spinor
with 4 components2 , and in weak and strong interactions the left and right components interact
di¤erently with the �elds (this is the chirality e¤ect noticed previously).
Each fermion has an associated antiparticle, which is represented by conjugation of the particle.

In the process the charge changes (color becomes anticolor which are di¤erent, hypercharge takes
the opposite sign), left handed spinors are exchanged with right handed spinors, but the mass is the
same.
Elementary particles can be combined together to give other particles, which have mass, spin,

charge,... and behave as a single particle. Quarks cannot be observed individually and group together
to form a meson (a quark and an anti-quark) or a baryon (3 quarks) : a proton is composed of 3
quarks udd and a neutron of 3 quarks uud. A particle can transform itself into another one, it
can also disintegrate in other particles, and conversely particles can be created in discontinuous

1Actually the words fermions and bosons are also used for particles, which are not necessarily elementary, that
follow the Fermi or the Bose rules in stattistics related to many interacting particles. Here we are concerned only
with elementary particles. So fermions mean elementary fermions and bosons elementary bosons or gauge bosons..

2Because the right and left part are related, usually only one of them is used in computations, and we have two
components Weyl spinors.
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processes, notably through collisions. The weak interaction is the only �eld which can change the
�avor in a spontaneous, discontinuous, process, and is responsible for natural radioactivity.

Bosons

Besides the fermions, the Standard Model involves other objects, called gauge bosons, linked to the
force �elds, which share some of the characteristics of particles. They are :
- 8 gluons linked to the strong interactions : they have no electric charge but each of them carries

a color and an anticolor, and are massless. They are their own antiparticles.
- 3 bosons W j linked with the electroweak �eld, which carry weak hypercharge and have a mass.
- 1 boson B, speci�c to the electromagnetic �eld, which carries a hypercharge and a mass.
- 1 Higgs boson, which has two bonded components, is its own antiparticle and has a mass but

no charge or color
The bosons W;B combine to give the photon, the neutral boson Z and the charged bosons W�:

The photon and Z are their antiparticle, W� are the antiparticle of each other. So in the Standard
Model photons are not elementary particles (at least when electroweak interactions are considered).

5.1.2 The group representation

To put some order in the zoo of the many particles which were discovered a natural starting point
is QM : since states of particles can be represented in Hilbert space, it seems logical to assign to
each (truly) elementary fermion a vector of a basis of this Hilbert space F . Then the combinations
which appear are represented by vectors �, which are linear combinations (or in some cases tensorial
products) of these basis vectors, and the process of creation / annihilation are transitions between
given states, following probability laws. The fact that there are three distinct generations of fermions,
which interact together and appear in distinctive patterns, leads to the idea that they correspond
to di¤erent representations of a group U . Indeed the representations of compact groups can be
decomposed in sum of �nite dimensional irreducible representations, thus one can have in the same
way one group and several distinct but related Hilbert spaces. The problem was then to identify
both the group U , and its representations. A given group has not always a representation of a
given dimension, and representations can be combined together. Experiments lead to the choice of
the direct product SU(3) � SU(2) � U(1) as the group, and to precise the representations (whose
de�nition is technical and complicated, but does not involve high dimensions). Actually the range
and the strength of the force �elds are di¤erent : the range is very short for the strong and weak
interactions, in�nite for the electromagnetic �eld, moreover all fermions interact with the weak
force and, except for the neutrinos, with the electromagnetic �eld. So this leads to associate more
speci�cally a group to each force �eld :
- SU(3) for the strong force
- U(1) � SU(2) for the electroweak force (when the weak force is involved, the electromagnetic

�eld is necessarily involved)
- U(1) for the electromagnetic force
and to consider three layers : U(1) , U(1)�SU(2), U(1)�SU(2)�SU(3) according to the forces

that are involved in a problem.

On the other hand it was necessary to �nd a representation of the force �elds, if possible which
�ts with the representation of the fermions. The �rst satisfying expression of the Maxwell�s laws is
relativist and leads to the introduction of the potential �A, which is a 1-form, and of the strength
of the �eld F , which is a two-form, to replace the electric and magnetic �elds. It was soon shown
that the Maxwell�s equations can be expressed elegantly in the �ber bundle formalism, with the
group U(1). In the attempt to give a covariant (in the SR context) expression of the Schrodinger�s
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equation including the electromagnetic �eld it was seen that this formalism was necessary. Later
Yang and Mills introduced the same formalism for the weak interactions, which was extended to the
strong interactions, and it became commonly accepted in what is called the gauge theories. The key
object in this representation is a connection, coming from a potential, acting on a vector bundle,
where � lives, which corresponds to the representation of the group U .

5.1.3 The Standard Model

The Standard Model is a version of the Yang-Mills model, adapted to the Special Relativity geometry
i) Each of the groups or product of groups de�nes a principal bundle over the Minkovski a¢ ne

space (which is R4 with the Lorentz metric).
ii) The physical characteristics (the charges) of the particles are vectors � of a vector bundle

associated to a principal bundle modelled on U .
iii) The state of the particles is then represented in a tensorial bundle, combining the spinor S

(for the kinematic characteristics) and the physical characteristics �.
iv) The masses are de�ned separately, because it is necessary to distinguish the proper mass and

an apparent mass resulting from the screening by virtual particles.
v) Linear combinations of these fermions give resonances which have usually a very short life.

Stable elementary particles (such as the proton and the neutron) are bound states of elementary
particles, represented as tensorial combinations of these fermions.
vi) The �elds are represented by principal connections, which act on the vector bundles through

�: The Higgs �eld is represented through a complex valued function. The electroweak �eld acts
di¤erently on the chiral parts of fermions.
vii) The lagrangian is built from scalar products and the Dirac�s operator.
viii) The bosons correspond to vectors of basis of the Lie algebra of each of the groups : the 8

gluons to su(3), the 3 bosons W j to su(2), 1 boson B to u(1).

5.1.4 The issues

The Standard Model does not sum up all of QTF, which encompasses many other aspects of the
interactions between �elds and particles. However there are several open issues in the Standard
Model.
1. The Standard Model, built in the Special Relativity geometry, ignores gravitation. Considering

the discrepancy between the forces at play, this is not really a problem for a model dedicated to
the study of elementary particles. QTF is rooted in the Poincaré�s algebra, and the localized state
vectors, so it has no tool to handle trajectories, which are a key component of di¤erential geometry.
2. The Higgs boson, celebrated recently, raises almost as many questions as it gives answers. It

has been introduced in what can be considered as a patch, needed to solve the issue of masses for
fermions and bosons. The Dirac�s operator, as it is used for the fermions, does not give a de�nite
positive scalar product and is null (and so their mass) whenever the particles are chiral. And as for
the bosons, the equivariance in a change of gauge forbids the explicit introduction of the potential,
which is assumed to be their correct representation, in the lagrangian. The Higgs boson solves these
problems, but at the cost of many additional parameters, and the introduction of a �fth force which
it should carry.
3. From a semi-classic lagrangian, actually most of the practical implementation of the Standard

Model relies on particles to particles interactions, detailed by Feynmann�s diagram and computed
through perturbative methods. Force �elds are actually localized operators acting on the states of
particles, which is consistent with a dual vision of particles and �elds, and with a discrete represen-
tation of the physical world, but in the process the mechanism of propagation vanishes.
4. The range of the weak and strong interactions is not well understood. Formally it is represented

by the introduction of a Yukawa potential (which appears as a �constant coupling�in the Standard
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Model), proportional to 1
r exp (�kmr) which implies that if the mass m of the carrier boson is not

null the range decreases quickly with the distance r. Practically, as far as the system which is studied
is limited to few particles, this is not a big issue.
5. We could wish to incorporate the three groups in a single one, meanwhile encompassing the

gravitational �eld and explaining the hierarchy between the forces. This is the main topic of the
Great Uni�cation Theories (GUT) (see Sehbatu for a review of the subject). The latest, undergone
by Garrett Lisi, invokes the exceptional Lie group E8. Its sheer size (its dimension is 248) enables
to account for everything, but also requires the introduction of as many parameters.
An option, which has been studied by Trayling and Lisi, would be to start, not from Lie groups,

but from Cli¤ord algebras as we have done for the Spinors. The real dimension of SU(3)�SU(2)�
U(1) is 12 = 8 + 3 + 1 which implies to involve at least a Cli¤ord algebra (dimension 2n) on a four
dimensional vector space and it makes sense to look at its complexi�ed: The groups would then be
Spin subgroups of the Cli¤ord algebra. We have the following isomorphisms :

U (1) � Spin (R; 2)
SU (2) � Spin (R; 3)
but there is no simple isomorphism for SU(3).
All together they are part of Cl(R; 10):

In the next sections we will see how the states of particles, force �elds and their interactions can
be represented, in the geometrical context of GR. They involve essentially the potentials, which are a
component of the connection. The other feature of �elds is their propagation, assumed to come from
their interaction with themselves. This is a phenomenon which deserves a study by itself. Its model
is based on a derivative of the connection, the strength of the �eld F , and has special characteristics
which are the topic of separate sections.
In the next chapter we will review the requirements that these representations impose to La-

grangians and continuous models. Two kinds of continuous models, simpli�ed but similar to the
Standard Model, will then be studied. They do not pretend to replace the Standard Model, but to
help to understand the mechanisms at play, notably the motivation to use the mathematical tools in
the representation of physical phenomena. So we will not insist on the many technical details of the
Standard Model, heavily loaded with historical notations, and keep the formalism to a minimum.
We will include gravitation in this representation. This is natural : since the introduction of the

concept of force �eld, gravitation was acknowledged as one of them. The gauge �eld theory provides a
mathematical framework, which can easily address gravitation in the Geometry of General Relativity
and is compatible with the Classical Theory. But the Eintein�s General Relativity encompasses both
a Geometrical Theory - that we have seen in the previous chapters - and a Theory of Gravitation
which is based on a di¤erent point of view - gravitation is not a force �eld per se, but its e¤ects
result from the metric (the �curved space-time�). However, as it is necessary to formalize these
e¤ects in the usual framework of forces and action, Einstein�s Theory uses mathematical tools such
as connection and covariant derivative, which can be seen as special cases of a general gauge theory
of gravitation. We will come back to these fundamental issues later.
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5.2 STATES OF PARTICLES

Spinor �elds can be characterized, beyond the inertial spinor, by a signed integer, which de�nes
families of particles with similar behavior. Particles can then be di¤erentiated, in addition to their
kinematic characteristics summarized in the spinor, by a charge which accounts for their interaction
with force �elds. A particle can be seen as a system in itself. Its state is then a combination of its
kinematic characteristics, represented by the spinor, and of its charge, which represents its interaction
with the force �elds. Using the description of elementary particles given by the Standard Model,
it is then possible to set up a representation of elementary particles. From there the representation
can be extended to composite particles and matter �elds.

5.2.1 The space of representation of the states

The Law of Equivalence

We can follow some guidelines :
i) For any elementary particle there are intrinsic characteristics  0; which do not change with

the �elds or the motion. If we assume that  belongs to a vector space V , then there is a set of
vectors f 0pgNp=1such that  0p characterizes a family of particles which have the same behavior.
ii) Motion is one of the features of the state of particles. It is represented by the action of

Spin(3; 1) on the space V , as we have done in the previous chapter.
iii) The intrinsic kinematic characteristics of particles are represented in the vector spaces E� :

each family of particles is associated to one vector of these spaces. Particles and anti-particles are
distinguished by their inertial spinor.
iv) In the Newton�s law of gravitation F = GMM 0

r2 and his law of Mechanics : F = � the scalars
M;� represent respectively the gravitational charge and the inertial mass, and there is no reason
why they should be equal. However this fact has been veri�ed with great accuracy (two bodies fall in
the vacuum at the same speed). This has lead Einstein to state the fundamental Law of Equivalence.
In the previous chapters we assumed that :
the arrangement and motion of a particle is represented in J1PG : (m;�; � (Xr; Xw))
the momenta are represented in J1PG [E; C]
there is a di¤erential operator :
M : J1PG ! J1PG [E; C] ::M (m;�; ��) = (m; C (S0) ; C (� (Xr; Xw))S; )
The relation � ! � (Xr; Xw) is the motion
The relation S ! C (� (Xr; Xw))S represents the action of the inertial forces
The principle of equivalence tells that the action of the gravitational forces can be represented

as the action of the inertial forces : through the �ber bundle (E; C) so the inertial spinor S0 is the
gravitational charge.

Proposition 78 The Gravitational charge of a particle is represented by its inertial spinor S0:

So, if we stay only with the gravitational �eld, the space E and the representation (E; C) su¢ ce
to represent the state of particles. The kinematic characteristics of particles of the same �avor
(quarks, leptons) are not di¤erentiated according to their other charges. So we have  0p = S0p:
Another way to see the principle of equivalence is to take an observer who is attached to a

material body (say the Earth). His chart, by de�nition, is �xed (say the direction to distant stars),
as well as the holonomic basis (@��)

3
�=0. However he can choose a tetrad attached to the material

body (say a �xed orthonormal frame), and he can measure the change of the tetrad with respect to
the holonomic basis (the rotation of Earth). The standard gauge is de�ned through the tetrad, thus
the spinor is �xed with respect to this observer, however with respect to a tetrad which has �xed
components in the holonomic basis its value changes and inertial forces appear and can be measured
(Foucault�s pendulum).
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The gravitational charge is then represented by 5 scalars (with the inertial vector) and not just
the mass : this is the consequence of the attachment of a tetrad to the particle, and it entails that
the action of the gravitational �eld is more complicated than what is commonly seen.

Representation of the charges for the other �elds

For the other �elds :
i) Bosons give the structure of the �elds, in accordance with the dimension of the groups : 8

for the strong force (SU(3) dimension 8), 3 for the weak force (SU(2) dimension 3), 1 for the
electromagnetic force (U(1) dimension 1). In QTF the action of �elds is represented by operators
acting on V , in the representation of the Lie algebra of the groups. Because the exponential is
surjective on compact groups it sums up to associate the �elds to an action of the groups on V .
ii) The action depends on the charges - accounting for the possible combinations of charges, there

are all together 24 kinds of fermions - but also on the inertial spinors : particles and antiparticles do
not behave the same way, and weak forces act di¤erently according to the left or right chiral parts
Assuming that V is a vector space, and the actions of the �elds are linear, the solution is to take

V as the tensorial product V = E
F where F is a vector space such that (F; %) is a representation
of the group U corresponding to the forces other than gravity (U = SU(3) � SU(2) � U(1) in the
Standard Model).
That we sum up by :

Proposition 79 There is a compact, connected, real Lie group U which characterizes the force �elds
other than gravitation.
There is a n dimensional complex vector space F , endowed with a de�nite positive scalar product

denoted hiF and (F; %) is a unitary representation of U
The states of elementary particles are vectors of the tensorial product E 
 F
The intrinsic characteristics of each type of elementary particles are represented by a �xed tensor

 0 2 E
F;that we call a fundamental state, and all particles sharing the same fundamental state
behave identically under the actions of all the �elds.

Notation 80 (fi)
n
i=1 is a basis of F . We will assume that it is orthonormal.��!

� a

�m
a=1

is a basis of the Lie algebra T1U

[�a] is the matrix of %0 (1)
��!
� a

�
expressed in the basis (fi)

n
i=1 :

As a consequence :
i) Because (F; %) is a unitary representation, the scalar product is preserved by % :
h% (g)�; % (g)�0iF = h�; �0iF
ii) (F; %0 (1)) is a representation of the Lie algebra T1U

iii) The derivative %0 (1) is anti-unitary and the matrices
h
%0 (1)

�!
� a

i
= [�a] are anti-hermitian :

[�a] = � [�a]� (5.1)

F must be a complex vector space to account for the electromagnetic �eld. F is actually organized
as di¤erent representations of the group U , and the representation is not irreducible, to account for
the generations e¤ect. Composite particles (such as the proton or the neutron) are represented by
tensorial product of vectors of E 
 F .
A basis of E 
 F is (ei 
 fj)j=1:::ni=0::3

The state of a particle is expressed as a tensor :
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 =
P4
i=1

Pn
j=1  

ijei 
 fj that we will usually denote in the matrix form : [ ] with 4 rows and
n columns :

 =
4X
i=1

nX
j=1

[ ]
i
j ei 
 fj (5.2)

which reads :
 =

Pn
j=1

�P4
i=1  

ijei

�

 fj =

Pn
j=1 S

j 
 fj where Sj 2 E
So, when gravity alone is involved, the particles such as

P4
i=1  

ij
0 ei = Sj0 have the same behavior

and can be seen as n particles, di¤erentiated by their inertial spinor, and thus by their mass. At
an elementary level the di¤erent values of the inertial spinors characterize the kinematics of each
elementary particle.
The experimental fact that the action of the force �elds depends also of the spinor part implies

that the tensor is not necessarily decomposable (it cannot be written as the tensorial product of
two vectors). However one can attribute a charge to a particle, but it is not expressed as a scalar
quantity. There is no natural unit for the charges (except, for historical reasons, for the electric
charge), and, indeed, what could be the unit for the colors of the strong force ? The set F of existing
vectors  0 is just an organized map of all the known combinations of spinors and charges. The
formalism with the group representation is built on the experimental facts, but it does not answer
the question : why is it so ?
The direct product group Spin (3; 1)� U has an action denoted # on E 
 F
# : Spin (3; 1)� U ! L (E 
 F ;E 
 F )
de�ned by linear extension of C and % :
# (�;{) ( ) =

P4
i;k=1

Pn
j;l=1 [C (�)]

i
k [% ({)]

l
j [ ]

k
l ei 
 fj

=
P4
i;k=1

Pn
j;l=1 [C (�)]

i
k [ ]

k
l [% ({)]

l
j ei 
 fj

that we will denote in matrices :

Notation 81

[# : Spin (3; 1)� U ! L (E 
 F ;E 
 F ) :: # (�;{) [ ] = [C (�)] [ ] [% ({)]] (5.3)

One can extend the action of the Spin group to the action of the Cli¤ord algebra. We de�ne the
action # of Cl (3; 1)� U on E 
 F by the unique linear extension of :

# : Cl (3; 1)� U ! L (E 
 F ;E 
 F ) ::
# (s; g) (S 
 �) = C (s) (S)
 % (g) (�)
to all tensors on E 
 F
This is a morphism from Cl (3; 1) on L (E 
 F ;E 
 F ) : # is linear and preserves the Cli¤ord

product.
# (�; 1) = C (�) =

P
jkl [C (�)]

j
k  

klej 
 fl
So the map # de�nes a representation of Cl (3; 1)� U on E 
 F:

Scalar product on the space E 
 F

The scalar product on E 
 F is necessarily de�ned as :
h ; 0i =

P
ijq [0]

i
k �jq 

ij
 0kq =

P
ijk [0]

i
k  

ij
 0kj = Tr

�
[ ]

�
[0] [ 

0]
�

because the basis (fj)
n
j=1 is orthonormal.

h ; 0i = Tr
�
[ ]

�
[0] [ 

0]
�

(5.4)

Theorem 82 # preserves the scalar product on E 
 F : h# (�;{) ; # (�;{) 0i = h ; 0i
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Proof. e ij =P4
k=1

Pn
l=1 [C (�)]

i
k [% ({)]

j
l  

klD e ; e 0E =P [0]
i
k [C (�)]

i

p[% ({)]
j

q 
pq
[C (�)]

k
r [% ({)]

j
s  

rs

=
P�

[C (�)]
�
[0] [C (�)]

�p
r

�
[% ({)]� [% ({)]

�q
s
 
pq
 0rs

=
P
[0]

p
r  

pq
 0rq

The scalar product is de�nite, positive on E+
F; negative on E�
F; but not on E
F: However
there is a norm kkE on the space E and a norm on the space F , the latter de�ned by the scalar
product. They de�ne a norm on E 
 F by taking kei 
 fjk = keikE kfjkF : So that E 
 F is a
Banach vector space.

Particles and antiparticles

We will distinguish in the matrix [ ] a right part, with the �rst 2 rows, and a left part,with the last

2 rows, so that in matrix form [ ] =

�
 R
 L

�
. In QTF this is called a Dirac�s spinor, and  R;  L are

Weyl�s spinors.
We discriminate particles and antiparticles by looking for the subsets of E 
 F such that :
i) the scalar product is de�nite either positive or negative : h 0;  0i = 0)  0 = 0
ii) this is still true whenever  0 is the tensorial product  0 = S0 
 F0
iii) the populations of antiparticles and particles are preserved by space reversal, and exchanged

by time reversal, as we know that this is still true for particles in the Standard Model.

Theorem 83 The only vector subspaces of E 
 F which meet these conditions are such that  L =
�i R with � = �1

Proof. i) h ; i = Tr
�
[ ]

�
[0] [ ]

�
= iT r (� �R L +  �L R)

Tr ( �L R) = Tr ( �L R)
t
= Tr

�
 tR L

�
= Tr ( �R L)

Thus : Tr (� �R L +  �L R) = Tr ( �R L)� Tr ( �R L)
= �2i ImTr ( �R L) 2 iR
and h ; i = 2 ImTr ( �R L) 2 R

For  = S 
 F the matrix [ ] reads : [ ] = [S] [F ]t =
�
SRF

t

SLF
t

�
and h ; i = 2 ImTr

�
[F ] [SR]

�
[SL] [F ]

t
�
= 2 Im [SR]

�
[SL]Tr

�
[F ] [F ]

t
�

It will be non degenerate i¤ : SL = �iSR as seen previously and so we can generalize to  L =
�i R :
h ; i = 2 ImTr (�i �R R) = 2�Tr ( �R R)
ii) Time reversal is an operator on E 
 F; represented by the matrix :

T =

�
0 i�0
i�0 0

�
with signature (3,1)

T

�
 R
�i R

�
=

�
0 i�0
i�0 0

� �
 R
�i R

�
=

�
�� R
i R

�
=

�
�� R

��i (�� R)

�
T =

�
0 �0
�0 0

�
with signature (1,3)

T

�
 R
�i R

�
=

�
0 �0
�0 0

� �
 R
�i R

�
=

�
i� R
 R

�
=

�
i� R

��i (i� R)

�
iii) Space reversal is an operator on E 
 F; represented by the matrix :

S = i0 =

�
0 �0
��0 0

�
with signature (3,1)

S

�
 R
�i R

�
=

�
0 �0
��0 0

� �
 R
�i R

�
=

�
i� R
� R

�
=

�
i� R

�i (i� R)

�
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S =

�
0 �i�0
i�0 0

�
with signature (1,3)

S

�
 R
�i R

�
=

�
0 �i�0
i�0 0

� �
 R
�i R

�
=

�
� R
i R

�
=

�
� R

�i (� R)

�
And we can state :

Proposition 84 The fundamental states  0 of elementary particles (fermions) are such that :
 L = i R for particles, their mass Mp is such that
h 0;  0i = 2Tr ( �R R) =M2

p

 L = �i R for antiparticles, their mass is
h 0;  0i = �2Tr ( �R R) = �M2

p

To each fermion is associated an antiparticle which has the same mass

Mp =
p
� h 0;  0i =

q
�2Tr ( �R R) (5.5)

With : # (�;{) [ ] = [C (�)] [ ] [% ({)]

[ 0] =

�
 R
�i R

�
) # (1;{) [ 0] = [ 0] [% ({)] =

�
[ R] [% ({)]
�i [ R] [% ({)]

�
so the relation does not depend on {: This fact is of interest because it shows that the dis-

tinction particle / antiparticle is not related to the �eld forces, but only to the intrinsic kinematic
characteristics of the particles.
As # preserves the scalar product : h# (�;{) 0; # (�;{) 0i = h 0;  0i the scalar product is

de�nite positive or negative on the sets :
(E� 
 F ) ( 0) = f# (�;{) 0; � 2 Spin(3; 1);{ 2 Ug for a �xed  0 such that  L = �i R
But these sets are not vector spaces. C (�r) preserves E�;and similarly the chiral relation

 L = �i R:

Physical states of elementary particles

For any  2 E 
 F the set f# (�;{) ; (�;{) 2 Spin(3; 1)
 Ug is the orbit of  : The relation of
equivalence  �  0 , 9 (�;{) 2 Spin(3; 1) 
 U :  0 = # (�;{) de�nes a partition of E 
 F
corresponding to the orbits. And each class of equivalence can be identi�ed with a fundamental
state  0:
All particles of the same type  0 have the same behavior with the same �elds { : so for  0;{

�xed, � then  are �xed uniquely
The measure of �elds is done by measuring the motion � of known particles  0 subjected to

�elds { : so from  ; 0 and � one can compute a unique value { of the �eld.
Which sums up to, if F is the set of possible states of elementary particles :

Proposition 85 The action of Spin(3; 1)�U on F is free and faithful : 8 2 F : # (�;{) =  ,
(�;{) = (1; 1)

Then # (�;{) = # (�0;{0) , (�;{) = (�0;{0)
We had seen that this is the case for the spinor. This is extended to the states of particles.
The orbits are not vector subspaces :

Theorem 86 For any fundamental state  0; the orbit (E 
 F ) ( 0) of  0 is a real �nite dimensional
Riemannian manifold, embedded in E 
 F

Proof. Spin(3; 1) and U are real Lie groups, thus manifolds, take a chart in each
The vector spaces tangent at any point to the manifold are subspaces of the vector space E 
 F
The metric on the tangent bundle is given by the scalar product, which is de�nite, positive or

negative.
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CPT Conservation Principle

It is acknowledged that physical laws are invariant by CPT operations. We have already seen the P
(space inversion) and T (time inversion). The C (Charge inversion) operation transforms a charge
into its opposite.
The operators P; T act on the spinor part :

P :

�
0 �0
��0 0

� �
 R
�i R

�
T : i

�
0 �0
�0 0

� �
 R
�i R

�
PT : i

�
��0 0
0 �0

�
PT =

�
�i R
� R

�
The operator [C] acts on the charge part of the tensor. If we rank the vectors of the basis of F

such that the n=2 �rst correspond to a �positive�charge and the last n=2 correspond to the opposite
charge, for each vector, one can write :

[ ] =

�
 R+  R�
�i R+ �i R�

�
Then the action of [C] is :�

 R+  R�
�i R+ �i R�

�
4�m

�
C1 C2
C3 C4

�
m�m

=

�
 R+C1 +  R�C3  R+C2 +  R�C4

�i R+C1 + �i R�C3 �i R+C2 + �i R�C4

�
and we have for PT �
�i R+C1 � i R�C3 �i R+C2 � i R�C4
� R+C1 + � R�C3 � R+C2 + � R�C4

�
=

�
 R�  R+
�i R� �i R+

�
and one deduces :

[C] =

�
0 iI
iI 0

�
As CPT keeps everything, this means that the set of possible values of the fundamental states  0

is organized : antiparticles have charges opposite to the particles. All particles have an associated
antiparticle, and there is no particle which is its own antiparticle (but bosons can be their own
antibosons), so the dimension of F is necessarily even (each basis vector corresponds to a combination
of charges).

The �ber bundle representation

The action # of the groups gives the value of  for any fundamental state  0 :
 : (E 
 F )� (Spin(3; 1)� U)!  = # (�;{) 0
Formally the action of Spin(3; 1) and of U are similar, but they have a di¤erent physical meaning.
� represents the arrangement of the tetrad of the particle with respect to the tetrad of the

observer. It changes if the observer changes (or if the observer changes his tetrad), but changes also
with the motion. So � represents a physical quantity.
The action of U is related to the choice of a gauge by the observer. The charge is measured by

comparing the behavior of the particle to the behavior of known particles. The charges correspond
to di¤erent vectors of the basis of F . They can be labelled di¤erently, their physical properties
do not change, but their representation changes. However it is assumed that the charge itself does
not change, notably with the motion : indeed it would mean a change of particle. The observer
is assumed to use a standard gauge : q 2 X (Q) :: q (m) = 'Q (m; (1; 1)) but, according to the
Principle of Relativity, he has freedom of gauge and we must consider any gauge.
We assume that there is a principal bundle Q (M;Spin(3; 1)� U; �U ) with �ber Spin(3; 1) � U

which represents the gauges used by observers. Then the state of the particle is represented by a
vector  of the associated vector bundle Q [E 
 F; #] with �ber E
F: This is a geometric quantity,
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which is intrinsic to the particle. The fundamental state of the particle is  0 and the observer
measures  (m) = # (� (m) ;{ (m)) 0 in his gauge 'Q (m;# (1; 1)). The measure of the state depends
on the observer.
Notice that, as a consequence of this representation, the conservation of the characteristics  0 of

the particle entails that of its charge and mass during its motion. It is built in the formalism. And,
meanwhile spinor and charge are entangled in the tensorial product E 
 F; the gravitational �eld
and the other �elds keep their originality : Q has for �ber Spin(3; 1)� U and not Spin(3; 1)
 U:
That we sum up in :

Proposition 87 There is a principal bundle Q (M;Spin(3; 1)� U; �U ) with trivialization 'Q (m; (�;{)).
The state of the particles is represented as vectors of the associated bundle Q [E 
 F; #]
The value of the state as measured by an observer is  (m) = # (� (m) ;{ (m)) 0:

Q [E 
 F; #] has for trivialization :
('Q (m; (1; 1)) ;  ) �

�
'Q
�
m;
�
s�1; g�1

��
; # (s; g) 

�
and holonomic basis:
(ei (m)
 fj (m))j=1:::ni=0::3 = ('Q (m; (1; 1)) ; ei 
 fj)

 (m) =
P4
i=1

Pn
j=1 [C (� (m))]

i
k [% ({ (m))]

j
l  

kl
0 (m) ei (m)
 fj (m)

[ ]4�n = [C (�)]4�4 [ ]4�n [� ({)]n�n
(5.6)

A change of trivialization with a section � (m) 2 X (Q) induces a change of gauge :

q (m) = 'Q (m; (1; 1))! eq (m) = e'Q (m; (1; 1)) = q (m) � � (m)�1
(� (m) ;{ (m)) = 'Q (m; (�;{)) = e'Q (m; (e�; e{)) : (e�; e{) = � (m) � (�;{)

ei (m)
 fj (m) = (p (m) ; ei 
 fj)! eei (m)
 efj (m) = #
�
� (m)

�1
�
(ei (m)
 fj (m))

[ (m)]!
h e (m)i = # (� (m)) [ (m)] = [C (s)] [ ] [% (g)]

(5.7)

The scalar product on E 
 F extends pointwise to Q [E 
 F; #] :
h (m) ;  0 (m)i = Tr

�
[ (m)]

�
[0] [ 

0 (m)]
�

It is preserved by # .
The state of a particle along its world line is then represented by a path on the vector bundle :
 (�) = # (�) 0 with # (�) = C (� (�)) ; � ({ (�))) and  0 2 bE0 
 F

h ; i = h 0;  0i = Ct, Tr
�
[ ]

�
[0] [ ]

�
= Tr

�
[ 0]

�
[0] [ 0]

�
(5.8)

We will use the following bundles, which can be seen as restrictions of the previous ones :
By restriction to � = 1 the principal bundle Q (M;Spin(3; 1)� U; �U ) is a principal bundle with

�ber U , that we denote PU with trivialization 'U (m;{) :
A change of trivialization with a section � (m) 2 X (PU ) induces a change of gauge, and of basis

fj (m) = (pU (m) ; fj) in the associated vector bundle PU [F; %] :

pU (m) = 'U (m; 1)! epU (m) = e'U (m; 1) = pU (m) � � (m)�1
{ (m) = 'U (m;{ (m)) = e'U (m;� (m) � { (m))

fj (m) = (p (m) ; fj)! efj (m) = %
�
� (m)

�1
�
(fj (m))

� (m)! e� (m) = % (� (m))� (m)

(5.9)
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5.2.2 The Electromagnetic �eld (EM)

In the Standard Model the Electromagnetic �eld (EM) is represented by the group U(1), the set
of complex numbers with module 1 (uu� = 1): It is a compact real abelian group. Its irreducible
representations are unidimensional, that is multiple of a given vector.
For any given arbitrary vector f there are 3 possible, irreducible, non equivalent representations

:
- the standard one : (F; %) : %

�
ei�
�
f = ei�f and F =

�
ei�f; � 2 R

	
- the contragredient : (F; %) : %

�
ei�
�
f = e�i�f and F =

�
ei�f; � 2 R

	
(Maths.23.1.2)

- the trivial representation : (F; %) : %
�
ei�
�
f = f and F = ffg

The Lie algebra is T1U (1) = R and %0 (1) = +i for the standard representation, �i for the
contragredient, and 0 for the trivial representation. The action of the EM �eld is then :

�M = [ ]
h
%0 (1)

�
� �A
�i
= i
�
� �A
�
[ ] ; or �i

�
� �A
�
[ ] ; or 0

with the variation � �A of the potential along the trajectory, � �A 2 R:
The EM �eld interacts similarly with the left and right part of a spinor, so, when no other �eld

is involved, the space of states of the particles is the sum of decomposable tensors : S 
 f: And
f = ei�fp with �xed vectors fp:Rather than to deal with 3 di¤erent representations, it is more
convenient to assign a charge to the particle : q = +1;�1; 0

F becomes : F =
�
eiq�f; � 2 R; q = +1;�1; 0

	
; with the action : %0 (1)

�
� �A
�
= iq

�
� �A
�
:

E is a complex vector space. The quantization of spinors �elds show that they can be di¤erenti-
ated by a scalar (the mass), the spin and a signed integer z 2 Z: It is then legitimate, when only the
gravitational and EM �elds are considered, to choose the vectors f 2 E: Inertial Spinors S0 which
di¤er by a complex number of module 1 have the same mass and inertial vector k; are di¤erentiated
by their charge q: The space of states of elementary particles, when only the gravitational and EM
�eld are considered, is then given by :bE� = �eiq�C (�)S0; � 2 R; q = +1;�1; 0; S0 2 E�	
The inertial spinors of elementary particles change, by the Charge operator as follows :
Positive particles :�

SR 0
�iSR 0

� �
0 i�0
i�0 0

�
=

�
0 iSR
0 ��SR

�
=

�
0 iSR
0 �i� (iSR)

�
Negative particles :�
0 SR
0 �iSR

� �
0 i�0
i�0 0

�
=

�
iSR 0
��SR 0

�
=

�
(iSR) 0
�i� (iSR) 0

�
The particle takes the opposite charge, and becomes an anti-particle, with the same mass and

opposite inertial vector.
Because the phase factor � has no impact on the kinematic behavior of particles, it can be

neglected : two particles such that their states di¤er by a phase factor ei� behave the same way for
the gravitational �eld, so they can be deemed representing the same state. This is the origin of the
introduction of rays in QM.
And the charge needs to be introduced explicitly only when the action of the EM �eld is considered

(then q acts through the derivative).

5.2.3 Momentum and energy

Momentum

The motion of a particle is still represented by an element of J1Cl(M) :
j1p = (m;�; � (Xr; Xw))
The extension of the spinor representation leads to de�ne the momentum of a particle as an

element of J1Q [E 
 F; #] :
M =(m; ; � ) 2 J1Q [E 
 F; #]



196 CHAPTER 5. FORCE FIELDS

and along the trajectory of a particle by a map :
R! J1Q [E 
 F; #] :: (m (t) ;  (t) ; � (t))
The relation between the motion and the momentum is represented for a spinor by the inertial

spinor S0:
By derivation we have :�
d
dt (t)

�
=
�
C
�
d�
dt

��
[ 0] [% ({)] + [C (�)] [ 0]

�
%
�
d{
dt

��
and we should consider quantities such as @�{: However even if �;{ are formally similar, they

do not have the same physical meaning as we have noticed. The charge is represented with respect
to the behavior of known particles, its value is conventional and { measures the impact of a change
of gauge by the observer. The momentum is related to the motion, but in a motion it is assumed
that the charge does not change : actually it would imply a change of the fundamental state.

Proposition 88 The momentum of a particle with motion : j1p = (m;�; � (Xr; Xw)) 2 J1Cl(M)
is represented by :

M =(m; = # (�;{) 0; � = # (� (Xr; Xw) � �;{) 0) 2 J1Q [E 
 F; #] (5.10)

# (� (Xr; Xw) � �;{) 0 = # (� (Xr; Xw) ; 1)# (�;{) 0 = # (� (Xr; Xw) ; 1) 
The value of a force �eld depends on the location. Due to the motion of the particle on its world

line the value of the �eld changes. The �eld acts onM by a di¤erential operator as we will see in
the next section.

Energy

For the kinetic energy we look for :
h ; � i = h# (�;{) 0; # (� (Xr; Xw) � �;{) 0i
=


 0; #

�
��1 � � (Xr; Xw) � �; 1

�
 0
�
= h 0; C (Ad��1� (Xr; Xw)) 0i

Let us denote Z = Ad��1� (Xr; Xw) 2 T1Spin (3; 1) in complex notation.
There is a vector similar to the inertial vector.

[ 0] =

�
 R
 L

�
C (Z) = � 12 i

�
� (Z) 0
0 �

�
Z
��

# (Z; 1) 0 = C (Z) [ 0] [� (1)] = � 12 i
�
� (Z) [ R]
�
�
Z
�
[ L]

�
h 0; # (Z; 1) 0i

= � 12 iT r
��

 �R  �L
� � 0 �i�0
i�0 0

� �
� (Z) [ R]
�
�
Z
�
[ L]

��
= 1

2Tr
�
� [ �R]�

�
Z
�
[ L] + [ 

�
L]� (Z) [ R]

�
Tr ([ �L]� (Z) [ R]) = Tr ([ �L]� (Z) [ R])

t
= Tr

�
[ R]

t
[� (Z)]

t
[ L]

�
= Tr

�
[ R]

� �
�
�
Z
��
[ L]

�
h 0; # (Z; 1) 0i = i ImTr [ �L]� (Z) [ R]

= i ImTr [ �L]
P3
a=1 Z

a�a [ R]
Let be : ka = Tr [ �L]�a [ R] then h 0; # (Z; 1) 0i = i Im ktZ

h 0; # (Z; 1) 0i = i Im ktZ
ka = Tr [ �L]�a [ R]

(5.11)

The vector k; as well as  0; is invariant in a change of gauge.
a = 1; 2; 3
Take Z = �!�a
h 0; # (�!�a; 1) 0iE = h 0; C (

�!�a) 0iE =


 0;� 12 iea 0�E = i Im ka

Im ka = � 12 h 0; ea 0iE = 1
i h 0; # (

�!�a; 1) 0iE
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Take Z = ��!�a+3 = i�!�a
h 0; # (��!�a+3; 1) 0iE = h 0; C (i

�!�a) 0iE = 1
2 i h 0; 0a 0iE = i Im ika = iRe ka

Re ka = 1
2 h 0; 0a 0iE =

1
i h 0; # (

��!�a+3; 1) 0iE
ka = 1

2 h 0; 0a 0iE + i
�
� 12 h 0; ea 0iE� = 1

2 h 0; (0a � iea) 0iE
ka = 1

2 h 0; (0a � iea) 0iE corresponds to the Dirac�s current.
If [ L] = �i [ R] : k

a = ��iT r
�
[ R]

�
�a [ R]

�
Tr
�
[ R]

�
�a [ R]

�
= Tr

�
[ R]

t
[�a]

t
[ R]

�
= Tr

�
[ R]

t
[�a]

t
[ R]

�t
= Tr

�
[ R]

�
[�a] [ R]

�t
Thus Tr

�
[ R]

�
�a [ R]

�
2 R

And we will denote as for spinors :

k = �i�M
2
p

2 k0

Mp =
p
� h 0;  0i =

p
�2Tr ( �R R)

ka0 =
2
M2

p
Tr
�
[ R]

�
�a [ R]

�
= Tr([ R]

��a[ R])

Tr( �R R)
2 R

h 0; # (Z; 1) 0i = i Im
�
�i�M

2
p

2 k
t
0

�
Z = �i�M

2
p

2 k
t
0ReZ

h 0; # (Z; 1) 0i = i Im ktZ
ka = Tr [ �L]�a [ R]

[ L] = �i [ R]) k = �i�M
2
p

2 k0 2 iR
ka0 =

Tr([ R]
��a[ R])

Tr( �R R)

h 0; # (Z; 1) 0i = �i�
M2

p

2 k
t
0ReZ

(5.12)

So we can de�ne the variation of kinetic energy as :

�K = 1
Mp

1
i h ; � i =

1
Mp

1
i h 0; # (Ad��1� (Xr; Xw) ; 1) 0i

�K = � 12�Mpk
t
0Re (Ad��1� (Xr; Xw))

(5.13)

In a continuous motion along the trajectory : � (Xr; Xw) =
d�
dt � �

�1

Quantization

The quantity  sums up everything (motion, kinematic, charge) about the particle. A particle is
then represented as a map :

j1 : R! J1Q [E 
 F; #] :: j1 (t) = (q (t) ;  (t) ; � (t))
and in a continuous motion :
 (t) = # (� (t) ;{ (t)) 0
� (t) = # (� (Xr; Xw) � �;{) 0 = #

�
d
dt� (t) � � (t)

�1 � �;{
�
 0 = #

�
d
dt� (t) ;{

�
 0

 is then a map :  : [0; T ] ! Q [E 
 F; #] belonging to a normed vector space V , and we can
implement the theorems of QM. The vector space is invariant by the action of Spin (3; 1) � U :
� (g � {;  ) (t) = # (g;{) (t) :
(V; #) is a representation of Spin (3; 1)�U: The observables of  are irreducible representations,

characterized by a scalar, the mass, and a signed integer, the charge. Moreover the representation
is faithful : for given values of  0;  (t) there is a unique couple (� (t)� { (t)) and thus a unique
� (t) : For a given observer � (t) admits two decompositions � (t) = ��w (t) � �r (t) :
The spin is represented by � (Xr (t) ; 0) 2 T1Spin (3) which is globally invariant by Spin (3) : Then

an observable of the spatial spinor # (� (Xr (t) ; 0) ;{) 0 corresponding to the rotational momentum
belongs to an irreducible representation of Spin (3) ; and is characterized by some j 2 1

2N: For
elementary particles j = 1

2 : The change Xr (t)! �Xr (t) is a discontinuous process.
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5.2.4 Matter �elds

Composite particles

Composite stable particles can be represented by tensorial product of the vectors of their constituents.
And this is the only way when the weak or strong interactions are involved.
When only the EM and gravitational �elds are involved the states of elementary particles can

be represented in E: Mathematically the tensorial product of non equivalent representations is well
de�ned, however particles with the same charge must behave similarly, and the action of %0 (1) should
be the same on all the components, which must then have a charge of the same sign (this does not
hold when the weak and strong interactions are considered). The electric charge must then be an
integer multiple of an elementary charge. : q 2 Z: Nuclei or ionized atoms can be represented by a
single spinor, with the total charge.
There is no extension to deformable solids, because the particles must have the same charge.

However one can consider matter �elds.

Matter and anti-matter

Anti-matter is the topic of many Sci-� stories, based on the idea that anti-matter annihilates with
matter.
The representation of the momentum by spinors leads to consider the existence of two distinct

classes of elementary particles, and this distinction does not involve the force �elds. The CPT
principle leads to the conclusion that particles and antiparticles have opposite charge, so, except
for the neutrinos, particle and antiparticles have opposite EM charge. But it does not mean that
particles and antiparticles annihilate with their opposite number : mesons are composed of a particle
and an anti-particle. Leptons (electrons and neutrinos) do not associate with other particles, and
they annihilate with their anti-particles. Other particles are composed of quarks, which have a
di¤erent behavior, and the outcome di¤ers (but can also leads to annihilation). More generally weak
and strong interactions must be considered on these issues.
One issue which is the topic of big experiments is if antiparticles have the same gravitational

charge as their associated particles. According to our representation - and the limited experimental
results available - they do.

Matter �elds

When particles are considered in a model they are naturally represented by  whose value can be
measured at each point of its trajectory. So the most natural way to represent the particle is by a
map :  : [0; T ]! Q [E 
 F; #] which can be parametrized either by the proper time or the time of
the observer.
It is usual to consider models involving particles of the same type, submitted to similar conditions

in a given area. Then, because they have the same behavior, one can assume that their trajectories
can be represented by a unique vector �eld. If their trajectories do not cross the particles can be
represented as section of J1Q [E 
 F; #] :

De�nition 89 A matter �eld is a section  2 X (Q [E 
 F; #]) which, at each point, represents
the state of the same particle (or antiparticle). More precisely we will assume :
9 (�;{) 2 X (Q) ;9 0 2 E 
 F :  L = �i R ::  (m) = # (�;{) 0R


k (m)k$4 (m) <1

Notation 90 X (M) is the set of matter �elds, X ( 0) the set of matter �elds corresponding to
 0 2 E 
 F:
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A necessary condition to be a matter �eld is : h (m) ;  (m)i = Ct: The matter �elds  2 X ( 0)
can equivalently be de�ned by a couple ( 0; � � g) where (� � g) 2 X (Q) : The representation is
faithful : for given values of  0;  (m) there is a unique couple (� (m)� g (m)) and thus a unique
� (m) : For a given observer � (m) admits two decompositions � (m) = ��w (m) ��r (m) : By choosing
aw > 0 then �w (m) de�nes a �eld of trajectories, as for the spinors.
The quantization is done as for Spinors �elds. The conservation of mass and charge is assured

through  0: However a density � can be de�ned as for spinors �elds, with the same continuity
equation. A matter �eld can represent a collection of identical particles whose trajectories do not
cross.
A matter �eld gives a section of the 1st jet bundle J1Q [E 
 F; #] :
J1 (m) = (m; (m) ; @� (m) ; � = 0::3)

and a section of J1Q [E 
 F; #] can represent a matter �eld whose motion is not necessarily
continuous :

� (m) = (m; (m) ; �� (m) ; � = 0::3)

Wave function

For a continuous matter �eld belonging to the Fréchet space :
L1 = L1 (M;Q [E 
 F; #] ; $4) =

�
 2 X (Q [E 
 F; #]) :

R


k (m)k$4 (m) <1

	
the evaluation map : E (m) : L1 ( 0)! E 
 F :: E (m) =  (m) is continuous.

Proof. The space of continuous, compactly supported maps is dense in L1 (M;E 
 F;$4) (Maths.2292)
Let be  n such a sequence converging to  in L1

h �  n;  �  ni (m) is continuous, � 0 on the open 
 so there are
An = minm2
 h �  n;  �  ni (m)R


An$4 �

R


h �  n;  �  ni$4

) An ! 0

)  n (m)!  (m)

Usually a collection of particles of di¤erent types is observed in a domain 
; the goal of the
experiment is to know the type and the motion of the particles. The states of the particles are
represented by a unique section :  2 L1 (M;Q [E 
 F; #]) and a primary observable is a linear map
� : L1 (M;Q [E 
 F; #]) ! V :: � ( ) = Y where V is a �nite dimensional vector space, depending
on the properties which are measured. The observable can address some features of the particles
only (such as the nature of the particles, their spin or charge,...).
There is a Hilbert space H associated to L1 (M;Q [E 
 F; #]) : This is an in�nite dimensional,

normed and separable vector space, and E 
 F is �nite dimensional. The evaluation map E (m) :
L1 ( 0) ! E 
 F :: E (m) =  (m) is continuous. To � is associated the self adjoint operatorb� = � � � ���1 on H.
We can apply the theorem 19. For any state  of the system there is a function : W :M�E
F !

R such that W (m;Y ) = Pr (� ( ) (m) = yj ) is the probability that the measure of the value of the
observable � ( ) of  at m is y. It is given by :

Pr (� ( ) (m) = yj ) = 1
k�( )k2H

R
Y 2$(m;y)

b� (� (Y ))2
H
� (Y ) =W (m; y)

This can be seen as a density of probability, corresponding to the square of a wave function.
Of particular interest is the observable � ( ) = h ; i which can be seen as the identi�cation

of the particles. The choice of the observable cannot be seen any longer as random. However one
can assume that the choice of the point m is random. L1 is partitioned in subsets L1 ( 0) and any
section  can be written as :  (m)=

P
j $j (m) j (m) where  j 2 L1 ( 0j) and $j (m) is the

characteristic function of the domain of  j : Then the probability :

Pr (h (m) ;  (m)i = hj; ji j ) =
�R


$4

��1 R


$j$4
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Di¤erence with the classic QTF interpretation

In QTF �matter �elds� are, mathematically, similar to the matter �elds de�ned here : they are
sections of associated vector bundles. In QTF the Geometry is that of Special Relativity and the
fundamental states  0 are actually represented explicitly as individual particles labeled by their
�avor, and usually their right or left parts when chirality is involved.... Overall, our picture provides
a representation which is consistent with Classic Physics and account for the usual features of
Quantum Physics. The main di¤erence comes from the interpretation of �virtuality�.
In our picture a particle at any time occupies a unique spatial location. To each particle p is

associated a map :  p : R ! Q [E 
 F; #] ::  p (t) which can be seen as a trajectory in a given
matter �eld :  p (m (t)). A matter �eld, completed with a density, can also be used to represent
collectively a collection of particles which follow similar trajectories, which do not cross, and, with
a density �; there is not necessarily a particle at a given point. In both cases the matter �eld is just
a blue print for the speci�cation of the variables : it is a virtual particle, in the meaning that its
speci�cs (initial location and state, observer) are not incorporated. The matter �eld can be used in
a model, and PDE provide general solutions which are then �tted to the initial conditions.
In a strict interpretation of standard QM a physical object has no property until a measure of this

property has been done. This is true of any property, including the location. This is a bit awkward
because the observable usually associated to the location (a spatial or temporal coordinate) is not
compact : its spectrum is continuous and cannot provide a precise answer (meanwhile any quantity
related to the SO(3) group, which is compact, provides a set of �xed solutions). There are many
subtle or less subtle (such as the recurring usage of Dirac�s function which are, usually, nothing
more than the mathematical expression of a tautology) solutions to circumvent the problem, but
the main consequence is that to each particle is associated a section of X ( 0) : a given particle
can be present everywhere. Then an observable becomes an operator which acts locally in the local
Hilbert space in which is valued the state of the particle (and not on the maps as in our picture). A
complication arises from the fact that now many particles can potentially be at the same location.
There are some restrictions but, as a consequence the Hilbert space to consider is the tensorial
product of Hilbert spaces, and as the number of particles is not �xed, the structure involved is a
Fock space (the sum �1n=0 
nH) . This is actually the tool to study the creation and annihilation of
particles in discontinuous processes, but is, as one can guess, inappropriate for continuous processes.
Virtual particles become even more virtual : they are just collections of tests functions used to de�ne
distributions.
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5.3 CONNECTIONS

When a particle travels on a path V = dq
dt the value of the �eld changes, and this variation is valued in

the Lie algebra : p (m)�1 �p0 (m)V = �p (m) 2 T1U: It acts on the particle : it changes its momentum
(and thus its motion through the derivative) and this action depends both on the state  of the
particle and on �p (m) : So it can be represented as a map : D : J1Q [E 
 F ] ! J1Q [E 
 F ] : It is
assumed that this action is linear. Then the action can be represented either as a linear di¤erential
operator or a covariant derivative (which combines the operator and the derivation). In both cases
the �eld is represented as a connection.

5.3.1 Connections in Mathematics

Our purpose is to de�ne a derivative of sections on �ber bundles (Maths.27). Vectors on the tangent
space to a �ber bundle split in a part related to the base M and the other to the �ber V :

' :M � V ! P :: p = ' (m;u)
'0 : TmM � TuV ! TpP :: vp = '0m (m; g) vm + '

0
u (m; g) vu

The vertical space VpP = f�0 (p) vp = 0g of TpP does not depend on the trivialization and is
isomorphic to the tangent space of V .
However the splitting between '0m (m; g) vm; '

0
u (m; g) vu is not unique and depends on the triv-

ialization.
A connection is a projection of vp on the vertical space VpP: It is a one form on P valued in the

vertical bundle V P: So it enables to distinguish in a variation of p what can be imputed to a change
of m (the location) and what can be imputed to a change of u (the �eld). A section of P depends
only on m : p (m) = ' (m;u (m)) so by di¤erentiation with respect to m this is a map from TM
to TP and the value of a connection at each p (m) is a one form over M , valued in V P; called the
covariant derivative. So it meets our purpose. Moreover because the vertical space is isomorphic
to the tangent space on V , the value of the connection can be expressed in a simpler vector space.
The covariant derivative issued from a linear connection on a vector bundle P (M;V; �) reads:

rX =
P3
�=0

Pm
a=1

�
@�X

i (m) + �j�i (m)X
j (m)

�
ei 
 d��

where �j�i (m) is the Christo¤el symbol of the connection and depends on the �eld.
This is the simplest form for the de�nition of a derivative on a �ber bundle. Readers who are

familiar with GR are used to Christo¤el symbols, and their de�nition through the metric. We will
see how it works.
All that holds for any �ber bundle, but the connection takes di¤erent forms according to the kind

of �ber bundle. With a principal bundle one can de�ne many others �ber bundles by association
and similarly a connection on a principal bundle de�nes a connection on any associated bundle. So
connections on principal bundles have a special importance.
The covariant derivative acts on sections, so on spinor or matter �elds, and involves the derivative.

A covariant derivative along the velocity gives an action on the derivative with respect to t, and so
an operator on dS

dt ;
d 
dt ; and on maps S (t) ;  (t) if the action is continuous.

The second way to de�ne a connection is through di¤erential operators acting on the �rst jet
prolongation of vector bundles 3 , that is on moments, and it does not assume that the maps are
continuously di¤erentiable.
r : J1PV ! PV 
 TM� ::

r
�
m; zt; zi�; � = 0:::3

�
=
P3
�;�=0

Pn
i=1

�
zi� +

Pp
j=1 �

j
�jz

j (m)
�
ei (m)
 d��

then there is no derivative involved : actually zi� accounts for it. This is useful for single particles,
whose state is de�ned as a map R! J1Q [E 
 F ] : zi� ! dz

dt .

3One can de�ne covariant derivarive of order greater than 1 this way.
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5.3.2 Connection for the force �elds other than Gravity

Connection on the principal bundle PU

Connection
Its tangent space is given by vectors :
vp = '0Gm (m; g) vm + '

0
G{ (m; g) vg =

P3
�=0 v

�
m@m� + � (�) (p) with � = L0g�1g (vg)

where the fundamental vectors are :
� : T1U ! V PU :: � (�) ('U (m; g)) = '0Ug (m; g)L

0
g�1g (�) with L

0
g (h) the derivative of the left

translation : Lg : U ! U :: Lg (h) = g � h
The vertical space V PU = ker�0U =

�
'0Ug (m; g) vg; vg 2 T�U

	
is isomorphic to the Lie algebra.

A connection is a tensor, a one form �A 2 �1 (TPU ;V PU ) on TP valued in V P :
�A (p)

�P3
�=0 v

�
m@m� + � (�) (p)

�
= �

�
� + L0g�1g

�P3
�=0 v

�
m
�A� (p)

��
(p)

The connection form b�A of �A is :b�A (p) : TpPU ! T1U : �A (p) (vp) = �
�b�A (p) (vp)� (p)

A connection �A 2 �1 (TPU ;V PU ) is principal if it is equivariant by the right action :
8p; g : � (p;g)� �A (p) = �A (� (p;g)) �0p (p;g) = �0p (p;g) �A (p)

where � (p;g)� is the pull-back of �A:4

Its value for any gauge on PU can be de�ned through its value for p = 'U (m; 1)

�A (p (m)) ('0m (m; 1) vm + � (�) (p (m))) = �
�
� +

P
�
�A� (m) v

�
m

�
(p (m))

where �A, the potential of the connection, is a map valued in the �xed vector space T1U: :

�A 2 �1 (M ;T1U) : TM ! T1U :: �A (m) =
3X

�=0

mX
a=1

�Aa� (m)
�!
� a 
 d�� (5.14)

�A is a one form on TM , and transforms as such in a change of chart, but this is not a tensor in
T1U: In a change of gauge : pU (m) ! epU (m) = pU (m) � � (m)�1 ; �A changes with an a¢ ne law,
which involves the derivative �0 (m) of the change of gauge :

�A (m)! e�A (m) = Ad�

�
�A (m)� L0��1 (�)�0 (m)

�
and this feature is at the origin of many speci�cities (and complications, such as the Higgs

boson...).

Covariant derivative on PU
The covariant derivative of a section pg= 'U (m; g (m)) 2 X (PU ) is then :

rUpg=
�
L0g�1g

�
(g0 (m)) +

3X
�=0

Adg�1 �A� (m) d�
� 2 �1 (M;T1U) (5.15)

which can also be written : S�pg = �
�
rUpg

�
(pg (m))

and for the holonomic gauge : pU= 'U (m; 1) : rUpU=
P3
�=0

�A� (m) d�
�

The covariant derivative is invariant in a change of gauge :
pU (m)! epU (m) = pU (m) � � (m)�1
�A (m)! e�A (m) = Ad�

�
�A (m)� L0��1 (�)�0 (m)

�
rUpg ! r̂Upg = rUpg
4For the precise de�nition of pull-back, push-forward, of tensors see Maths.16.1 and the Formulas in the Annex.
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Covariant derivative on the associated bundles

With the connection on PU it is possible to de�ne a linear connection and a covariant derivative
rF , 1 form on M acting on sections � (m) =

Pn
j=1 �

j (m) fj (m) of the associated vector bundle
PU [F; %], through %0 (1) (Maths.27.4). The formula is, in the standard gauge p1= 'U (m; 1) :

rF� =
3X

�=0

 
@��

i +
nX
i=1

h
�A�

ii
j
�j

!
fi (m)
 d�� 2 �1 (M;PU [F; %]) (5.16)

with the

Notation 91
h
�A�

i
=
Pm
a=1

�Aa� [�a] is a n� n matrix representing

%0 (1)
�Pm

a=1
�Aa�
�!
� a

�
=
Pm
a=1

�Aa�%
0 (1)

��!
� a

�
2 L (F ;F )

and
h
�A�

ii
j
has the same meaning as the Christo¤el symbol � of a linear connection.

A covariant derivative, when acting on a vector �eld u 2 TM; becomes a section of the vec-
tor bundle PU [F; �], and transforms as such in a change of trivialization, so we have a map :
X (PU [F; �])�X (TM)! X (PU [F; �]) : It meets our goal, and it can be proven than this is the only
way to achieve it.
For the interactions with particles, this is the potential which represents the �eld. There has

been some questions about the physical meaning of the potential. However some experiments such
as Aharonov-Bohm�s shows that, at least for the electromagnetic �eld, the potential is more than a
simple formalism.
In QTF, because the groups are matrices with complex coe¢ cients, and the elements of the Lie

algebra T1U are operators in the Hilbert spaces, it is usual to introduce the imaginary i everywhere,
and to consider the complexi�ed of the Lie algebra T1U: However the group U is a real Lie group,
and its Lie algebra is a real vector space, it is clear that the potential �A� belongs to the real algebra,
so it is a real quantity. And there are as many force carriers bosons (12) as the dimension of U:

The electromagnetic �eld

The Lie algebra of U(1) is R: So the potential �A of the connection is a real valued one form on M :
�A =

P3
�=0

�A�d�
� 2 �1 (M ;R) which is usually represented as a vector �eld and not a form.

With the convention about the action % :

%0 (1)
�
�A�
�!
�
�
= iq �A�

The action of U(1) depends on the charge of the particle and the covariant derivative reads :

rF� = @� + qi �A� (5.17)

5.3.3 The connection of the gravitational �eld

Potential

The principles are similar. The vertical bundle V PG of the principal bundle PG (M;Spin(3; 1); �G)
is isomorphic to the Lie algebra T1Spin (3; 1) :
The potential G of a principal connection G on PG is a map : G 2 �1 (M ;T1Spin (3; 1)) :

G 2 �1 (M ;T1Spin (3; 1)) : TM ! T1Spin(3; 1) ::

G (m) =
P6
a=1

P3
�=0G

a
� (m)

�!� a 
 d�� =
P3
�=0 � (Gr� (m) ; Gw� (m)) d�

� (5.18)
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Gr� (m) ; Gw� (m) are two vectors 2 R3. So the gravitational �eld has a transversal (Gw�) and
a rotational (Gr�) component. This is the unavoidable consequence of the gauge group.

Gr (m) =
P3
�=0 � (Gr� (m) ; 0) d�

� is a map G 2 �1 (M ;T1Spin (3)) : TM ! T1Spin(3)

In a change of gauge the potential transforms by an a¢ ne map :

p (m)! ep (m) = p (m) � � (m)�1 : G (m)! eG (m) = Ad� �G (m)� L0��1 (�)�0 (m)�
There are several covariant derivatives deduced from this connection.

Covariant derivative on PG

The connection acts on sections of the principal bundle, and the covariant derivative of � ='G (m;� (m)) 2
X (PG) is, as above :

rG : X (PG)! �1 (M ;T1Spin) ::

rG�=
P3
�=0Ad��1

�
@�� � ��1 +G�

�
d��

(5.19)

The covariant derivative is invariant in a change of gauge :
p (m)! ep (m) = p (m) � � (m)�1
rG� !]rG�=rG�
The action of the connection on a section of the 1st jet extension J1Cl (TM) is then given by a

di¤erential operator :
j1� = (m;�; � (Xr�; Xw�) ; � = 0::3) 2 J1Cl (TM)! (m;�;Ad��1 (� (Xr�; Xw�) +G�) ; � = 0::3) 2

J1Cl (TM)

or equivalently : rG� j1� =
P3
�=0Ad��1 (� (Xr�; Xw�) +G�) d�

�

Let be a particle with continuous trajectory along V: Its motion is :
d�
dt � �

�1 = � (Xr (t) ; Xw (t))

with � = �w � �r = (aw + � (0; w)) � (ar + � (r; 0))

Xr ' � 12
�
1 + 3

4

k�!v k2
c2

�
j
��!v
c

��
d
dt

�!v
c

�
+
h
1� 1

2j
��!v
c

�
j
��!v
c

�i�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw '
�
1 +
k�!v k2
c2 � 1

2j
��!v
c

�
j
��!v
c

���
d
dt

�!v
c

�
+

�
1 + 1

2

k�!v k2
c2

�
j
��!v
c

��
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

The action of the gravitational �eld on the motion is :
d�
dt � �

�1 ! d�
dt � �

�1 +
P3
�=0 V

�� (Gr�; Gw�)

So, in the usual conditions :
the component bGr =P3

�=0 V
�� (Gr�; 0) acts on the rotational motion :

Xr !
�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt +

bGr
the component bGw =P3

�=0 V
�� (0; Gw�) acts on the translational motion (as an acceleration) :

Xw ! d
dt

�!v
c +

bGw
Covariant derivative for the adjoint bundle

The adjoint bundle PG [T1Spin (3; 1) ;Ad] is a vector bundle with the action Ad whose derivative
at g = 1 is the adjoint action :
(Adg)

0 jg=1 (X) (u) = [X;u]
so the covariant derivative reads, for any sectionX = � (Xr (m) ; Xw (m)) 2 X (PG [T1Spin (3; 1) ;Ad]) :
rX =

P3
�=0 (@�X + [G�; X]) d�

� 2 �1 (M ;PG [T1Spin (3; 1) ;Ad])
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Covariant derivative for spinors

The covariant derivative reads for a section S 2 X (PG [E; C]) :

rSS =
3X

�=0

(@�S + C (G�)S) d�
� =

3X
�=0

(@�S + C (� (Gr�; Gw�))S) d�
� (5.20)

The connection is evaluated in the holonomic gauge : S =(p (m) ; S (m)) = ('G (m; 1) ; S (m)) :
It preserves the chirality.
In a change of gauge :
p (m)! ep (m) = p (m) � � (m)�1
a section on X (PG [E; C]) transforms as : eS (m) = C (� (m))S (m)
The covariant derivative transforms as a section of PG [E; C] so the operator reads: rS :

X (PG [E; C])! �1 (M ;X (PG [E; C]))

Covariant derivatives for vector �elds on M

The connection on PG induces a linear connection rM on the associated vector bundle PG
�
R4;Ad

�
, which is TM with orthonormal bases. Here Ad acts on vectors as the matrix h (s) 2 SO (3; 1) it
is then more convenient to use the representation of T1Spin(3; 1) by matrices of so(3; 1) :

[�M� ] =
P6
a=1G

a
� [�a] =

2664
0 G1w� G2w� G3w�

G1w� 0 �G3r� G2r�
G2w� G3r� 0 �G1�
G3w� �G2r� G1r� 0

3775
In a change of gauge :

G (m)! eG (m) = Ad� �G (m)� L0��1 (�)�0 (m)�he�M�

i
= [h (s)]

�
[�M�]�

�
h
�
s�1
��
[h (s0)]

�
The covariant derivative of a section U 2 X

�
PG
�
R4;Ad

��
is then :

rMU =
3X

�i=0

0@@�U i + 3X
j=0

[�M� (m)]
i
j U

j

1A "i (m)
 d�� (5.21)

For any vector �eld W : rMW : X (TM) ! X (TM) is a linear map which preserves the scalar
product of vectors :



rMWU;rMWV

�
= hU; V i

The action of the connection can be extended from vector �elds to any tensor on TM , by linearity.

The Levi-Civita connection

Historically (Kobayashi and Nomizu, Lang,...) the theory of �ber bundles has been developed from
the study of the tangent bundle TM and of the set of all linear bases (holonomic or not). TM can
be considered as a principal bundle with group GL (4;R) and an associated vector bundle whose
sections are vector �elds. In this context Maths.16.4), the connections (called a¢ ne connections)
are bilinear operators acting on vector �elds : r 2 L2 (X (TM) ;X (TM) ;X (TM)) : They read in
holonomic basis of a chart :
rV =

P
�

�
@�V

� +
P
 �

�
�V


�
@�� 
 d��

with Christo¤el symbols ��� (m) which change in a change of chart in a complicated way (similar
to the potential). Their action is extended to tensors by linearity. There can be many di¤erent a¢ ne
connections. An a¢ ne connection is said to be symmetric if ��� = �

�
� :

When there is a metric (Riemannian or not) de�ned by a tensor g on a manifold, an a¢ ne
connection is said to be metric if r�g = 0 : it preserves the scalar product of two vectors. There is a
unique connection which is both metric and symmetric, called the Levi-Civita connection. It reads :
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��� =
1
2

P
� g

�� (@�g� + @g�� � @�g�)
And this has been the bread and butter of workers on GR for decenniums, in a formalism where

the metric is at the core of the model.
In the �modern� theory of �ber bundles, in a principal bundle we can have any group, and it

can be associated to almost any vector space. But the associated vector bundles inherit natural
properties : because the representation

�
R4;Ad

�
is unitary, the bases (such as "i) of PG

�
R4;Ad

�
are orthonormal, there is a scalar product and the metric is de�ned through the tetrad. As a
consequence the linear connections inherit also special properties : any linear, principal connection
G on PG induces a linear connection on PG

�
R4;Ad

�
which is metric. Its covariant derivative rM

can be written with Christo¤el symbol �M in the basis "i or translated into the holonomic basis
(@��)

3
�=0 of any chart to give an a¢ ne connection with Christo¤el coe¢ cients b��� :b��� = P i

�
@�P

0i
� + �

i
M�jP

0j
�

�
In matrix form :b��� = hb��i

�
;�iM�j = [�M�]

i
j ;

[�M�] =
P6
a=1Ga� [�a]hb��i = [P ] ([@�P 0] + [�M�] [P

0]), [�M�] =
�
[P 0]

hb��i� [@�P 0]� [P ]
Any a¢ ne connection deduced this way from a principal connection is necessarily metric, but it

is not necessarily symmetric (Maths.2191).
To sum up :
- A¢ ne connections are de�ned in the strict framework of the tangent bundle, and the Levi-

Civita connection is one of these connections, with speci�c properties (it is metric and symmetric);
the covariant derivative which is deduced acts only on vectors �elds (or tensors) of the tangent
bundle.
- Connections on principal bundle de�ne connections on any associated vector bundle and act

on sections of these bundles. So one can compute a covariant derivative acting on vectors �elds or
tensors of the tangent bundle, which is necessarily metric but not necessarily symmetric.
So, using the formalism of �ber bundles we do not miss anything, we can get the usual results,

but in a more elegant and simple way. One can require from the principal connection G on PG
that the induced connection on TM is symmetric, which will then be identical to the Levi-Civita
connection. The condition is :
8�; �;  :hb��i

�
= ([P ] ([@�P

0] + [�M�] [P
0]))


� =

hb��i
�
= ([P ] ([@�P

0] + [�M� ] [P
0]))


�

The Levi-Civita connection is the natural choice in a theory of gravitation based on the metric,
such as the Einstein�s theory, but other choices are possible and have been considered. In the
formalism of a¢ ne connections they lead to great complications, meanwhile in the �ber formalism
this is to impose the condition that the connection is symmetric, which is always possible at any
time, which brings complications. These issues are addressed with the review of Einstein�s theory
in the following.

5.3.4 The total connection

Action of the �elds

Proposition 92 There are on Q a connection de�ned by the potentials
G 2 �1 (M ;T1Spin (3; 1)) : TM ! T1Spin(3; 1) ::

G (m) =
P3
�=0 � (Gr� (m) ; Gw� (m)) d�

�

�A 2 �1 (M ;T1U) : TM ! T1U :: �A (m) =
P3
�=0

Pm
a=1

�Aa� (m) �a 
 dm�

The expression of the covariant derivative di¤ers for a matter �eld - which is a section of a vector
bundle - and for a single particle.
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Matter �eld
A matter �eld is represented by a section  2 Q [E 
 F; #] : Its covariant derivative is :
r : Q [E 
 F; #]! TM� 
Q [E 
 F; #] :: r =

P3
�=0

P4
i=1

Pn
j=1 [r� ]

i
j ei 
 fj 
 d��

[r� ] = [@� ] + [C (G�)] [ ] + [ ]
h
%0 (1)

�
�A�

�i
 = # (�;{) 0
r� = [C (@��)] [ 0] [% ({)] + [C (�)] [ 0] [%0 ({) (@�{)]
+ [C (G�)] [C (�)] [ 0] [% ({)] + [C (�)] [ 0] [% ({)]

h
%0 (1)

�
�A�

�i
[C (@��)] [ 0] [% ({)] = [C (�)]

�
C
�
��1 � @��

��
[ 0] [% ({)] = # (�;{)

��
C
�
��1 � @��

��
[ 0]

�
[C (�)] [ 0] [%

0 ({) (@�{)] = # (�;{)
�
[ 0] [%

0 ({) (@�{)]
�
%
�
{�1

���
[%0 ({) (@�{)]

�
%
�
{�1

��
= [% ({)]

�
%0 (1)L0{�1{ (@�{)

� �
%
�
{�1

��
= Ad{

�
%0 (1)L0{�1{ (@�{)

�
=
�
%0 (1)Ad{L

0
{�1{ (@�{)

�
=
�
%0 (1)R0{�1{L

0
{1L

0
{�1{ (@�{)

�
=
�
%0 (1)R0{�1{ (@�{)

�
=
�
R0{�1{ (@�{)

�
(Maths.1900,23.2.1)

[C (G�)] [C (�)] [ 0] [% ({)]
= [C (�)]

�
C
�
��1

��
[C (G�)] [C (�)] [ 0] [% ({)] = # (�;{) ([C (Ad��1G�)] [ 0])

[C (�)] [ 0] [% ({)]
h
%0 (1)

�
�A�

�i
= [C (�)] [ 0] [% ({)]

h
%0 (1)

�
�A�

�i �
%
�
{�1

��
[% ({)]

= [C (�)] [ 0]
h
Ad{%

0 (1)
�
�A�

�i
[% ({)] = [C (�)] [ 0]

h
%0 (1)Ad{

�
�A�

�i
[% ({)]

= # (�;{)
�
[ 0]

h
%0 (1)Ad{

�
�A�

�i�
= # (�;{)

�
[ 0]

h
Ad{

�
�A�

�i�
[r� ]
= # (�;{)

��
C
�
��1 � @��

��
[ 0] + [C (Ad��1G�)] [ 0] + [ 0]

�
R0{�1{ (@�{)

�
+ [ 0]

h
Ad{

�
�A�

�i�
[r� ]
= # (�;{)

��
C
�
��1 � @�� +Ad��1G�

��
[ 0] + [ 0]

h
R0{�1{ (@�{) +Ad{

�
�A�

�i�
��1 � @�� +Ad��1G� = Ad��1

�
@�� � ��1 +G�

�
= rG��

[r� ] = # (�;{)
��
C
�
rG��

��
[ 0] + [ 0]

h
R0{�1{ (@�{) +Ad{

�
�A�

�i�
Usually this is the value of the covariant derivative along the trajectory which is considered. So

we have, along the trajectory of a particle which follows the integral curves of the vector �eld V
associated to the section  :

#
�
��1;{�1

�
rV  

=
�
C
�
rGV �

��
[ 0] + [ 0]

h
R0{�1{

�
d{
dt

�
+Ad{

�P3
�=0 V

� �A�

�i
The motion is continuous and the particle keeps its characteristics (that is  0) : d{dt = 0 thus :

[rV  ] = # (�;{)
��
C
�
rG��

��
[ 0] + [ 0]

h
Ad{

�
�A�

�i�
and rV  2 X (Q [E 
 F ]) :
The vector �eld V is de�ned through the section � by :
U (m) = � c

hAd�"0;"0iCl
Ad�"0

V (q (t)) = dq
dt = c"0 +

�!v =
P3
�;i=0 [P ]

�
j [U ]

j
@��

thus the tetrad is involved in the computation of :
d 
dt =

P3
�=0 V

� (q (t)) @� (q (t)) =
P3
j=0 [U ]

jP3
�=0i [P ]

�
j @� (q (t))bG = �

� bGr (t) ; bGw (t)� =P3
j=0 [U ]

jP3
�=0i [P ]

�
j � (Gr� (q (t)) ; Gw� (q (t)))b�A (t) =P3

j=0 [U ]
jP3

�=0 [P ]
�
j
�A� (q (t))

[r� ] = # (�;{)
��
C
�
Ad��1

�
@�� � ��1 +G�

���
[ 0] + [ 0]

h
Ad{

�
�A�

�i�
[rV  ] =

P3
j=0 [U ]

jP3
�=0 [P ]

�
j [r� ]

(5.22)
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The extension to a section j1 of the �rst jet bundle J1Q [E 
 F; #] is immediate : the connection
acts then as a di¤erential operator :

j1 (m) = (m; (m) ; �� (m) ; � = 0::3)�
r�j1 

�
= # (�;{)

�
[C (Ad��1 (� (Xr�; Xw�) +G�))] [ 0] + [ 0]

h
Ad{

�
�A�

�i�
Single particle
It is represented by a map :
M : R! J1Q [E 
 F; #] ::M (t)= (q (t) ;  = # (�;{) 0; � = # (� (Xr; Xw) � �;{) 0)
There is no one form r�; but a di¤erential operator on the 1st jet bundle :
rV : C

�
R; J1Q [E 
 F; #]

�
! C

�
R; J1Q [E 
 F; #]

�
along the trajectory.

rV  = [� ] +
h
C
�P3

�=0 V
�G�

�i
[ ] + [ ]

h
%0 (1)

�P3
�=0 V

�
Pm
a=1

�Aa�
�!
� a

�i
and with the same computation as above :

rV  = # (�;{)
�h
C
�
Ad��1

�
� (Xr; Xw) +

�P3
�=0 V

�G�

���i
[ 0] + [ 0]

h
Ad{

P3
�=0 V

�
Pm
a=1

�Aa�
�!
� a

i�
The velocity depends on � (and not its derivative) through :
U (t) = � c

hAd�(t)"0;"0iCl
Ad�"0

V � (t) =
P3
i=0 [P

0 (q (t))]
�
i U

i (t)
then :bG (t) = �

� bGr (t) ; bGw (t)� =P3
j=0 [U (t)]

jP3
�=0i [P (q (t))]

�
j � (Gr� (q (t)) ; Gw� (q (t)))b�A (t) =P3

j=0 [U (t)]
jP3

�=0 [P (q (t))]
�
j
�A� (q (t))

[rV  ] = # (�;{)
�h
C
�
Ad��1

�
� (Xr; Xw) + bG��i [ 0] + [ 0] hAd{ b�A (t)i� (5.23)

In a continuous motion : � (Xr; Xw) =
d�
dt � �

�1:

Energy of a particle

The variation of kinetic energy on a trajectory V =
P3
�=0 V

�@�� is :
�K = 1

Mp

1
i h ; � i = �

1
2�Mpk

t
0Re (Ad��1� (Xr; Xw))

The energy exchanged by the particle with the �elds can be de�ned by :
1
Mp

1
i

D
 ; [C (�G)] [ ] + [ ]

h
%0 (1)

�
� �A
�iE

and the variation of the total energy of the particle is :

�E = 1
Mp

1
i

D
 ; � + [C (�G)] [ ] + [ ]

h
%0 (1)

�
� �A
�iE

= 1
Mp

1
i

D
# (�;{) 0; # (�;{)

��
C
�
rG��

��
[ 0] + [ 0]

h
Ad{

�
�A�

�i�E
= 1

Mp

1
i



 0;
�
C
�
rGV �

��
[ 0]

�
+ 1

Mp

1
i

D
 0; [ 0]

h
Ad{

�b�A�iE
= �K + 1

Mp

1
i

D
 0;
h
C
�
Ad��1

� bG��i [ 0]E+ 1
Mp

1
i

D
 0; [ 0]

h
Ad{

b�AiE
1
Mp

1
i

D
 0;
h
C
�
Ad��1

� bG��i [ 0]E = ��Mp

2 k
t
0ReAd��1

� bG�
1
Mp

1
i

D
 0; [ 0]

h
Ad{

b�AiE = 1
Mp

1
i Tr

�
[ 0]

�
0 [ 0]

h
Ad{

b�Ai�
= 1

Mp

1
i

Pm
a=1

�
Ad{

b�A�a Tr �[ 0]� 0 [ 0] [�a]�
Tr [ 0]

�
0 [ 0] [�a] = Tr

�
[ 0]

�
0 [ 0] [�a]

��
= Tr [�a]

�
[ 0]

�
[0] [ 0] = �Tr [�a] [ ]� [0] [ ] =

�Tr [ ]� [0] [ ] [�a]
Thus : 1i Tr

�
[ 0]

�
0 [ 0] [�a]

�
= ImTr

�
[ 0]

�
0 [ 0] [�a]

�
There is a vector kc similar to k characteristic of the charges of the particle :
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1
Mp

1
i

D
 0; [ 0]

h
Ad{

b�AiE = 1
Mp

1
i

Pm
a=1

�
Ad{

b�A�a Tr �[ 0]� 0 [ 0] [�a]�
= 1

Mp

Pm
a=1

�
Ad{

b�A�a ImTr �[ 0]� 0 [ 0] [�a]� = ��Mp

2 k
t
c

h
Ad{

b�Ai
a = 1:::m : kac = �2� 1

M2
^p

1
i

D
 0; [ 0]

h
Ad{

b�AiE = �2� 1
M2

^p
ImTr

�
[ 0]

�
0 [ 0] [�a]

�
The expression for kc depends on the units, to be consistent, for the EM �eld :

%0 (1)
�
�A�
�!
�
�
= iq �A� = [�] �A�

kEM = �2� 1
M2

^p
ImTr

�
[ 0]

�
0 [ 0] iq

�
= �2� 1

M2
^p
qReTr

�
[ 0]

�
0 [ 0]

�
= �2q

�E =
1

Mp

1

i
h ;rV  i=�

1

2
�Mp

n
kt0ReAd��1

�
� (Xr; Xw) + bG�+ ktc �Ad{ b�A�o (5.24)

This quantity is the balance of the energy exchanged by the particle along its trajectory. We will
see in the following that, at equilibrium : �E = 0: An increase in the kinetic energy is balanced by
an energy received from the �elds, and conversely a decrease of the kinetic energy implies a transfer
of energy to the �elds. For a free particle : 1

i h ;rV  i = �K which is minimum for a continuous
motion:

5.3.5 Geodesics

There are several concepts of geodesics, parallel transport, lift of a curve, which are related but
distinct. We will see here the concepts related to the parallel transport of a vector along a curve by
a connection. It can be implemented with any connection de�ned over the tangent bundle TM of
the base manifold, and is of particular interest for the connection induced by the gravitational �eld.

Parallel transport of a vector by a connection

Let C be a curve de�ned by a path p : R ! M : p(�) with p(0) = a; and a vector v 2 TaM: The
vector, parallel transported by the connection along C, is given by a map :

U : R! Tp(�)M : U(�) such that : rMdp
d�

U (�) = 0; U (0) = v

thus we have the di¤erential equation with U (�) =
P3
i=0 U

i (�) "i (p (�))

rMdp
d�

U (�) =
P3
i=0

�
d
dtU

i +
P3
�;j=0 �M (p (�))

i
�j U

j
�
dp
d�

���
"i (p(t)) = 0

dUi

d� +
P3
�j=0 �M (p (�))

i
�j U

j
�
dp
d�

��
= 0

Geodesic

A geodesic is a path such that its tangent is parallel transported by the connection :
p : R!M : p(�) with p(0) = a

U (�) = dp
d� =

P3
i=0 U

i (�) "i (p (�)) =
P3
k;�=0 U

k (�)P�k (p (�)) @��
dUi

d� +
P3
�jk=0 �M (p (�))

i
�j U

j (�)Uk (�)P�k (p (�)) = 0
or in matrix form :�
dU
d�

�
+
P
� ([�M�] [U ]) ([P ] [U ])

�
= 0

The scalar product hU;Ui is constant :
d
d� hU;Ui =

d
d�

�
[U ]

t
[�] [U ]

�
=
�
dU
d�

�t
[�] [U ] + [U ]

t
[�]
�
dU
d�

�
= �

P
� ([P ] [U ])

�
[U ]

t
[�M�]

t
[�] [U ]�

P
� ([P ] [U ])

�
[U ]

t
[�] ([�M�] [U ])

= �
P
� ([P ] [U ])

�
[U ]

t
�
[�M�]

t
[�] + [�] [�M�]

�
[U ] = 0
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Field of Geodesics

A �eld of geodesics is a vector �eld U such that it is parallel transported along its integral curves
q (�) = �V (�; x) : So a �eld of geodesics has a constant length : hU;Ui = Ct which can be null.
In the standard chart of any observer :
q (�) = 'o (t (�) ; � (�))

U 2 X
�
PG
�
R4;Ad

��
� V 2 X (TM) with V � =

P3
i=0 U

iP�i : [U ] = [P
0] [V ]�

dU
d�

�
+
P
� ([�M�] [U ]) ([P ] [U ])

�
= 0

,h
dP 0

d�

i
[V ] + [P 0]

�
dV
d�

�
+
P
� ([�M�] [P

0] [V ]) ([P ] [P 0] [V ])
�
= 0

[P ]
h
dP 0

d�

i
[V ] +

�
dV
d�

�
+
P
� [P ] [�M�] [P

0] [V ] [V ]
�
= 0h

dP 0

d�

i
=
P3
�=0 V

� [@�P
0]�

dV
d�

�
+
P
� V

� [P ] [@�P
0] [V ] + [P ] [�M�] [P

0] [V ] [V ]
�
= 0�

dV
d�

�
+
P
� V

� [P ] ([@�P
0] + [�M�] [P

0]) [V ] = 0
that is in the holonomic basis :�
dV
d�

�
+
P
� V

�
hb��i [V ] = 0

with
hb��i = [P ] ([@�P 0] + [�M�] [P

0])

A curve is lifted from M to a �ber bundle P by imposing that its tangent in TP is null with a
connection : it belongs to a horizontal vector �eld. So one can say that a �eld of geodesics is the
projection on TM of a �eld of projectable horizontal vector �elds on the �ber bundle P .
To any, non null, future oriented, vector �eld V one can associate a section of � 2 PW such that
V (m) =

p
�hV (m) ; V (m)iTMAd�(m)"0 (m)

and we have the following :

Theorem 93 For a given observer, �elds of geodesics are represented by sections � 2 X (PG) such
that rGU� 2 T1Spin (3) : They are solutions of the di¤erential equation :

dw

d�
= [j (w)] bGr + ��aw + 1

4aw
j (w) j (w)

� bGw (5.25)

where �
� bGr; bGw� is the value of the potential of the gravitational �eld along the geodesic

Proof. i) The scalar product is constant along a geodesic :
hV (m) ; V (m)iTM = �k2
In the tetrad :
V
k = U = Ad�"0
For the sections of PG

�
R4;Ad

�
the covariant derivative reads :

rMU U = dU
d� +

P3
�=0 V

� [� (Gr�; Gw�) ; U ]

because (Ad�)
0 j�=1 = ad and the condition reads :

rMU U = dU
d� +

h
�
� bGr; bGw� ; Ui = 0

with
P3
�=0 V

�� (Gr�; Gw�) = �
� bGr; bGw�

ii) dUd� =
d
d�Ad�"0 =

d
d�

�
� � "0 � ��1

�
= d�

d� � "0 � �
�1 � � � "0 � ��1 � d�d� � �

�1

= Ad�
�
��1 � d�d� ; "0

�
Ad�

�
��1 � d�d� ; "0

�
+
h
�
� bGr; bGw� � Ui = 0�

Ad�
�
��1 � d�d�

�
;Ad�"0

�
+
h
�
� bGr; bGw� ;Ad�"0i = 0
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Ad�

�
��1 � d�d� +Ad��1�

� bGr; bGw�� ;Ad�"0i = 0�
Ad�

�
rGU�

�
;Ad�"0

�
= 0�

rGU�; "0
�
= 0

The only elements of Cl (3; 1) which commute with "0 belong to T1Spin (3)
iii) � is de�ned by : � = aw + � (0; w)
��1 � d�d� = �( 12j (w)

dw
d� ;

1
4aw

(�j (w) j (w) + 4) dwd� )

Ad��1�
� bGr; bGw� = � �1� 1

2j (w) j (w)
�

[awj (w)]
� [awj (w)]

�
1� 1

2j (w) j (w)
� � " bGrbGw

#
So geodesic �elds are associated to the sections such that :
1
aw

�
1� 1

4j (w) j (w)
�
dw
d� � aw [j (w)] bGr + �1� 1

2j (w) j (w)
� bGw = 0

By left multiplication with wt :
wt dwd� + aww

t bGw = 0
wt dwd� = 4aw

daw
dt = �aww

t bGw
daw
d� = � 14w

t bGw
The equation becomes :�
� 14ww

t + 1
4w

tw + 1
�
dw
d� � a

2
w [j (w)] bGr + aw �1� 1

2 (ww
t � wtw)

� bGw = 0
�
�
1
4

�
wt dwd�

�
+ 1

2aww
t bGw�w + � 144 �a2w � 1�+ 1� dwd� � a2w [j (w)] bGr + aw �1 + 1

2w
tw
� bGw = 0�

aw
daw
d�

�
w + a2w

dw
d� � a

2
w [j (w)] bGr + aw �2a2w � 1� bGw = 0

daw
d� w + aw

dw
d� � aw [j (w)] bGr + �2a2w � 1� bGw = 0

� 14ww
t bGw + aw dwd� � aw [j (w)] bGr + �2a2w � 1� bGw = 0

aw
dw
d� � aw [j (w)] bGr + ��2a2w � 1�� 1

4

�
j (w) j (w) + 4

�
a2w � 1

��� bGw = 0
aw

dw
d� � aw [j (w)] bGr + �a2w � 1

4j (w) j (w)
� bGw = 0

dw
d� = [j (w)]

bGr + ��aw + 1
4aw

j (w) j (w)
� bGw

There are other de�nitions of geodesic curves, in particular as curve with an extremal length. It
holds on any metric space, and so on any manifold endowed with a metric. A classic demonstration
proves that a curve of extremal length is necessarily a curve along which the tangent is transported,
and so a geodesic as understood here, but this proof uses explicitly the Levi-Civita connection and
some of its speci�c properties and does not hold any longer for a general a¢ ne connection.
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5.4 THE PROPAGATION OF FIELDS

The physical phenomenon of propagation of �elds is more subtle than it seems and, indeed, it was
at the origin of Relativity. In geometry it is not easy to quit the familiar framework of orthogonal
frames with �xed origin, and similarly we are easily confused by the usual representation of a �eld
emanating from a source, propagating at a certain speed, and decreasing with the distance. In this
picture a �source� is a point, �speed� is related to the transmission of a signal, and �distance� is
the euclidean distance with respect to the source. In a 4 dimensional universe, and notably when
there is no source in the area which is studied, these words have no obvious meaning. The �eld that
we perceive comes from sources which are far away, but we cannot discard their existence (after all
we study the spectrum of stars, so their �eld is a physical entity). In experiments one can create
�elds which convey a signal, but this is limited to the electromagnetic �eld, and a signal means a
speci�c variation in time, that is along one of the coordinates, which is speci�c to each observer.
And the speed as well as the range are related to the euclidean distance between points in a given
hypersurface. So to study the propagation of �elds we will proceed as for geometry, avoiding to go
straight to the usual representations, we will look carefully at the concepts, what they mean, and
how we can �nd a pertinent mathematical representation.

The concept of a force �eld existing everywhere is one of the direct consequence of the Principle
of Locality which prohibits action at a distance. From the beginning Faraday and Maxwell came
naturally to the conclusion that the �elds must be represented by variables whose value is determined
locally. They should satisfy a set of local partial di¤erential equations, of which the Maxwell equations
are the paradigm. A �eld manifests its existence, and changes by interacting with particles, but it
interacts also with itself and this is at the root of the phenomenon of propagation in the vacuum,
where there is no particle. This self-interaction can be modelled with a lagrangian and leads to
di¤erential equations as expected as we will see in the next chapters.
The variable which represents the interaction of �elds with particles is the connection, through

its potential. If it is involved in di¤erential equations we need a derivative. This is the strength
of the �eld F , similar to the electric and magnetic �eld, which is the key variable to represent the
self-interaction of the �eld. In a dense medium where many interactions with particles occur F is
replaced, in electromagnetism, by similar but di¤erent variables which account for these interactions.
Here propagation will be seen only as the propagation in the vacuum.
Fields exist even in the vacuum and their value changes, from one point to another, in space and

time, through their self interaction. In a relativist context, the distinction between past and future
depends on the observer, so there is an issue. The answer depends on the philosophical point of
view.

The value of the �eld is measured through its action on a known particle, so in a strict interpre-
tation of classic QM, one could not say anything about a �eld before an interaction has occurred. In
QTF particles are not localized, there is only a wave function associated to each particle, and at each
location all virtual particles are represented together in a Fock space H: An observable is an operator
P 2 L (H;H) acting in this space H. Force �elds appear as modifying the state of particles, and this
modi�cation is measured through an observable, thus force �elds act on the operators representing
the observables. It is conceivable to de�ne a system by the algebra A �L (H;H) of its observables,
and force �elds are similarly represented as operators acting on A: A complication occurs because
the action of the �elds depends on the types of particles, so actually force �elds are maps over
M , valued in a space of distributions acting on spaces of test functions, which represent the waves
functions of di¤erent kinds of particles : force �elds are maps onM valued in the space dual of H; as
particles are maps on M valued in H. Another complication comes from the causal structure of the
universe. A �eld is assumed to propagate at the speed of light, and because �elds are maps de�ned
over M , the area where they can be active is restricted. This is dealt with through the support (the



5.4. THE PROPAGATION OF FIELDS 213

domain ofM where they are not null) of either the wave functions or the operators. This picture has
been formalized in the Wightman axioms (see Haag) with variants, which in some way constitute the
extension of the �Axioms�of Quantum Mechanics to QTF. The issue of the extension of the force
�elds is solved (both particles and �elds are maps de�ned all over M , and called ��elds�) but the
concept of propagation vanishes. Actually everything happens at each point, through interactions
of identi�ed virtual particles and �elds (fermions and bosons), in a picture which is similar to the
traditional action at a distance. Most of the studies have been focused on �nding solutions to the
very complicated computations involved and recurring mathematical inconsistencies. QTF provides
methods to represent the phenomena at the atomic and subatomic scale but, restricted to the SR
geometry and, almost by construct, it cannot deal e¢ ciently with the Physics at another scale.

In a realist point of view, �eld are physical entities, as well as particles. Their properties are
represented by variables, which give the value of the measures which can be done about them.
These variables, as mathematical objects, can be de�ned over any abstract domain, such as M or
R. However, as representing physical entities, their value is de�ned only if it can be measured - this
is where one retrieves the criterion of QM. And, on this point, particles and �elds are very di¤erent.
Particles, by de�nition, occupy a unique location at a given time : this is their main property

and actually it is linked to the concept of location itself. From this property one deduces that they
travel on their world line : so they occupy physically only one location at each time, parametrized
by a single scalar, their proper time � . When their characteristics are represented by variables X,
the domain of these variables is R; but the value of X is not �xed for every � : the value of X is �xed
only if it can be measured and this depends on the observer. For a given observer there is a relation
between his proper time and the proper time of each particle, and so X is de�ned only if � > �P (t) :
Before �P (t) the variable X has a de�nite value (which has or could have been measured) and for
� > �P (t) the variable has not yet a de�nite value. The Principle of Causality, which requires that
these restrictions are consistent for all observers, leads then to the existence of the Lorentz metric,
as shown in the Chapter 3.
Fields, by de�nition exist everywhere, or more precisely the properties of a given �eld can be

measured at di¤erent locations in space and time : the variables Y representing the �eld have for
domain M itself. However the limitation imposed by the possibility to be measured still holds :
for a given observer the distinction between past, present and future is clear, and a �eld cannot
be measured in the future, so even if Y is de�ned over M as a mathematical entity, its value, as
a physical object is not de�ned everywhere. For a given observer O the partition of M between a
domain M�

o where Y has a �xed value, M+
o where it has no �xed value, and the border @oM where

the propagation occurs, is given by 
3 (t) : However, if the �eld is a physical entity, it should exist
a partition which does not depend on the observer. There should exist a variable s 2 R; the phase,
similar to the proper time of a particle, and some function F : M ! R such that F (m) = s tells
�when�the propagation has occurred at m: The function F de�nes a foliation ofM by hypersurfaces
W (s) which are the front of the propagation. The causal structure implies then that s does not
depend of the observer, and that the time t of any observer is related (up to an additive constant)
to s: This is the opposite of the particle case.
This is the picture of the usual cosmological models.M is just an abstract object, but it represents

a physical entity, a container, whose content is not frozen. And s can be seen as a universal time : the
time of the Universe (or its age...). It partitions the Universe between all that has already happened,
and what has to happen. When one attempts to represent the whole Universe one cannot escape the
issue of the observer. The function F de�nes a universal chart : W (s) are space like hypersurfaces,
and gradF 0 (m) de�nes a vector �eld of time like, future oriented, vectors normal to W (s) : The
�universal observer�uses this chart, and his proper time is just s: The model is then consistent. All
physical entities �live�in the same spatial universe W (s) which moves with s increasing. But we do
not come back to the Galilean Geometry : W (s) is a Riemannian 3 dimensional surface, not a plane
and the metric varies with s (this is the expansion of the universe). And of course the only �eld
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which is considered is gravity, because on average the distribution of positive and negative charges
is null.
But, if the concept of �elds as a physical entity sustains the usual cosmological models, it is not

easy to conciliate them with our Physics, notably because "time�has not the same value. The charts
that we can use are conventional : their unique purpose is to locate a point, from phenomena that
we measure at our location. We can use the direction of a far away star to �x a vector of a basis,
but that does not imply that the point so located is precisely on the border W (s) : We have no way
to know if s = t:We can compare the rates at which work two clocks located at di¤erent points, but
the observer cannot tell if the rate of his own clock changes with time, he can only assume that it
stays constant. However, because the measures of lengths and time rely, practically, on �elds, our
charts re�ect actually their propagation. On one hand the physical �eld provides a grid upon which
we build our charts, assumed to be �xed, and on the other hand the tetrad cannot be constant in
a �xed chart. So the deformation of the tetrad can be seen the other way around, as resulting from
the necessary adjustment to a distorted grid, changing in space and time, provided by a physical
�eld. And this explains the mechanism by which the geometry of the universe is impacted by its
physical content.

In this Section we introduce the main concepts and variables which represent the propagation of
�elds.

5.4.1 The strength of the connection

The strength of the connection is a variable F which is a kind of derivative of the connection. It is
related to the curvature, another mathematical object which is commonly used. We give its de�nition
with some details, because they will be useful in the following. We will take U;PU ; �A as example.

The principles

Main features of the tangent space to a principal �ber bundle
The tangent space of PU is given by vectors :
vp = '0Gm (m; g) vm + '

0
G{ (m; g) vg =

P3
�=0 v

�
m@m� + � (�) (p) with � = L0g�1g (vg)

where the vertical space V PU = ker�0U =
�
'0Ug (m; g) vg; vg 2 T�U

	
; is isomorphic to the Lie

algebra, does not depend on the trivialization, and is generated by fundamental vectors :
� : T1U ! V P :: � (�) ('U (m; g)) = '0Ug (m; g)L

0
g�1g (�)

with the property :
� (�) (� (p; g)) = �0p (p; g) � (Adg�) (p)
A projectable vector �eld on TPU is a vector �eld W 2 X (TPU ) such that :
T�U (W ) = (�U (p) ; �

0
U (p) (W (p))) = (m;V (m)) ; V 2 X (TM) :

W (p) = '0Gm (m; g)Wm (p) + '
0
G{ (m; g)Wg (p)

and W is projectable i¤Wm (p) does not depend on g : V (m) =Wm (p) :
There are holonomic bases of TPU such that any vector vp 2 TpP can be uniquely written :
vp =

P3
�=0 v

�
m@m� +

Pm
a=1 v

a
g@ga

where @m� = '0Um (m; g) @�� with (@��)
3
�=0 a holonomic basis of TM: So that

P3
�=0 v

�
m@m� is

a projectable vector �eld i¤ v�m does not depend on g.

Connection and horizontal vectors
The key object in the representation of the interactions �elds / particles is the connection. This

is a tensor, a one form �A 2 �1 (TPU ;V PU ) on TPU valued in V PU . For a principal connection its
value depend on the potential �A :

�A (p (m)) ('0m (m; 1) vm + � (�) (p (m))) = �
�
� +

P
�
�A� (m) v

�
m

�
(p (m))
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The vertical vector bundle V PU = ker�0 depends only on the principal bundle structure. Similarly
for each connection there is a vector bundle, the horizontal bundle HPU = ker �A; which is a vector
subbundle HPU of TPU depending on the connection, and :

TPU = HPU � V PU
�0U (V PU ) = 0
�A (HPU ) = 0
dimV PU = dimT1U = m
dimHPU = dimTPU � dimV PU = dimM = 4

HPU =
nP3

�=0 v
�
m@m� + � (�) (p) : � +Adg�1

P3
�=0

�A� (m) v
�
m = 0

o
The vectors of HPU are called horizontal.
A r form � 2 �r (TPU ;F ) on TPU valued in a �xed vector space F is said to be horizontal if it

is null for any vertical vector : 8up 2 V PU : iup� = 0
The de�nition is independent of the existence of a connection. It is expressed by :
� =

Pm
a=1

P3
f�1;:::�rg=0 �

a
�1::::�rdm

�1 ^ :::: ^ dm�r 
�!f a
The pull back of � on TM is :
�� :: � 2 TP �U ! ��� 2 TM� :: ��U� (m) (um) = � (� (p))�0U (p)up , ��� = � (T�U )
up 2 V PU , �0U (p)up = 0) ��U� (m) (um) = 0
A connection can be equivalently de�ned by the horizontal form :
� (p) :: TpPU ! HpPU :: � (p) (vp) = vp � �A (p) (vp)
� (p) (

P
� v

�
m@m� + � (�) (p)) =

P
� v

�
m@m� � �

�
Adg�1 �A (m) vm

�
(p)

� is a projection on the horizontal bundle :
vp 2 VpPU : �A (p) (vp) = vp ) � (p) (vp) = 0
vp 2 HPU : � (p) (vp) = vp
The horizontal lift of a vector �eld V 2 X (TM) :
�L : X (TM)! X (HPU ) :: �L (p) (V ) = '0P (m; g)

�
V (m) ;��A (p)V (m)

�
and W = �L (p) (V ) is a vector �eld projectable on V : �0U (p) (�L (p) (V )) = V (�U (p)) such

that �A (W ) = 0
The horizontalization of any r form ! on TPU valued in a �xed vector space F is the pull back

of ! by � :
�� (p) : �r (TpP ;V )! �r (HpP ;V ) :: �

� (p)! (p) (v1; :::; vr) = ! (p) (� (p) v1; :::; � (p) vr)
and the result is expressed by a form which depends only on dm� :
�� (p)! (p) =

P
��1:::�r (p) dm

�1 ^ :::^ dm�r : it is null whenever a vector vk is vertical, so that

��
b�A = 0:

Derivative of a tensor
The set of tensors on a manifold valued in a �xed vector space is an algebra T , with the tensorial

product as internal operation. A derivative on a manifold is along a vector �eld (or along a curve),
and the derivative of a tensor is an operator D : TM �T ! T called a derivation, which meets the
properties (Maths.16.2.1) :
- it does not change the nature of the tensor, thus if
T 2 �r (TM ;F ) : DV (T ) 2 �r (TM ;F ) ; D (T ) 2 �r+1 (TM ;F ) ;
- it is linear with respect to V : DV+W (T ) = DV (T ) +DW (T )
- it is a linear operator on T
- it follows the Leibniz rule with respect to the tensorial product :
DV (T 
 T 0) = DV (T )
 T 0 + T 
DV (T

0)
- it commutes with the trace operator, and the contraction of tensors.
The only general operator which meets these criteria is the Lie derivative (Maths.16.2.2). Using

the �ow of the vector �eld V , by pull back or push forward one can bring the tensors in the same
vector space and compute the quantities :
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limh!0�R (h) = limh!0
1
h

�
�V (s+ h; p)

�
T (p)� �V (s; p)� T (p)

�
limh!0�L (h) = limh!0

1
h

�
�V (s; p)

�
T (p)� �V (s� h; p)� T (p)

�
If the tensor is continuously di¤erentiable, then the Lie derivative is :
$V T =

d
ds�V (s; p)

�
T (p) js=0 = limh!0�R (h) = limh!0�L (h)

It can be extended to any tensor valued in a �xed vector space, and it holds for any manifold.
Notice that one can have a right and a left derivative which have a di¤erent value : we have a

discontinuity, and we will come back to this possibility in the last chapter.

A principal connection is de�ned by the connection form b�A 2 �1 (TPU ;T1U) which is a tensor
valued in the �xed vector space T1U :b�A (p) : TpPU ! T1U :: �A (p) (vp) = �

�b�A (p) (vp)� (p)
and one can compute its Lie derivative $W

b�A 2 �1 (TPU ;T1U) along a vector �eldW 2 X (TPU ):
$W

b�A = d
ds�W (s; p)

� b�A (p) js=0 2 �1 (TPU ;T1U)
To the Lie derivative is associated the fundamental vector �eld �

�
$W

b�A (vp)� (p), estimated at
the point p 2 PU : In a change of gauge at the same point m = �U (p) by the right action � of
� (m) 2 U its value change as :

�
�
$W

b�A (vp)� (p)! ^
�
�
$W

b�A (vp)� (p) = �0p (p; � (m)) �
�
$W

b�A (vp)� (p)
This is a change of gauge :ep = e'U (m; 1) = 'U (m;� (m)) = p�� (m)
the measure changes as :

^
�
�
$W

b�A (vp)� (p) = Ad�(m)�
�
$W

b�A (vp)� (p (m))
So �

�
$W

b�A (vp)� can be considered as a one form on TPU valued in the adjoint vector bundle

PU [T1U;Ad] : And using the pull back by the standard gauge p (m)
�
$
b�A 2 �1 (TM ;PU [T1U;Ad])

The strength of the �eld
However to de�ne a derivation we want to keep the link with the base M: To do this :
- we use a given section p 2 X (PU ) to go from M to PU : p (m) 2 PU :
- we lift a vector �eld V (or a curve) from TM to TPU by the horizontal lift :

�L : X (TM)! X (HPU ) :: �L (p) (V ) = '0Gm (m; g)V (m)� �
�
Adg�1 �A (m)V (m)

�
(p) 2 HpP

and we denote W = �L (V ) 2 X (HPU ) : Thus �A (p) (W ) = 0: The a¢ ne parameter s is the same
along the integral curves of V;W:

The Lie derivative of the tensor b�A along V;p is then :
$�L(V )

b�A (p (m)) = d
ds��L(v) (s; p (m))

� b�A (p (m)) js=0
p (m)

� b�A (p (m)) = �A (m)

The de�nition is then consistent and one can go from M to PU :
The Lie derivative and the exterior di¤erential are related (Maths.1531) :

$W
b�A = d

�
iW
b�A�+ iW db�A where d is the exterior di¤erential on M .

but, because W = �L (V ) is horizontal :

iW
b�A = 0

�� (W ) =W

) $W
b�A = iW d

b�A = iW�
�d �A
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The exterior di¤erential db�A of the form b�A valued in the �xed vector space T1U is taken, through
�� on horizontal vectors. The result holds for any vector �eld V 2 X (TM) and the strength of
the �eld is de�ned as :

FA (m) = �p� (m)$b�A = �p� (m)��d �A 2 �2 (M ;T1U) (5.26)

with the standard gauge p (m) = 'U (m; 1) :
It has the following expression :

FA =
mX
a=1

0@d 3X
�=0

�Aa�d�
�

!
+
X
��

h
�A�; �A�

i
d�� ^ d��

1A
�!� a (5.27)

where d is the exterior di¤erential on TM and [] is the bracket in T1U:
Equivalently with ordered indices :

FA =
mX
a=1

X
f�;�g

�
FaA��d�� ^ d��

�

�!� a 2 �2 (M ;T1U) (5.28)

and in components :

FaA�� = @� �A
a
� � @� �Aa� + 2

h
�A�; �A�

ia
(5.29)

Notice that the indices �; � are ordered, that it involves only the principal bundle, and not the
associated vector bundles, and is valued in a �xed vector space. In this representation (with the

basis
��!
� a

�m
a=1
) the group U acts through the map Ad. In a change of gauge FA changes as :

pU (m) = 'PU (m; 1)! epU (m) = pU (m) � { (m)�1 :
FA�� ! eFA�� (m) = Ad{(m)FA��

(5.30)

so that FA can be seen as a 2 form on TM valued in the adjoint bundle PU [T1U;Ad]. This
gives a more geometrical meaning to the concept, and we will see that these relations are crucial in
the de�nition of the lagrangian.

Connection, potential and strength
The two quantities come from the connection, but they have di¤erent physical meaning and

mathematical properties.
The potential is not a geometric quantity, this is a function (and not a tensor) de�ned on M and

valued in T1U , the component of
b�A in the standard gauge p (m) = 'U (m; 1) : The strength F is a

tensor, a 2 form on M valued in the Lie algebra. It is a special derivative of the connection. It can
be computed from the potential, but the converse is not true. This is a classic issue : if F is the
strength of the potential �A then �A+H will provide the same strength F if dH+2

P
�;� [H�;H� ] = 0:

In Electrodynamics this issue is solved by imposing additional constraints to the potential, using
the �gauge freedom�. So F can be considered as a di¤erent variable.
The question which arises is then of the choice of the �right variable�in a model.
In a Theory based upon �elds existing everywhere and propagating on one hand, and particles

located at a geometric point on the other hand, the vacuum exists almost everywhere. In the vacuum
the mechanism at work is the interaction of the �eld with itself, which is represented through the
lagrangian. As we will see in the next chapter, in order to be consistent, the lagrangian must be
de�ned through F�� and not the potential or its derivatives. So there is a dominant variable, which
is the value of the �eld in the vacuum, and this variable is F . Moreover, this variable must be
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continuous because the propagation in the vacuum by self interaction assumes continuity. F is a
continuous variable.
A �eld is measured by its impact on known particles. Particles are never immobile, they travel

on their world line, the value of the connection changes and the measure of the �eld is the measure
of the variation of the connection along the trajectory of particles. So eventually the measure of a
�eld is given by the Lie derivative of the connection, that is by its strength F . This is obvious in the
usual expression of the Lorentz law, using the electric and magnetic �elds, which are components of
FEM :
To sum up : the potential is used to represent the interaction of the �eld with particles. The

strength F is used to represent the propagation of the �eld.

Curvature
There is another introduction of the same concept, through the curvature, which is more usual

but less immediate.
The curvature of the connection is the 2 form on PU :


 2 �2 (TPU ;V PU ) :: 
 (p) (X;Y ) = �
�b
 (p) (X;Y )� (p) = �A (p)

�
[� (p)X;� (p)Y ]TPU

�
where the bracket is the commutator of the vector �elds X;Y 2 X (TP )
The curvature form is the map such that : 
 (p) = �

�b
 (p)� (p)b
 2 �2 (TPU ;T1U) : b
 (p) = �Adg�1 �Pm
a=1

P3
�;�=0

�
@� �A

a
� +

h
�A�; �A�

i��
dm� ^ dm� 
�!� a

where the bracket
h
�A�; �A�

i
is the bracket in the Lie algebra T1U:

For any r form $ on TPU valued in a �xed vector space the exterior covariant derivative asso-
ciated to the connection is the map :
re : �r (TPU ;F )! �r+1 (TPU ;F ) :: re! = �� (d!)

where d! is the exterior di¤erential on TM (the components along dga have vanished).b
 = reb�A
FA can also be expressed as : FA = �p�b
 and because reb�A = b
) FA = �p�reb�A
FA acts on TM and b
 on TPU ; but they are essentially the same 2 form, valued in the Lie

algebra. We have the Bianchi identity : reb
 = 0:
Electromagnetic �eld
The strength of the electromagnetic �eld is a 2 form valued in R : FA 2 �2 (M ;R) :
Because the Lie algebra is abelian the bracket is null and : FA = d �A which gives the �rst

Maxwell�s law : dFA = 0.
In a change of gauge : FA�� ! eFA�� (m) = Ad{(m)FA�� = FA�� : The strength of the EM �eld

is invariant in a change of gauge.

Gravitational �eld

We have the same quantities on PG (M;Spin (3; 1) ; �) :

The strength of the connection is a two form on M valued in the Lie algebra T1Spin(3; 1) which
reads with the basis (�!� a)6a=1 :

FG =
P6
a=1

�
dGa +

P3
��=0 [G�;G� ]

a
d�� ^ d��

�

�!� a

FG =
P6
a=1

P3
f�;�g=0 FaG��d�� ^ d�� 


�!� a
FG =

P6
a=1

P3
f�;�g=0

�
@�G

a
� � @�Ga� + 2 [G�; G� ]

a
�
d�� ^ d�� 
�!� a

(5.31)
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where d is the exterior di¤erential on TM and [] is the bracket in T1Spin(3; 1):5

Notice that :
i) in the last 2 formulas the indices �; � are ordered : FaG�� = �FaG��
ii) it involves only the principal bundle, and not the associated vector bundles,
iii) it is valued in a �xed vector space.
We can distinguish the two parts, Fr;Fw :
FG =

P3
f�;�g=0 � (Fr�� ;Fw��) d�� ^ d��

FG = d
�P3

�=0 � (Gr�; Gw�) d�
�
�
+ 2

P3
f��g=0 [� (Gr�; Gw�) ; � (Gr� ; Gw�)] d�

� ^ d��

and we have :
a = 1; 2; 3 : FaG�� = Far��
a = 4; 5; 6 : FaG�� = Faw��
with the signature (3,1) :

FG =
P3

f�;�g=0 � (Fr�� ;Fw��) d�� ^ d��
Fr�� = � (@�Gr� � @�Gr� + 2 (j (Gr�)Gr� � j (Gw�)Gw�) ; 0)
Fw�� = � (0; @�Gw� � @�Gw� + 2 (j (Gw�)Gr� + j (Gr�)Gw�))

(5.32)

With the signature (1,3):
Fr�� = �� (@�Gr� � @�Gr� + 2 (j (Gr�)Gr� � j (Gw�)Gw�) ; 0)
Fw�� = �� (0; @�Gw� � @�Gw� + 2 (j (Gw�)Gr� + j (Gr�)Gw�))
In this representation (with the basis (�!� a)6a=1) the group Spin (3; 1) acts through the map Ad,

and the action is given by 6 � 6 matrices seen previously. In a change of gauge on the principal
bundle the strength changes as :

pG (m) = 'G (m; 1)! epG (m) = pG (m) � s (m)�1 :
FG�� ! eFG�� (m) = Ads(m)FG��

�
� eFr�� ; eFw��� = Ads(m)� (Fr�� ;Fw��) (5.33)

and the strength can be seen as valued in the adjoint bundle PG [T1Spin(3; 1);Ad].
It is convenient to use the complex notation :
a = 1; 2; 3 :
Ga� = Gar� + iG

a
w�

FaG�� = Far�� + iFaw��

FG�� = @�G� � @�G� + 2j (G�)G� (5.34)

5.4.2 Algebra of two forms

Computations with two-forms are an arduous process. We will use some notations and tools which
make it easier.

Rotational and transversal components

The �rst tool is based on the decomposition of any scalar two form according to its components.
A second order tensor has 16 components, a two form only 6. A two form F 2 �2 (M ;R) can

be written : F = 1
2

P3
�;�=0 F��d�� ^ d�� with non ordered indices or F =

P3
f�;�g=0 F��d�� ^ d��

with ordered indices. It is convenient to use a precise order of the indices. One can always write :
F = Fr + Fw
with
5The notations and conventions for r forms vary according to the authors and if the indices are ordered or not. On

this see Maths.1525,1529.
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Fr = F32d�3 ^ d�2 + F13d�1 ^ d�3 + F21d�2 ^ d�1
Fw = F01d�0 ^ d�1 + F02d�0 ^ d�2 + F03d�0 ^ d�3
and we will denote the 1� 3 row matrices :

[Fr] =
�
F32 F13 F21

�
; [Fw] =

�
F01 F02 F03

�
(5.35)

This is very similar to what is done with the EM �eld : one distinguishes an electric and a
magnetic �eld, which are represented by orthogonal vectors. Notice that we have the same ordering
as in the Lie algebra T1Spin (3; 1) : This is just to be consistent and easier to use.
With this notation it is easy to write the usual operations in a matrix form:
F = Fr + Fw;K = Kr +Kw :

F ^K = �
�
[Fr] [Kw]

t
+ [Fw] [Kr]

t
�
d�0 ^ d�1 ^ d�2 ^ d�3

Any 2-form can also be written in matrix form where the indices �; � are the rows and columns
of the matrix :

[F�� ]�=0:::3�=0:::3 =

2664
0 F01 F02 F03
F10 0 F12 F13
F20 F21 0 F23
F30 F31 F32 0

3775
4�4

[F ] =

2664
0 [Fw]1 [Fw]2 [Fw]3

� [Fw]1 0 � [Fr]3 [Fr]1
� [Fw]2 [Fr]3 0 � [Fr]2
� [Fw]3 � [Fr]1 [Fr]2 0

3775 = � 0 [Fw]1�3
� ([Fw])t3�1 j ([Fr])3�3

�
[F ]t = � [F ]

Impact of a change of chart

In a change of chart the holonomic basis @�� ! @�� with the jacobian [J ] =
h
@��

@��

i
: The components

of a 2 form change as :
F�� ! eF�� =P3

f��g=0 F�� det [K]
f��g
f��g

where [K] is the inverse of the jacobian [K] = [J ]�1eF�� =P3
f��g=0 F��

�
K�
�K

�
� �K�

�K
�
�

�
= 1

2

P3
��=0 F��

�
K�
�K

�
� �K�

�K
�
�

�
= 1

2

P3
�=0 [K]

�
� [F ]

�
� [K]

�
� � [K]

�
� [F ]

�
� [K]

�
�eF�� = 1

2

�
[K]

t
[F ] [K]

��
�
�
�
[K]

t
[F ] [K]

��
�
= 1

2

��
[K]

t
[F ] [K]

�
�
�
[K]

t
[F ] [K]

�t��
�

=
�
[K]

t
[F ] [K]

��
�h eFi = [K]t [F ] [K]

We will meet several times this kind of formula, so it is useful to give a more detailed computation.

Using the notation : [K] =
�

K0
0

�
K0
�
1�3

[K0]3�1 [k]3�3

�
24 0

h eFwi
�
h eFwit j

�h eFri�
35 = " K0

0 [K0]
t�

K0
�t

[k]
t

# �
0 [Fw]

� [Fw]t j ([Fr])

� �
K0
0

�
K0
�

[K0] [k]

�
then :
K0
0 [Fw] [K0]�K0

0 [K0]
t
[Fw]t + [K0]

t
j ([Fr]) [K0] = 0h eFwi = [Fw]K0

0 [k]� [K0]
t
1�3 [Fw]

t
3�1

�
K0
�
1�3 + [K0]

t
j ([Fr]) [k]

= [Fw]K0
0 [k]� [Fw] [K0]

�
K0
�
� [Fr] j ([K0]) [k]
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j
�h eFri� = �K0

�t
3�1 [F

w]1�3 [k]3�3 � [k]
t
[Fw]t3�1

�
K0
�
1�3 + [k]

t
j ([Fr]) [k]

=
�
K0
�t
([Fw] [k])� ([Fw] [k])t

�
K0
�
+ [k]

t
j ([Fr]) [k]

= j ([Fw] [k]) j
��
K0
��
+([Fw] [k])

�
K0
�t�j ��K0

��
j ([Fw] [k])�([Fw] [k])

�
K0
�t
+[k]

t
j ([Fr]) [k]

j ([Fw] [k]) j
��
K0
��
� j

��
K0
��
j ([Fw] [k]) = j

�
[Fw] [k] j

��
K0
���

[k]
t
j ([Fr]) [k] = j

�
[r]
t �
k�1

�t�
det k

with j
�
[r]
t
[M ]

�
=
�
[M ]

�1
�
j (r)

�
[M ]

�1
�t
detM

j
�h eFri� = j

�
[Fw] [k] j

��
K0
���

+ j

�
[Fr]

�
[k]

�1
�t�

det k

= j

�
[Fw] [k] j

��
K0
��
+ [Fr]

�
[k]

�1
�t
det k

�
h eFri = [Fr]�[k]�1�t det k + [Fw] [k] j ��K0

��
h eFi = [K]t [F ] [K]h h eFri h eFwi i = � [Fr] [Fw]

�
[LK ]

[LK ] =

" �
[k]

�1
�t
det k �j ([K0]) [k]

[k] j
��
K0
��

K0
0 [k]� [K0]

�
K0
�
# (5.36)

For a change of spatial chart, with the same time axis, the value of each component Fr;Fw
changes, but the split holds :h h eFri h eFwi i = � [Fr] [Fw]

� � (det k) �k�1�t 0
0 [k]

�
We have a generalization of these relations, which is useful in computations.
Any linear map on the vectorial space of 2 forms which is the extension of a linear map on the

dual bundle TM� (Maths.426) is expressed as in a change of chart :eF�� =P3
��=0 F��K�

�K
�
� =

P3
f��g=0 F��

�
K�
�K

�
� �K�

�K
�
�

�
=
�
[K]

t
[F ] [K]

��
�h eFi = [K]t [F ] [K]

So, if we have the product of two linear maps :h eF1i = [K1]
t
[F ] [K1]h eF2i = [K2]
t
h eF1i [K2] = [K2]

t
[K1]

t
[F ] [K1] [K2]

then :
[LK1K2

] = [LK1
] [LK2

] (5.37)

The inverse operation eF�� ! F�� is given by :h eFi = [K]t [F ] [K], [F ] =
�
[K]

�1
�t h eFi [K]�1 with [K]�1 so that [LK ]�1 = [LK�1 ] :

For instance, the inverse operation in a change of chart is given by [K]�1 and [LK�1 ] = [LK ]
�1.

The 2 form F� =
P

f��g F��d�� ^ d�� de�ned by lifting the indices with the metric :
F�� =

P3
��=0 g

��g��F�� =
P3
��=0

�
g�1

��
�
[F ]��

�
g�1

��
�
=
��
g�1

�
[F ]
�
g�1

���
�

has for matrix :

[F�] =
�
F��

��=0::3
�=0::3

= [g]
�1
[F ] [g]�1 (5.38)

and :�
F�r F�w

�
=
�
Fr Fw

� �
Lg�1

�
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Expression in the orthonormal basis
Any 2 form F 2 �2 (M ;R) can be expressed in the orthonormal basis

�
"i
�3
i=0

:

F =
P
�� F��d�� ^ d�� =

P
ij Fij"

i ^ "j with "i =
P3
�=0 P

0i
� d�

�

with the obvious notations [F r] ; [Fw] : This is similar to a change of chart with [P ] = [J ] ; [P 0] =
[K]�

[F r] [Fw]
�
=
�
[Fr] [Fw]

�
[LP 0 ],

�
[Fr] [Fw]

�
=
�
[F r] [Fw]

�
[LP ]

Extension to �ber bundles

The notation can be extended to the strength of the �eld, 2-forms valued in the Lie algebras.

Gravitational �eld
[FrG]6�3 = [Fr]

a=1::6

[FwG ]6�3 = [Fw]
a=1::6

[F ]6�6 =
�
Frr Fwr
Frw Fww

�
=
h
FaG��

i
with the 3� 3 matrices :

[Frr ]3�3 =

24 F1G32 F1G13 F1G21
F2G32 F2G13 F2G21
F3G32 F3G13 F3G21

35
[Fwr ]3�3 =

24 F1G01 F1G02 F1G03
F2G01 F2G02 F2G02
F3G01 F3G02 F3G03

35
[Frw]3�3 =

24 F4G32 F4G13 F4G21
F5G32 F5G13 F5G21
F6G32 F6G13 F6G21

35
[Fww ]3�3 =

24 F4G01 F4G02 F4G03
F5G01 F5G02 F5G03
F6G01 F6G02 F6G03

35
and in complex notation :
[FrG] = [Frw] + i [Frw]
[FwG ] = [Fww ] + i [Fww ]
The strength of the gravitational �eld reads then with the complex notation :

[G]3�3 =

24 G11 + iG
4
1 G12 + iG

4
2 G13 + iG

4
3

G21 + iG
5
1 G22 + iG

5
2 G23 + iG

5
3

G31 + iG
6
1 G32 + iG

6
2 G33 + iG

6
3

35
[G0]3�1 =

24 G10 + iG
4
0

G20 + iG
5
0

G30 + iG
6
0

35
FG�� = @�G� � @�G� + 2j (G�)G� = (dG)�� + 2j (G�)G�
[FrG] = [dGr] + 2

�
j (G3)G2 j (G1)G3 j (G2)G1

�
= [dGr]� 2 (det [G]) [G]�1

with
�
j ([M ]2) [M ]3 j ([M ]3) [M ]1 j ([M ]1) [M ]2

�
= (detM)

�
M�1�t

[dGr] =
�
@3G2 � @2G3 @1G3 � @3G1 @2G1 � @1G2

�
3�3

[FwG ] = [dGw] + 2
�
j (G0)G1 j (G0)G2 j (G0)G3

�
= [dGw] + 2 [j (G0)] [G]

[dGw] =
�
@0G1 � @1G0 @0G2 � @2G0 @0G3 � @3G0

�
3�3�

FrG FwG
�
3�6 =

�
[dGr]� 2 (det [G]) [G]�1 [dGw] + 2 [j (G0)] [G]

�
(5.39)
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Other �elds :
[F ]m�6 =

�
FrA FwA

�
=
h
FaA��

i
with m� 3 matrices :

[FrA]m�3 =

24 F1A32 F1A13 F1A21
::: ::: :::
FmA32 FmG13 FmG21

35
[FwA ]m�3 =

24 F1A01 F1A02 F1A03
::: ::: :::
FmA01 FmA02 FmA03

35
Scalar product of forms

On any n dimensional manifold endowed with a non degenerate metric g there is a scalar product,
denoted Gr for r-forms � 2 �r (M ;R) (Maths.19.1.2). Gr is a bilinear symmetric form, which does
not depend on a chart, is non degenerate and de�nite positive if g is Riemannian.

Gr (�; �) =
P

f�1:::�rgf�1:::�rg ��1:::�r��1:::�r det
�
g�1

�f�1:::�rg
f�1:::�rg

So for 2 forms :
G2 (F ;K) =

P
f��gf��g F��K�� det

�
g�1

�f��g
f��g =

P
f��gf��g F��K�� (h��h�� � h��h��)

with denoting [h] = [g]�1

A straightforward computation gives with the matricial notation for [F ] ; [K] :P
���� F��K�� (h��h�� � h��h��)

= 4
P

f��gf��g F��K�� (h��h�� � h��h��)

=
P
���� [F ]

�
� [K]

�
�

�
[h]

�
� [h]

�
� � [h]

�
� [h]

�
�

�
=
P
����� ([h] [K] [h])

�
� [F ]

�
� � [K]

�
� ([h] [F ] [h])

�
�

= �Tr ([h] [K] [h] [F ])� Tr ([K] [h] [F ] [h])
= �2Tr ([F ] [h] [K] [h])
G2 (F ;K) = � 12Tr ([F ] [h] [K] [h])
The 2 form [F�] =

�
F��

��=0::3
�=0::3

has for matrix [F�] = [h] [F ] [h] so G2 (F ;K) can also be written
:

G2 (F ;K) = �
1

2
Tr
�
[F ] [g]�1 [K] [g]�1

�
= �1

2
Tr ([F ] [K�]) (5.40)

In the standard chart [g]�1 =
�
�1 0

0 [g3]
�1

�
G2 (F ;F) = [Fw] [g3]�1 [Fw]t + [Fr] [g3] [Fr] det [g3]�1

and G2 is de�nite positive : G2 (F ;F) = 0, F = 0

Hodge duality

Gr de�nes an isomorphism between r and n� r forms. The Hodge dual �� of a r form � is a n� r
form such that :
8� 2 �n�r (M) : �� ^ � = Gr (�; �)$n

where $n is the volume form deduced from the metric. For 2 forms on M :

8�; � 2 �2 (M ;R) : �� ^ � = G2 (�; �)$4 = G2 (�; �)$4 (5.41)
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The Hodge dual �F of a scalar 2-form F 2 �2 (M;R) is a 2 form whose expression, with the
Lorentz metric, is simple when a speci�c ordering is used. Writing F = Fr + Fw then : �F =
�Fr + �Fw

�Fr = �
�
F01d�3 ^ d�2 + F02d�1 ^ d�3 + F03d�2 ^ d�1

�
detP 0

�Fw = �
�
F32d�0 ^ d�1 + F13d�0 ^ d�2 + F21d�0 ^ d�3

�
detP 0

�F�� = �F�� detP 0 = �
�P3

��=0 g
��g��F��

�
detP 0

(5.42)

The components of the parts �Fr; �Fw are exchanged and the indices are lifted with the metric
g .Notice that the Hodge dual is a 2 form : even if the notation uses raised indexes, they refer to
the basis d�� ^ d�� :

We will use the 2 notations introduced previously.
i) With respect to the basis d�� ^ d�� the decomposition of �F in the 2 components �Fr; �Fw

�F = �Fr + �Fw
[�Fr] =

�
�F01 �F02 �F03

�
= �

�
F01 F02 F03

�
(detP 0)

[�Fw] =
�
�F32 �F13 �F21

�
= �

�
F32 F13 F21

�
(detP 0)

(5.43)

In this 1� 4 matricial representation the column index refers to the index of the basis d��:
ii) The matrix of the components

�
�F��

��=0::3
�=0::3

[�F ]4�4 =

2664
0 �F01 �F02 �F03

� � F01 0 � � F21 �F13
� � F02 �F21 0 � � F32
� � F03 � � F13 �F32 0

3775
In this 4� 4 matricial representation the row and column refer to the indices �; � of �F�� as in

[F ]

[�F ]4�4 =
�

0 [�Fr]
� [�Fr] j ([�Fw])

�
The Hodge dual is easily computed using the matrix :

[F�] =
�
F���

�
=

2664
0 F01 F02 F03
�F01 0 �F21 F13
�F02 F21 0 �F32
�F03 �F13 F32 0

3775 = [g]�1 [F ] [g]�1
So : [�F ] = � [F�] detP 0

[�F ] =
�

0 [�Fr]
� [�Fr]t j ([�Fw])

�
= � [F�] detP 0 = � [g]�1 [F ] [g]�1 detP 0 (5.44)�

F�r F�w
�
=
�
Fr Fw

�
[LH ]

with [H]3�3 =
�
g��
�
= [g]

�1
=

�
[H]

0
0 [H]

0

[H]0 [h]

�
;

[H] = [H]
t ) [H]3�1 = [H0] ; [H]

t
=
�
H0
�
= [H0]

t

[LH ] =

�
[h]

�1
deth �j (H0) [h]

[h] j (H0) H0
0 [h]� [H0] [H0]

t

�
so that :
[F�r] = [Fr] [h]�1 deth+ [Fw] [h] j (H0)

[F�w] = � [Fr] j (H0) [h] + [Fw]
�
H0
0 [h]� [H0] [H0]

t
�

�
[�Fr] [�Fw]

�
= �

�
[F�w] [F�r]

�
detP 0

[�Fr] =
�
[Fr] j (H0) [h]� [Fw]

�
H0
0 [h]� [H0] [H0]

t
��
detP 0
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[�Fw] = �
�
[Fr] [h]�1 deth+ [Fw] [h] j (H0)

�
detP 0�

[�Fr] [�Fw]
�
=
�
[Fr] [Fw]

� " j (H0) [h] � [h]�1 deth
�
�
H0
0 [h]� [H0] [H0]

t
�
� [h] j (H0)

#
detP 0�

[�Fr] [�Fw]
�
=
�
[Fr] [Fw]

� heLg�1i detP 0
with

heLg�1i =
"

j (H0) [h] � [h]�1 deth
�
�
H0
0 [h]� [H0] [H0]

t
�
� [h] j (H0)

#
or equivalently, to keep the same notation and properties as above with

�
Lg�1

�
:

[�Fr] = � [F�w] detP 0
[�Fw] = � [F�r] detP 0�
[�Fw] [�Fr]

�
= �

�
[F�r] [F�w]

�
detP 0 = �

�
Fr Fw

�
[LH ] detP

0�
[�Fw] [�Fr]

�
= �

�
[Fr] [Fw]

�
[LH ] detP

0

[LH ] =

�
[h]

�1
deth �j (H0) [h]

[h] j (H0) H0
0 [h]� [H0] [H0]

t

�
(5.45)

In the standard chart : H = 0; [H]
0
0 = �1 : [H] =

�
�1 0

0 [g3]
�1

�
[�Fr] = [Fw] [h] detP 0
[�Fw] = � [Fr] [h]�1 deth detP 0
detP 0 = detQ0

deth = det [g3]
�1
= det [Q] [Q]

t
= (detQ)

2

[�Fr] = [Fw] [g3]�1 detQ0
[�Fw] = � [Fr] [g3] detQ

(5.46)

For the forms (FaG)a=1::6 ; (FaA)a=1::m we can compute the Hodge dual for each component
(FaG)a=1::6 ; (FaA)a=1::m using the formulas above :�

[�Fa;w] [�Fa;r]
�
= �

�
[Fa;r] [Fa;w]

�
[LH ] detP

0

For the gravitational �eld :�
[�Fwr ] [�Frr ]

�
= �

�
[Frr ] [Fwr ]

�
[LH ] detP

0�
[�Fww ] [�Frw]

�
= �

�
[Frw] [Fww ]

�
[LH ] detP

0

or in complex formalism :�
[�FwG ] [�FrG]

�
= �

�
[FrG] [FwG ]

�
[LH ] detP

0

and for the other �elds :�
[�FwA ] [�FrA]

�
= �

�
[FrA] [FwA ]

�
[LH ] detP

0

For any r form we have : � � �r = � (�1)r(4�r) � so that for 2 forms the map : � : �2 (M ;R)!
�2 (M ;R) :: ��2 is such that : � � �2 = ��2 so :�

[� � Fw] [� � Fr]
�
=
�
[�Fr] [�Fw]

� heLHi detP 0�
[�Fr] [�Fw]

�
=
�
[Fr] [Fw]

� heLHi detP 0heLHi2 (detP 0)2 = �I6heLHi�1 = heLHi det g
Computing

heLHi2 = �I6 (detP )2 we get the relation between the components of [LH ] :
[H]

0
0 = [H0]

t
[h]

�1
[H0] + (det g) det [h]

�1 (5.47)
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Consider a change of chart with some matrix [K] as de�ned above :h h eFri h eFwi i = � [Fr] [Fw]
�
[LK ]�

[�Fw] [�Fr]
�
= �

�
[Fr] [Fw]

�
[LH ] detP

0h h
� eFwi h

� eFri i = � h h eFri h eFwi i �L eH�det eP 0
The matrix of the metric changes as : [g]! [eg] = [K]t [g] [K] so
[H] = [g]

�1 !
h eHi = [K]�1 [H]�[K]�1�t

[LH ]!
�
L eH� = [LK�1 ] [LH ]

h
L(K�1)t

i
det [g]! det [g] det [K]

2

(detP 0)
2
= �det [g]! �det [g] det [K]2

(detP 0)! det [P 0] det [K]h h
� eFwi h

� eFri i = � h h eFri h eFwi i [LK�1 ] [LH ]
h
L(K�1)t

i
det [P 0] det [K]

We can then compute another formula for the scalar product of 2 forms. Take any two scalar 2
forms F ;K and their decomposition as above, a straightforward computation gives :
�Fw ^Kw = 0
�Fw ^Kr =

�
F32K32 + F13K13 + F21K21

�
$4

Fw ^Kr =
�
[Fr] [Kw]

t
�
d�0 ^ d�1 ^ d�2 ^ d�3

�Fr ^Kw =
�
F01K01 + F02K02 + F03K03

�
$4

�Fr ^Kr = 0
G2 (Fw;Kw) = G2 (Fr;Kr) = 0
G2 (Fw;Kr) =

�
F32K32 + F13K13 + F21K21

�
= � 1

detP 0 [�Fw] [Kr]
t

=
n
[Fr] [h]�1 deth+ [Fw] [h] j

�
[H]

0
�o
[Kr]

t

G2 (Fr;Kw) =
�
F01K01 + F02K02 + F03K03

�
= � 1

detP 0 [�Fr] [Kw]
t

From there, because G2 is bilinear :
G2 (F ;K)
= G2 (Fr + Fw;Kr +Kw)
= G2 (Fr;Kw) +G2 (Fw;Kr)
=
�
F32K32 + F13K13 + F21K21 + F01K01 + F02K02 + F03K03

�
=
P

f��g F��K��

G2 (F ;K) = �
1

detP 0

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�
=
X
f��g

F��K�� =
1

2

3X
��=0

F��K�� (5.48)

5.4.3 Electromagnetic �eld

The strength of the electromagnetic �eld is a 2 form valued in R : FEM 2 �2 (M ;R) :
In Electrodynamics the electric �eld

�!
E and the magnetic �eld

�!
B are represented by vectors of

R3 with an orthonormal basis :�!
E =

P3
i=1E

i"i =
P3
i=1

P3
�=0E

iP �i @���!
B =

P3
i=1B

i"i =
P3
i=1

P3
�=0B

iP �i @��

To
�!
E ;
�!
B one can associate one forms in the 3 dimensional tangent space to 
3 (t) :

E� =
P3
�;�=1 g��E

�d��
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B� =
P3
�;�=1 g��B

�d��

Then :
FwEM = d�0 ^ E� =

P3
�;�=1 g��E

�d�0 ^ d��

[FwEM ] =
hP3

�=1 g��E
�
i
= [E]

t
[g3]

In T
3 (t) one can compute the Hodge dual of B� which is a 3� 1 = 2 form :
�B� = (detQ0)

P3
�;�=1 (�1)

�+1
g�� (B�)� d�

1 ^ ::dd��::d�3
= (detQ0)

P3
=1�B1d�3 ^ d�2 �B2d�1 ^ d�3 �B3d�2 ^ d�1

Then :
Fr = � �B�
[FrEM ] = � [B]

t
detQ0

And :

FEM = d�0 ^ E� � �H� detQ

FEM =
P3
�;�=1 g��E

�d�0 ^ d�� +B1d�3 ^ d�2 +B2d�1 ^ d�3 +B3d�2 ^ d�1
[FrEM ] = � [B]

t
detQ0

[FwEM ] = [E]
t
[g3]

(5.49)

The matrix of FEM is :

[FEM ] =
�
0 [E�]

t

E� [j (B)]

�
From which :
[�FrEM ] = [E]

t
detQ0

[�FwEM ] = [B]
t
[g3]

The only geometric quantity is the strength FEM , and the vectors E;B are just components in
an orthonormal basis. The split between electric and magnetic components depends on the chart,
that is on the observer, as it is well known in Electrodynamics : an EM �eld can look as a pure
electric or magnetic �eld for another observer.

The Pointing vector is : S = 1
�0
E � B = � 1

�0
j
�
[E] [g3]

�1
�
[B]

t
detQ0 where �0 is the vacuum

permeability.
The potential �A is a one form : �A =

P
�
�A�d�

� :

F�� =
P
�

�
@� �A� � @� �A�

�
d�� ^ d��h

d �Ar
i
= [FrEM ] = � [B]

t
detQ0h

d �Aw
i
= [FwEM ] = [E]

t
[g3]

thus
h
d �Ar

i
is related to the magnetic �eld, and

h
d �Aw

i
to the electric �eld.

5.4.4 Scalar curvature

In GR another de�nition of curvature is commonly used, and it is necessary to see how these concepts
are related.

Riemann Tensor

The strength FG is de�ned on PG: The Riemann curvature is the tensor, on the associated vector
bundle PG

�
R4;Ad

�
:

R =
P3

f��gij=0
P6
a=1 Fa�� [�a]

i
j d�

� ^ d�� 
 "i (m)
 "j (m)
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where [�a] is the matrix of the basis of so(3; 1): This is a 2-form on M valued in the linear
morphisms $ (TmM ;TmM) ; expressed in the tetrad. It is convenient to denote the 4 � 4 matrix
[F�� ] =

P6
a=1 Fa�� [�a] :

The Riemann curvature is the image of the strength of the �eld on PG
�
R4;Ad

�
: This is the

same quantity, but in the representation of T1Spin (3; 1) in the matrix algebra so (3; 1) :
We have :
[R�� ]

i
j = @��

i
M�j � @��iM�j +

P3
k=0

�
�iM�k�

k
M�j � �iM�k�

k
M�j

�
where [�M�] =

P6
a=1G

a
� [�a] :

By construct this quantity is covariant (in a change of chart on M) and in a change of gauge on
PG : eR = R:
Using
"i (m) =

P3
=0 P


i @�

"j (m) =
P3
�=0 P

0j
� d�

�

it can be expressed in the chart :
R =

P
f��g� ([P ] [FG�� ] [P 0])


� d�

� ^ d�� 
 @� 
 d��
For any common a¢ ne connection the Riemann tensor is the tensor :bR =Pf��g

P
�
bR���d�� ^ d�� 
 @� 
 d��

where
h bR��i

4�4
=
h
@�b��i � h@�b��i + hb��i hb��i � hb��i hb��i and hb��i�


=
hb���i

4�4
denotes

the Christofell form in matrix form.
With any principal connection on PG one can de�ne an a¢ ne connection on TM :b��� = hb��i

�
= ([P ] ([@�P

0] + [�M�] [P
0]))


�

and one can check thath bR��i = [R�� ] = [P ] [FG�� ] [P 0], [FG�� ] = [P 0] [R�� ] [P ] (5.50)

So the Riemann tensor is the Riemann curvature of the principal connection, expressed in the
holonomic basis of a chart, and it is the same object as the strength of the connection :

R =
P

f��gij
P6
a=1 FaG�� [�a]

i
j d�

� ^ d�� 
 "i (m)
 "j (m)

=
P

f��g
P6
a=1 FaG�� ([P ] [�a] [P 0])


� d�

� ^ d�� 
 @� 
 d��
The Riemann tensor can be computed with any a¢ ne connection, as well as with any principal

connection. In the usual RG formalism the Riemann tensor is computed with a special connection
: the Levy-Civita connection.
The Riemann tensor is antisymmetric, in the meaning :
R��� = �R��� with R��� =

P
�R

�
��g��

[FG�� ] 2 so (3; 1) so [�] [FG�� ] + [FG�� ]t [�] = 0 and
R��� =

P
�R

�
��g�� =

P
� ([P ] [FG�� ] [P 0])

�
 g�� =

�
[P 0]

t
[�] [FG�� ] [P 0]

��


=

��
[P 0]

t
[�] [FG�� ] [P 0]

�t�
�

=
�
[P 0]

t
[FG�� ]t [�] [P 0]

�
�

= �
�
[P 0]

t
[�] [FG�� ] [P 0]

�
�
= �R���

Thus this symmetry is not speci�c to the Levi-Civita connection as it is usually assumed (Wald
p.39).

Ricci tensor and scalar curvature

The Riemann tensor R, coming from any connection, is a 2 form but can be expressed as an
antisymmetric tensor with non ordered indices with d�� ^ d�� = d�� 
 d�� � d�� 
 d��

R =
P
��� [R�� ]


� d�

� 
 d�� 
 @� 
 d��
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and we can contract the covariant index �; � or � with the contravariant index  . The result
does not depend on a basis : it is covariant. The di¤erent solutions give :

� :
P
��

�P
� [R�� ]

�
�

�
d�� 
 d��

� :
P
��

�P
� [R�� ]

�
�

�
d�� 
 d��

� :
P
��

�P
 [R�� ]




�
d�� 
 d��

The last solution has no interest because :
Tr ([P ] [FG�� ] [P 0]) = Tr ([FG�� ] [P 0] [P ]) = Tr ([FG�� ]) = 0
The �rst two read :P
� [P ]

�
k [FG�� ]

k
l [P

0]
l
� [P ]

�
i "

i 
 [P ]�j "j =
P
��j ([P ] [FG�� ])

�
j d�

� 
 "jP
� [P ]

�
k [FG�� ]

k
l [P

0]
l
� [P ]

�
i "

i 
 [P ]�j "j =
P
� ([P ] [FG�� ])

�
j d�

� 
 "j
The Ricci tensor is the contraction on the two indices ; � of R :
Ric =

P
�� Ric��d�

� 
 d�� =
P
��

�P
� [R�� ]

�
�

�
d�� 
 d��

This is a tensor, from which one can compute another tensor by lifting the last index:P
� g

��Ric��d�
� 
 d�� =

P
��Ric

�
�d�

� 
 @��
whose contraction (called the trace of this tensor) provides the scalar curvature :
R =

P
� Ric

�
� =

P
��� g

�� [R�� ]
�
�

The same procedure applied to the contraction on the two indices ; � of R gives the opposite
scalar :
R =

P
��� g

�� [R�� ]
�
� = �

P
��� g

�� [R��]
�
� = �

P
��� g

�� [R�� ]
�
�

This manipulation is mathematically valid, and provides a unique scalar, which does not depend
on a chart, and can be used in a lagrangian. However its physical justi�cation (see Wald) is weak.
In the usual GR formalism the scalar curvature is computed with the Riemann tensor bR deduced

from the Levy-Civita connection but, as we can see, it can be computed in the tetrad with any
principal connection.
Starting from [R�� ] = [P ] [FG�� ] [P 0] one gets the Ricci tensor :
Ric =

P
�� Ric��d�

� 
 d�� =
P
��

P
 ([P ] [FG� ] [P 0])


� d�

� 
 d��

[Ric]
�
� =

P6
a=1

P
�� ([Fa] [P ] [�a] [P 0])

�
�

Ric =

3X
��=0

6X
a=1

([Fa] [P ] [�a] [P 0])�� d�
� 
 d�� (5.51)

and the scalar curvature :
R =

P
�� g

� [R�� ]
�
 =

P
�� g

� ([P ] [FG�� ] [P 0])� and with [g]
�1
= [P ] [�] [P ]

t

R =
P
��

�
[P ] [�] [P ]

t
�
�
([P ] [FG�� ] [P 0])� =

P6
a=1

P
�� [Fa]

�
�

�
[P ] [�a] [�] [P ]

t
��
�

R =
6X
a=1

Tr
�
[P ]

t
[Fa] [P ] [�a] [�]

�
(5.52)

We have seen previously (change of chart) expressions such as [P ]t [Fa] [P ] : With :

[P ] =

�
P 00

�
P 0
�
1�3

[P0]3�1 [Q]3�3

�

[P ]
t
[Fa] [P ] =

264 0
hgFwia

1�3

�
�hgFwia�t

3�1
j
�hfFria�

3�3

375
,
h h eFria h eFwia i = � [Fr]a [Fw]a

�
[LP ]
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[LP ] =

�
[Q0]

t
detQ �j ([O0]) [Q]

[Q] j
��
P 0
��

P 00 [Q]� [P0]
�
P 0
� �h eFria = [Fr]a [Q0]t det [Q] + [Fw]a [Q] j ��P 0��h eFwia = � [Fr]a j ([P0]) [Q] + [Fw]a �P 00 [Q]� [P0] �P 0��

a = 1; 2; 3 :

[�a] [�] =

�
0 0
0 j ("a)

� �
�1 0
0 I

�
=

�
0 0
0 j ("a)

�
[P ]

t
[Far ] [P ] [�a] [�] =

24 0
hgFwr ia j ("a)

0 j
�hfFrr ia� j ("a)

35
Tr
�
[P ]

t
[Fa] [P ] [�a] [�]

�
= Trj

�hfFrr ia� j ("a) = �2 hfFrr ia ["a]
a = 4; 5; 6 :

[�a] [�] =

�
0 ["a]

t

"a 0

� �
�1 0
0 I

�
=

�
0 ["a]

t

�"a 0

�
[P ]

t
[Faw] [P ] [�a] [�] =

24 �
hgFww ia ["a] 0

�j
�hfFrwia� ["a] 0

35
Tr
�
[P ]

t
[Fa] [P ] [�a] [�]

�
= Tr

�
�
hgFww ia ["a]� = � hgFww ia ["a]

R =
P6
a=1 Tr

�
[P ]

t
[Fa] [P ] [�a] [�]

�
= �

P6
a=1

�
2
hfFrr ia ["a] + hgFww ia ["a]�

=
P6
a=1f�2

�
[Frr ]

a
[Q0]

t
det [Q] + [Fwr ]

a
[Q] j

��
P 0
���

["a]

�
�
� [Frw]

a
j ([P0]) [Q] + [Fww ]

a �
P 00 [Q]� [P0]

�
P 0
���
["a]g

R = Tr
n
�2 [Frr ] [Q0]

t
det [Q]� 2 [Fwr ] [Q] j

��
P 0
��
+ [Frw] j ([P0]) [Q]� [Fww ]

�
P 00 [Q]� [P0]

�
P 0
��o

The scalar curvature is linear with respect to the strength of the �eld. In the implementation of
the Principle of Least Action it provides equations which are linear with respect to FG; which is a
big improvement from the usual computations.

In the standard chart : R = �Tr
�
2 [Frr ]

h
Q

0
it
(detQ) + [Fww ] [Q]

�
: only [Frr ] ; [Fww ] are in-

volved, which reduces signi�cantly the interest of the scalar curvature to account for FG:
To sum up, with the �ber bundle and connections formalism it is possible to compute, more

easily, a scalar curvature which has the usual meaning. And by imposing symmetry to the a¢ ne
connection we get exactly the same quantity. However, as we have seen before, the symmetry of the
connection has no obvious physical meaning, and similarly for the scalar curvature.

5.4.5 Energy

The �eld interacts with itself, during its propagation, and in this process the value of F changes
locally, so it is rational to look for a quantity, similar to the �energy of the particles�, to represent
the balance of energy in this process. It should involve only F , the tetrad and be independent of the
choice of a chart or a gauge, and have as a simple expression as possible. For the gravitational �eld
the scalar curvature can be used for this purpose, and this is the usual solution, however it has no
equivalent for the other �elds. So we will look for a general solution, encompassing all �elds, which
leads to a scalar product hF ;Fi, as F is a vectorial quantity.
We have already a scalar product for scalar forms, we need to extend it to forms valued in the

Lie algebras.
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Scalar products on the Lie algebras

The strength can be seen as a section of the associated vector bundles PG [T1Spin(3; 1);Ad] ;
PU [T1U;Ad] and then the scalar product must be preserved by the adjoint map Ad. There are

not too many possibilities. It can be shown that, for simple groups of matrices, the only scalar
products on their Lie algebra which are invariant by the adjoint map are of the kind : h[X] ; [Y ]i =
kTr

�
[X]

�
[Y ]
�
which sums up, in our case, to use the Killing form. This is a bilinear form which

is preserved by any automorphism of the Lie algebra (thus in any representation). However it is
negative de�nite if and only if the group is compact and semi-simple.

Scalar product for the gravitational �eld
The scalar product on T1Spin (3; 1) ; induced by the scalar product on the Cli¤ord algebra, is, up

to a constant, the Killing form :
h� (r; w) ; � (r0; w0)iCl(3;1) = 1

4 (r
tr0 � wtw0)

a = 1; 2; 3 : FaG�� = Far��
a = 4; 5; 6 : FaG�� = Faw��
For �xed indices �; �; �; � :D
FG�� (m) ;F 0G�� (m)

E
Cl
=
D
� (Fr�� ;Fw��) ; �

�
F 0r��;F 0w��

�E
Cl

= 1
4

�P3
a=1 FaG��F 0aG�� �

P6
a=4 FaG��F 0aG��

�
The result does not depend on the signature. This scalar product is invariant in a change of

gauge, non degenerate but not de�nite positive.

Scalar product for the other �elds
The group U is assumed to be compact and connected. If U is semi-simple, its Killing form, which

is invariant by the adjoint map, is then de�nite negative, and we can de�ne a de�nite positive scalar
product, invariant in a change of gauge, on its Lie algebra. This is the case for SU(2) and SU(3)
but not for U(1), however the Lie algebra of U(1) is R and there is an obvious de�nite positive scalar
product. As T1U is a real vector space the scalar product is a bilinear symmetric form.
So we will assume that :

Proposition 94 There is a de�nite positive scalar product on the Lie algebra T1U; de�ned by a
bilinear symmetric form preserved by the adjoint map, that we will denote hiT1U : The basis

��!
� a

�m
a=1

of T1U is orthonormal for this scalar product.

Notice that it is di¤erent from the scalar product on F (which de�nes the charges), which is
Hermitian. In the standard model, because several groups are involved, three di¤erent constants
are used, called the �gauge coupling�. Here we consider only one group, and we can take the basis��!
� a

�m
a=1

as orthonormal for the scalar product.

The scalar product between sections FA of �2 (M ;T1U) is then de�ned, pointwise, as



FA�� (m) ;F 0A�� (m)

�
T1U

=
mX
a=1

FaA�� (m)F 0aA�� (m) (5.53)

Scalar product for the strength of the �elds

We have to combine both scalar products. They can all be expressed with Far;Faw:
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For the gravitational �eld
hF ;KiG =

DP6
a=1

P3
f�;�g=0 Fa��d�� ^ d�� 


�!� a;
P6
b=1

P3
f�;�g=0K

b
��d�

� ^ d�� 
�!� b
E

=
P6
a;b=1

DP3
f�;�g=0 Fa��d�� ^ d�� ;

P3
f�;�g=0K

b
��d�

� ^ d��
E
TM
h�!� a;�!� biCl

= 1
4

P3
a;b=1

DP3
f�;�g=0 Fa��d�� ^ d�� ;

P3
f�;�g=0K

a
��d�

� ^ d��
E
TM

� 14
P6
a;b=4

DP3
f�;�g=0 Fa��d�� ^ d�� ;

P3
f�;�g=0K

a
��d�

� ^ d��
E
TM

Which can be expressed equivalently :
hF ;KiG = 1

4 (G2 (Fr;Kr)�G2 (Fw;Kw))
= 1

4

P
f��g F��r Kr�� �F��w Kw��

= 1
4

1
detP 0

�
[�Fww ] [Kr

w]
t
+ [�Frw] [Kw

w ]
t �
�
[�Fwr ] [Kr

r ]
t
+ [�Fr] [Kw]

t
��

= � 18Tr
�
[Fr] [g]�1 [Kr] [g]

�1 � [Fw] [g]�1 [Kw] [g]
�1
�

With the complex notation : FG = Fr + iFw
hF ;KiG = � 14

1
detP 0 Re

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�

= � 18 ReTr
�
[F ] [g]�1 [K] [g]�1

�
hF ;KiG = 1

4

P3
a=1

P
f��g Fa��r Ka

r�� �Fa��w Ka
w�� =

1
8

P3
a=1

P3
��=0 Fa��r Ka

r�� �Fa��w Ka
w��

hF ;KiG = � 14
1

detP 0 Re
�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�
= � 18 ReTr

�
[F ] [g]�1 [K] [g]�1

�
(5.54)

and because the scalar product is symmetric :

hF ;KiG = � 1
4 detP 0 ReTr

�
[�Kw] [Fr]t + [�Kr] [Fw]t

�
For the other �eldsDPm

a=1

P3
f�;�g=0 Fa��d�� ^ d�� 


�!
� a;

Pm
b=1

P3
f�;�g=0K

b
��d�

� ^ d�� 
�!� b
E

=
Pm
a;b=1

DP3
f�;�g=0 Fa��d�� ^ d�� ;

P3
f�;�g=0K

b
��d�

� ^ d��
ED�!

� a;
�!
� b

E
T1U

=
Pm
a=1

DP3
f�;�g=0 Fa��d�� ^ d�� ;

P3
f�;�g=0K

a
��d�

� ^ d��
E
TM

Which can be expressed equivalently :
hF ;KiA =

Pm
a=1G2 (Fa;Ka)

=
Pm
a=1

P
f��g Fa��Ka

��

= � 1
detP 0

Pm
a=1

�
[�Faw] [Kar]

t
+ [�Far] [Kaw]

t
�

= � 1
detP 0Tr

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�

= � 12
Pm
a=1 Tr

�
[Fa] [g]�1 [Ka] [g]

�1
�

hF ;KiA =
Pm
a=1

P
f��g Fa��Ka

�� =
1
2

Pm
a=1

P3
��=0 Fa��Ka

��

hF ;KiA = � 1
detP 0Tr

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�
= � 12

Pm
a=1 Tr

�
[Fa] [g]�1 [Ka] [g]

�1
�
(5.55)

These scalar products are, by construct, invariant in a change of gauge or chart. So we can
compute them in any chart, and of course in a standard chart. Then :

G2 (Fa;Ka) = [Fa;w] [g3]�1 [Ka;w]
t
+ [Fa;r] [g3] [Ka;r]

t
det [g3]

�1

hF ;KiG = 1
4

P3
a=1ReTr

�
[Fw] [g3]�1 [Kw]

t
+ [Fr] [g3] [Kr]

t
det [g3]

�1
�

hF ;KiA = Tr [FwA ] [g3]
�1
[Kw]

t
+ [FrA] [g3] [Kr

A]
t
det [g3]

�1 (5.56)



5.4. THE PROPAGATION OF FIELDS 233

Because [g3] is de�nite positive, and the scalar product on T1U is also de�nite positive, then the
scalar product is de�nite positive on the space of FA :

hFA;FAi � 0; hFA;FAiA = 0, FA = 0 (5.57)

For the EM �eld :

hFEM ;FEM i = [E]t [g3] [E] + [B] [g3] [B]t (5.58)

But this is not the case for the gravitational �eld.

From the computation above we have :
hF ;KiG$4 =

1
4

P3
a=1 �Far ^Ka

r � �Faw ^Ka
w =

1
4

P3
a=1 �Ka

r ^ Far � �Ka
w ^ Faw

Similarly :
hF ;KiA$4 =

Pm
a=1 �FaA ^Ka

A =
Pm
a=1 �Ka

A ^ FaA

Identity

We have a useful property which is more general, and holds for all the �elds:

Theorem 95 On the Lie algebra T1U of a Lie group U , endowed with a symmetric scalar product
hiT1U which is preserved by the adjoint map :

8X;Y; Z 2 T1U : hX; [Y; Z]i = h[X;Y ] ; Zi (5.59)

Proof. 8g 2 U : hAdgX;AdgY i = hX;Y i
take the derivative with respect to g at g = 1 for Z 2 T1U :
(AdgX)

0
(Z) = ad (Z) (X) = [Z;X]

h[Z;X] ; Y i+ hX; [Z; Y ]i = 0, hX; [Y; Z]i = h[Z;X] ; Y i
exchange X;Z:
) hZ; [Y;X]i = h[X;Z] ; Y i = �h[Z;X] ; Y i = �hX; [Y; Z]i = �hZ; [X;Y ]i

For the gravitational �eld :
Let be
X =

P6
a=1

P3
f�;�g=0X

a
��d�

� ^ d�� 
�!� a;
Y =

P6
a=1 Y

a
� d�

� 
�!� a;
Z =

P6
a=1 Z

a
�d�

� 
�!� a
[Y; Z] =

P6
a=1

P3
f�;�g=0 [Y�; Z� ]

a
d�� ^ d�� 
�!� a

hX; [Y;Z]iG
= 1

4

P3
a=1

P
f��gX

a��
r [Y�; Z� ]

a
r �Xa��

w [Y�; Z� ]
a
w

=
P

f��g


X�� ; [Y�; Z� ]

�
Cl

=
P

f��g

�
X�� ; Y�

�
; Z�

�
Cl

hX; [Y; Z]iG =
X
f��g



X�� ; [Y�; Z� ]

�
Cl
=
X
f��g


�
X�� ; Y�

�
; Z�

�
Cl

(5.60)

For the other �elds :
X =

P6
a=1

P3
f�;�g=0X

a
�d�

� ^ d�� 
�!� a; Y =
P6
a=1 Y

a
� d�

� 
�!� a; Z =
P6
a=1 Z

a
�d�

� 
�!� a
hX; [Y;Z]iA
=
Pm
a=1

P
f��gX

a�� [Y�; Z� ]
a
r

=
P

f��g


X�� ; [Y�; Z� ]

�
T1U

=
P

f��g

�
X�� ; Y�

�
; Z�

�
T1U

hX; [Y; Z]iA =
X
f��g



X�� ; [Y�; Z� ]

�
T1U

=
X
f��g


�
X�� ; Y�

�
; Z�

�
T1U

(5.61)
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Norm for the strength of the �eld

There is a norm on the spaces of strengths; when expressed in the standard chart :
kFA (m)k2 = hFA (m) ;FA (m)iA
kFG (m)k2 = kFr (m)k2 + kFw (m)k2
kFAk =

R
!
kFA (m)k$4 (m)

kFGk =
R
!
kFG (m)k$4 (m)

If 
 is a relatively compact open of M , the spaces :
L2 (
; T1Spin (3; 1) ; $4) :

R
!
kFG (m)k2$4 (m) <1

L2 (
; T1U;$4) :
R
!
kFA (m)k2$4 (m) <1

where ! is any compact of 
, are Fréchet spaces.

Energy

Proposition 96 The energy density of the �elds, with respect to the volume form $4; is, up to
a constant,
for the gravitational �eld : hFG;FGiG
for the other �elds : hFA;FAiA

When incorporated in a lagrangian, which represents the energy of a system it corresponds to
the energy in the interaction of the �eld with itself, and provides the usual results.

Conservation of energy

If is assumed that �elds interact with particles, and with themselves, but not between each other.
However energy is a common variable, so in the vacuum the balance of energy due to the variation of
the energy of each �eld should be even. For a system comprised only of �elds and a given observer,
the conservation of energy means that for the observer :
E (t)=

R

(t)
hF ;Fi$3 = Ct =

R

(t)

i"0 (hF ;Fi$4)

where hF ;Fi is the sum of the energy of each �eld, as de�ned above.
Consider the manifold 
 ([t1; t2]) with borders 
 (t1) ;
 (t2) :
E (t2)� E (t1) =

R
@
([t1;t2])

i"0 (hF ;Fi$4) =
R

([t1;t2])

d (i"0 hF ;Fi$4)

with the Lie derivative $"0 (hF ;Fi$4) :
d (i"0 hF ;Fi$4) = $"0 (hF ;Fi$4)� i"0d (hF ;Fi$4)
i"0d (hF ;Fi$4) = i"0 (d hF ;Fi ^$4) + i"0 hF ;Fi d$4 = i"0 (d hF ;Fi ^$4) = 0
d (i"0 hF ;Fi$4) = $"0 (hF ;Fi$4)
= ($"0 hF ;Fi)$4 + hF ;Fi$"0$4

= 1
c
@
@t hF ;Fi$4 + hF ;Fi (div"0)$4

div"0 =
P3
�=0

@"��
@�� +

1
2"
�
0

P3
�=0 g

�@�g� =
1
2

P3
�=0 g

�@0g�

=
P3
�=0

@"��
@�� +

1
2

1
det g "

�
0 @� (det g) =

1
2

1
det g@0 (det g)

d (i"0 hF ;Fi$4) =
1
c
@
@t hF ;Fi$4 + hF ;Fi 12

1
det g@0 (det g)$4

E (t2)� E (t1) =
R

([t1;t2])

�
@
@t hF ;Fi+ hF ;Fi

1
2

1
det g@0 (det g)

�
$4 =R


(t)

�
@
@t hF ;Fi+ hF ;Fi

1
2

1
det g@0 (det g)

�
$3 = Ct

The conservation of energy implies for the observer :

@

@t
hF ;Fi+ hF ;Fi 1

2

1

det g
@0 (det g) = 0 (5.62)

which is similar to the continuity equation for the density of particles.
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5.4.6 Chern-Weil theory

The strength of the �eld is a somewhat complicated derivation of the potential, so one can expect
that F meets some identities related to its de�nition. This is the case but, what is more signi�cant, is
that these properties do not depend on the connection, but on the principal bundle structure itself,
which gives a speci�c, physical meaning on the �ber bundles structures PG; PU ; Q: This is the topic
of the Chern-Weil theory, which is quite abstract but has practical consequences (see Maths.27.4.5
and Kobayashi II p.298). It is a purely mathematical theory, which does not rely on any physical
assumption. And its implementation for a 4 dimensional manifold is quite easy.

Chern-Weil theorem

Let (V; �) be the representation of a Lie group G., and In (V; �;G) the set of scalar n linear symmetric
form ' 2 Lns (V ;R) which are invariant by G :
8X1:::Xn; Y1; ::Yn 2 V; k1; :::kn 2 R; g 2 G; � 2 S (n) :
multilinear :
' (k1X1; :::; knXn) = k1:::kn' (X1; :::; Xn)

' (X1; ; ::; Xi + Yi; :; Xn) = ' (X1; ; ::; Xi; :; Xn) + ' (X1; ; ::; Yi; :; Xn)

symmetric : ' (X1; ::; Xn) = '
�
X�(1); ::; X�(n)

�
invariant by G : ' (� (g)X1; ::; � (g)Xn) = ' (X1; ::; Xn)

' reads in any basis of V as :
' (X1; :::; Xn) =

PdimV
i1:::in=1

'i1:::inX
i1
1 :::X

in
n where the coe¢ cients 'i1:::in are symmetric by per-

mutation of the indices.
In (V; �;G) is a vector space, as well as I (V; �;G) = �1n=0In (V; �;G) with I0 (V; �;G) = R and

can be endowed with a product with which it has the structure of a real algebra.
Any group has the representation (T1G;Ad) on its Lie algebra thus one can consider (T1G;Ad)

and In (T1G;Ad;G) :
For any principal bundle P (M;G; �) the space of sections X (P [T1G;Ad] ; Ad) of the adjoint

bundle is a representation of G. For any connection on P (M;G; �) the strength F of the connection
is a map F :M ! �2 (M ;T1G) : So from F , for any form 'n 2 In (T1G;Ad;G) ; one can de�ne the
2n form b'n (F) 2 �2n (M ;R) by symmetrization :
8u1; :::; u2n 2 X (TM) :: b'n (F) (u1; :::; u2n)
= 1

(2n)!

P
�2S(2n) � (�)'

�
F
�
u�(1); u�(2)

�
; :::F

�
u�(2n�1); u�(2n)

��
F (up; uq) =

PdimT1G
a=1

PdimM
�;�=1 Fa��u�pu�q

�!� a
'n (�1; :::; �n) =

PdimT1G
a1::an=1

'i1:::in�
a1
1 :::�

an
nb'n (F)

=
PdimM
�1�2:::�2n=1

�
1

(2n)!

PdimT1G
a1::an=1

'a1:::an
P
�2S(2n) � (�)F

a1
��(1)��(2)

:::Fan��(2n�3)��(2n)
�
d��1 :::^d��2n

For n = 1 :
'n (�) =

PdimT1G
a=1 'a�

ab'1 (F) =PdimM
�;�=1

PdimT1G
a=1 'aFa��d�� ^ d��

For n = 2 :b'2 (F)
= 1

24

P
�2S(4)

PdimT1G
a;b=1 'ab

PdimM
�1�2�3�4=1

� (�)Fa��(1)�(2)F
b
��(3)��(4)

d��1 ^ d��2 ^ d��3 ^ d��4
Of course b'n (F) � 0 whenever 2n > dimM:

The set of closed forms � 2 �n (M ;R) on a manifold is an algebra with the exterior product,
by taking the quotient space one gets a vector space Hn (M) (the n cohomology class of M) and
H� (M) = �dimM

n=0 Hn (M) is an algebra. Any form � of Hn (M) can be de�ned, up to a closed form,
by a representative cn 2 �n (M ;R) of Hn (M) : d (�� cn) = 0:
The Chern-Weil theorem tells that :
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i) For any given map 'n 2 I (T1G;Ad;G) and any connection with strength F the exterior
di¤erential db'n (F) = 0:
ii) For two principal connections with strengths F1;F2 there is some form � 2 �2n�1 (M ;R) such

that b'n (F1 �F2) = d�n:
iii) The map : � : I (T1G;Ad;G)! H� (M) :: � (') = [d�n] is a morphism of algebras.
So, whatever the connection, the 2n scalar forms b'n (F) are equivalent, up to a closed form. The

class of cohomology to which belongs b'n (F) ; called the characteristic class of (P;'n) ; depends not
on the connection on P , but on 'n, and is speci�c to the structure of principal bundle P . In particular
if P is trivial (it can be de�ned without patching open subsets of M) then the characteristic class is
null : H0 (M) ' Rp where p is the number of connected components of M .
From a principal bundle one can de�ne any vector bundle, but the converse is true : given a

vector bundle one can de�ne a principal bundle whose group is the one by which one goes from
one holonomic basis to another (for the usual vector bundle on a m dimensional manifold this
is just GL(R;m)). So, because they depend only on the principal bundle structure and not on
the connection, one can associate characteristic classes to any vector bundle E, which are called
Chern classes, and each characteristic class of H2n (E) is de�ned by a 2n-form cn (E) = b'n (F) 2
�2n (M ;R). Then the strength F is represented, in holonomic basis, by a matrix which is the
Riemann tensor: For instance for PG

�
R4;Ad

�
R =

P
f��gij [F�� ]

i
j d�

� ^ d�� 
 "i (m)
 "j (m) and [F�� ] =
P6
a=1 Fa�� [�a] :

The issue is then to compute the maps ' 2 I (T1G;Ad;G) : Notice that the Chern-Weil theorem
assumes their existence, but maps 'n which meet the properties above are quite special and do not
necessarily exist. The usual way to look for them is through symmetric polynomials, the function
f (X) = det (I � t [X]) (Kobayashi p.298), and polarization (Kolar p.218) but we will proceed here
with a more direct method.

Application to M

The manifold M is 4 dimensional, so we have to consider only n forms for n = 1 and n = 2.

For n = 1 the multilinear maps are just covectors '1 2 T1G� : '1 (�) =
PdimT1G
a=1 'a�

a

The map Ad is represented in T1G by a matrix, and '1 is invariant i¤ :
8g 2 G;X 2 T1G :: '1 (�) =

PdimT1G
a=1 'a�

a = '1 (Adg�) =
PdimT1G
a;b=1 'a [Adg]

a
b �

b

So there is no solution, except if T1G = R because then Adg = Id (the conjugation is the
identity). This is the case of the EM �eld. Then the 2 formb'1 (F) =PdimM

�;�=1 'F��d�� ^ d�� = 'FEM
and we know that, indeed, FEM = d �AEM is a closed form because the bracket is null in T1U (1) :

For n = 2 the multilinear maps are bilinear symmetric form on T1G
'2 (X;Y ) = [X]

t
['2] [Y ]

with a symmetric matrix ['2] : So this is a scalar product on the Lie algebra which is preserved
by the adjoint map. For any Lie algebra there is such a scalar product, given by the Killing form
(other scalar products can be de�ned by morphisms). So there is always a solution (except for the
EM �eld because the Lie algebra is abelian), and

'2 (X;Y ) = hX;Y iT1Gb'2 (F) = 1
24

�P
�2S(4) � (�)



F�(0)�(1);F�(2)�(3)

��
d�0 ^ d�1 ^ d�2 ^ d�3

By considering all the permutations of
X�1�2�3�4 =

P3
a=1 Far�(0)�(1)Far�(2)�(3) �Faw�(0)�(1)Faw�(2)�(3)

one gets :b'2 (F) = � 13 (hF01;F32i+ hF02;F13i+ hF03;F21i) d�0 ^ d�1 ^ d�2 ^ d�3
the scalar product being : hF01;F32i =

PdimT1G
a;b=1 'abFa01Fb32
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(hF01;F32i+ hF02;F13i+ hF03;F21i) d�0 ^ d�1 ^ d�2 ^ d�3
=
PdimT1G
a;b=1 'ab

�
Fa01Fb32 + Fa02Fb13 + Fa03Fb21

�
d�0 ^ d�1 ^ d�2 ^ d�3

=
PdimT1G
a;b=1 'ab

�
[Far]

�
Fbw

�t
+ [Faw]

�
Fbr

�t�
d�0 ^ d�1 ^ d�2 ^ d�3

= �
PdimT1G
a;b=1 'abFa ^ Fb

and because 'ab = 'ba : b'2 (F) = 0 which sums up to, for any group and scalar product on the
Lie algebra preserved by the adjoint map, the identity :

hF01;F32i+ hF02;F13i+ hF03;F21i = 0 (5.63)

The identity reads for the gravitational �eld, with hFG01;FG32i = [Fr01]t [Fr32]� [Fw01]t [Fw32]P3
a=1 Far01Far32 + Far02Far13 + Far03Far21 �Faw01Faw32 �Faw02Faw13 �Faw03Faw21 = 0

or : h
Tr
�
[Frr ]

t
[Fwr ]� [Frw]

t
[Fww ]

�
= 0
i

(5.64)

In complex notation :
[FrG] = [Frr ] + i [Frw] ; [FwG ] = [Fwr ] + i [Fww ]
[Frr ]

t
[Fwr ]� [Frw]

t
[Fww ] = Re [FrG]

t
Re [FwG ]� Im [FrG]

t
Im [FwG ] = Re [FrG]

t
[FwG ]

TrRe [FrG]
t
[FwG ] = 0 (5.65)

and for the other �elds (except EM) :Pm
a=1 Fa01Fa32 + Fa02Fa13 + Fa03Fa21 = 0

or :

Tr
�
[FrA]

t
[FwA ]

�
= 0 (5.66)

Remarks :
i) This identity holds for any connection (except the EM �eld), and without any assumption about

M or 
 beyond that M is 4 dimensional, whenever there is a vector bundle.
ii) It is the consequence of the assumption of the existence of a vector bundle, and does not imply

anything about the conditions of an equilibrium of a system.
iii) This identity comforts the decomposition of F in Fr;Fw:
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5.5 THE EINSTEIN�S THEORY OF GRAVITATION

So far we have considered Gravitation as a force �eld, with speci�c properties, but nonetheless
which can be addressed as it is done in Classic Physics, through its action on particles by forces and
potential. The Principle of Equivalence - the equality between inertial mass and gravitational charge
- is then simply expressed with the spinor. Einstein�s Theory of Gravitation is based on di¤erent
assumptions.

5.5.1 The assumptions of the theory

In Special Relativity the usage of orthonormal frames is restricted to inertial observers, whose
velocity is constant. In GR the de�nition of inertial observers is the same and does not depend on a
chart : their velocity, which is an intrinsic quantity, is constant (the derivative is with respect to the
proper time). According to the �rst law of Mechanics, their momentum is constant and they do not
feel any inertial forces. But if their velocity changes, then they feel inertial forces, which can be seen
as the result of external forces. Because they are expressed with quantities which are equal - the
inertial mass and the gravitational charge - the e¤ects of gravitation can be seen, not as the action
of a force �eld, but as the consequence of the �curved�geometry of the universe. In this picture the
geometry, through the metric, is at the root of gravitation.
However in this picture one needs to explain why an observer, who is not submitted to any

obvious external force (such as a direct contact or an EM �eld), has not a constant velocity. So it
is assumed that a particle (in our usual meaning) always follows a trajectory which is a geodesic,
de�ned as a curve of minimal length, using the metric.
This de�nition coincides with the de�nition by covariant derivative, but only with the Levy-

Civita connection. As it can be computed from the metric itself, the theory can then be expressed
with covariant derivative, the usual concepts of forces are recovered by the Christofell coe¢ cients.
Moreover the choice of the connection is justi�ed on the ground that it is the only metric symmetric
connection.
In this theory one needs a mechanism to explain the variation of the gravitational forces with the

location and the presence of sources. Einstein postulated his equation Ric�� � 1
2Rg�� =

8�Gp
c
T��

with the momentum energy tensor T�� = @T
@g��

� 1
2g��T .

Einstein�s assumptions were based on general considerations, but the results can be proven in the
general framework that we have introduced and the implementation of the principle of least action,
with 2 basic assumptions :
- the Levy-Civita connection, to de�ne geodesics
- the choice of the scalar curvature to represent the self-interaction of the gravitational �eld in

the lagrangian (it replaces our scalar product).
So starting from a very di¤erent point of view, the theory can be expressed with more conventional

concepts, and implemented in our framework, where it appears as a special case. Its speci�city is
that all the quantities can be computed from the metric, which is the unique variable.
The assumptions can be enlarged, and many attempts have been done. However it is clear

that the introduction of a non symmetric connection entails that of an additional variable (usually
expressed as a torsion) besides the metric, that is of a gravitational �eld in the usual meaning. And
similarly if one replaces the scalar curvature by another variable in the lagrangian.
It is useful to review the computations related to inertial observer and the scalar curvature.

5.5.2 The geodesic trajectories

According to the assumption above the world line q (�) of a particle is such that V = dq
d� follows :brV V = 0 :P3

�=0

�
dV �

d� +
P3
�;=0

b���V �V � @�� = 0
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The inertial forcemI
dV �

d� is equal and opposed to the gravitational force
�
mG

P3
�;=0

b���V �V � :
Because the inertial mass mI is equal to the gravitational charge mG all particles follow the same
trajectory. The scalar product is preserved on a geodesic, so hV; V i = �c2: If an additional force,
such as the EM �eld, is acknowledged, the trajectory is still a geodesic but the gravity is then
deduced from the total forces:
In a strict interpretation of the Principle of Relativity, the observer has freedom of gauge. In the

tetrad formalism he can choose at any point the vectors "i =
P3
�=0 P

�
i @��; submitted only to the

constraint [g�� ] =
P3
i;j=0 �ijP

0i
�P

0�
j ; so they are de�ned up to a rotation by a section of PG: But in

Einstein�s theory, to be consistent we must assume that the observer himself follows a geodesic, the
tetrad is transported by the connection and cannot any longer be arbitrary. The vectors Pi become
vector �elds, and

i = 0::3 : brV "i = 0,P3
�=0 P

�
i @�P

�
i +

P3
�;=0

b���P �i P i = 0, @�P
�
i +

P3
�;=0

b����P �i = 0
The orthonormal basis is transported by the connection, which is then metric. If one assumes

that it is also symmetric it is then necessarily the Levy-Civita connection, computed from the metric
: b��� = 1

2

P
� g

�� (@�g� + @g�� � @�g�)
The dual tetrad P 0 is also transported by the connection :

[@�P
0]�

P3
�;=0

hb��i [P 0] = 0:
As a consequence the connection associated to the principal connection is null :

[�M�] =
�
[P 0]

hb��i� [@�P 0]� [P ]
and, because [�M�] =

P6
a=1G

a
� [�a] then G = 0. In the theory there is no need for a gravitational

�eld. However it is still necessary to explain the variation of the metric with the sources, and this
is done with the scalar curvature as we will see below.
So the Theory is consistent. However if we relax the condition on the connection, we are lead

to reintroduce, in one way or another, a potential, that is a gravitational �eld. In the most general
context we come back to our formalism. The connection is still metric, but not necessarily symmetric.
Then the assumption about the trajectories give very strong prescriptions for the motion. For any
spinor S the condition rV S = 0 reads :
rV S = [C (�)]

h
C
�
��1 � d�dt +Ad��1 bG�i [S0] = 0

, ��1 � d�dt +Ad��1 bG = 0
, bG = �d�dt � ��1 = �� (Xr; Xw)

With :
X� = [C (r)]

t
�
(
h
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
i
@�r +

1
2j (w) @�w + [A (w)]Gr� + [B (w)]Gw�

�
Y� = [C (r)]

t
�

1
4aw

[4� j (w) j (w)] @�w � [B (w)]Gr� + [A (w)]Gw�
�

the condition reads :P3
�=0 V

�
nh

1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
i
@�r +

1
2j (w) @�w + [A (w)]Gr� + [B (w)]Gw�

o
= 0P3

�=0 V
�
n

1
4aw

[4� j (w) j (w)] @�w � [B (w)]Gr� + [A (w)]Gw�
o
= 0

,h
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
i
dr
d� +

1
2j (w)

dw
d� + [A (w)]

bGr + [B (w)] bGw = 0
1
4aw

[4� j (w) j (w)] dwd� � [B (w)] bGr + [A (w)] bGw = 0
dw
d� =

h
awI +

1
4aw

j (w) j (w)
i �
[B (w)] bGr � [A (w)] bGw�

=
h
awI +

1
4aw

j (w) j (w)
i �
[awj (w)] bGr � �1� 1

2j (w) j (w)
� bGw�

= j (w) bGr + �awI � 1
4aw

j (w) j (w)
� bGw

dr
dt
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=
h
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
i�1 �

� 12j (w)
dw
d� � [A (w)] bGr � [B (w)] bGw�

=
�
ar � 1

2j (r)
� �
� 12j (w)

h
j (w) bGr + �awI � 1

4aw
j (w) j (w)

� bGwi� [A (w)] bGr � [B (w)] bGw�
=
�
ar � 1

2j (r)
� �
� bGr + � 1

2aw
� 2aw

�
j (w) bGw�

The trajectories are the same for any particle (they do not depend on S0) and are fully given
by the potential along the trajectory bG. These conditions should apply also to the observers, who
cannot stay spatially immobile : their motion must compensate the changes in the gravitational
�eld. And this makes di¢ cult to de�ne physically their charts.

5.5.3 The Einstein equation

The only known model of the variation of a force �eld with the sources is the implementation of
the Principle of Least Action with a lagrangian. And indeed the Einstein�s equation can easily be
proven with the lagrangian L = T

�
g; zi; zi�

�
+

p
c

8�GR where T corresponds to a stress tensor, whose
speci�cation depends on the problem : it is based on phenomenological laws and can include the EM
�eld. The key variable is the scalar curvature R; it is the only one involved in the vacuum where
the equation reads : Ric�� � 1

2g��R = 0

This assumption about the lagrangian is independent from the others, and the equation can be
expressed with our usual variables. For any connection :

Ric =
P3
��=0

P6
a=1 ([Fa] [P ] [�a] [P 0])

�
� d�

� 
 d��
So the equation reads :P6
a=1

�
[Fa] [P ] [�a] [P 0]� 1

2 [g]R
�
= 0

[g] = [P 0]
t
[�] [P 0]

)P6
a=1 [Fa] [P ] [�a]� 1

2 [P
0]
t
[�]R = 0

)P6
a=1 [P ]

t
[Fa] [P ] [�a] [�] = 1

2RI4
and (see Scalar Curvature above) :P6
a=1 [P ]

t
[Fa] [P ] [�a] [�] =

P3
a=1

24 �
hgFww ia ["a] hgFwr ia j ("a)

�j
�hfFrwia� ["a] j

�hfFrr ia� j ("a)
35

withh eFria = [Fr]a [Q0]t det [Q] + [Fw]a [Q] j ��P 0��h eFwia = � [Fr]a j ([P0]) [Q] + [Fw]a �P 00 [Q]� [P0] �P 0��
R = Tr

n
�2 [Frr ] [Q0]

t
det [Q]� 2 [Fwr ] [Q] j

��
P 0
��
+ [Frw] j ([P0]) [Q]� [Fww ]

�
P 00 [Q]� [P0]

�
P 0
��o

The Einstein equation sums up to :
[Frr ] [Q0]

t
det [Q] + [Fwr ] [Q] j

��
P 0
��
= 1

2Tr
�
[Frw] j ([P0]) [Q]� [Fww ]

�
P 00 [Q]� [P0]

�
P 0
��	

I3P3
a=1

�
� [Frr ]

a
j ([P0]) [Q] + [Fwr ]

a �
P 00 [Q]� [P0]

�
P 0
���

j ("a) = 0

) R = � 43Tr
n
[Frr ] [Q0]

t
det [Q] + [Fwr ] [Q] j

��
P 0
��o

that is a set of equations, linear in F , with coe¢ cients of the second order in [P ] which can be
computed quite easily. As noticed above the tetrad is no longer arbitrary, but a section submitted
to strong conditions.
In Einstein�s theory the Ricci tensor is computed from the metric, and the tetrad itself depends

on the metric, then the equations can be expressed with g and its derivatives.
With a more general connection the results above still hold and, because the observer gets back

his freedom of gauge, the tetrad becomes a free variable, which must be accounted for.
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5.5.4 Cosmological models

The Einstein�s equation in the vacuum can be seen as a propagation equation for the gravitational
�eld. This is also the starting point of cosmological models, representing the universe. It is generally
assumed that the physical universe is spatially isotropic at large scale (there is no preferred spatial
direction), then its dominant feature is the propagation of the gravitational �eld, and this leads
to models with a singularity (the big bang). The main hypotheses are then about the metric.
However these models lead also to static universe (as can be seen in the standard chart). To
give more �exibility to the model, a �xed scalar � is added, ex-model, to the Einstein equation :
Ric�� � 1

2g�� (R+ �) = 0: The cosmological constant � acts as a pressure, positive or negative,
to impact the expansion of the Universe. Its existence and value have been a hot topic, but it
is nowadays generally acknowledged that, at least for cosmological models, it should be non null.
This issue is not related to the formalism used (the use of the Lévi-Civita connection or the scalar
curvature) but to the implementation of the Principle of Least Action. It describes the conditions of
an equilibrium, but at the cosmological scale the gravitational �eld is always expanding, it is never
at equilibrium (at least in an in�nite universe), so the Principle of Least Action does not hold in
this framework.

5.5.5 Conclusion

The Einstein�s theory of gravitation is a beautiful, consistent theory. The center role given to the
metric has a clear meaning, and enables to proceed to explicit computations. However they are
di¢ cult and few solutions are known, variations around the Schwartzchild solution for a spherically
symmetric system. Most models use linearized approximations.
The prediction of the Mercury�s perihelion in a famous 1915 paper is considered as the �rst

experimental veri�cation of the theory. However other methods provide similar results, and it is
not obvious that Einstein himself used strictly his theory (Engelhardt). The experiments involving
the propagation of light (red shift, gravitational lenses,...) require additional assumptions, and the
models are simpli�ed to the extent that the results could be explained by di¤erent ways. The Theory
encountered problems in Cosmology but, due to the speculative nature of the topic, they can be
easily dismissed. The main issue is its failure to explain the motion of stars in the Galaxy. To keep
the equation the usual patch has been proposed : invent a new mystery (dark matter).
Overall, any Theory of Gravitation faces very di¢ cult experimental issues, due to the discrepancy

(which, by itself, needs to be explained) between the gravitational and the other �elds.

Many adjustments have been proposed to solve the problems. Besides those which involve ex-
plicitly Quantum Physics or another geometry (additional dimensions), the idea is to give more
�exibility to the Theory by relaxing its constraints on the connection or the lagrangian. Einstein
himself, with Cartan and Eisenhart, has considered connections with torsions (the so called �fernpar-
allelism�). However these adjustments, when considered in the traditional framework based on the
metric, lead to more complicated computations, in what is already a dreadful endeavour. Moreover
they break with the genuine originality of the theory by reintroducing a gravitational �eld, with all
its implications. Anyway the gauge �eld formalism is then more convenient to study these ideas.
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5.6 THE PHENOMENON OF PROPAGATION

The two main features of force �elds are their interaction with particles, which involves the connection
through the potential, and their propagation, which involves the connection through its �derivative�,
the strength. The Principle of Least Action gives the conditions of an equilibrium, and it is the way
to prove the Maxwell�s equations for the EM �eld. However they do not tell all the story. Solutions
of the Maxwell�s equations can be found using the retarded potentials of Liénard-Wiechert, but
usually only special solutions, plane waves, are considered, and for Optics �light rays�, which both
assume some preferred modes of propagation. The propagation of the EM �eld is a topic of great
theoretical and practical interest and requires a study by itself. It has been at the origin of the
Relativity, and the introduction of the photon seems in opposition to the usual wave behavior.
We do not know much about the gravitational �eld, but it is usually assumed that its propagation

shares the same features as the EM �eld. We know even less about the other �elds, which manifest
essentially by discontinuities. However they all can be represented as gauge �elds, and we will focus
on the propagation of force �elds in this framework.

5.6.1 Propagation of a signal

The main features of propagation

The interaction of a �eld with a particle entails a local change in the value of the �eld, that we
will call a signal, which is assumed to occur at a point O 2 M; that is a given, �xed , location
in space and time. This signal then propagates in the vacuum, but it does not stay the same. Its
transformation is the result of the interaction of the �eld with itself : there is no other interaction
with a particle, creation or annihilation of bosons, and it is assumed that force �elds do not interact
with each other. However the metric, which is also present everywhere, can play a role as in the
Einstein�s Theory.
The implementation of the Principle of Least Action through a lagrangian, based on energy,

provides the conditions at equilibrium, as a set of PDE (the Maxwell�s equations for the EM �eld).
On a given area, their solutions should be adjusted to the initial conditions. However, in a realist
picture, the �eld is a physical entity : there is only one �eld at a given point, and there is no reason
why the value of the �eld at a given point should keep the �memory�of its value at a point in the
past. But this is a fact that it does. A far away star does not give us any favor in dispensing its EM
�eld, however we can guess, from the value of the EM �eld at our location, the value of the �eld
originating from the star. All our communications, either by light or radio, use this fact. Optics is
just the study of the propagation of light rays between points. They do not involve discontinuous
process, so we stay well inside the framework of continuous �elds.

These phenomena can be modelled as the propagation in the vacuum of a variation �F of the
value of the �eld from the source located at O to another point A. Its main features are, for the EM
�eld at least :
i) At A is received at most one instance of the signal. The time elapsed between the emission

and the reception of the signal depends only on the spatial distance between O and A. This is at
the foundation of the concept of �speed of propagation�.
ii) All the points located at the same spatial distance from O receive similar signals
iii) The intensity of the signal (which can be measured by di¤erent quantities) decrease with the

spatial distance.
iv) The signal is measured along directions at the point of reception : propagation is modeled

by the strength, which is a 2 form. However the potential, as measured by interaction with known
particles, follow similar features.
If we represent the gravitation as a �eld, it shares similar properties : we do not know how to

emit a signal, but we can tell that the �eld of a planet depends only on the spatial distance. And
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this is the basis for the concept of gravitational waves.
From these features one can view the �eld at a given point m as the sum of all the �elds �F

emanating from sources located in the past of m. And this is at the foundation of the principle of
superposition, which is one of the tenets of the theory of �elds.

The speed of propagation

The speed of propagation between 2 points O;A is measured with respect to the spatial distance
between 2 points. In GR the distance between 2 points depends on a curve C with tangent V between
O and A. So it is assumed that the propagation is along some curve, and the spatial distance is
between O and the projection OA0 of C on the hypersurface 
3 (t) of an observer, as in the diagram
below :26666664


3 (t) "0 
3 (t+ �)
A0 = 'o (ct; �A) ! ! ! A = 'o (c (t+ �) ; �A)

" %
�!v " % V

" %
O = '0 (ct; �O) ! ! ! O0 = '0 (c (t+ �) ; �O)

37777775
For a given observer C is given by a path q (�) = 'o (c (t+ �) ; � (�))
V = c"0 + v
and the spatial length of OA0 is :
` (OA0) =

R �
0

p
g3 (q (s)) (v (q (s)) ; v (q (s)))ds

hV; V i = g3 (q (s)) (v (q (s)) ; v (q (s)))� c2
The speed of propagation does not depend on
- the point on the curve, so that : g3 (q (s)) (v (q (s)) ; v (q (s))) = w
- the observer, and because hV; V i does not depend on the observer,w does not depend on the

observer
- the curve : for any other point B we would have similar curves, with the same spatial speed.
For the EM �eld w = c and it is generally assumed the gravitational �eld propagates at the same

speed.
So the �rst assumption is :

Proposition 97 Force �elds propagate on curves of vectors V = v+ c"0 such that hV; V i = w2� c2
where w = c for the gravitational and the EM �eld.

Equivalently, in the standard chart 'o (ct; �) ; x = '
 (�) of the observer there is, for a given
point O, a function f : 
3 (t)! R+ such that the signal is received at the time t+f (x) at the point
'o (c (t+ f ('
 (�))) ; �) : The function f is continuous, f (x) � 0 and null at O: The set of points
A0 which receive the signal at t + � is a 2 dimensional surface S3 (O; �). If f is di¤erentiable the
gradiant gradf computed with the Riemannian metric on 
3 (t) de�nes a vector �eld on the tangent
space to 
3 (t) which is normal to the surfaces S3 (O; �) ; which are themselves di¤eomorphic by
the �ow of v. The set S4 (O; �) of points where the signal at O is received after a delay � is a 4
dimensional cone, with apex O and sections the surfaces S3 (O; �) : The point O is singular : there
are in�nitely many curves passing through O.
In SR the propagation curves are straight lines : V = Ct with hV; V i = w2 � c2:

Evolution of the signal

The right variable to study the propagation of a �eld is its strength F , so we assume that the signal
�F is represented by a variable with the same property. In the assumption above the propagation
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follows the same rules for all the components �Fa; but w and the curves are not necessarily the
same for di¤erent forces �elds.
i) A signal is identi�ed by the measure of �F along vectors at the point of reception. To compare

the signal at O and A we need to use the same set of coordinates on TM . The mechanism suggests
a natural way : pull back the signal �F (�) from A to O using the curve with tangent V :

V is a vector �eld supporting the tangent to the curve
�V is its �ow, by construct the parameter on its integral curves is � so that q (�) = �V (�;O) :
�F (�) is pulled back by �V (��;A) : We take for example a �eld such that F 2 L2 (
; T1U;$4)

:
�F (�) 2 �2Tq(�)M� 
 T1U ! c�F (�) 2 �2TOM� 
 T1U
and c�F (�) is measured by its action on vectors transported by �0Vm :
8u; v 2 TOM : c�F (�) (u; v) = �F (�) (eu; ev)eu = �0Vm (�;O) (u) 2 �2Tq(�)Mc�F (�) depends on �F (�) and the curve. Physically it means that the value of �F (�) is compared

to the value of �F (O) ; using the same gauge, that is vectors at O:
ii) The relation between �F (O) and the signal received �F (O) can then be expressed by :c�F (�) = bE (�; V ) (�F (O))
with a map bE (�; V ) depending on both the distance between the source and the reception,

represented by �; and the curve, represented by V:
From the experimental facts :
- along the same curve, the signal is similar, but its intensity, which can be represented by the

density of energy h�F (q (�)) ; �F (q (�))i decreases with �:
- along di¤erent propagation curves but at the same distance the intensity of the signal is similar.
That is : bE (�; V ) = bE (�) � bE (V )
We can express these results as follows :
- let f�F (�) be the push-forward of �F (O) along the curve with tangent V :f�F (�) = �0Vm (�;O)� �F (O)
for each component f�Fahf�Fa (�)i = [K (�)]t [�Fa (O)] [K (�)] where K depends on �; V

- along the same curve : �F (�) = E (�) f�F (�) where E (�) is a linear map, that we express in
the simplest possible way by :

[�Fa (�)] = � (�)
hf�Fa (�)i

with some scalar function � (�) ; depending only on �; and not on the curve.
- the density of energy of the signal is h�FA (q (�)) ; �FA (q (�))i = �E (q (�))

h�FA (q (�)) ; �FA (q (�))i = (� (�))2
Df�FA (�) ; f�FA (�)E

And �E (q (�)) depends only on h�FA (O) ; �FA (O)i and �; and not on the curve. Meaning thatDf�FA (�) ; f�FA (�)E = h�FA (O) ; �FA (O)i
or equivalently that the curves C over which the �elds propagate are such that they preserve the

scalar product.Df�FA (�) ; f�FA (�)E =Pm
a=1G2

�g�FaA (�) ;g�FaA (�)�
Each component g�FaA is transported according to the same rule, so the curve is such that it

preserves the scalar product G2 of 2 forms. The curves with this property are Killing curves.
And we state :

Proposition 98 Force �elds propagate along Killing curves.

We need to tell more about Killing vector �elds and isometries.
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5.6.2 Killing vector �elds and isometries

Killing vector �elds

A Killing curve is a curve whose tangent V is such that the metric g is transported by the �ow of
V: Killing vector �elds are �elds of vectors such that their integral curves are Killing curves.
For any vector �eld V the �ow �V is a map : �V : R �M ! M: The range of � is R if �V is

de�ned on a relatively compact area 
: It has the properties :
�V (��;m) = �V (�;m)�1
�V (� + h;m) = �V (�;�V (h;m))
By de�nition the derivative of �V (�;m) with respect to � gives back the vector �eld :
@
@� (�V (�;m)) j�=�0 = V (�V (�0;m)) =

dq
d� j�=�0

The derivative with respect to m of the map �V is a linear map :
�0Vm (�;m) :: TmM ! T�V (�;m)M
which has for matrix [J ], in the holonomic basis in m = q (0) and q (�) = �V (�;m) :
�0Vm (�;m) (@�� (q (0))) =

P3
�=0 [J (�)]

�
� @�� (q (�))

A vector U (0) 2 TmM ! U (�) 2 T�V (�;m)M is transported by :
�0Vm (�;m)U (0) =

P3
�;�=0 [J (�)]

�
� U

� (0) @�� (q (�))
This is extended to covectors :
� (0) 2 TmM� ! � (�) 2 T�V (�;m)M
�0Vm (�;m) (� (0)) =

P3
��=0 [K (�)]

�
� �� (0) d�

� (q (�)) with [K (�)] = [J (�)]�1

and more generally to any tensor S; and the transport along V is equivalent to $V S = 0 or equiva-
lently that S is push forward by �0Vm (�;m) fromm to �V (�;m) : S (�V (�;m)) = �0Vm (�;m)� S (m)
or that S is pulled back from �V (�;m) to m:
Usually the matrix [J (�)] is not expressed as an exponential : [J (�)] = exp � [J ] with a �xed

matrix (Maths.1456).

Killing curves are such that the metric g is transported along the curve :

$V g = 0, [g (q (�))] = [K (�)]
t
[g (q (0))] [K (�)] (5.67)

where [K (�)] depends on both the curve and �:

Isometries

Any di¤erentiable map : F : M ! M reads in any chart : F (' (�)) = ' (f (�)) and its derivative
TmF 2 L

�
TmM ;TF (m)M

�
has for matrix in the holonomic basis the jacobian : [J ] = [@�f

�] : An
isometry is a map such that it preserves the metric : 8u; v 2 TmM : hF 0 (m)u; F 0 (m) vi = hu; vi ()�
[J ]

�1
�t
[g (m)] [J ]

�1
= [g (F (m))] : The image of an orthonormal basis is an orthonormal basis. The

coordinates of u in an orthonormal basis "i (m) are the same as the coordinates of F 0 (m)u in the
orthonormal basis F 0 (m) "i (m) : As any di¤eomorphism they transport tensors and in this operation
the coordinates of tensors in an orthonormal basis are conserved. As a consequence an isometry
preserves the scalar product of forms : Gr (�; �) does not depend on the basis, expressed in an
orthonormal basis it is a simple expression which is preserved by F 0 (m) : Thus the Hodge dual of
F �� is the image of the Hodge dual : � (F ��) = F � (��) : And the density of energy is preserved by
an isometry.

Isometries on a manifold constitute a Lie group. The set X (TM) of vector �elds on a manifold
has the structure of Lie algebra with the commutator. Killing vector �elds have a structure of Lie
subalgebra. If Vi; i = 1:::p are Killing vector �elds,V =

Pn
i=1 aiVi with �xed scalars is a Killing

vector �eld. If their �ow is complete (which is the case if 
 is relatively compact) the Lie algebra
of isometries is isomorphic to the Lie algebra of Killing vector �elds : Killing vector �elds are the
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in�nitesimal generators of isometries. Indeed, for any Killing vector �eld V and �xed scalar � one
can de�ne the map : F (m) = �V (�;m) which is often denoted : F (m) = exp �V (m) which is an
isometry if V is a Killing vector �eld: Notice that exp �1V1 � exp �2V2 (m) = exp (�1 + �2)V (m) only
if V1 = V2:

As a consequence the transport of a r form along a Killing vector �eld preserves the scalar product
Gr (�; �) and the density of energy.

V = 0 corresponds to the isometry F (m) = m: As a consequence if a Killing vector �eld is null
at a point, it is null everywhere, and if the vector �elds (Vi)i=1:::N are linearly independent at a
point, they are linearly independent everywhere, and conversely, if they are linearly dependent at
some point, they are linearly dependent everywhere.
The condition $V g = 0 for a Killing vector �eld is expressed by (see Annex) :

$V g = 0, �; � = 0:::3 :
3X

=0

V  [@g]
�
� + [g]

�
 [@�V ]


+ [g]

�
 [@�V ]


= 0 (5.68)

So, for a given metric, Killing vector �elds are de�ned by a set of 10 linear PDE. The initial
conditions on V (a) ; @�V � (a), which can be chosen at any point a, give 20 parameters, of which
10 are related, so the set of Killing vector �elds on M is a Lie algebra with dimension at most 10,
and similarly for the group of isometries. They represent the possible symmetries of the physical
universe, which is characterized by the metric.

The isometries which preserve the vector "0 are such that their jacobian : [J ] =
�
1 0
0 [j]3�3

�
and they are generated by Killing vector �elds : V = c"0 + v (m) : In the standard gauge, the
conditions sum up to :

� = � = 0 :
P3
=0 V

 [@g00] + [g0 ] [@0V ]

+ [g0 ] [@0V ]


= 0 which is always met

� = 0; � = 1; 2; 3 :
P3
=1 [g� ] @0v

 = 0, [g3] [@0v] = 0, [@0v] = 0

�; � = 1:::3 : c [@0g�� ] +
P3
=1 v

 [@g�� ] + [g� ] [@�v]

+ [g� ] [@�v]


= 0

If Vi; i = 1:::n are such vector �elds, then
Pn
i=1AiVi still belongs to the family i¤ the scalar

constants
Pn
i=1Ai = 1:

Propagation curves belong to special Killing vector �elds : they are related to an observer (they
preserve "0) and hV; V i = w2 � c2. So we have :

[v]
t
[g3] [v] = w2

[v]
t
[@0g3] [v] = 0

[@0v]
t
[g3] [v] = 0

(5.69)

So propagation curves de�ne a set of at most 6 linearly independent Killing vector �elds.

Propagation curves and charts

Charts of the manifold M have for only purpose to locate a point. They are arbitrary. However
physical charts are built using physical processes. We have seen in the 3d Chapter how an observer
O can build a chart : practically this is done by building a spatial grid by the transmission of an
EM signal. To any spatial vector there is an associated propagation curve, so that the spatial chart
of 
3 (t) is actually a grid made of propagation curves. A spherical chart is an example of such a
grid. So we can safely assume that :

Proposition 99 The spatial axis @��; � = 1; 2; 3 of a standard chart correspond to propagation
curves of the EM �eld.
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Of course there is no propagation curve along the time axis (it would imply [v]t [g3] [v] = 0): How-
ever, for an observer who uses his standard chart the vector "0 is transported along the propagation
curve.
So we have the 3 Killing vector �elds :
 = 1; 2; 3 : U (m) = u (m) @� + c@t
The identities above imply :
[u ] [g ] [u ] = c2 ) g > 0; u (m) = c (g (m))

�1=2

[u ] [@0g ] [u ] = 0) @0g (m) = 0

The PDE
P3
�=0 V

� [@�g]
�
�+[g]

�
� [@�V ]

�
+[g]

�
� [@�V ]

�
= 0 gives, with each U di¤erential equations

for g which hold at any point :
�; � = 0:::3;  = 1; 2; 3 : 2 [@0g�� ] (g)

3=2
+ 2 [@g�� ] (g) = [g� ] [@�g ] + [g� ] [@�g ]

�; � = 0 :

2 [@0g00] (g)
3=2
+ 2 [@g00] (g) = [g0 ] [@0g ] + [g0 ] [@0g ]

� = 0; � = 1; 2; 3 :

2 [@0g0� ] (g)
3=2
+ 2 [@g0� ] (g) = [g� ] [@0g ] + [g0 ] [@�g ]

These equations are always met in the standard gauge.
For � = � = 1; 2; 3 : [@g�� ] =

[g� ]
[g ]

[@�g ]

By inverting � $  : @�g =
g�
g��

@g�� =
g�
g��

g�
g

@�g =
(g�)

2

g��g
@�g

Because g�� > 0 one can write : g�� = �2� and
g32 = a1�2�3
g13 = a2�1�3
g21 = a3�1�2
and the equations read :
(1)
@2�1 = a23@2�1 = a3@1�2
@1�2 = a23@1�2 = a3@2�1
which have for solutions :
either (1:a) : @2�1 = @1�2 = 0
or (1:b) : @2�1 = �3@1�2 6= 0; a3 = �3; g21 = �3�1�2; [@0g21] = 0
@3�1 = a22@3�1 = a2@1�3
@1�3 = a22@1�3 = a2@3�1
which have for solutions :
either (2:a) : @3�1 = @1�3 = 0
or (2:b) : @3�1 = �2@1�3 6= 0; a2 = �2; g13 = �2�1�3; @0g13 = 0
@3�2 = a21@3�2 = a1@2�3
@2�3 = a21@2�3 = a1@3�2
which have for solutions :
either (3:a) : @3�2 = @2�3 = 0
or (3:b) : @3�2 = �1@2�3 6= 0; a1 = �1; g32 = �1�3�2; @0g32 = 0

For � 6= � = 1; 2; 3 :

2 [@0g�� ] (g)
3=2
+ 2 [@g�� ] (g) = [g� ] [@�g ] + [g� ] [@�g ]

2 [g ]
�
[@0g�� ] [g ]

1=2
+ [@g�� ]

�
= [g� ] [g� ]

�
1

[g��]
@g�� +

1
[g�� ]

@g��

�
�2 ([@0g�� ]� + [@g�� ]) = [g� ] [g� ]

�
��1� @�� + �

�1
� @��

�
we have the set (4) of 9 PDE :
@2a1 = � (@0a1)�2
@3a1 = � (@0a1)�3
@1a2 = � (@0a2)�1



248 CHAPTER 5. FORCE FIELDS

@3a2 = � (@0a2)�3
@1a3 = � (@0a3)�1
@2a3 = � (@0a3)�2
@1a1 = � (@0a1)�1 + (a2a3 � a1)

�
��12 @1�2 + �

�1
3 @1�3

�
@2a2 = � (@0a2)�2 + (a1a3 � a2)

�
��11 @2�1 + �

�1
3 @2�3

�
@3a3 = � (@0a3)�3 + (a1a2 � a3)

�
��11 @3�1 + �

�1
2 @3�2

�
Moreover det [g3] = �21�

2
2�
2
3

�
2a1a2a3 � a21 � a22 � a23 + 1

�
If all the partial derivatives  6= � : @g�� 6= 0; that is (1.b),(2.b),(3.b) then a = � ,det [g3] =

2�21�
2
2�
2
3 (�1�2�3 � 1) and the equations (4) read :

��12 @1�2 + �
�1
3 @1�3 = 0

��11 @2�1 + �
�1
3 @2�3 = 0

��11 @3�1 + �
�1
2 @3�2 = 0

with @2�1 = �3@1�2 6= 0; @3�1 = �2@1�3 6= 0; @3�2 = �1@2�3 6= 0;
and one can check that there is no solution.
So at least some of these partial derivatives are null.
If (1.b),(2.b),(3.a) :
(1:b) : @2�1 = �3@1�2 6= 0; a3 = �3; g21 = �3�1�2; [@0g21] = 0
(2:b) : @3�1 = �2@1�3 6= 0; a2 = �2; g13 = �2�1�3; [@0g13] = 0
(3:a) : @3�2 = @2�3 = 0
the equations (4) sum up to :
@2a1 = � (@0a1)�2
@3a1 = � (@0a1)�3
@1a1 = � (@0a1)�1 + (�2�3 � a1)

�
��12 @1�2 + �

�1
3 @1�3

�
(a1 � �2�3) (@2�1) = 0
(a1 � �3"2) (@3�1) = 0
) a1 = �2�3 ) det [g3] = 0
So the only solutions are either
[(1:a); (2:a); (3:a)],[(1:b); (2:a); (3:a)] ; [(1:a); (2:b); (3:a)] ; [(1:a); (2:a); (3:b)]
If no direction is privileged, the only solution is the �rst. Then the components g depend only

on the coordinate � : g11 (�1) ; g22 (�2) ; g33 (�3) and the solution is :

g32 = a1 (t; �1; �2; �3)
p
g22 (�2) g33 (�3)

g13 = a2 (t; �1; �2; �3)
p
g11 (�1) g33 (�3)

g21 = a3 (t; �1; �2; �3)
p
g22 (�2) g11 (�1)

@ap = � (g)1=2 @0ap; ; p = 1; 2; 3

(5.70)

which can be written :

[g3] =

24 �21 a3�1�2 a2�1�3
a3�1�2 �22 a1�2�3
a2�1�3 a1�2�3 �23

35,
For any �xed scalars A1; A2; A3 the vector �eld V =

P3
=1AU is a Killing vector �eld. Its

integral curves are given by :
q (�) = 'o (�0 (�) ; �1 (�) ; �2 (�) ; �3 (�))

�0 (�) =
P3
�=1A�c (t+ �)

V = c
P3
=1A

�
"0 + g (q (�))

�1=2
@�

�
They are propagation curves for the EM �eld i¤
A =

P3
�=1A� = 1;

hV; V i = 2c2 (A1A2 (a3 � 1) +A1A3 (a2 � 1) +A2A3 (a1 � 1)) = 0
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so, practically, if V = U for some  = 1; 2; 3:
Let us denote f : R2 ! R :: f (�; �) the solution of the di¤erential equation :
@f
@� (�; �) = Acg (f (�; �))

�1=2

f (0; �) = �
then �V (�; 'o (ct; �1; �2; �3)) = 'o (c (t+ �)A; f1 (�; �1) ; f2 (�; �2) ; f3 (�; �3)) is an isometry for �

�xed :
F (m) = exp �V (m) = �V (�;m)

Its jacobian is : [J ] =

2664
A 0 0 0
0 j1 0 0
0 0 j2 0
0 0 0 j3

3775 with j = @
@�

f (�; �)

We want that the isometry preserves the vector "0 which implies A = 1:
Then from the relation :
[J ]

t
[g (F (m))] [J ] = [g (m)]

we get, in the standard gauge of the observer, the relations :
a (F (m)) = a (m)
The functions ap are symmetric with respect to F:
The functions f are such that :
� (f (�; �))

@
@� f (�; �) = Ac

� (f (�; �))
@
@�

f (�; �) = � (�)

Isometries and the tetrad

It is useful to review the distinctive properties of the metric, the tetrad, the principal bundle PG,
and isometries.
For any isometry F the tetrad of any observer is transported as an orthonormal basis,
F 0 (m) ("i (m)) =

P3
�;�=0 [F

0 (m)]
�
� [P (m)]

�
i @�� (F (m))

so there is some matrix [T (m)] 2 SO (3; 1) :
F 0 (m) ("i (m)) =

P3
j=0 [T (m)]

j
i "j (F (m))

[F 0 (m)] = [P (F (m))] [T (m)] [P 0 (m)]

However in a change of gauge : � (m)�1 2 X (PG)
[P (m)]!

h eP (m)i = [P (m)] [� (m)]�1
[F 0 (m)] = [P (F (m))] [� (F (m))]

�1
heT (m)i [� (m)] [P 0 (m)]

and [T (�;m)] transforms as :heT (m)i = [� (F (m))] [T (m)] [� (m)]�1
so one cannot associate a section � 2 X (PG) to an isometry.
Similarly, in the product of isometries :
F1 � F2 (m) = F1 (F2 (m))
(F1 � F2)0 (m) = F 01 (F2 (m)) � F 02 (m) = [P (F1 � F2 (m))] [T1 (F2 (m))] [T2 (m)] [P 0 (m)]
, [T1T2 (m)] = [T1 (F2 (m))] [T2 (m)]
thus this is not a group isomorphism.

An isometry is de�ned with respect to a given metric. The metric of the Universe is the main
physical property of its Geometry. There are at most 10 isometries, they can exist for some areas,
and their existence is a physical fact which can be checked. The principal bundle PG is more general
: it gives only, point wise, the rules in a change of orthonormal basis, whatever the metric. The link
between the physical metric and PG is given by the associated vector bundle PG

�
R4;Ad

�
: holonomic

bases are de�ned formally by : "i (m) = (p (m) ; "i) and physically by "i (m) =
P3
�=0 P

�
i (m) @��:

Then any other basis deduced by rotation with � 2 PG is geometrically equivalent. But it does
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not tell that "i (m) is orthonormal, one can only say that, if "i (m) is orthonormal, then the basis
deduced by rotation with � 2 PG is still orthonormal (because Ad preserves the scalar product).
The Principle of Relativity is expressed in the choice of the tetrad P�i (m) ; with the constraint that
it is orthonormal, which can be physically checked at any point.
One could consider to take the group of isometries as base for the formalism in the Geometry,

and this way has been largely explored by physicists and mathematicians. But there are two issues.
First we cannot assert the existence of an isometry without the possibility to check it. Second, an
isomorphism, by de�nition, is not local, it relates 2 points and does not give convenient tools to
study the motion. The simplest solution is to look for Killing vector �elds, which are generators
of isometries, and the assumption above gives a natural and simple choice, which has a physical
meaning. However, when a special point O is singled out in a problem, the isometries from this
point, using the vectors U ; provide both a natural system of coordinates and of tetrads (which are
then image of the tetrad at O):
The assumption about the propagation of �elds along Killing curves, and its consequences on

spatial coordinates, answer also to an intriguing question. In the Geometry chapter we have seen
that, because of the fundamental symmetry breakdown, the measures of lengths and times cannot
be done with the same processes, so a universal constant is needed to relate the measures. However
this constant, whatever the units used, happens also to be the �speed of light�. We have here an
explanation : actually measures of lengths, done along the spatial coordinates, use the propagation
of an EM signal.

Killing curves and geodesics

It is usually assumed that �elds propagate along geodesics. In the SR (or Newtonian) context the
metric is constant and the connection null, �elds propagate along straight lines, and there is no
di¤erence. However there is one in the GR context. It is useful to review the di¤erences between
both assumptions.
The Killing curves are similar to geodesics, they are de�ned by the properties of their tangent V
geodesic : rV V = 0
Killing curve : $V g = 0
Geodesics are related to connections, Killing curves are related to the metric. The de�nition of

geodesic requires a connection, the de�nition of Killing curves requires a metric.
Tensors can be transported along any curve, so along geodesics as well as along Killing curves,

either by covariant derivative rV S = 0 if there is a connection, or by Lie derivative : $V S = 0
(without any special condition), in both cases.
By de�nition the transport by Lie derivative along a Killing curve preserves the scalar product.

The transport by covariant derivative, along any curve, preserves the scalar product only if the
connection is metric.
Historically �ber bundles have been de�ned through the bundle of frames (local bases) and a¢ ne

connections. A¢ ne connections de�ne geodesics, which have no other properties. In a picture, such
as Einstein�s theory, based on the metric, actually Killing curves would be the natural choice of
�special curves�, geodesics involve a detour by two additional assumptions related to the connection
(which must be metric and symmetric), however, as we have seen, there is no gravitational �eld to
speak of, and the propagation of the EM �eld is an independent issue. The role given to geodesics
comes from the extrapolation of the Galilean or SR context, where geodesics are de�ned as the
shortest lines between two points. This properly holds in a Geometry with a varying metric only if
the connection is the Levi-Civita connection, and we have seen that this assumption imposes heavy
constraints to the theory. It cannot be deduced from a lagrangian based on the scalar curvature.
And the issues of gravitational waves and graviton are awkward in this picture. When one goes
further than the rigid framework of Einstein�s theory, one needs to consider the strength F as key
variable for the propagation. As it comes from the Lie derivative, the quantization of the �eld leads



5.6. THE PHENOMENON OF PROPAGATION 251

naturally to Killing vector �elds, and the gravitational �eld has no special role.
With the structure of principal bundle PG any principal connection provides a linear connection

which is necessarily metric, thus the transport by covariant derivative preserves the scalar product
along any curve. But there is a connection attached to each force �eld, and even if the associated
geodesics have little meaning here, to give a special role to the geodesics computed from G is not
obvious, notably in the prospect of an uni�cation of force �elds. In our picture the metric is a speci�c
feature of the physical universe, Killing curves de�ne physical symmetries which are of geometrical
nature. They can be experimentally related to the de�nition of charts, through the propagation of
�elds, so their special role seems natural.
However, because geodesics and Killing curves share many mathematical properties, it would be

di¢ cult to check experimentally one or the other assumption, and it is more a matter of general
consistency of the Theory.
Notice that, whatever the assumption, in any physical chart the direction of the spatial axis are

propagation curves, so the spatial speed of propagation implies that the vector �elds
 = 1; 2; 3 : U (m) = w (g (m))

�1=2
@� + c@t

are such that their integral curves are propagation curves. If they were geodesics there would be
constraints on the Christofell coe¢ cients and the Levy-Civita connection.

Example : single particle

Take a system with a single particle, and only the �eld originating from the particle itself. The
system is spatially symmetric, and we can take a spherical chart centered on the particle : the
coordinates of any point are m = 'o (t; �; �; ') with holonomic basis (@t; @�; @�; @�) : Then all the
variables depend only on t; �:
The only propagation curves have for origin O and are along a spatial radial :
q (�) = 'o (t+ �; � (�) ; �; �) with �xed �; �. The vector V (q (�)) =

dq
d� =

d�
d� @�+ c@t

The metric in the standard chart is :

g (m) =

�
�1 0
0 [g3 (t; �)]

�
The spatial length between O (t+ �) ; q (�) is :

` (O (t+ �) ; q (�)) =
R �
0

r
g�� (t+ s; � (s))

�
d�
d� (s)

�2
ds =

R �
0
d�
d� (s)

p
g�� (t+ s; � (s))ds

The average speed of spatial propagation is :
1
�

R �
0
d�
d� (s)

p
g�� (t+ s; � (s))ds = c

By derivation :
d�
d� (�)

p
g�� (t+ �; � (�)) = c

and the vector V ('o (t+ �; � (�) ; �; �)) = cp
g��(t+�;�(�))

@�+ c@t

The vector �elds of propagation are then : V ('o (t; �; �; �)) = cp
g��(t;�)

@�+ c@t

V (�V (�; q (0))) =
P3
�;�=0 [J (�)]

�
� V

� (q (0)) @�� (q (�))

[J (�)] =

26664
1 0 0 0

0
q

g��(t;0)
g��(t+�;�(�))

0 0

0 0 1 0
0 0 0 1

37775
Using the value of V (m) = wp

g��(t;�)
@�+ c@t in the PDE

�; � = 0:::3 :
P3
�=0 V

�@� [g]
�
� +

P3
=0 [g]

�
 [@�V ]


+ [g]

�
 [@�V ]


= 0

provides PDE on g :
@0g�� = 0
@�g�� = �

p
g��@0g��

@�g�� = �
p
g��@0g��
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@�g�� = �
p
g��@0g��

@0g�� +
1p
g��
@�g�� =

1
2g�� (g��)

�1=2
@�g��

@0g�� +
1p
g��
@�g�� =

1
2g�� (g��)

�1=2
@�g��

5.6.3 Evolution of the �eld on the propagation curves

On a propagation curve the signal follows the law :

[�F (�)] = � (�) [K (�)]
t
[�F (O)] [� (�)] [K (�)]�

[�Fr (�)] [�Fw (�)]
�
= � (�)

�
[�Fr (O)] [�Fw (O)]

� �
LK(�)

� (5.71)

where [�F (�)] = [�FG (�)]3�4 (in complex format) or [�FA (�)]m�4 ; and [K (�)] is de�ned by
the propagation curve. It is such that :

d�� (q (�)) =
P3
�=0 [K (�)]

�
� d�

� (O)

In the standard chart the axis d�0 is preserved, so :

[K (�)]4�4 =

�
1 0
0 [k (�)]3�3

�
It is the same for all components and depends on the speed of propagation, so it should be the

same for the gravitational and EM �elds.

Energy

The function [� (�)] depends on � only, the propagation is assumed to the same for all the components
Fa but can possibly be di¤erent from one type of �eld to another (as well as w). Notably the weak
and strong interactions have a short range, represented usually by an exponential: As a consequence,
for these �elds the phenomenon of propagation manifests itself essentially in discontinuous processes,
involving elementary particles, and the concept of �propagation in the vacuum�has little physical
meaning.
For the EM and gravitational �elds, which have an in�nite range, the phenomenon of propagation

of a signal should follow the Principle of Conservation of Energy. For the observer it is measured at
each time over 
3 (t+ �) and the process happens on the spheres S3 (t+ �) : So for � � 0 :R

S3(t+�)
�E (�)$2 (q (�)) = Ct

and on S3 (� + �) : �E (�) = �2 (�) h�FA (O) ; �FA (O)i = �2 (�) �E (0)
The sphere S3 (t+ �) centered at O has a radius � = c� thus :R
S3(t+�)

�E (�)$2 (q (�)) = �2 (�) �E (0)
R
S3(t+�)

$2 (q (�)) ' 4�c2�2�2 (�) �E (0) = Ct

and � (�) ' Ct� 1
� ; �E (�) '

1
�2 �E (0)Ct

Which is consistent with what we know about the EM �eld. In Quantum Chemistry it is usual
to use models with speci�cations laws in ��n such as the Lennard-Jonnes potential, which accounts
for the local interactions with charged particles.

Derivative of �Fhf�Fa (�)i = [K (�)]t [�Fa (O)] [K (�)], $V f�Fa = 0
The value of the Lie derivative of a 2 form is (see Annex) :

$V �F (q (�)) =
Pm
a=1

�P
f��g

d
d�

�
�Fa��

�
d�� ^ d�� + �Fa��

�
@V

�d� ^ d�� + @V �d�� ^ d�
��



�!
� a
In the standard chart, along a propagation curve : V = v + c"0; @0v = 0
which reads :h
$V f�Fr (q (�))i = d

d�

hf�Fri+ hf�Fwi j ��@V 0��+ hf�Fri �� [@v]t + (div (V )) I3� = 0



5.6. THE PHENOMENON OF PROPAGATION 253h
$V f�Fw (q (�))i = d

d�

hf�Fwi+ hf�Fwi �@0V 0 + [@v]�� hf�Fri j (@0V ) = 0
it reads :
d
d�

h hf�Fr (q (�))i hf�Fw (q (�))i i = h hf�Fr (q (�))i hf�Fw (q (�))i i [D (�)]
with

[D (�)] =

" �
[@v]

t � (Tr [@v]) I3
�

0

0 � [@v]

#

[@v] =

24 @1v
1 @2v

1 @3v
1

@1v
2 @2v

2 @3v
2

@1v
3 @2v

3 @3v
3

35
We have the 2 linear di¤erential equations :
d
d�

�
[�Fr (�)] [�Fw (�)]

�
=
�
[�Fr (O)] [�Fw (O)]

� �
LK(�)

� �
1
�
d�
d� I3 + [D (�)]

�
d
d�

�
[�Fr (�)] [�Fw (�)]

�
=
�
[�Fr (�)] [�Fw (�)]

�
1
�

�
1
�
d�
d� I3 + [D (�)]

�
Potentials

Meanwhile the potential and the strength do not transform in the same way in a change of gauge in
the �ber bundles, they are one and 2 forms on TM and transform as such in a change of chart on

M . The strength is de�ned from the connection form b�A by the relation :
FA (m) = �p� (m)$b�A = �p� (m)��d �A 2 �2 (M ;T1U)
The exterior di¤erential db�A of the form b�A valued in the �xed vector space T1U is taken through

��; on horizontal vectors. The relation is purely geometric, the de�nition of horizontal vector �elds
does not depend on a chart on M; so the relation :

FaA�� = @� �A
a
� � @� �Aa� + 2

h
�A�; �A�

ia
holds in a change of chart on M .

The Lie bracket is a bilinear, antisymmetric, map, and
h
�A�; �A�

ia
can be written :h

�A�; �A�

ia
=
Pm
b;c=1 C

a
bc
�Ab� �A

c
�

where Cabc are �xed scalars, called the structure constants, such that C
a
bc = �Cacb:

So, in matrix form : [Fa]�� =
h
d �Aa

i�
�
+ 2

Pm
b;c=1 C

a
bc
�Ab� �A

c
�

The matrix for the last quantity reads :

P
b;c C

a
bc

2664
0 �Ab0

�Ac1
�Ab0
�Ac2

�Ab0
�Ac3

� �Ab0 �Ac1 0 � �Ab2 �Ac1 �Ab1
�Ac3

� �Ab0 �Ac2 �Ab2
�Ac1 0 � �Ab3 �Ac2

� �Ab0 �Ac3 � �Ab1 �Ac3 �Ab3
�Ac2 0

3775 =Pb;c C
a
bc

�
0 Abcw
�Abcw j

�
Abcr
� �

with
�
Abcw
�
=
�
�Ab0
�Ac1

�Ab0
�Ac2

�Ab0
�Ac3
�
;
�
Abcr
�
=
�
�Ab3
�Ac2

�Ab1
�Ac3

�Ab2
�Ac1
�

So we have :
[Fa] =

h
d �Aa

i
+ 2

Pm
b;c=1 C

a
bc

�
F bc
�

In a change of chart :

�Aa� !
e�Aa� =P3

�=0 [M ]
�
�
�Aa� ,

�e�Aa� = [Aa] [M ] with the matrix �e�Aa�
1�4

@� �A
a
� � @� �Aa� are the components of the 2 form d �A thus :h

d �Aa
i�
�
!
ĥ
d �Aa

i�
�
=
�
[M ]

t
h
d �Aa

i
[M ]

��
�

FaA�� ! eFaA�� = �[M ]t [Fa] [M ]��
�

with the inverse [M ] of the jacobian.
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h eFai = �fd �Aa�+ 2Pm
b;c=1 C

a
bc

hgF bci
[M ]

t
[Fa] [M ] = [M ]t

h
d �Aa

i
[M ] + 2

Pm
b;c=1 C

a
bc

hgF bci
) [M ]

t �
F bc
�
[M ] =

hgF bci
In the present case we have :hf�Fa (�)i = [K (�)]t [�Fa (O)] [K (�)]
so we can write for the potential along a propagation curve :h
d �Aa (O)

i
! ^h

d �Aa (�)
i
= [K (�)]

t
h
d �Aa (O)

i
[K (�)]Pm

b;c=1 C
a
bc
�Ab� (O) �A

c
� (O)! [K (�)]

tPm
b;c=1 C

a
bc
�Ab� (O) �A

c
� (O) [K (�)]

and :

[�G (�)] = � (�) [�G (O)] [K (�)]h
� �A (�)

i
= � (�)

h
� �A (O)

i
[K (�)]

(5.72)

as [K (�)]4�4 =
�
1 0
0 [k (�)]3�3

�
we have :

�Ga0 (�) = � (�) �Ga0 (O)

� �Aa0 (�) = � (�) � �Aa0 (O)
(5.73)

The law
h
� �A (�)

i
= � (�)

h
� �A (O)

i
[K (�)] can be seen as an extension of the retarded Liénard-

Wiechert potentials.
With [� (�)] ' Ct 1� the potential decreases as

1
� :

Propagation in SR geometry

In SR geometry, because the metric is �xed, the Killing curves are straight lines starting at O, the
hypersurfaces 
3 (t) are hyperplans orthogonal to "0:and the surfaces S3 (O; �) are 2 dimensional
spheres with radius � = w� which can be expressed in a simple way from the coordinates in a
spherical chart centered at O. The coordinates are then :

m = ct"0 + �
�!u where �!u is a unitary vector u 2 R3 normal to S3 (O; �)

The basis of the chart is constant, the strength is expressed as :
F (t; �; u) =

P3
�;�=0 [F (t; �; u)]

�
� "� ^ "�

The propagation of the signal is then :
[�F (t+ �; w�; u)] = � (�) [�F (t; 0; u)]
We have the model of the propagation of a wave with wave vector �!u :
And similarly for the potential :h
� �A (t+ �; w�; u)

i
= � (�)

h
� �A (t; 0; u)

i
which can be seen as a boson with spatial velocity in the direction u; and the Yukawa potential

is then [� (�)] = 1
w� exp (�mw�) :

Discontinuities

The propagation curves can be de�ned through the gradiant of the function f such that the signal
is received at the time t + f (x) at the point 'o (t+ f (x) ; x) : But the point O is singular : all
the propagation curves originating from O cannot be de�ned by a single vector �eld. However all
the propagation curves are part of integral curves of Killing vector �elds, for which the point O is
regular.
It is clear that, with laws such as [� (�)] = Ct 1� there is a discontinuity at O in the value of the

�eld. However such laws come from the measure of the energy, which is never punctual. Actually
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any measure of the �eld is done through the interaction of the �eld with known particles, over some
area ! � 
: The quantities F ; �A are then operators, acting on vectors, and the results must be
understood �in the meaning of distributions�. This is a well known problem in the solutions of
Maxwell�s equations (Maths.2569). However this interpretation depends also on the scale (in space
and time) of the area ! used for sampling the data, with respect to the value of the interaction �F :
To assert that force �elds are only �continuous�(as in the classic representation) or �discontinuous�
(by bosons) is futile. Our models and representations shall be adjusted to the problem at hand,
with the goal of e¢ ciency. In the most usual cases, where the focus is on the propagation of a given
signal, the continuous representation (usually by plane waves) su¢ ces, and discontinuous models are
required when the focus is on the interaction itself, as we will see in the last chapter.

Observables of propagation

Even if models could enable us to forecast the value of the �eld at a given point, this endeavor
requires the knowledge of the �eld in a past region, that is an in�nite number of data which is
impossible to collect. Only in Cosmology the purpose is to model a �eld (the gravitational �eld) in
its total extension. However the Physicist has usually more limited ambitions :
i) the measure of the �eld at a given point : it is essentially done through the interaction of the

�eld with a known particle
ii) the computation of the �eld which results from a given system, that is a limited set of particles
iii) the measure of the �eld originating from a given source, that is of a signal
For almost all other applications the value of the �eld at any point it is of little interest. So,

rather than trying to account for all the sources, and all the �elds propagating from the past, usually
the Physicist is focused on a delimited system involving only a given set of particles and the �elds
with which they interact locally. The goal is to build observables of the �eld, that is quantities which
can be predicted, computed and measured. And, for this, the knowledge of the propagation laws
of the �eld emanating from a given source is essential. Similarly the measure of the �eld itself is
never done precisely at a point, but along a propagation curve (be it of the world line of a spatially
immobile observer). So what matters, both practically and theoretically, is the knowledge of the
propagation, that is of the curves, the matrices K and �. With the previous results we have replaced
the general model by something which is more manageable, and thus more e¢ cient.
The propagation can then be represented by a map :
�(�) ([�Fa (O)]) = � (�) [K (�)]

t
[�Fa (O)] [K (�)]

on the setH of 4�4matrices, which is a Hilbert space. The maps �(�) can be seen as observables
and usually the physicist will choose a speci�cation of [K] such as plane waves, and of � (�) simples
polynomial laws. For this purpose the framework provided by H has many useful properties. For
instance the di¤erential equations for the �eld are linear: A linear di¤erential operator D is a linear
map : JrH ! H; the jet extension of H can be assimilated to a product H �H:: �H so that D
can the expressed by a spectral integral, that is a pseudo di¤erential operator using the properties
of the Fourrier transform.
A special important case is the speci�cation of the �eld by periodic maps.

Periodic �elds

A �eld has a �xed value F (m) at a given point m 2 M; so a �periodic �eld� should be a �eld
such that, along a propagation curve : �F (q (� + T )) = �F (q (�)) : However �F (q (�)) decreases
with �; so it cannot be truly periodic. A periodic �eld is then necessarily such that the initial value
�F ('0 (ct0; �)) is periodic : �F ('0 (c (t0 + T ) ; �)) = �F ('0 (ct0; �)) then the propagated �eld, at a
given point �F ('0 (ct0; �)) located a �xed spatial distance from the origin, is periodic. And if the
source and the observation points are moving relatively to each other we have the usual Doppler
e¤ect.
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The set of square n� n matrices is a Hilbert space, and if the �eld is considered on a relatively
compact area the �ow is de�ned on R; and the maps [�] ; at a given point m; have a spectral
decomposition. The Fourier transform of [�] is :hb�(!)i = 1p

2�

R
R [� (�)] exp (�i!�) d�

and the inverse :
[� (�)] = 1p

2�

R
R

hb�(!)i exp (i!�) d!hb�(!)i gives the decomposition of [�] according to !; so that the �eld can be seen as the
superposition of periodic �elds

hb�(!)i exp (i!�). There are some mathematical restrictions to the
validity of the usual formulas, but this formalism gives a clear meaning to the common physical
de�nition of �monochromatic��elds and �plane waves�, for any �eld.

5.6.4 Conclusion

That propagation curves are Killing curves is important from a theoretical point of view.
They de�ne the physical symmetries of the universe. Any chart which can be built practically

relies on a set of propagation curves, usually with the EM �eld, and it accounts for the symmetries
of a system, as we have done above for a single particle with a spherical chart.
Killing curves are related to the metric. As we will see the metric is locally the result of the

balance of energy between all the interactions �elds / particles, �elds / �elds. That this equilibrium,
on the most general level, leads to a �nite dimensional structure is a striking example of (genuine)
quantization : order is borne from chaos.
The phenomenon of propagation is linked to cosmology. The fundamental symmetry breakdown

can be seen as a manifestation of an over extending domain of propagation, in a universe which, as
a whole, is not fully at equilibrium (and its expansion can be seen as its entropy). The cosmological
models of a warped universe, conversely, imply that all the propagation curves belong to some 3
dimensional hypersurface (which is a symmetry) and in this picture its expansion requires a special
phenomenon.



Chapter 6

THE PRINCIPLE OF LEAST
ACTION

In this chapter we will introduce the main tools and review the issues in continuous models, in the
more general picture, that is including interactions.

The Principle of Least Action states that for any system there is some quantity (the action)
which is stationary when the system is at its equilibrium. It does not tell anything about the
physical content of this quantity. However, in almost all its applications, it is some representation
of the total energy of the system, or more precisely of the energy which is exchanged between the
physical objects in the system. In an equilibrium the total balance should be null.
If the system is represented by variables (zi)

n
i=1 de�ned on a �ber bundle E (M;V; �) ; and their

r jet extension jrZ =
�
zi�1:::�s ; i = 1:::n; s = 0; :::; r

�
: The action is a functional, that is a map :

` : X (JrE) ! R usually de�ned by an integral over a compact area 
 of M with a volume form
$4 :

` (jrZ) =
R


L (jrZ (m)) d�0 ^ d�1 ^ d�2 ^ d�3

L (jrZ (m)) = L (jrZ (m))$4

L (jrZ (m)) is the scalar lagrangian.
A state of the system represented by the value jr� 2 X (JrE) is deemed to be an equilibrium if

the functional is stationary, understood as a local extremum. It can be a maximum or a minimum.
It leads to relations between the variables �i�1:::�s .

Important remark :
A lagrangian is a scalar function whose arguments are coordinates

�
zi�1:::�s ; i = 1:::n; s = 0; :::; r

�
in the r-jet extension of some �ber bundle E, which represent a section jr� of JrE: So, at a given
point m of the basis M of E they have de�nite values, but the variables zi�1:::�s are assumed to be
independent : they are not necessarily the partial derivatives of a section zi of E. This is consistent
with the idea that all variations are considered, even if they are not �physically possible�, for
instance the components of the vector velocity are not necessarily the derivatives of the coordinates
which represent the location 1 . The evolution of the system is not assumed to be continuous in the
speci�cation of the lagrangian.
The �rst step in the search for a solution provides equations between the coordinates in the

r-jet, that is between the quantities zi�1:::�s ; i = 1:::n; s = 0; :::; r: Then in a second step one states
that, in a continuous process, the quantities zi�1:::�s come from a section Z on E : jr� = JrZ :

1This is at the origin of confusion in the consideration of �virtual particles� in QTF. See Chap.8.

257
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zi�1:::�s = @�1 :::@�sZ
i: This is exactly the mathematical de�nition of a partial derivative equation :

a relation between the zi�1:::�s such that its solutions are the partial derivatives of a common section.
This holds when the variables are maps z (t) de�ned over an interval [0; T ] � R the action takes

the form :R T
0
L
�
zi (t) ; �zi (t)

�
dt

where �zi are independent variables, which, in a continuous process, are equal to the derivatives
: �zi (t) = dzi

dt :

One crucial step is the speci�cation of the lagrangian, because L sums up much of the Physics of
the model. This is an art in itself and many variants have been proposed. The Standard Model is
built around a complicated lagrangian (see Wikipedia �Standard Model� for its expression) which
is the result of many attempts and patches to �nd a solution which �ts the results of experiments.
It is useful to remind, at this step, that one of the criteria in the choice and validation of a scienti�c
theory is e¢ ciency. Physicists must be demanding about their basic concepts, upon which everything
is built, but, as they proceed to more speci�c problems, they can relax a bit. There is no Theory
or a unique Model of Everything, which would be suited to all problems. The framework that we
have exposed provides several tools, which can be selected according to the problems at hand. So we
continue in the same spirit, and, fortunately, in the choice of the right lagrangian there are logical
rules, coming essentially from the Principle of Relativity : the solution should be equivariant in a
change of observer, which entails that the lagrangian itself, which is a scalar function, should be
invariant. This condition provides strong guidelines in its speci�cation, that we will see now. The
methods that we expose are general, but as we have done so far, they are more easily understood
when implemented on an example, and we will use the variables and representations which have
been developed in the previous chapters.
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6.1 THE SPECIFICATION OF THE LAGRANGIAN

6.1.1 General issues

Which variables ?

The r jet section
�
zi�1:::�s ; i = 1:::n; s = 0; :::; r

�
is composed of di¤erent variables z, and each of them

gives its own r jet.
We have to decide which are the variables that enter the lagrangian and the order of their

derivatives. We will limit ourselves to the variables which have been introduced previously, as they
give a comprehensive picture of the problems.
For particles the key variable is the state  ; which sums up all the properties including the motion,

or, when only the EM and gravitational �eld are present, the spinor S: A collection of identical
particles whose trajectories do not cross can be represented by a matter �eld with a density �, then
the measure with respect to which the integral is computed is �$4. It can be extended similarly to
deformable solids.
The �elds are represented by their potential, G for the gravitational �eld, �A for the other �elds,

and their strength FG;FA which accounts for the partial derivatives.
The tetrad P is, in the �ber bundle model, a variable as the others and de�nes the metric g.
All these variables are maps de�ned on a bounded area 
 ofM , or a bounded interval [0; T ] � R;

and valued in various vector bundles, so expressed in components in the relevant holonomic frames.
The use of the formalism of �ber bundle enables us to study the most general problem with 4

variables only.
The model is based on �rst order derivatives : the covariant derivative is at its core, and this

is a �rst order operator. The strength F is of �rst order with respect to the potentials. So, in the
lagrangian, it is legitimate to stay at a �rst jet prolongation : �� ; ��G� ; �� �A� ; ��P:

Time

The Principle of Locality leads naturally to express all quantities related to particles with respect
to their proper time. But, whenever the propagation of the �elds or several particles are considered,
the state of the system must be related to a unique time, which is the time of an observer (who is
arbitrary). This is necessary to have a common de�nition of the area of integration in the action.
The proper time of a particle and the time of the observer are related. Whenever particles are

represented as matter �elds these relations can be fully expressed with an element of Spin (3; 1) :
The distinction between proper time and time of the observer is usually ignored in QTF, in spite

of its obvious signi�cance. Some attempts have been made to confront this issue, which is linked, in
Quantum Physics, to the speed of propagation of the perturbation of a wave function (see Schnaid).

Fundamental state

The assumption of the existence of a fundamental state is at the core of the theory of particles.
For elementary particles it is given by the type of the particle : this is the fundamental state  0:

Composite particles can be represented by tensor products. When only the EM and gravitational
�elds are present, the fundamental state is given by an inertial spinor S0 with the charge.
In both cases each particle are represented by a map  (t) or S(t): Particles with the same

fundamental state and whose trajectories do not cross can be represented by a single matter or
spinor �eld with a density.
Deformable solids can be represented by a unique spinor C (�B (t))SB (t) :
Then the de�nition of the momenta relates the state or the spinor to the motion represented by

a map � (t) or � (m) ; which is itself de�ned by maps (r (t) ; w (t)) or (r (m) ; w (m)) :
For the �elds there is no equivalent, however, because for the �elds the vacuum exist almost

everywhere, the �normal state�of a �eld is that which it takes when it propagates in the vacuum.
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Partial derivatives and covariant derivatives

In a lagrangian L
�
zi; zi�

�
the variable belongs to a J1 bundle. To implement the rules of Variational

Calculus the partial derivatives @� ; @� �A; @�G; ::: and their 1 jet equivalent are required. However
the lagrangian, can be expressed by using the covariant derivative r or the strength F , which have
a more physical meaning. The question is then : is it legitimate to express @�G; @� �A only through
the strength F , and @� through the covariant derivative ? And we will see that the answer is
de�nitively positive.
In the lagrangian the action of the �elds on particles depend on their trajectory through the

covariant derivative :
[rVM] =

P3
�=0 V

�# (�;{)
�
[C (Ad��1 (� (Xr�; Xw�) +G�))] [ 0] + [ 0]

h
Ad{ �A�

i�
With the representation of particles by spinors the velocity is deduced from �; so V is not an

independent variable in a continuous process. Moreover V = dq
dt represent a trajectory and not a

world line.
In QTF the solution which is commonly chosen is di¤erent, this is the Dirac�s operator, celebrated

because it is mathematically clever, but has serious drawbacks.

Dirac operator

The Dirac operator is a di¤erential operator, and no longer a 1-form onM , de�ned from the covariant
derivative, which does not require the choice of a vector V : so it �absorbs�the � of the covariant
derivative. Actually this is required in the Standard Model because the world lines are not explicit,
but the Dirac�s operator can be de�ned in a very large context (Maths.32.1.8), including GR, and
in our formalism its meaning is more obvious.
The mechanism is the following :
i) using the isomorphism between TM and the dual bundle TM� provided by the metric g, to

each covector ! =
P3
�=0 !�d�

� one can associate a vector : !� =
P3
��=0 g

��!�@��

ii) vectors v =
P3
�=0 v

�@�� of TM can be seen as elements of the Cli¤ord bundle Cl(M) and as
such acts on ep (m)
 fq (m) by :

v =
P3
�j=0 v

�P 0j� "j (m) in the orthogonal frame
"j acts on ep (m)
 fq (m) by C :
(q (m) ; ep (m)
 fq (m))
!
�
q (m) ;

P3
�j=0 v

�P 0j� ([C ("j)] ep (m))
 fq (m)
�

iii) thus there is an action of TM� on ep (m)
 fq (m) with v = !�

(q (m) ; C (!�) (m))

=
�
p (m) ;

P3
��j=0 g

��!�P
0j
� ([C ("j)] ep (m))
 fq (m)

�
and as the tetrad de�nes the metric g :P
� g

��P 0j� =
P
�kl �

klP�k P
�
l P

0j
� =

P
k �

kjP�kP3
��j=0 g

��!�P
0j
� [C ("j)] ep (m)
 fq (m)

=
P3
��=0 g

��!� [C (@��)] ep (m)
 fq (m)
=
P3
�=0 !� [C (d�

�)] ep (m)
 fq (m)
iv) the covariant derivative is a one form on M so one can take $ = r� and the Dirac operator

is :

D : X
�
J1Q [E 
 F; #]

�
! X

�
J1Q [E 
 F; #]

�
:: D =

3X
�=0

[C (d��)] [r� ] (6.1)

D =
P3
�=0 [P ]

�
i

�
C
�
"i
��
[r� ]

"i ("j) = �ij ) C
�
"i
�
= C ("i)

�1



6.1. THE SPECIFICATION OF THE LAGRANGIAN 261

D =
P3
�=0 [P ]

�
i [C ("i)] [r� ]

So the Dirac operator can be seen as the trace of the covariant operator, which averages the
action of the covariant derivative along the directions � = 0:::3 which are put on the same footing.
This is mathematically convenient, and consistent with the notion of undi¤erentiated matter �eld,
but has no physical justi�cation : it is clear that one direction is privileged on the world line.
h ;r� i = i Im h ;r� i which is convenient to de�ne the energy of the particle in the system.

But the Dirac�s operator exchanges the chirality. The scalar product h ;D i is not necessarily a
real quantity and, with the matrices  used in QTF, can be null, which is one of the reasons for the
introduction of the Higgs boson (see Schücker).
Moreover, as we have seen, a lagrangian, which is the central piece in the implementation of the

Principle of Least Action, requires that the variables depend on � for a matter �eld.

Hamiltonian

In Classic Mechanics the time t is totally independent from the other geometric coordinates, so the
most natural formulation of the Principle of Least Action takes the form :

` (Z) =
R T
0
L
�
t; qi; yi

�
dt

where yi stands for dqi

dt in the 1-jet formalism. Actually t is involved explicitly only if there are
external (and known) processes.
The change of variable with the conjugate momenta :
pi = @L

@qi

H =
Pn
i=1 p

iyi � L
leads to the Hamilton equations :
dqi

dt =
@H
@pi ;

dpi

dt = �
@H
@qi

which are the translation of the Euler-Lagrange equations with the new variables.
In QM the operator in the Schrödinger equation is assumed to be the Hamiltonian : i~@ @t = H 

and this has been an issue at the origin of Quantum Physics, because of the speci�c role played
by the time, which seemed to be inconsistent with the covariance required by Relativity. After
many attempts it has led to the path integral formalism, which uses the lagrangian and is viewed as
compatible both with Relativity and QM.
However, even if in a relativist lagrangian the coordinates are masked by a chart, it is not true

that the coordinate time is banal To study, in a consistent manner, any system, we need a single
time, and this is necessarily the time of an observer. We have to check that the formulation of the
lagrangian is consistent with the Principle of Relativity : the equilibrium must be an equilibrium
for any observer, but the de�nition of the system itself is observer-dependant. This is obvious with
the foliation : the geometric area 
 of the Universe encompassed by the system during its evolution
is not the same as the one of another observer. The covariance must be assured in any change
of chart which respects this foliation, but that does not mean that the time itself is not speci�c.
The Hamiltonian formulation is certainly not appropriate in the relativist context, but for many
other reasons (for instance the Maxwell�s equations, and more generally the concept of �elds are not
compatible with the Galilean Geometry) than the distinction of a privileged time.

Internal and external interactions

In the implementation of the Principle of Least Action the variables are assumed to be free, and this
condition is required in the usual methods for the computation of a solution 2 . However they can
appear as parameters, whose value is given, for instance if the trajectories of particles are known.
In the case of �elds, whose values are additive, there can be a known external �eld which adds up to

2However there are computational methods to �nd a solution under constraints. But the physical meaning of the
Principle itself is clear : the underlying physical laws are such that the system reaches an equilibrium, in the scope
of the freedom that it is left.
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the �eld generated by the particles of the system. The Principle applies to the total �eld, internal
+ external, considered as a free variable. In the usual case the �eld generated by the particles is
neglected, and the �elds variables are then totally dropped. If not the �eld generated by the particle
is computed by subtraction of the external �eld from the value given by the model.
Similarly if the observer is subjected to a speci�c motion, such as the rotation of his basis with

respect to a chart, this motion must be accounted for in the tetrad, but it would be easier to look
for a solution for a spatially still observer and then to proceed to a change of observer.

6.1.2 Equivariance and Covariance

An equilibrium, in the meaning of the Principle of Least Action, is a speci�c state of the system,
which does not refer to a speci�c observer : an equilibrium for an observer should be also an
equilibrium for another observer. So, even if the variables which are used in the model refer to
measures taken by a speci�c observer, the conditions which are met should hold, up to a classic
change of variable. So the lagrangian and the solutions should be, not invariant, by equivariant in a
change of observer. The equilibrium is not expressed by the same �gures, but it is still an equilibrium
and one can go from one set of data to another by using mathematical relations deduced from the
respective disposition of the observers.
In any model based on manifolds (and I remind that an a¢ ne space is a manifold, so this applies

also in Galilean Geometry) a lagrangian, as any other mathematical relation, should stay the same
in a change of chart. This condition is usually called covariance.
In a model based on �ber bundles there is an additional condition : the expressions must change

according to the rules in a change of gauge. This condition is usually called equivariance, but it has
the same meaning.
Covariance and equivariance are expressed as conditions that any quantity, and of course the

lagrangian, must meet. These conditions are also a way to deal with the uncertainty which comes for
the choice of some variables. For instance the orthonormal basis ("i (m)) is de�ned (and the tetrad
with it) up to a SO(3; 1) matrix. The equivariance relations account for this fact.
Equivariance is usually expressed as Noether�s currents (from the Mathematician Emmy Noether)

and presented as the consequence of symmetries in the model. Of course if there are additional,
physical symmetries, they can be accounted for in the same way. But the Noether�s currents are the
genuine expression of the freedom of gauge.
Once we have checked that our lagrangian (and more generally any quantity) is compliant with

equivariance and covariance, of course we can exercise our freedom of gauge by choosing one speci�c
gauge. This is how Gauge Freedom is usually introduced in Physics (in Electromagnetism we have
the Gauss gauge, the Coulomb gauge,...). The goal is to simplify an expression by imposing some
relations between variables. This is legitimate but, as noticed before, one must be aware that it has
practical implications on the observer himself who must actually use this gauge in the collection of
his data.

Rules for a general lagrangian

The conditions for the covariance and equivariance of the lagrangian are expressed as relations
between the partial derivatives of the lagrangian with respect to the variables, and show that actually
some variables cannot �gure in the lagrangian. Then any lagrangian, expressed in the remaining
variables, will automatically meet the conditions of covariance and equivariance. This is the topic of
this subsection. It will necessitate some computations, but they will provide general results, which
can be implemented for any lagrangian, and have far reaching consequences.
We will use the precise notation :
L denotes the scalar lagrangian L

�
zi; zi�

�
function of the variables zi; expressed by the compo-

nents in the gauge of the observer, and their partial derivatives which, in the jets bundle formalism,
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are considered as independent variables zi�:
L = L

�
zi; zi�

�
(detP 0)

L$4 = L
�
zi; zi�

�
(detP 0) d�0 ^ d�1 ^ d�2 ^ d�3 is the 4-form

@L
@z to denote the usual partial derivative with respect to the variable z
dL
dz to denote the total derivative with respect to the variable z, meaning accounting for the

composite expressions in which it is an argument.
We will illustrate how to compute the rules of equivariance and covariance for a general la-

grangian, using the variables that we have de�ned previously, expressed by their coordinates :
 ij ; Ga�; �A

a
�; P

�
i ; �� 

ij ; ��G
a
�; �� �A

a
�; ��P

�
i ; V

� in a section of the 1st jet extension. For the purpose
at hand we will use the partial derivatives,  ij ; Ga�; �A

a
�; P

�
i ; @� 

ij ; @�G
a
�; @�

�Aa�; @�P
�
i ; V

�, as the
equivalent quantities transform similarly in a change of gauge or charts.
So in this section :
L
�
 ij ; Ga�; �A

a
�; P

�
i ; @� 

ij ; @�G
a
�; @� �A

a
�; @�P

�
i ; V

�
�

in an action such as :
R


L�detP 0d�0 ^ d�1 ^ d�2 ^ d�3

All variables are represented by their coordinates in relevant bases, by real or complex scalars. L
is not supposed to be holomorphic, so the real and imaginary part of the variables  ij ; @� ij must
appear explicitly. We will use the convenient notation for complex variables z and their conjugates
z, by introducing the holomorphic complex valued functions :

@L

@z
=
1

2

�
@L

@ Re z
+
1

i

@L

@ Im z

�
;
@L

@z
=
1

2

�
@L

@ Re z
� 1
i

@L

@ Im z

�
(6.2)

,
@L

@ Re z =
@L
@z +

@L
@z ;

@L
@ Im z = i

�
@L
@z �

@L
@z

�
The partial derivatives @L

@ Re z ;
@L

@ Im z are real valued functions, so
@L
@z =

@L
@z : And we have the

identities for any complex valued function u :

@L

@ Re z
Reu+

@L

@ Im z
Imu = 2Re

@L

@z
u;� @L

@ Re z
Imu+

@L

@ Im z
Reu = �2 Im @L

@z
u (6.3)

To �nd a solution we need the explicit presence of the variables and their partial derivatives.
But as our goal is to precise the speci�cation of L, we can, without loss of generality, make the
replacements :

@� 
ij ! r� ij = @� 

ij +
P4
k=1

P6
a=1 [C (G

a
�)]

i
k  

kj +
Pn
k=1  

ik
h
�A�

ik
j

@�G
a
� ! FaG�� = @�G

a
� � @�Ga� + 2 [G�; G� ]

a and FG�� = @�G
a
� + @�G

a
�

@� �A
a
� ! FaA�� = @� �A

a
� � @� �Aa� + 2

h
�A�; �A�

ia
and FG�� = @� �A

a
� + @�

�Aa�
And the lagrangian is then a function :

L
�
 ij ; Ga�;

�Aa�; P
�
i ;r� ij ;FG�� ; F aG�� ;FA�� ; FA�� ; @�P�i ; V �

�
The function L should be intrinsic, meaning invariant by :
- a change of gauge in the principal bundles PG; PU and their associated bundles
- a change of chart in the manifold M

Equivariance in a change of gauge

One parameter group of change of gauge
One parameter groups of change of trivialization on a principal bundle are de�ned by sections of

their adjoint bundle (Maths.2070) :
� 2 X (PG [T1Spin(3; 1);Ad])
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� 2 X (PU [T1U;Ad])
� = � (�r; �w) ; � are maps from M to the Lie algebras. At each point m, for a given value

of a scalar parameter �; the exponential on the Lie algebra de�nes an element of the groups at m
(Maths.1978) :
exp : R� T1Spin (3; 1)! Spin (3; 1) :: exp (�� (m))
exp : R� T1U ! U :: exp (�� (m))
The exponential on T1Spin (3; 1) is expressed by :
exp t� = exp �� (�r; �w) = �w (�; �w) � �r (�; �r)
�w (�; �w) = aw (�; �w) + sinh

1
2�
p
�tw�w� (0; �w)

aw (�; �w) =

r
1 + 1

4

�
�tw�w sinh

2 1
2�
p
�tw�w

�
�r (�; �r) = ar (�; �w) + sin t

1
2

p
�tr�r� (�r; 0)

ar (�; �w) =
q
1� 1

4�
r
r�r sin

2 t 12
p
�tr�r

It is actually multivalued (because of the double cover) so we assume that one of the value has
been chosen (for instance a > 0). This does not matter here.
By de�nition the derivative of these exponential for � = 0 gives back the elements of the Lie

algebras :
d
d� exp (�� (m)) j�=0 = � (m)
d
d� exp (�� (m)) j�=0 = � (m)
With the change of gauge :
pG (m)! epG (m; �) � exp (��� (m))
pU (m)! epU (m) � exp (��� (m))
The components of the variables become :
P�i ! eP�i (m; �) =P3

j=0 [h (exp (���))]
j
i P

�
j where [h] is the SO(3; 1) corresponding matrix

 ij ! e ij (m; �) =P4
k=1

Pn
l=1 [C (exp (��))]

i
k [% (exp (��))]

j
l  

kl

G� (m)! eG� (m) = Adexp �� �G� � exp (���) (exp ��)0 �@���
�A� ! e�A� (m; �) = Adexp ��

�
�A� � exp (���) exp (��)0 �@��

�
r� ! r̂� ij (m; �) =

P4
k=1

Pn
l=1 [C (exp (��))]

i
k [% (exp (��))]

j
l r� kl

All these expressions depend on m, as well as � (m) ; � (m) ; so they can be di¤erentiated with
respect to the coordinates of m to get :

@�P
�
i ! g@�P�i (m; �) =P3

j=0

��
h
�
exp (���)0 @��

��j
i
P�j + [h (exp (���))]

j
i @�P

�
i

�
@� eG� (m; �)
=
�
(exp���) (exp ��)0 �@��;G� � �@��

�
+Adexp ��f@�G��
f(exp���)0 �@�� � (exp ��)0 �@��
+exp (���) � (exp ��) " (�@��; �@��) + exp (���) � exp (��)0 �@2���gg

@�
e�A� (m; �) = h(exp���) (exp ��)0 �@��; �A� � �@��i

+Adexp ��(@� �A� �
�
exp (���)0 �@�� � (exp ��)0 �@��

�
+exp (���) � (exp ��) " (�@��; �@��) + exp (���) � exp (��)0 �@2���)
FaG�� ! eFG�� (�) = Adexp ��FG��
FaA�� ! eFA�� (�) = Adexp ��FA��
FG�� ! Adexp ��FG��
+
�
(exp���) (exp ��)0 �@��;G� � t@��

�
+
�
(exp���) (exp ��)0 �@��;G� � �@��

�
�Adexp ��((exp���)0 �@�� � (exp ��)0 �@��+ exp (���) � (exp ��) " (�@��; �@��)
+ exp (���) � exp (��)0 �@2���)
�Adexp ��((exp���)0 �@�� � (exp ��)0 �@��+ exp (���) � (exp ��) " (�@��; �@��)
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+exp (���) � exp (��)0 �@2���)
FA�� ! Adexp(��FA��

+
h
(exp���) (exp ��)0 �@��; �A� � �@��

i
+
h
(exp���) (exp ��)0 �@��; �A� � �@��

i
�Adexp ��(exp (���)0 �@�� � (exp ��)0 �@�� + exp (���) � (exp ��) " (�@��; �@��)
+ exp (���) � exp (��)0 �@2���)
�Adexp ��(exp (���)0 �@�� � (exp ��)0 �@�� + exp (���) � (exp ��) " (�@��; �@��)
+ exp (���) � exp (��)0 �@2���)
The vector V is de�ned in the holonomic basis @�� so its components are not impacted.
The determinant detP 0 is invariant, because we have a change of orthonormal basis, so the scalar

lagrangian L is invariant :
8�; (�; @��; @���) ; (�; @��; @���) :
L
�
zi; zi�

�
= L

�ezi (�; �; @��; @���) ; ezi� (�; �; @��; @���)�
L
�
zi; zi�

�
= L

�ezi (�; �; @��; @���) ; ezi� (�; �; @��; @���)�
If we take the derivative of this identity for � = 0 :
dL
d� j�=0 =

P
i;�

@L
@zi

�
zi; zi�

�
dezi
d� j�=0

dezi
d� j�=0 depends on the value of (�; @��; @���) ; (�; @��; @���) : So we have identities between

the partial derivatives of L which must hold for any value of (�; @��; @���) ; (�; @��; @���) : From a
mathematical point of view this derivative with respect to � is the Lie derivative of the lagrangian

along the vertical vector �elds generated by the derivative dzi�
d� j�=0 for each variable. These vector

�elds are the Noether currents (Maths.34.3.4). Here we will not explicit these currents, but simply
deduce some compatibilities between the partial derivatives.
Moreover the formulas : zi ! ezi can also be written : ezi (zp; �; @��; @���) ; ::: and we have :
L
�
zi; zi�

�
= eL �ezi; ezi�� = eL �ezi (zp) ; ezi� �zjp��

thus by taking the derivative with respect to the variables
�
zi; zi�

�
at � = 0 we get identities

between the values of the partial derivatives �i = @L
@zi

�
zi; zi�

�
and e�i = @eL

@ezi �zi; zi�� which tells if
they transform as tensors.

Equivariance on PG
The computation for exp (�� (m)) gives :
d
d�
eP�i (m; �) j�=0 = �Pa �

a ([P ] [�a])
�
i

d
d� Re

e ij (m; �) j�=0
=
P
a �

a
P4
k=1

�
Re
�
[C (�a)]

i
k

�
Re kj � Im

�
[C (�a)]

i
k

�
Im kj

�
=
P
a �

aRe ([C (�a)] [ ])
i
j

d
d� Im

f ij (m; �) j�=0
=
P
a �

a
P4
k=1

�
Re
�
[C (�a)]

i
k

�
Im kj + Im

�
[C (�a)]

i
k

�
Re kj

�
=
P
a �

a Im ([C (�a)] [ ])
i
j

d
d� @�

eP (m; t)�j j�=0 = �Pa �
a ([@�P ] [�a])

�
i + @��

a ([P ] [�a])
�
i

d
d� Re

]r� 
ij
(m; �) j�=0

=
P
a �

a
P4
k=1

�
Re
�
[C (�a)]

i
k

�
Rer� kj � Im

�
[C (�a)]

i
k

�
Imr� kj

�
=
P
a �

aRe ([C (�a)] [r� ])ij
d
d� Im r̂� ij (m; �) j�=0
=
P
a �

a
P4
k=1

�
Re
�
[C (�a)]

i
k

�
Imr� kj + Im

�
[C (�a)]

i
k

�
Rer� kj

�
=
P
a �

a Im ([C (�a)] [r� ])ij
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d
d�
fGa� (m) j�=0 =Pb �

b [�!� b; G�]a � @��a
d
d� @�

eGa� (m; �) j�=0 =Pb �
b [�!� b; @�G�]a + @��b [�!� b; G�]a � @���a

d
d�
eFaG�� (�) j�=0 =Pb �

b [�!� b;FG�� ]a
d
d�
eF aG�� j�=0 =Pb �

b [�!� b; FG�� ]a + @��b [�!� b; G�]a + @��b [�!� b; G� ]a � 2@���a
So we have the identity :
8�a; @��a; @���a :
0 =P
a �

af
P
ij

@L
@ Re ij Re ([C (�a)] [ ])

i
j +

@L
@ Im ij Im ([C (�a)] [ ])

i
j

+
P
�ij

@L
@ Rer� ij

Re ([C (�a)] [r� ])ij + @L
@ Imr� ij

Im ([C (�a)] [r� ])ijg
+
P
i�

@L
@P�

i
(�
P
a �

a ([P ] [�a])
�
i )

+
P
i��

@L
@@�P�

i

�
�
P
a �

a ([@�P ] [�a])
�
j + @��

a ([P ] [�a])
�
j

�
+
P
a�

@L
@Ga

�

�P
b �

b [�!� b; G�]a � @��a
�

+
P
a��

@L
@Fa

G��

�P
b �

b [�!� b;FG�� ]a
�

+ @L
@Fa

G��

�P
b �

b [�!� b; FG�� ]a + @��b [�!� b; G�]a + @��b [�!� b; G� ]a � 2@���a
�

With the component in @���a we have immediately : 8a; �; � : @L
@Fa

G��
= 0

With the component in @��a : 8a; � :
P
�i

@L

@@�P
�
i

([P ] [�a])
�
i = � @L

@Ga
�

And we are left with :
8a = 1::6 :
0 =P
ij

@L
@ ij ([C (�a)] [ ])

i
j +

P
�ij

@L
@r� ij

([C (�a)] [r� ])ij
�
P
i�

@L
@P�

i
([P ] [�a])

�
i �

P
i��

@L
@@�P�

i
([@�P ] [�a])

�
j

+
P
b�

@L
@Gb

�
[�!� a; G�]b +

P
a��

@L
@Fb

G��

[�!� a;FG�� ]b

Moreover, by taking the derivative with respect to the initial variables we get :P4
k=1 [C (exp (�� (m)))]

k
i

@eL
@g kj = @L

@ ijP4
k=1 [C (exp (�� (m)))]

k
i

@eL
@r̂� kj

= @L
@r ijP

j [h (exp (��� (m)))]
j
i
@eL
@fP�

j

= @L
@P�

i

L
�
[Adexp ��]

a
b FbG��

�
= L (FG��)P

b [Adexp ��]
b
a

@eL
@F̂b

G��

= @L
@Fa

G��

and other similar identities, which show that the partial derivatives are tensors, with respect to
the dual vector bundles :P

i
@L
@ ij e

i;
P
i

@L
@r� ij

ei; @L
@Fa

G��

�!� a;
P
i

@L
@@�P�

i
"i with�!� a the basis vector of the dual of T1Spin (3; 1) :

�!� a (�!� b) = �ab :

Equivariance on PU
We have similarly :
d
d�
f ij (m; �) j�=0 =Pn

k=1

Pm
a=1 �

a ik [�a]
k
j

d
d� Re

f ij (m; �) j�=0 =Pm
a=1 �

aRe ( [�a])
ij

d
d� Im

f ij (m; �) j�=0 =Pm
a=1 �

a Im ( [�a])
ij

d
d�
e�Aa� (m; �) j�=0 =Pm

b=1 �
b
h�!
� b; �A�

ia
� @��a

d
d� Re r̂� ij (m; �) j�=0 =

Pm
a=1 �

aRe (r� [�a])ij
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d
d� Im r̂� ij (m; �) j�=0 =

Pm
a=1 �

a Im (r� [�a])ij

d
d� @�

e�Aa� (m; �) j�=0 =Pm
b=1 �

b
h
�b; @� �A�

ia
+ @��

b
h
�b; �A�

ia
� @���a

d
d�
eFA�� (�) j�=0 =Pm

b=1 �
b
h�!
� b;FA��

ia
d
d�
eFA�� j�=0 =Pm

b=1 �
b [�b; FA�� ]

a
+ @��

b
h
�b; �A�

ia
++@��

b
h
�b; �A�

ia
� 2@���a

P
ij

@L
@ Re ij

Pm
a=1 �

aRe ( [�a])
ij
+ @L

@ Im ij

Pm
a=1 �

a Im ( [�a])
ij

+
P
ij�

@L
@ Rer� ij

Pm
a=1 �

aRe ( [�a])
ij
+
P
ij�

@L
@ Imr� ij

Pm
a=1 �

a Im ( [�a])
ij

+
P
a�

@L
@ �Aa

�

�Pm
b=1 �

b
h�!
� b; �A�

ia
� @��a

�
+
P
a��

@L
@Fa

A��

�Pm
b=1 �

b
h�!
� b;FA��

ia�
+
P
a��

@L
@Fa

A��

�Pm
b=1 �

b [�b; FA�� ]
a
+ @��

b
h
�b; �A�

ia
+ @��

b
h
�b; �A�

ia
� 2@���a

�
= 0

Which implies :
8a; �; � : @L

@Fa
A��

= 0; @L
@ �Aa

�

= 0

8a = 1::m :P
ij

@L
@ ij ( [�a])

ij
+
P
ij�

@L
@r� ij

(r� [�a])ij +
P
b��

@L
@Fb

A��

�h�!
� a;FA��

ib�
= 0

By taking the derivative with respect to the initial variables we check that the partial derivatives
are tensors, with respect to the dual vector bundles :

P
i
@L
@ ij f

j ;
P
i

@L
@r� ij

f j ;
P
a

@L
@Fa

A��

�!
� a with

�!
� a the basis vector of the dual of T1U :

�!
� a
��!
� b

�
= �ab

Covariance

In a change of charts on M with the jacobian : J =
h
J��

i
=
h
@e��
@��

i
and K = J�1 the 4-form on M

which de�nes the action changes as :

L�det [P ] d�0 ^ d�1 ^ d�2 ^ d�3 = eLe�det h ePi de�0 ^ de�1 ^ de�2 ^ de�3
and because :e�det h ePi de�0 ^ de�1 ^ de�2 ^ de�3 = �det [P ] d�0 ^ d�1 ^ d�2 ^ d�3

the scalar lagrangian L should be invariant.
The variables change as :
 ij do not change
The covariant derivatives are one form :
r� ij ! r̂� ij =

P
�K

�
�r� ij

P; V are vectors, but their components are functions :
V � ! eV � =P J

�
 V



P�i ! eP�i =P J
�
 P


i

@̂�P�i =
@

@e��
�P

 J
�
 (�)P


i (�)

�
=
P


�
@

@e�� J� (�)
�
P i (�) + J

�
 (�)

@

@e�� P i (�)
@̂�P�i =

P
�

�
@�J

�


�
K�
�P


i +

�
(@�P


i ) J

�
K

�
�

�
The potentials are 1-form :
Ga� ! eGa� =P�K

�
�G

a
�

�Aa� !
e�Aa� =P�K

�
�
�Aa�

The strengths of the �elds are 2-forms. They change as :
FaG�� ! eFaG�� =P3

f�g=0 FaG� det [K]
f�g
f��g =

P3
�=0 FaG�K

�K
�
�
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So we have the identity :

L
�
zi; zi�; z

i
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�
= eL�ezi; ezi�; ezi���

= eL�ezi �zi�; J��� ; ezi� �zi�; J�� ; @J��� ; ezi�� �zi�; J�� ; @J�� ; @2"J���� :
In a �rst step we take the derivative with respect to the components of the Jacobian.
If we take the derivative of this identity with respect to

�
@�J

�
�

�
:

0 =
P
i��

@L
@@�P�

i

P
�K

�
�P


i �

�
��

�
 =

P
���i

@L
@@�P�

i

P�i K
�
�

take J�� = ��� ) K�
� = ���P

i
@L

@@�P�
i

P�i = 0

8�; �;  :
P
i

@L

@@�P
�
i

P i = 0

by product with P j0 and summation : 8�; �; j : @L

@@�P
�
j

= 0

and as we had :
8a; � :

P
�i

@L

@@�P
�
i

([P ] [�a])
�
i = � @L

@Ga
�
) 8a; � : @L

@Ga
�
= 0

The derivative with respect to J�� :P
i�

@L
@P�

i

P
 P


i �

�
��
�
 +

P
i�

@L
@ Rer� ij

P
�

�
@
@J��

K�
�

�
Rer� ij

+
P
i�

@L
@ Imr� ij

P
�

�
@
@J��

K�
�

�
Imr� ij

+
P
a��

@L
@Fa

G��

P
�

��
@
@J��

K
�

�
K�
� +K


�

@
@J��

K�
�

�
FaG�

+ @L
@Fa

A��

P
�

��
@
@J��

K
�

�
K�
� +K


�

@
@J��

K�
�

�
FaA� + @L

@V �

P
 V

����
�
 = 0

with @
@J��

K�
� = �K

�
�K

�
�P

i�
@L
@P�

i

P�i +
P
ij�

@L
@r� ij

P
�

�
�K�

�K
�
�

�
r� ij

+
P
a��

@L
@Fa

G��

P
�

�
((�K

�K
�
�))K

�
� +K


�

�
�K�

�K
�
�

��
FaG�

+ @L
@Fa

A��

P
�

�
((�K

�K
�
�))K

�
� +K


�

�
�K�

�K
�
�

��
FaA� + @L

@V �V
� = 0

Let us take J�� = ��� ) K�
� = ���P

i
@L
@P�

i

P�i �
P
i�

@L
@r� ij

r� ij�
P
a�

@L
@Fa

G��
FaG���

P
a

@L
@Fa

G�
FaG��

P
a�

@L
@Fa

A��
FaA���

P
a

@L
@Fa

A�
FaA�+

@L
@V �V

� = 0
that is :
8�; � :

P
ij

@L
@r� ij

r� ij +
P
a

@L
@Fa

G�
FaG� + @L

@Fa
A�
FaA� =

P
i
@L
@P�

i
P �i +

@L
@V �V

�

In the second step we can take the derivative with respect to the initial variable in the identity :eL�fP�i ; f ij ; r̂� ij ; F̂aA�� ; F̂aG�� ; eV ��
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which shows that the corresponding quantities are tensors : in TM� for @L
@P�

i

; @L
@V � and in TM 


TM for @L
@r� ij

; @L
@Fa

G��
; @L
@Fa

A��
:

Conclusion

i) The potentials �A;G, and the derivatives @�P�i do not �gure explicitly, the derivatives of the
potential �A;G factor in the strength. The lagrangian is a function of 6 variables only :

L = L ( ;r� ; P�i ;FG�� ;FA�� ; V �) (6.4)

ii) The following quantities are tensors :
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�r;�P ;�A;�G;�V are associated to the variables  ; P; �A;G; V and appear in the Energy-
Momentum tensor. Notice that these quantities, when det [P 0] is added to L, are no longer covariant.
iii) We have the identities
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These identities are minimal necessary conditions for the lagrangian : the calculations could be
continued to higher derivatives. They do not depend on the signature. Whenever the lagrangian is
expressed with the geometrical quantities, these identities are automatically satis�ed.
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6.2 THE POINT PARTICLE ISSUE

A lagrangian must suit the case of particles alone, �elds alone and interacting �elds and particles.
So it comprises a part for the �elds, and another one for the particles and their interactions. If we
consider a population of N particles interacting with the �elds the action is :R



L1 (P

�
i ;FG�� ;FA��)$4 +

PN
p=1

R T
0
L2
�
 p;r�Mp; P

�
i ; V

�
p

�
(t) dt

And this raises several issues, mathematical and physical, depending on the system considered.

6.2.1 Propagation of Fields

If we consider a system without any particle, focus on the �elds and aim at knowing their propagation
in 
; the variables are just the components of the tetrad P , and the strength of the �elds FA;FG;
and the scalar lagrangian is summed with a density. We have a unique integral over 
 and the Euler-
Lagrange equations give general solutions which are matched to the initial conditions. A direct and
simple answer can be found and provides the equations for the propagations of the �eld. Combined
with the more general results of the previous chapter they give the value of the �eld in the vacuum,
with respect to initial conditions.
The classic examples are, in General Relativity (with the Levi-Civita connection) the Einstein

equation :
Ric�� � 1

2g��R = 0

and the Maxwell equations :P
�� @�

�
F��

p
jdetP 0j

�
= 0

with the lagrangian : L =
P
�� Gg

��Ric�� + �0F��F��

6.2.2 Particles moving in known Fields

When the system comprises particles moving in known �elds, or when the impact of the particles
on the value of the �eld can be neglected, actually only the second part of the action is involved.
We have a classic variational problem over the interval [0; T ] of the experiment. We can expect a
solution, but it will be at best expressed as general conditions that the trajectories must meet. The
main example is the trajectory of free particles, that is particles which are not submitted to a �eld.
With the simple lagrangian L1 = 1 and the Levi-Civita connection one �nds that the trajectory must
be a geodesic, and there is a unique geodesic passing through any pointm with a given tangent V (0).
But the equation does not give by itself the coordinates of the geodesic (which require the knowledge
of G) or the value of the �eld. For the electromagnetic �eld, if we know the value of the �eld and
we neglect the �eld induced by the particle, we get similarly a solution : ruu = �0

q
mc

P
� F��u�

with u = cp
�hV;V i

V which is the generalized Lorentz equation.

If we want to account for the �eld induced by the particle we have a problem. As the �eld
propagates, we need to know the �eld out of the trajectory. It could be computed by the more
general model, and the results reintegrated in the single particle model. The resulting equation for
the trajectory is known, for the electromagnetic �eld, as the �Lorentz-Dirac equation�(see Poisson
and Quinn). The procedure is not simple, and there are doubts about the physical meaning of the
equation itself.

6.2.3 Particles and Fields interacting

The fundamental issue is that the particles are not present everywhere, so even if we can represent
the states of the particles by a matter �eld, that is a section of a vector bundle, we have to account
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for the actual presence of the particles : virtual particles do not interact 3 . There are di¤erent
solutions.

Common solutions

If the trajectories of the particles are known, a direct computation gives usually the �eld that they
induce. This is useful for particles which are bonded (such as in condensed matter).
In QTF the introduction of matter �elds in the lagrangian is in part formal, as most of the

computations, notably when they address the problem of the creation / annihilation of particles, is
done through Feynman�s diagram, which is a way to reintroduce the action at a distance between
identi�ed particles.
In the classical picture the practical solutions which have been implemented with the Principle

of Least Action have many variants, but share the following assumptions :
- they assume that the particles follow some kind of continuous trajectories and keep their physical

characteristics (this condition adds usually a separate constraint)
- the trajectory is the key variable, but the model gives up the concept of point particle, replaced

by some form of density of particles.
These assumptions makes sense when we are close to the equilibrium, and we are concerned not

by the behavior of each individual particle but by global results about distinguished populations,
measured as cross sections over an hypersurface. They share many characteristics with the models
used in �uid mechanics. In the usual QM interpretation the density of particles can be seen as a
probability of presence, but these models are used in the classical picture, and actually the state of
the particles is represented as sections of the vector bundle TM (with a constraint imposed by the
mass), combined with a density function. So the density has a direct, classic interpretation.
The simplest solution is, assuming that the particles have the same physical characteristics, to

take as key variable a density �$4: Then the application of the principle of least action with a 4
dimensional integral gives the equations relating the �elds and the density of charge.
The classic examples are :
- the 2nd Maxwell equation in GR :
r�F�� = ��0J� , �0J

�
p
�det g =

P
� @�

�
F��
p
�det g

�
with the current : J = � (m) qu and the lagrangian
L = �0

P
�
�A�J

� + 1
2

P
�� F��F��

- the Einstein Equation in GR :
Ric�� � 1

2Rg�� =
8�Gp
c
T��

with the momentum energy tensor T�� = @T
@g��

� 1
2g��T

and the lagrangian L = T
�
g; zi; zi�

�
+

p
c

8�GR

The conservation of matter is accounted for by a continuity equation for the density �:
The distribution of charges is de�ned independently, but it must meet a conservation law. In the

examples above we must have :P
� @�J

� = 0P
�r�T�� = 0

The Einstein-Vlasov systems are also based on a distribution function f(m; p) depending on the
localization m and the linear momentum p, which must follow a conservation law, expressed as a
di¤erential equation (the Vlasov equation). The particles are generally assumed to have the same
mass, so there is an additional constraint on the momentum as above. When only the gravitational
�eld is considered the particles follow geodesics, to which the conservation law is adjusted. These
systems have been extensively studied for plasmas and Astrophysics (see Andréasson).

3Virtual : existing or resulting in essence or e¤ect though not in actual fact, form, or name (American Heritage
Dictionary). An interacting virtual particle is an oximoron.
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This kind of model has been adjusted to Yang-Mills �elds (Choquet-Bruhat) : the particles
have di¤erent physical characteristics (similar to the vector � seen previously), and must follow an
additional conservation law given by rV � = 0 (the Wong equation).
In all these solutions the 4 dimensional action, with a lagrangian adapted to the �elds considered,

gives an equation relating the �eld and the distribution of charges.
So the situation is not satisfying. These di¢ culties have physical roots. The concept of �eld is

aimed at removing the idea of action at a distance, but, as the example of the motion of a single
particle in its own �eld shows, it seems di¢ cult to circumvent the direct consideration of mutual
interactions between particles, which needs to identify separately each of them.
However, from these classic examples, two results seem quite clear :
- the trajectories should belong to some family of curves, de�ned by the interactions
- the initial conditions, that is the beginning x of the curve and its initial tangent, should

determine the curve in the family.

6.2.4 Two solutions

Our framework provides actually two potential solutions.

Continuous distribution of particles

If there is only one kind of particle (corresponding to a single vector  0) they have the same behavior,
both kinematic and under the action of the �eld. With not too many collisions one can then expect
that their trajectories are similar, they should be the integral curves of a common vector �eld and
the particles can be represented by a matter �eld, with a density � following the continuity equation.
The particles keep their intrinsic properties through  0 and it is not necessary to introduce additional
constraints for the conservation of charge or mass: The model can deal with the two components of
motion : translation and rotation. The second integral takes the form :R



L2 ( ;r� ; P�i ; V �)�$4

and solutions can be found with the usual Lagrange equations. The section  is de�ned through
� (r; w) and the key variables are then maps : r; w :M ! R3:
However these equations give only general solutions, which shall be adjusted to the initial con-

ditions (covering the local density and velocities).

Individual particles

If the number of particles vary (there are creations and annihilations of particles), or if there are
collisions, the process is discontinuous, and other methods must be used (Chapter 8).
For a �xed, number N of particles, with known fundamental state  0p; the second integral of the

action reads :PN
p=1

R T
0
L2

�
 p; br�Mp; P

�
i ; V

�
p

�
(t) dt

There is no need for a density along the trajectory q (t) : a given particle follows an integral
curve �xed by the origin of the trajectory and its tangent, and occupies a single location on 
3 (t).
The �rst problem is mathematical : the �elds and the particles are de�ned over domains which

are manifolds of di¤erent dimensions, thus we have 2 integrals which are not of the same order,
which precludes the usual method by Euler-Lagrange equations. It is common to put a Dirac�s
function in the integral for particles, but this, naive, solution is just a formal way to rewrite the
same integral without any added value. There is actually a rigorous mathematical solution, by
functional derivatives. However its results must be understood to be used properly.
The second problem is to �nd an adequate representation of the particles. If we use maps such

as :
[0; T ]! J1Q [E 
 F; #] :: (q (t) ;  (t) ; � (t))
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one cannot vary the trajectory q (t) ; which is of course part of the variables.
In a given environment particles with the same fundamental state  0 should behave the same

way, their motion can then be represented by a single section � 2 X (PG) ; which de�nes a unique
vector �eld V of trajectories and similarly for a section  2 X (Q [E 
 F; #]) : So wee can use a
section as a �blue print�for the map  (t) : It sums up to take :  (t) =  (q (t)) :
The parameter on the integral curves of V is the time of the observer, the variables r; w :M ! R3

become then r; w : [0; T ]! R3:
As in the �rst model we get general solutions which must be adjusted to the initial conditions.

In the next Chapter we will see a model with a matter �eld and a density, and a model with a
�xed number of individual particles, both in the most general context, using the formalism presented
in the book.
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6.3 FINDING A SOLUTION

The implementation of the Principle of Least Action leads to the problem of �nding sections on
jet extension of vector bundles for which the action is stationary. There are two general methods,
depending if the action is de�ned by a unique integral, or by several integrals on domains of di¤erent
dimensions.

6.3.1 Variational calculus with Euler-Lagrange Equations

This is the most usual problem : �nd a section Z for which the integral
R


L(zi; zi�)$4 is stationary.

This is a classic problem of variational calculus, and the solution is given by the Euler-Lagrange
equation, for each variable (Maths.34.3).

L denotes the scalar lagrangian L
�
zi; zi�

�
function of the variables zi; expressed by the compo-

nents in the gauge of the observer, and their partial derivatives which, in the jets bundle formalism,
are considered as independent variables zi�:
L = L

�
zi; zi�

�
(detP 0)

L$4 = L
�
zi; zi�

�
(detP 0) d�0 ^ d�1 ^ d�2 ^ d�3 is the 4-form

@L
@z denote the usual partial derivative with respect to the variable z
dL
dz denote the total derivative with respect to the variable z, meaning accounting for the com-

posite expressions in which it is an argument.
For an action

R


L
�
zi; zi�

�
$4where

�
zi; zi�

�
is a 1-jet section of a vector bundle, the Euler-

Lagrange equations read :

8zi : d (LdetP
0)

dzi
�
X
�

d

d��
d (LdetP 0)

dzi�
= 0 (6.5)

where d
d��

is the derivative with respect to the coordinates in M . det [P 0] =
p
�det [g] is

necessary to account for $4 which involves g.

In the lagrangian as well as in the derivatives
d(L detP 0)

dzi ;
d(L detP 0)

dzi�
the quantities which are

involved are the components of a section of the 1st jet extension : zi; zi�; seen as independent
variables. The next step is to replace in the Lagrange equations the quantities zi� by the partial
derivatives : zi� = @�z

i to get PDE in Z =
�
zi
�
i=1::n

; section of E.
The equation holds pointwise for any m 2 
: However when one considers a point along a

trajectory : p (t) = m (�V (t; x)) then the expressions like :
P
� V

� d
d��

(X (p (t))) read : dXdt (p (t)) :
The divergence of a vector �eld X =

P
�X

�@�� is the function div(X) : $X$4 = div(X)$4

and its expression in coordinates is (Maths.17.2.4) :
divX =

P3
�=0

@X�

@�� +
1
2X

�
P3
�=0 g
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dL detP 0

dzi detP 0 + Ld detP
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dL detP 0

@dzi + L 1
detP 0

d detP 0

dzi = div (Zi)

thus, when P does not depend on zi the equation reads : dL detP
0

dzi = div (Zi)

Complex variables

Whenever complex variables are involved, the derivatives of the real and imaginary parts must be
computed separately.
We have then two families of real valued equations :
@L detP 0

@ Re zi �
P
�

d
d��

@L detP 0

@ Re zi�
= 0
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@L detP 0

@ Im zi �
P
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d
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@L detP 0
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= 0

and by de�ning the holomorphic complex valued functions :
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and we are left with the unique complex equation :
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Conservation laws

If for a variable we have dL
dzi = 0; then at equilibrium 1

detP 0
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d(L detP 0)
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the vector Zi =
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@�� : The quantity Zi is conserved at equilibrium. In particular with maps

depending on t only : d
dt

�
dL
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�
= 0: Notice that dL

dzi are total derivatives, meaning that the variable

cannot appear as part of another variable, so this does not apply to the potentials.

If for a variable
d(L detP 0)

dzi�
= 0 then dLdzi = 0 at equilibrium.

This is the case, in the more general lagrangian, for the tetrad P: The equation reads :
1

detP 0
d(L detP 0)

dP i
�

= 0 = dL
dP i

�
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The derivative of the determinant is (Maths.490) :
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So the equations read :
8i; � : dL

dP�
i
detP 0 � L (detP 0)P 0i� = 0

By product with P �i and summation on i the equations sum up to :

8�; � = 0:::3 :
X
i

dL

dP�i
P �i � L��� = 0 (6.6)

The associated moment is a tensor : �P =
P
�;j

@L

@P�
j

d�� 
 "j .
The equation is equivalent to the conservation of energy (see below).

6.3.2 Functional derivatives

Whenever the system comprises force �elds or matter �elds on one hand, and individual particles
on the other hand, such as :R
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the action is the sum of integrals on domains which do not have the same dimension. The
Euler-Lagrange equations do not hold any longer. It is common to introduce Dirac�s functions, but
this formal and naive method is mathematically wrong : the Euler-Lagrange equations are proven in
precise conditions, which are no longer met. However there is another method : functional derivatives
(derivative with respect to a function). It is commonly used by physicists, but in an uncertain
mathematical rigor. Actually their theory can be done in a very general context, using the extension
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of distributions on vector bundles (see Maths.30.3.2 and 34.1). The method provides solutions of
variational problems, but is also a powerful tool to study the neighborhood of an equilibrium.

A functional : ` : JrE ! R de�ned on a normed subspace of sections X (JrE) of a vector
bundle E has a functional derivative �`

�z (Z0) with respect to a section Z 2 X (E) in Z0 if there is a
distribution �`

�z such that for any smooth, compactly supported �Z 2 Xc1 (E) :
limk�Zk!0

` (Z0 + �Z)� ` (Z0)� �`
�z (Z0)Z

 = 0
Because Z and �Z are sections of E their r-jets extensions are computed by taking the partial

derivatives. The key point in the de�nition is that only �Z; and not its derivatives, is involved. It
is clear that the functional is stationary in Z0 if �`�z (Z0) = 0:
When the functional is linear in Z then �`

�z = `
When the functional is given by an integral :

R


� (JrZ) d�0 ^ d�1 ^ d�2 ^ d�3 the functional

derivative is the distribution :
�`
�z (�Z) =

R



Pr
s=0

P
�1:::�s

(�1)sD�1:::�s
@�

@Z�1:::�s
�Zd�0 ^ d�1 ^ d�2 ^ d�3

The functional can be the sum of integrals of di¤erent orders, then the method applies to the
sum of the derivatives. Even if the result is usually expressed as an equality at each point, the
equations must be understood �in the meaning of distributions�: for each measure of the quantities
zi; zi� done by the computation of the functional with any section �Z 2 Xc1 (E) the equation holds.
This is consistent with the physical process of measures, done by testing the value of the unknown
variables with known quantities not pointwise, but over any compact area of 
:
For a 1st order lagrangian the equations read :

8i : dL
dZi

=
d

dt

 
@L

@ dZ
i

dt

!
(6.7)

We will see how to implement this method in the next chapter.
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6.4 ENERGY-MOMENTUM TENSOR

6.4.1 De�nition

The concept of equilibrium is at the core of the Principle of Least Action. So, for any tentative
change of the values of the variables, beyond the point of equilibrium, the system reacts by showing
resistance against the change : this is the inertia of the system. It is better understood with the
functional derivatives.
The system is represented by variables, which are sections of some 1st jet prolongation of a �ber

bundle E :
�Z : 
! J1E :: �Z (m) =

�
m; zi (m) ; zi� (m)

�
The action is then a functional :
` : X

�
J1E

�
! R :: `

�
zi; zi�

�
=
R


L
�
zi; zi�

�
d�0 ^ d�1 ^ d�2 ^ d�3

At equilibrium : bZ = �bzi; bzi�� ; the variational derivative �`
�z

�c�Z� ; which is a distribution, is null
for any smooth section �Z with compact support :

�Z 2 X1;c

�
J1E

�
: �`�z

� bZ� (�Z) = 0
Consider a change �Z =

�
��i; ��i�

�
2 Xc

�
J1E

�
for a section with compact support, in the

neighborhood of the equilibrium :

�` = `
�c�Z + ���� `�c�Z� ' R




�P
i
@L
@zi ��

i +
P
i;�

@L
@zi�

��i�

�
d�0 ^ d�1 ^ d�2 ^ d�3

Whenever �Z is the prolongation of a section of E; that is : ��i� = @��
i; by de�nition of the

variational derivative :
�` = �`

�zi (��) =
R



P
i

�
@L
@zi �

P
�

d
d��

�
@L
@zi�

�� �
��i
�
d�0 ^ d�1 ^ d�2 ^ d�3

At equilibrium : 8�Z : �`
�zi

�c�Z� (��) = 0R



P
i
@L
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�
��i
�
d�0 ^ d�1 ^ d�2 ^ d�3 =

R



P
i

�P
�

d
d��

�
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�� �
��i
�
d�0 ^ d�1 ^ d�2 ^ d�3

Thus, for any �Z 2 X1;c (E) :

�` =
R



P
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d
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@zi�
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��i
�
d�0 ^ d�1 ^ d�2 ^ d�3+
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Let L = LdetP 0P
i

�P
�

d
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�� �
��i
�
=
P
i
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��i
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 "i is a tensor (see Lagrangian)
S (��) =

P
i ��

i
P
�
@L
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@�� is a vector �eld

divS (��) = 1p
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� is a function
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R



�
div (S (��)) +

P
i;� S

�
i ��

i
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and �` is the integral of 2 functions, with the volume form $4:

Because �Z is the prolongation of a section of E; ��i� = @��
i; the variation of zi along a vector

�eld V is : ��i =
P3
�=0 @��

iV � thus Si (��) =
P
��

@L
@zi�

@��
iV �@��
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The quantity : T =
P
i��

@L
@zi�

zi�@��
d�� is a tensor. The quantity Si (��) =
P
��

@L
@zi�

@��
iV �@��

can be seen as the forces opposed by the system to a change of the variable zi in the direction given
by V; expressed in the holonomic basis at each point :

�Fi (V ) =
P
��

@L
@zi�

@��
iV �@��

For a small compact area ! 2 
 with boundary @! :R


div (S (��))$4 =

R


div (T (V ))$4 =

R
@!
iT (V )$4R

@!
iT (V )$4 can be seen as the resultant of the forces exercised on @!; weighted by the density

on @!.
The lagrangian has the meaning of a density of energy for the whole system.
The trace of the tensor T is the tensor : Tr (T ) =

P
i�

@L
@zi�

zi�d�
� 2 X (TM�)P

i;� S
�
i ��

i
� =

P
i;�

@L
@zi�

@��
i = Tr (T ) (V ) has the meaning of the a variation of this energy due

to the action of these forces.

De�nition 100 The Energy-Momentum of a system with action :
` : X

�
J1E

�
! R :: `

�
zi; zi�

�
=
R


L
�
zi; zi�

�
$4

is the tensor :

T : X
�
J1E

�
! X (TM� 
 TM 
 E�) :: T =

X
i��

@L

@zi�
zi�@�� 
 d�� 
 ei (6.8)

The quantities

�i =
X
��

@L

@zi�
zi�@�� 
 d�� 
 ei 2 X (TM� 
 TM 
 E�) (6.9)

are the momenta associated to the variable Zt:
To a change of the variable zi in the direction V the system opposes at each point m a force :
�Fi (V ) = �i (V ) 2 TmM
and the change of energy of the system due to the action of these forces is given by the trace

Tr (T )

�` =

Z



(div (T (V )) + Tr (T ) (V ))$4 (6.10)

With any lagrangian one can compute an explicit energy-momentum tensor. It is usually assumed
that the energy momentum tensor is symmetric : T�� = T �� , which it should be, in the Einstein
equation, because the Ricci tensor, with the Lévy-Civita connection, is symmetric, but there is no
reason why it should be so, and it is common to use a substitute of T in order to get a symmetric
tensor.
If the equilibrium is kept : �` = 0: Usually �` 6= 0 for a change �� of the variable. However if

the divergence of the vector T (V ) is null then �` = 0: If such vectors V exist they show privileged
directions over which the system can be deformed without energy spent, that is equivalent states of
equilibrium.

6.4.2 General expression

With the more general lagrangian L = L ( ;r� p; P�i ;FG�� ;FA�� ; V �) detP 0 the energy momen-
tum tensor T reads :

T =
P
��f
P
ij
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@@� ij
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P
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@@� �Aa



�� �A
a
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��G

a
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 d��

Notice that P�i ; V
� do not appear.

@L
@@� ij

= @L
@r� ij

and �r =
P
�

@L
@r� ij

@�� 
 ei 
 f i is a tensor
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@L
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Conversely, the momenta can be derived from the Energy-Momentum tensor, in a way which
is usual in �uid mechanics : ��rij =

@T
@@� ij

; ::: This is the generalized version of the Hamilton
equations. Moreover the generalized momenta � are related (see Lagrangian).
The computation above is quite general, holds for any lagrangian, in the neighborhood of an

equilibrium, and not just when an equilibrium is met. And with the use of functional derivatives we
are not limited to smooth variables, de�ned on the same support. This remark will be useful when
studying discontinuous processes.

Variables function of t

The method of functional derivatives allows to consider variables zi : [0; T ] ! E which are de-

�ned over some interval [0; T ] : The corresponding lagrangian is then L
�
zi; �z

i

�t

�
with the action

`
�
Z; �Z�t

�
=
R T
0
L
�
zi; �z

i

�t

�
dt:

` has a functional derivative �`
�zi with respect to z

i in bZ if there is a distribution �`
�z such that,

for any smooth map with compact support �� 2 C1c ([0; T ] ; E) :

limk�Zk!0

`� bZ + ���� `� bZ�� �`
�z

� bZ� �� = 0
and for a linear de�ned by an integral :

8�� 2 C1c ([0; T ] ;E) :
�`
�zi (��) =

R T
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@zi �

d
dt

�
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i

dt

���
��i
�
dt

Then the condition for an equilibrium is given by : �`
�zi

� bZ� = 0:
The computation done previously can be extended to variables depending on t.
For any variation ��i; smooth map [0; T ]! E with compact support :
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and from the functional derivative :
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At equilibrium bZ : 8�� : �`
�zi (��) = 0

�` '
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because ��i is a section its �rst jet extension : ��
i

�t =
d
dt�z
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is the equivalent of the Energy-Momentum tensor, for a change ��i of zi during the

time interval �t; or equivalently of the forces of the system in resistance to the change.
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6.4.3 Conservation of Momentum and Energy

The Principle of Least Action is complementary to the Conservation of Momentum or Energy.
The lagrangian represents usually the sum of all the exchanges of energy between the objects in
the system. And the Energy-Momentum tensor represents the inertial forces of the system. The
lagrangian formalism gives a comprehensive picture of these Principles.

Conservation of Energy

Usually, and in the models which will be used in this book, the lagrangian represents the balance of
energy between the components of the system. The energy of the system can then be de�ned as :
E =

R


L
�
zi; zi�

�
$4

accounting for the variation of the volume measure with the metric.
The Principle of Least Action gives the conditions for an equilibrium, it is di¤erent from the

Principle of Conservation of Energy, which states that the balance of energy of a system must be
even at each time for an observer. So, if all the physical objects interacting in the system have been
accounted for, we must have the additional condition 4 :
E (t)=

R

(t)

L
�
zi; zi�

�
$3 = Ct =

R

(t)

i"0
�
L
�
zi; zi�

�
$4

�
The integral is on 
 (t) and not the whole of 

Consider the manifold 
 ([t1; t2]) with borders 
 (t1) ;
 (t2) :
E (t2)� E (t1) =

R
@
([t1;t2])

i"0 (L$4) =
R

([t1;t2])

d (i"0L$4)

d (i"0L$4) = $"0 (L$4)� i"0d (L$4)
= ($"0L)$4 + L$"0$4 � i"0 (dL ^$4)� i"0Ld$4

= L0 ("0)$4 + L (div"0)$4 � i"0 (dL ^$4)
= div (L"0)$4

E (t2)� E (t1) =
R

([t1;t2])

div (L"0)$4

The conservation of energy for the observer imposes an additional condition : div (L"0) = 0 to
the solutions, speci�c to each observer (through "0):
With the general lagrangian L = L ( ;r� ; P�i ;FG�� ;FA�� ; V �) detP 0 the derivative of P�i

does not appear, and the corresponding equation for the tetrad reads :
8�; � = 0:::3 :

P
i
dL
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i
P �i � L��� = 0

But div ("0L) =
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The tetrad equation reads
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and on shell the condition sums up to the identity :
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@t =

P
i� LP

0i
�
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i

@P i
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The tetrad equation implies the conservation of energy, and the result holds for any lagrangian
in the tetrad formalism. So this equation has a special signi�cance :
- it expresses, in the more general setting, a general principle which goes beyond the Principle of

Least Action,
- it encompasses all the system, and its physical objects (particles and �elds),
- it can be derived by the use of functional derivatives, and does not require all the smoothness

conditions imposed by the Lagrange equations,

4Notice the di¤erence with a similar computation done for material bodies : material bodies are characterized by
a unique vector �eld V , but in a general system the unique reference is "0:
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- it is based upon the variation of the metric, which appears as the quantity through which this
balance of energy is kept.

Conservation of the momenta

In Newtonian Mechanics the Conservation of Momentum is actually the expression, in speci�c cases,
of the general laws for the evolution of the system, and it could be expressed in a simple way because
it is possible to de�ne a center of mass, and so to give a physical meaning to the sum of the forces
exercised on the system.
The momenta are vectorial quantities, de�ned in di¤erent vector spaces, and at di¤erent points,

so their aggregation has no meaning in the GR picture. The Energy-Momentum tensor gives the
equivalent of inertial forces opposed to the system at any change, if the equilibrium is kept the
divergence of the vectors T (V ) should be null but it does not tell us anything pointwise.
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6.5 PERTURBATIVE LAGRANGIAN

In a perturbative approach, meaning close to the equilibrium, which are anyway the conditions in
which the principle of least action applies, the lagrangian can be estimated by a development in
Taylor series, meaning that each term is represented by polynomials. Because all the variables are
derivatives at most of the second order and are vectorial, it is natural to look for scalar products.

6.5.1 Interactions Fields / Fields

It is generally assumed that there is no direct interaction gravitation / other �elds (the deviation of
light comes from the fact that the Universe, as seen in an inertial frame, is curved). So we have two
distinct terms, which can involve only the strength of the �eld. They are two forms on M valued in
the Lie algebra, which transform in a change of gauge by the adjoint map, thus the scalar product
must be invariant by Ad.
We have such quantities, the density of energy of the �eld, de�ned by scalar products. So this

is the obvious choice. However for the gravitational �eld there is the usual solution of the scalar
curvature R which can be computed with our variables. It is invariant by a change of gauge or
chart. The action with the scalar curvature is then the Hilbert action

R


R$4 . Any scalar constant

added to a lagrangian leads to a lagrangian which is still covariant, however the Lagrange equations
give the same solutions, so the cosmological constant is added ex-post to the Einstein equation. The
models use traditionally the scalar curvature, with the Levi-Civita connection. The application of
the principle of least action leads then in the vacuum to the Einstein equation : Ric��� 1

2g��R = 0:
In our formalism the Hilbert action leads to linear equations : R is a linear function of FG; so it
leads to much simpler computations than the usual method (and of course they provide the same
solutions).
In all the, di¢ cult, experimental veri�cations, the models are highly simpli�ed, and to tell that

the choice of R is validated by facts would be a bit excessive. We have seen that its computation,
mathematically legitimate, has no real physical justi�cation : the contraction of indices is actually
similar to the procedure used to de�ne the Dirac�s operator.
It seems logical to use the same quantity for the gravitational �eld as for the other �elds. This is

the option that we will follow in the next Chapter. It is more pedagogical, and opens the possibility
to study a dissymmetric gravitational �eld. So we will take in a perturbative lagrangian :

Z
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where CG; CA are real constant scalars, which depend on the units. Notice that, for the conve-
nience of computations, the quantities are de�ned as non ordered sum of indices. Moreover usually
the EM �eld will be incorporated in the �other �elds�. More precisely we have :P
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n
CG

�P3
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the factor 2 accounting for the non ordered indices.

6.5.2 Interactions Particles /Fields

The logical term in the lagrangian is the variation of energy :

�E = CI
1
Mp

1
i h ;rV  i=� CI

1
2Mp

n
kt0ReAd��1

�
� (Xr; Xw) + bG�+ ktc �Ad{ b�A�o



6.5. PERTURBATIVE LAGRANGIAN 283

The �elds act on the momentum of the particles
M =(m; = # (�; 1) 0; �� = # (� (Xr�; Xw�) � �; 1) 0) 2 J1Q [E 
 F; #]
through the covariant derivative :

[r� ] = # (�; 1)
��
C
�
rG��

��
[ 0] + [ 0]

h
�A�

i�
rG�� = Ad��1 (� (Xr�; Xw�) +G�)

and along the trajectories, with vector V =
P3
�=0 V

�@�� de�ned through � :
V = dq

dt = c"0 +
�!v =

P
�;i [P ]

�
j [U ]

j
@��

U = � c
hAd�"0;"0iCl

Ad�"0

In a continuous motion : � (Xr�; Xw�) = @�� � ��1:
For the EM �eld : kc = �2q

In a model with a density of particles each type of particles is represented by a matter �eld, a
section  2 X (Q [E 
 F; #]) ; with �xed  0; and a density � which follows the continuity equation
d�
dt + �divV = 0. The key variable is then �; de�ned through 2 maps r; w :M ! R3:
The action is then :R


CI

1
M

1
i h (r (m) ; w (m)) ;rV  r (m) ; w (m)i� (m)$4 (m)

In a model with a �xed number N of particles p = 1:::N , each particle is represented in two steps
- the particles of the same type are represented by a matter �eld  p 2 X (Q [E 
 F; #]) ; with

�xed  0p; corresponding to a common section �p 2 X (PG);
- within the section the particle is such that �p depends on 2 maps rp; wp : [0; T ]! R3
So the state of the particle p is given by
 p (t) =  p (qp (t)) = # (�p (rp (t) ; wp (t)) ; 1) 0p
its velocity by � (rp (t) ; wp (t)) ; P i� (qp (t))
U ip = � c

hAd�p"0;"0iCl
Ad�p"0

V �p =
P3
i=0 P

�
i (qp (t))U

i
p

the motion is assumed to be continuousP3
�=0 V

�@��p (rp (t) ; wp (t)) =
d�p
dt

which de�nes the trajectory qp (t) :
The time t is the time of the observer, which is common to all the sections and particles.
The action is then :PN
p=1

R T
0
CI

1
Mp

1
i h (rp (t) ; wp (t)) ;rV  (rp (t) ; wp (t))i dt

The lagrangian of the Standard Model 5 is similar, with the Dirac operator and �A is identi�ed
with the bosons as force carriers (which requires the introduction of the Higgs boson).

6.5.3 Units

As said in the 2nd Chapter, any equation should be actually unitless, in order to be fully compliant
with the rules in a change of gauge. However we use di¤erent, specialized units, in our measures.
So there is the need for universal constants to make the bridge between them. The most obvious is
the constant c : the basic unit in geometry is the length, acknowledge that �time� is a geometric
measure leads to @�0 = c@t:

The lagrangian, in its perturbative formulation, is the good place to look at the problem, as it in-
volves all the quantities. The scalar lagrangian is a density of energy, with unit [E] = [M ] [L]2 [T ]�2.

5Of course the tools used in QTF to �nd solutions are quite di¤erent (the key variables are locat operators), but
they are based on a pertubative lagrangian.
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For particles dK
dt = �CI

Mp

2 k
t
0ReAd��1� (Xr; Xw) ; the constant CI has the dimension [E] of
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; �A� has the dimension [L] and q the dimension [M ]

�1
[L]

�2
:

FG = dG+ j (G)G;FA = d �A are then unitless and CG; CA have the dimension of energy as CI :



Chapter 7

CONTINUOUS MODELS

Continuous models represent systems where no discontinuous process occurs : the particles keep
their fundamental state, without creation or annihilation, the trajectories do not cross, the motion
is continuous, the maps are smooth. Continuous models correspond to an ideal situation, they
are nevertheless useful to study the basic relations between the variables. The application of the
Principle of Least Action with a lagrangian provides usually a set of di¤erential equations for the
variables involved, which can be restricted to 6 maps on vector bundles. Their solutions represent
continuous evolutions, adjusted to the initial conditions. Whenever the variables meet the conditions
described in the chapter 2, the theorems of QM tell us that the solutions must belong to some classes
of maps, as well as the observables : they must belong to some �nite or in�nite dimensional vector
spaces. These additional constraints provide a tool to �nd solutions, but also restrict the set of
possible solutions. In many cases one looks for static or periodic solutions, which can be easily
found from the PDE. Quite often only a �nite number of stationary solutions are possible : the
states of the system are quantized. We will not dwell on this aspect, as there are too many di¤erent
cases, and we will focus on the PDE. But it must be clear that, when the conditions are met, they
are not the �nal point of the study.

We will study 2 models : matter �eld with a density, individual particles. The main purpose is
to show the computational methods, and introduce the currents.
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7.1 MODEL WITH A MATTER FIELD

The action is :
R
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1
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7.1.1 Equation for the Matter Field

The action is :R
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ii) Computation of the left hand side and the derivative of V
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The equation reads :
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Equation for w

The computation is identical.
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7.1.2 Equations for the gravitational �eld

The equations are, with the full lagrangian.
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7.1.3 Equation for the other �elds

Derivatives :

dL
d �Aa

�

= CI�
1
i
1
M

D
 ; @

@ �Aa
�

rV  
E
+ CA

@
@ �Aa

�

P
��

Pm
b=1

�
FbA��F

a��
A

�
D
 ; @

@ �Aa
�

rV  
E
= V �

D
# (�; 1) 0;

@
@ �Aa

�

# (�; 1)
�
[ 0]

h
Ad{

�
�A�

�i�E
= V �

D
 0; [ 0]

h
@

@ �Aa
�

�
�A�

�iE
= V � h 0; [ 0] [�a]i

@
@ �Aa

�

P
��

Pm
b=1

�
FbA��F

a��
A

�
= @

@ �Aa
�

�Pm
b=1

P
pr�� FbA��gp�gq�FbApq

�
=
Pm
b=1

P
pr��

�
@

@ �Aa
�

FbA��
�
gp�gq�FbApq + FbA��gp�gq�

�
@

@ �Aa
�

FbApq
�

=
Pm
b=1

P
pr��

�
@

@ �Aa
�

FbA��
�
Fb��A +

�
@

@ �Aa
�

FbApq
�
FbpqA

= 2
Pm
b=1

P
��

�
@

@ �Aa
�

FbA��
�
Fb��A

@
@ �Aa

�

FbA�� = 2 @
@ �Aa

�

h
�A�; �A�

ib
= 2 @

@ �Aa
�

hPm
c=1

�Ac�
�!
� c;

Pm
d=1

�Ad�
�!
� d

ib
= 2

�h
���
�!
� a;

Pm
d=1

�Ad�
�!
� d

ib
+
hPm

c=1
�Ac�
�!
� c; �

�
�

�!
� a

ib�
= 2

�
���

h�!
� a; �A�

ib
+ ���

h
�A�;
�!
� a

ib�
@

@ �Aa
�

P
��

Pm
b=1

�
FbA��F

a��
A

�
= 4

Pm
b=1

P
��

�
���

h�!
� a; �A�

ib
Fb��A + ���

h
�A�;
�!
� a

ib
Fb��A

�
= 4

Pm
b=1

P
��

�h�!
� a; �A�

ib
Fb��A +

h
�A�;
�!
� a

ib
Fb��A

�
= 8

Pm
b=1

P3
�=0

h�!
� a; �A�

ib
Fb��A

= 8
P3
�=0

D
F��A ;

h�!
� a; �A�

iE
T1U



7.1. MODEL WITH A MATTER FIELD 291
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Equation

The equation reads in the vacuum :
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7.1.4 Equation for the tetrad

We have seen previously the equations :
8�; � = 0:::3 :

P
i
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Derivatives

For the part related to the �elds :
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Equations :
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L = CI�
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The equation reads :
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By taking � = � and summing :
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D
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the factor 2 accounting for the fact that the indices �; � are not ordered in the lagrangian.
The equation reads :
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(7.6)

The density is deduced from the continuity equation :
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7.2 MODEL WITH INDIVIDUAL PARTICLES

We consider a system of a �xed number N of particles p = 1:::N interacting with the �elds, with an
action of the general form :R
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7.2.1 Equations for the particles

The variables  p are involved in the last integral only :R T
0
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1
i
1
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 p;rVp p

�
dt

so the equations can be deduced from the Euler-Lagrange equations with the variables rp (t) ; wp (t).
The computation holds for each particle and we will drop the index p:
The equations are :
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They are the same as in the �rst model.
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(7.7)

Equation for w

The computation is identical.
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(7.8)

7.2.2 Equation for the �elds

The equation for the �elds is computed by the method of variational derivative. Let us consider a
variation � �Aa� of �A

a
�; given by a compactly supported map (so it has a value anywhere, null outside

its support).
The functional derivative of the �rst integral is with d� = d�0 ^ d�1 ^ d�2 ^ d�3 :
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For the simple integral a direct computation gives the functional integral :
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The equation reads :
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The equation holds for any compactly smooth � �Aa�: Take � �A
a
� null outside a small tube @Cp

enclosing the trajectory of each particle. By shrinking @Cp the �rst integral converges to the integral
along the trajectory :
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with
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So we have the same equation as in the �rst model and � disappears. We have similarly :
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These equations holds only on the trajectories : m = qp (t) :We will discuss the meaning of these
equations in the following.

7.2.3 Tetrad equation

We have to compute the functional derivative on both integrals.
The functional derivative reads for the �rst :
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With the same reasoning as above : for each particle along its trajectory :R T
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With � = � and summing :

h p;rV  pi = 0 (7.12)
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E
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= ��� (8CG hFG;FGiG + 2CA hFA;FAiU )
(7.13)
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7.3 MORE ON THE EQUATIONS FOR THE PARTICLES

The lagrangian used in the models above is based on the energy, and the conditions at equilibrium
express its conservation of the whole system. In a continuous process, without collision and a constant
number of particles, the conservation of energy implies for each particle : h ;rV  i = 0: the kinetic
energy is traded with the �elds and the balance is even.
The Principle of Least Action is complementary to the Conservation of Energy. It brings two

additional equations.
Accounting for the �rst equation

P3
�=0 V

� h ;r� i = 0 they are :D
 0;
h
C
�h
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G
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E
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j
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We have the same equations in both models. This calls for some comments.
i) The equations for the particles are computed with the same method : they hold at any point

where there is a particle. In the �rst case the density does not appear in the result, and of course
it is absent in the second. So, apparently, the equations do not depend on the physical location of
the particles. Actually it does through the value of the potentials. Particles interact through the
�elds and, as we consider the particles independently from the �elds in the second part of the action,
the particles do not interact with each other : there is no collision, and the value of the �eld at
their location is given. We retrieve the in�uence of the particles on the �elds and the metric in the
other equations. So the result is consistent with the principle of locality and the concept of �eld,
without action at a distance. But it shows also that, in a given environment (when the potentials
are de�ned), the motion of particles is given by sections of PG; in particular their trajectories are
organized along vector �elds, even for individual particles. This is consistent with the idea of a
continuous process, but gives a special signi�cance to the representation of motion through spinors.
And of course the result holds in SR and even Galilean Geometry.
ii) The equations are the �rst step : to get genuine PDE one needs to adjust the equations to the

initial conditions which for the particles, include the location and the �rst derivatives. However the
existence of vector �elds for each kind of particles leads to de�nite patterns in the general location
of the particles. This is more obvious with density, which depends on the vector �eld V . In a
system in equilibrium, with continuous processes, the distribution of matter (and by extension of
material bodies) follow distinctive patterns. Notably in Astronomy the arrangement of the orbits
of planets in a star system follow typical patterns, which are usually understood as resulting from
the interactions between planets, but cannot be computed directly (this is the, unsolved, N-body
problem). And similarly for the shapes of galaxies. We have here a more general interpretation.

7.3.1 Solution of the equations

We choose the complex chart.
� = A+

P3
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the equations read :P3
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By product with i and summation we get the 2 complex equations :
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The equations read :
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The right hand side of the second equation is real, thus :
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The translational and rotational motions are related, through the gravitational �eld, indepen-
dently on the other �elds.
Moreover the �rst equation
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We have seen (motion) that the spatial speed utu varies as :
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thus it is constant if ImD (�Z) dZdt = 0:
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7.3.2 Special solutions

The second equation can be written in a more geometric way :
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We have 2 cases of interest :
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Bonded particles
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+ [Ad (�r)] [Gr0] = �k0

�kt0k0 = � = �ktc
h
�A0

i
�
dr
dt

�
= [D (�r)]�1 (�k0 � [Ad (�r)] [Gr0]) = [D (�r)]�1 (�k0 � [Gr0])�

dr
dt

�
=
�
ar +

1
2j (r)

� �
�
�
ktc

h
�A0

i�
k0 � [Gr0]

�
and with the EM �eld : ktc

h
�A0

i
= �2q �A0

dr

dt
=

�
ar +

1

2
j (r)

��
2q �A0k0 �Gr0

�
(7.17)

This is the gyromagnetic equation, showing that the inertial vector acts as a magnetic moment.
It provides a way to measure k0 and Gr0:
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If the particle is considered in his own �eld, without any exterior �eld, then the �eld is the
one which has for origin the particle itself and is propagated. We have seen that �Ga0 (�) =
�G (�) �G

a
0 (O) ; �

�Aa0 (�) = �A (�) � �A
a
0 (O) : And the particle has a rotating motion with a constant

speed :
r = Ct;

r = �
��
2q �A0k0 �Gr0

��
;

ar = 0) �2
�
2q �A0k0 �Gr0

�t �
2q �A0k0 �Gr0

�
= 4

This is the usual model of an atom.. or a star.

Non rotating particle

If r = 0; ImZ = w; ReZ = 0;A = a =
q
1 + 1

4w
tw , 4

�
A2 � 1

�
= wtw; b = 0

D (Z) = 1
A + i

1
2j (w)�

1
4Aj (w) j (w)

[Ad (Z)] = 1 + iAj (w)� 1
2j (w) j (w)

[D (Z)] [j (k0)] [D (�Z)] = j (k0)� 1
8A (k

t
0w) j (w)+i

�
1
2A (j (w) j (k0)� j (k0) j (w))�

1
8A (k

t
0w) j (w) j (w)

	
[D (Z)] [j (k0)] [Ad (�Z)] = Aj (k0)� 1

4A (k
t
0w) j (w)� 1

4Aj (k0) j (w) j (w)+i
�
1
2j (w) j (k0)� j (k0) j (w)

	
u =

p
1+ 1

4w
tw

1+ 1
2w

tw
w = A

2A2�1w

Then the equations read :

i) kt0
n
1
2j (w)

dw
dt +

�
1� 1

2j (w) j (w)
� bGr + 1

Aj (w)
bGwo+ ktc hb�Ai = 0

ii)
�
j (k0)� 1

8A (k
t
0w) j (w)

	
dw
dt

= �
�
Aj (k0)� 1

4A (k
t
0w) j (w)� 1

4Aj (k0) j (w) j (w)
	 h bGwi� � 12j (w) j (k0)� j (k0) j (w)	 h bGri

iii) � 1c
�
1
2A (j (w) j (k0)� j (k0) j (w))�

1
8A (k

t
0w) j (w) j (w)

	
dw
dt

+ 1
c

�
Aj (k0)� 1

4A (k
t
0w) j (w)� 1

4Aj (k0) j (w) j (w)
	 h bGri� 1

c

�
1
2j (w) j (k0)� j (k0) j (w)

	 h bGwi
= �

�
1

2A2�1

�
j (w)

P3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
The general solution is w = � (t) k0 and :

V = c"0 +
A

2A2�1
P3
j=1 [Q

0]
�
j wj@��

i)
P3
�=0 V

�
�
kt0Gr� + k

t
c
�A�

�
= 0

ii)
P3
�=0 V

�
�
AGw� +

1
2�j (k0) [Gr� ]

�
= �k0

iii)
P3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
= �k0

with complex scalars functions � (t) ; � (t) :

Geodesics

Geodesics for the gravitational �elds are vector �elds such that rGV � 2 Spin (3) which, in complex
formalism, is equivalent to ImrGV � = 0:
We must have, with the notations above :24 bx1 � 1

2w2x3 +
1
2w3x2

bx2 +
1
2w1x3 �

1
2x1w3

bx3 � 1
2w1x2 +

1
2w2x1

35 = 0
so, either xi = 0 or det

24 b + 1
2w3 � 12w2

� 12w3 b 1
2w1

+ 1
2w2 � 12w1 b

35 = b
�
b2 + 1

4w
tw
�
= 0, b = 0
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Which, besides the case of bonded particle, implies :

Re
n
[D (�Z)]

�
i
�
[u]

t
[u]� 1

�
+ j (u) + ij (u) j (u)

�o 3X
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
= 0

(7.18)
This is the generic expression for �elds of geodesics.

Estimates

In the equation :

� 1
2c [D (Z)] [j (k0)]

n
[D (�Z)]

�
dZ
dt

�
+ [Ad (�Z)]

h bGio =
Re
n
[D (�Z)]

�
i
�
[u]

t
[u]� 1

�
+ j (u) + ij (u) j (u)

�oP3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
the left hand side is usually small so a good estimate of the solution is given by :

Re
n
[D (�Z)]

�
i
�
[u]

t
[u]� 1

�
+ j (u) + ij (u) j (u)

�oP3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
= 0
that is by geodesics.

Theorem 101 At non relativist speeds particles follow geodesics of the gravitational �eld.

This result is important, theoretically and practically. It justi�es the common assumption,
validated by experience of geodesics as the �normal�trajectories for particles (it includes here the
rotational motion) in many models. It helps to specify the choice of a section in a continuous
model : particles of the same type have the same behavior and can be represented by a section
 2 X (Q [E 
 F; #]) ; but we can also add that, at non relativist speed, the motion can be represented
by a geodesic. Then the equations for the particles are satis�ed.

Periodic solutions

Important cases are periodic solutions :
- with respect to the time : atoms, molecules or planets in a star system. The solutions are

similar to those seen in the previous chapter.
- with respect to space : bonded particles in a regular environment (such as and crystals). It can

then be assumed that  (m) is a periodic map over a lattice de�ned by the geometric structure of
the medium. The observer is then de�ned with respect to this lattice (which sums up to choose a
suitable chart of 
 (0)): The value of the potentials is de�ned in this chart.
Of particular interest are periodic solutions with respect to the time, as they can be seen as

stable states.
We have seen how to model a section � 2 PG such that its integral curves correspond to periodic

motions. It can be transposed in the complex chart :
R is a periodic map : R : R! R3 :: R (t+ TG) = R (t)
� : R3 ! R :: � (�) gives the period for the points 'o (ct; �)
� : R4 ! R3 :: � (c (t+ � (�)) ; �) = � (t; �)
The section is � ('o (ct; �)) = (aw + � (0; R (t))) � (ar + � (� (t; �) ; 0)) = A+ Z ('o (ct; �))
with
a2w = 1 +

1
4R

tR; a2r = 1� 1
4�
t�;A2 = 1� 1

4Z
tZ

A = awar � i 14 (R
t�) =

q
1 + 1

4R
tR
q
1� 1

4�
t�� i 14 (R

t�)

Z = aw�+ i
�
1
2j (R) �+ arR

�
=
q
1 + 1

4R
tR�+ i

�
1
2j (R) �+R

q
1� 1

4�
t�
�

u =
P3
a=1

aw
2a2w�1

R
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7.3.3 Deformable solids

A deformable solid can be represented by a spinor �eld. If the external �elds are given, then r; w; �

are deduced from the equations, with the parameters bG; b�A; and adjustment to the initial conditions:
This is the study of the deformation of the body submitted to given forces. If the �elds have the

same value at any point of the material body ( bG; b�A do not depend on x) then the solutions r; w
depend only on t and the initial conditions : we have usually a rigid solid. The model can be used
the other way around. It is built on the assumption that the particles constituting the material
body are represented by a matter �eld, so that its cohesion is kept. The solutions can be seen as the
sum of internal �elds and external (known) �elds. The internal �elds are those necessary to keep its
cohesion : they counterbalance the external �elds.
Of course the model can be useful in Astro-Physics, for instance for the modelling of galaxies.

Except perhaps in the core collisions are rare. The rotational inertia of celestial bodies is signi�cant.
Star systems follow trajectories which can be represented by a section of PG; and a model of the
�rst type with a density should be adequate.
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7.4 CURRENTS

The Noether currents are usually introduced through the equivariance of the Lagrange equations,
by computing the e¤ects of a change of gauge or chart on the lagrangian. This is exactly what we
have done before, deducing some basic rules for the speci�cation of the lagrangian, and identities
which must be satis�ed by the partial derivatives. Whenever the lagrangian is de�ned from geometric
quantities these identities are met, and the Noether currents do not appear this way. But we have a
more interesting, and more intuitive, view of the currents from the equations that we have computed
with the perturbative lagrangian.

7.4.1 De�nition

In writing the �eld equations we have introduced new quantities, �; J for the particles and for the
�elds : they are the currents: They both come from derivatives of the lagrangien.

Currents associated to the �elds

The quantities �G; �A are de�ned everywhere. Up to a constant, they are derivatives @L
@ �Aa

�

; @L
@Ga

�
of

the lagrangian and, as such, are vectors (see covariance of lagrangians). They are valued in the Lie
algebras. For instance in the �rst model, with LG = CG hFG;FGi and using the complex notation :

@LG
@ ReGa

�
= �8CG

P3
�=0

�
j
�
F��r

�
Gr� � j

�
F��w

�
Gw�

�a
@LG

@ ImGa
�
= 8CG

P3
�=0

�
j
�
F��r

�
Gw� + j

�
F��w

�
Gr�

�a
@LG
@Ga

�
= @LG

@ ReGa
�
+ 1

i
@LG

@ ImGa
�
= �8CG

P3
�=0

�
j
�
F��G

�
G�
�a
= �8CG

P3
�=0

�
F��G ; G�

�a
So we can de�ne, at any point 'o (t; x) ; the tensors :

�G =
P3
�=0

h
F��G ; G�

i

 @�� = � 1

8CG

P3
�=0

@LG
@Ga

�

�!� a 
 @��
�A =

P3
�=0

h
F��A ; �A�

i

 @�� = 1

8CA

P3
�=0

@LA
@ �Aa

�

�!
� a 
 @��

�G =
P3
�=0

h
F��G ; G�

i
T1Spin(3;1)


 @�� 2 T1Spin (3; 1)
 TM

�A =
P3
�=0

h
F��A ; �A�

i
T1U

 @�� 2 T1U 
 TM

(7.19)

For the EM �eld the bracket is null on T1U (1) thus �EM = 0:
They are the currents associated to the �elds.
It is convenient to write the components in matrix format like vectors :
[�G]

�=0::3
a=1:::6 : �G =

P3
�=0 [�G]

�
a
�!� a 
 @��

[�A]
�=0::3
a=1:::m : �A =

P3
�=0 [�A]

�
a

�!
� a 
 @��

Expression of the currents
Using the matrix notation

�
Fb�

�
=
�
Fb;��

�
and the structure coe¢ cients :

[�A]
�
a =

P3
=0

h
F� ; �A

ia
=
Pm
b;c=1 C

a
bc

��
Fb�

� h
�Ac
it�

�

with
h
�A
ia=1:::m
�=0::3

The matrix [Fc�] = [g]�1 [Fc] [g]�1

�A =
3X

�=0

mX
a;b;c=1

Cabc

�
[g]

�1 �FbA� [g]�1 h �Acit�� @�� 
�!� a (7.20)

and with the Hodge dual :
[�F ] = � [g]�1 [F ] [g]�1 detP 0

�A = (detP ) f
P3
�=1

h
�A� ; [�FwA ]�

i

 @�0
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+
�
�
h
�A0; [�FwA ]1

i
�
h
�A2; [�FrA]3

i
+
h
�A3; [�FrA]2

i�

 @�1
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h
�A0; [�FwA ]2

i
+
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+
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�A0; [�FwA ]3
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�
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�A1; [�FrA]2

i
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i�

 @�3g

Currents for the gravitational �eld
We have similarly with Cabc = � (a; b; c)

�G =
3X

�=0

6X
a;b;c=1

� (a; b; c)
n
[g]

�1 �FbG� [g]�1 [Gc]to� @�� 
�!� a (7.21)

�G =
P3
�=0

P6
a;b;c=1 � (a; b; c)

n�
�FbG

�
[Gc]

t
o�
(detP ) @�� 
�!� a

and we get with the complex notation :

[G]3�3 =

24 G11 + iG
4
1 G12 + iG

4
2 G13 + iG

4
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G21 + iG
5
1 G22 + iG

5
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6
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35
[�Fr] = [�Frr ] + i [�Frw]
[�Fw] = [�Fwr ] + i [�Fww ]
�0G =
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a
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Currents associated to a signal
The interaction of a particle with a �eld creates a signal [�Fa (O)] ;

h
� �A (O)

i
which propagates,

along a curve q (�) ; q (0) = O; dqd� = V as :

[�Fa (�)] = � (�) [K (�)]
t
[�Fa (O)] [K (�)]h

� �A (�)
i
= � (�)

h
� �A (O)

i
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The associated current is :
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h
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t �
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t
h
� �Ac (O)

it��
Along the curve : [��A (q (�))] = (� (�))

2
hg��A (O)i whereg��A (O) is the current at O transported

along the propagation curve by the �ow of V:

Currents associated to the particles

The quantities JG; JA are similarly tensors.
Using the charge vector : a = 1:::m : kac = �2� 1

M2
^p

1
i h 0; [ 0] [�a]i and kc = �2q for the EM �eld
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for a matter �eld :

JG = � CI
16CG

�MAd�� (k0; 0)
 V 2 T1Spin (3; 1)
 TM
JA = � CI

16CA
�M

Pm
a=1 k

a
c

�!
� a 
 V 2 T1U 
 TM

JEM = CI
8CEM

�qMV 2 TM
(7.22)

and for individual particles :

JGp = � CI
16CG

MpAd�� (k0p; 0)
 Vp 2 T1Spin (3; 1)
 TM
JAp = � CI

16CA
Mp

Pm
a=1 k

a
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�!
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 Vp 2 T1U 
 TM

JEM = CI
8CEM

qMpV 2 TM
(7.23)

They are the currents associated to the particles.
In the �rst model the currents are de�ned by the derivatives :
JG = � 1

8CG
@

@G�
CI�

1
i
1
M h ;rV  i

JA = � 1
8CA

@
@ �A�

CI�
1
i
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and in the second model by the variational derivatives
JG = � 1

8CG
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�G�
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1
i
1
M h ;rV  i

JA = � 1
8CA

�
� �A�

CI
1
i
1
M h ;rV  i

In both cases the computation is done through bG; b�A:
A matter �eld, or a section of PG with a �xed  0; de�nes a vector �eld of trajectories, thus bG; b�A

at any point, and this holds also for a collection of individual particles whose trajectories do not
cross. The currents are associated to vector �elds on the tensorial bundles :

PG [T1Spin (3; 1) ;Ad]
 PG
�
R4;Ad

�
� PG

�
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�
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�
with U (m) = � c

hAd�(m)"0;"0iCl
Ad�(m)"0

To each type of particle one can associate a section � 2 X (PG) ; which gives their trajectories and
motion, and it gives also the currents. So, mathematically, the currents for the particles are de�ned
everywhere. Then the density � or the maps t!  (q (t)) precise the support of the currents.
The components MpAd�(m)� (k0; 0) ;Mpkc depend on m, and  0: In a time reversal, given by

the matrix

T =

�
0 i�0
i�0 0

�
particles are exchanged with antiparticles so we have opposite currents.
It will be convenient to express the coordinates in matrix form as vectors :
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�
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Computation of the gravitational currents associated to particles
JG = � CI

16CG
MAd�� (k0; 0)
 V

With the coordinates : � = (aw + � (0; w)) � (ar + � (r; 0))

[Ad�r ] =
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�
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�
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with :
[A (w)] =
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1� 1
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� �
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With
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so that usually the current : JG ' CI
16CG

M� (� [C (r)] k0; 0) 
 V and for r = 0 : JG '
� CI
16CG

M� (k0; 0) 
 V: The translational motion (represented by w) has an e¤ect, which is usually
very weak.
The intensity of the coupling between the gravitational �eld (represented by the potential) and

the particle, can be estimated through the scalar product hJG; JGi ; which can be computed with
the scalar product on T1Spin (3; 1) :
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(7.25)

Expression of the lagrangian with the currents

The meaning of the currents is more obvious by rewriting the lagrangian with them. The interaction
term in the lagrangian reads, distinguishing the EM �eld :
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0Re

�
��1 � d�dt

�
= dK

dt
2

�M2
p
�M

2

2 CI = CI
dK
dt

CI
1
i
1
M

D
 0; C

�
Ad��1

P3
�=0 V

�G�

�
 0

E
= �M2 CIk

t
0Re

�
Ad��1

P3
�=0 V

�G�

�
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= �M2 CI
P3
�=0 V

�Re
�
kt0
�
1�Aj (Z) + 1

2j (Z) j (Z)
�
G�
�

= �M2 CI
P3
�=0 V

�Re
�
Gt�
�
1 +Aj (Z) + 1

2j (Z) j (Z)
�
k0
�

= �M2 CI
P3
�=0 V

�Re (Gt�Ad�k0)

= �M2 CI
P3
�=0 V

� (ReGt�ReAd�k0 � ImGt� ImAd�k0)
= �M2 CI

P3
�=0 V

�4 hG�;Ad�� (k0; 0)iCl
= M

2 CI4
16CG
CIM

P3
�=0 hG�; J�GiCl

= 32CG
P3
�=0 hG�; J�GiCl

= 32CGG (JG)

CI
1
i
1
M

D
 0;
P3
�=0 V

� [ 0]
h
�A�

iE
= CI

1
i
1
M

P3
�=0 V

�
Pm
a=1

D
 0; �A

a
� [ 0] [�a]

E
= CI

1
i
1
M

P3
�=0 V

�
D
�A�; h 0; [ 0]

Pm
a=1 [�a]i

�!
�a

E
T1U

= 8CA
P3
�=0

D
�A�; J

�
A

E
T1U

= 8CA �A (JA)

CI
1
i
1
M

D
 0; iq

P3
�=0 V

� 0 �A�

E
= CI

1
M

P3
�=0 V

� �A�q h 0;  0i
= CI�Mq

P3
�=0 V

� �A� = 8CEM
P3
�=0 J

�
EM

�A� = 8CEM �AEM (JEM )

CI
1

i

1

M
h ;rV  i = CI

dK

dt
+ 8

�
4CGG (JG) + CA �A (JA) + CEM �AEM (JEM )

�
(7.26)

This expression of the variation of energy of the particle, using the currents, is more familiar.
The �rst term is the kinetic energy of the particle, and the others represent the action of the �elds,
through the coupling of the potential, in its usual meaning, with a current. What is signi�cant is
that the same occurs with the gravitational �eld. The expression for the EM �eld is identical to
that of the �other �elds�.
At equilibrium : h ;rV  i = 0; then, if only the EM �eld is present :
dK
dt = �8

�
4CGCI G (JG) +

CEM
CI

CI
8CEM

�qM
P3
�=0 V

� �A�

�
= �32CGCI G (JG)� I

P3
�=0 V

� �A�

with the EM current : I = �qM

7.4.2 Main theorem

The �elds equations are not computed the same way in the two models, even if the results are
similar, and it is important to understand the di¤erences.
Let us start with the �rst model, and a continuous distribution of particles - a matter �eld.
The equations express equalities between components of tensors, at each point :

8a;8� = 0; :::3 : ��Aa � J
�
Aa =

1
2

1
detP 0

P


d
d�

�
F�A detP 0

�
The exterior di¤erential d (�F) of F 2 �2 (M ;R) is a 3 form, which reads :

d (�F) =
3X

�=0

(�1)�
0@ 3X
�=0

@�
�
F�� detP 0

�1A d�0 ^ :::dd��::: ^ d�3 (7.27)

wherebmeans that the vector is skipped 1 .

Thus d
d��

�
F��A detP 0

�
= (�1)� (d � FA)0::b�::3

By product with (detP 0) (�1)� d�0 ^ :::dd��::: ^ d�3 and summing the equation reads :
1Beware. The exponent is � and not � � 1 because the vectors are labelled 0,1,2,3 and not 1,2,3,4. A legacy of

decennium of notation.
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P3
�=0 (�1)

�
�P

�

h
F��A ; �A�

ia�
(detP 0) d�0 ^ :::dd��::: ^ d�3 = $4 (�Aa) = i�Aa$4P3

�=0 (�1)
�
J�Aa (detP

0) d�0 ^ :::dd�� ::: ^ d�3 = $4 (JAa) = iJAa$4

i�A$4; iJA$4 can be interpreted as the densities of the currents and the equation reads :
8a = 1:::m : i�Aa$4 � iJAa$4 =

1
2d � F

a
A

To the vectors JAa; �Aa we can associate the one forms using the metric :
JA =

P
� J

�
A@�� ! J�A =

P
�� g��J

�
Ad�

� =
P
� J

�
A�d�

�

�A =
P
� �

�
A@�� ! ��A =

P
�� g���

�
Ad�

� =
P
� �

�
A�d�

�

The Hodge dual of J�Aa is a 3-form :
J�a ! �J� =

P3
�;�=0 (�1)

�
g��J�A� (detP

0) d�0 ^ :::dd��::: ^ d�3
=
P3
�;�=0 (�1)

�
g��g��J

�
A (detP

0) d�0 ^ :::dd��::: ^ d�3
=
P3
�=0 (�1)

�
J�A (detP

0) d�0 ^ :::dd��::: ^ d�3
iJG$4 = �J�
and similarly for �A; thus the equation reads :
���Aa � �J�Aa = 1

2d � F
a
A

The Hodge duality has the property that : � � �r = � (�1)r(4�r) �r: Thus, taking the Hodge
dual :
� � ��Aa � � � J�Aa = 1

2 � d � F
a
A

� � J�A = J�A; � � ��A = ��A
�d � FaA = �FaA is the codi¤erential, the operator � acting on scalar r forms (Maths.32.2) :
� : �r (M ;R)! �r�1 (M ;R) :: ��r = �d � ��r
The equation is :
��Aa � J�Aa = 1

2�F
a
A

and we have similarly for the gravitational �eld : ��Ga � J�Ga = 1
2�F

a
G

For the EM �eld ��EM = 0 : �J�EM = 1
2�FEM is the geometric formulation of the 2nd Maxwell�s

law in GR.
The codi¤erential reduces the order of a form by one. It is, in some way, the inverse operator of

the exterior di¤erential d. The codi¤erential is the adjoint of the exterior di¤erential with respect
to the scalar product of forms on TM (Maths.2491) : for any 1-form � on TM :
8� 2 �1 (M ;R) ;F 2 �2 (M ;R) : G1 (�; �F) = G2 (d�;F)
Thus :
��Aa � J�Aa = 1

2�F
a
A ) 8� 2 �1 (M ;R) : G1 (�; ��Aa � J�Aa) = 1

2G1 (�; �F
a
A) =

1
2G2 (d�;F

a
A)

So, for any closed form : G1 (�; ��Aa � J�Aa) = 0
Take � = df with any function : G1 (df; ��Aa � J�Aa) = 0 =

P3
�;�=0 g

�� (@�f) (�
�
Aa � J�Aa)� =P3

�=0 (@�f) (�Aa � JAa)
�

Take f (m) = �� with � = 0; :::3
(�Aa � JAa)� = 0) (�Aa � JAa) = 0) �FA = �d � FA = 0) d � FA = 0
The result holds for the gravitational �eld : �Ga � JGa = 0; �FG = 0
For the EM �eld : �JEM = 0; �FEM = 0 and indeed we know that the currents are null inside

a conductive medium.

In the second model we have written similarly :

8a;8� = 0; :::3 : ��Aa � J�Aa = 1
2

1
detP 0

P
�

d
d��

�
F��G detP 0

�
however this equality must be understood �in the meaning of distributions� : the computation

is based upon the use of variational derivatives, and of �test-functions� � �Aa� which are smooth,
compactly supported one form. Actually the equation is :
8X 2 X1;c (�1 (M ;T1U)) ;8a :
CA
R


8
P
�;

h
�A ;F�A

ia �
Xa
�

�
$4 + 4

1
detP 0CA

R



P
�

d
d�

�
Fa�A detP 0

��
Xa
�

�
$4
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+
R T
0
CI

1
i
1
Mp

P
�

�
V �p X

a
� (q)

�
h 0; [ 0] [�a]i dt = 0

and in the last integral the value of X is involved at the location of each particle.

d (�FA) =
�P3

�=0 @�
�
F0� detP 0

��
d�1 ^ d�2 ^ d�3 �

�P3
�=0 @�

�
F1� detP 0

��
d�0 ^ d�2 ^ d�3
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�P3

�=0 @�
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F2� detP 0

��
d�0 ^ d�1 ^ d�3 �

�P3
�=0 @�

�
F3� detP 0

��
d�0 ^ d�1 ^ d�2

(d � FA) ^ � �Aa0 = �� �Aa0
�P3

�=0 @�
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F0� detP 0

��
d�0 ^ d�1 ^ d�2 ^ d�3

(d � FA) ^ � �Aa = �� �Aa
�P3

�=0 @�
�
F� detP 0

��
d�0 ^ d�1 ^ d�2 ^ d�3
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detP 0

P
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�
Fa�A detP 0

��
Xa
�

�
$4 = � (d � FaA) ^

�P
� X

a
�d�

�
�

CA
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4 1
detP 0
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d
d�

�
Fa�A detP 0

��P
� X

a
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�
$4

= �4CA
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d (�Fa) ^

�P
� X

a
�d�

�
�

and the currents, the equation reads :

8a : �8CA
R



P
� �

�
AaX

a
�$4 � 4CA
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d (�Fa) ^

�P
� X

a
�d�

�
�
+ 8CA

R T
0

P
� X

a
��J

�
Aadt = 0

1
2

R


d (�Fa) ^

�P
� X

a
�d�

�
�
=
R T
0

P
� X

a
�J

�
Aadt�

R



P
�

�
Xa
�

�
��Aa$4

or : 8X 2 X1;c (�1 (M ;R))
1
2

R


d (�FaA) ^X +

R


X (�Aa)$4 =

R T
0
X (JAa) dt

and we have similarly :
1
2

R


d (�FaG) ^X +

R


X (�Ga)$4) =

R T
0
X (JGa) dt

1
2

R


d (�FEM ) ^X =

R T
0
X (JEM ) dt

where the currents for the particles are understood as the sum of the current of each particle :R T
0
X (J) dt =

PN
p=1

R T
0
X (Jp) dt

If we take X = �Y3; Y3 2 X1;c (�3 (M ;R)) :
d (�FaA) ^ �Y3 = (�1)

3�1 � Y3 ^ d (�FaA) = �G3 (Y3; d (�FaA))$4

and with the isomorphism (Maths.1605) : � : X (�r (M ;R))! X (�4�r (M ;R)) :
G3 (Y3; d (�FaA)) = G1 (�Y3; �d (�FaA)) = G1 (X; �d (�FaA)) = G1 (X; �FaA)
d (�FaA) ^ �Y3 = �G1 (X; �FaA)$4 = �

P3
�;�=0 g

��X� (�Fa)�$4

Using ��Aa 2 X (�1 (M ;R)) and J�Aa =
P
�� g��J

�
Aad�

� as above :
X (�Aa) =

P
� �

�
AaX� =

P
�� g

����Aa�X� = G1 (X;�
�
Aa)

X (JGa) =
P
�� g

��J�Aa�X� = G1 (X; J
�
Aa)

the equation reads :R


G1 (X;�

�
Aa)$4 � 1

2

R


G1 (X; �FaA)$4 =

R T
0
G1 (X; J

�
Aa) dt

G1 (X; �Fa) = G2 (dX;Fa)R


G1 (X;�

�
Aa)$4 � 1

2

R


G2 (dX;FaA)$4 =

R T
0
G1 (X; J

�
Aa) dt

For any compactly supported closed form X : G1 (X; �FaA) = G2 (dX;Fa) = 0:R


G1 (X;�

�
Aa)$4 =

R T
0
G1 (X; J

�
Aa) dt

Let us take � = � (
0) d�
� with � = 0; :::3 and 
0 any compact :

G1 (X;�
�
Aa) = ��Aa�

G1 (X; J
�
Aa) = J�Aa�R


0
��A�$4 =

R T
0
J�Aa� (
0 \ p (t)) dt

Thus the value of �Aa does not depend on �FaA; which is continuous and de�ned over 
; so the
only solution is �Fa = 0:
Similarly for the gravitational �eld : �FG = 0; but obviously the last proof fails for the EM �eld.
Then the equations can be written :
8X 2 X1;c (�1 (M ;R)) :R


G1 (X;�

�
Ga)$4 =

R T
0
G1 (X; J

�
Ga) dt
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R


G1 (X;�

�
a)$4 =

R T
0
G1 (X; J

�
Aa) dt

�FaA = 0; �FaG = 0
They can still be written : JA = �A; JG = �G but it must be understood �in the meaning of

distributions�: the quantities on both sides have not the same support, but their measure (through
any X) gives the same result.
Take X = V � =

P3
�=0 V

�g��d�� with a compactly supported smooth vector �eld V :
G1 (V

�; ��a) =
P3
�;�=0 g

��
�
V �g��

�
��a� = ��a (V )

G1 (V
�; J�a ) = J�a (V )

The equation reads :
R


��a (V )$4 =

R T
0
J�� (V ) dt and it means, physically, that the measure of

the currents �a; Ja along any vector �eld brings the same result.
In the second model it is explicitly assumed that the trajectory belongs to some matter �eld :

 (t) =  (p (t)) with a section  : In the �eld equations we do not vary the trajectory and we can
associate a current J to the matter �eld :

JG (p (m)) =
�
p (m) ;� CI

16CG
MpAd�(m)� (k0; 0)
 U (m)

�
So we can still write : �a (m) = J� (m) as in the �rst model with this interpretation.

For the EM �eld the equation reads :
� 12
R


G1 (X; �FEM )$4 =

R T
0
G1 (X; J

�
EM ) dt:

and we can will still write : J�EM = � 12�FEM with the same meaning.

�FEM =
P3
�=0 g��

�P3
�=0 @�

�
F��EM detP 0

��
(detP ) d�� (see Annex)

However there is a classic formulation using the laplacian. The Laplacian is the di¤erential
operator : � = � (d� + �d), which does not change the order of a form. Thus :
�FG = � (d� + �d)FG = ��dFG
�FA = � (d� + �d)FA = ��dFA
For the EM �eld, with FEM = d �A :
� �A = � (d� + �d) �A = �d� �A� �FEM
�FEM = �d� �A�� �A
The equation reads :
1
2

R


G1

�
X; d� �A

�
$4 +

1
2

R


G1

�
X;� �A

�
$4 =

R T
0
G1 (X; J

�
EM ) dt

1
2

R


G1

�
X; d� �A

�
$4 =

1
2

R


G1

�
�X; � �A

�
$4

The codi¤erential of a one form is a function (see Annex) :

�
�P3

�=0
�A�d�

�
�
= (detP )

P3
�;�=0 @�

�
g�� �A� (detP

0)
�

�
�P3

�=0X�d�
�
�
= (detP )

P3
�;�=0 @�

�
g��X� (detP

0)
�

Take X� = Ct on a compact : �X = 0
1
2

R


G1

�
X;� �A

�
$4 =

R T
0
G1 (X; J

�
EM ) dt

and we can write, �in the meaning of distributions�: 1
2�

�A = J�EM or the same equation, using
the matter �eld associated to the particle. This is an alternate formulation of the 2nd Maxwell�s law,
but the expression of the laplacian is simple only in SR, in GR the codi¤erential is more convenient.

Theorem 102 For the EM �eld

�EM = 0

� �AEM = ��FEM = 2J�EM
(7.28)

For the other �elds :
JA = �A JG = �G

d (�FA) = 0 d (�FG) = 0
(7.29)
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These equations come from the variation of the �eld, the state of particles being constant. Usually
they are called �equation of motion�but this name is inaccurate : the �eld is a free variable in their
proof, and we have seen previously the equations for the particles. They give a special importance
to the Hodge dual �F : the metric is part in the equilibrium of the �elds.
We see now what can be deduced from these results.

7.4.3 Codi¤erential Equation

The codi¤erential equation : �FA = 0; �FG = 0 holds at any point and in the vacuum (or a
conductive medium) for the EM �eld in the �rst model.

PDE

For any 2 form K = Kr+Kw:
d (K) =

P3
�=0 (�1)

�
�P3

�=0 @�K
�
d�0 ^ :::dd��::: ^ d�3

d (K) = �
�P3

�=1 @� [Kr]�
�
d�1 ^ d�2 ^ d�3

+(�@0 [Kr]3 + @2 [Kw]1 � @1 [Kw]2) d�0 ^ d�1 ^ d�2
+(@0 [Kr]2 + @3 [Kw]1 � @1 [Kw]3) d�0 ^ d�1 ^ d�3
+(�@0 [Kr]1 + @3 [Kw]2 � @2 [Kw]3) d�0 ^ d�2 ^ d�3
Thus d (�FG) = 0,P3
�=1 @� [�FrG]� = 0

@0 [�FrG]1 � @3 [�FwG ]2 + @2 [�FwG ]3 = 0
@0 [�FrG]2 + @3 [�FwG ]1 � @1 [�FwG ]3 = 0
@0 [�FrG]3 � @2 [�FwG ]1 + @1 [�FwG ]2 = 0P3

�=1 @� [�FrG]� = 0
@0 [�FrG] =

P3
�=1 (@� [�FwG ]) [j ("�)]

(7.30)

We have similar equations for the other �elds, and the EM �eld in the �rst model.
As we have 24 components for �FG, depending on 4 arguments, these 24 equations do not su¢ ce

to determine the �eld.

One form

�FG is a closed form, one can extend the Poincaré�s lemna for each component �FaG : there is a one
form K 2 �1 (M ;T1Spin (3; 1)) (not unique) such that : �FG = dK (Maths.7.6.4)
Thus in matrix notation with [dKrr ]3�3 ; [dKrw]3�3 ; [dKwr ]3�3 ; [dKww ]3�3 :
[�Frr ] = [dKrr ] ; [�Fwr ] = [dKwr ]
[�Frw] = [dKrw] ; [�Fww ] = [dKww ]
The Hodge dual is de�ned by :

[�Fr] =
�
[Fr] j (H0) [h]� [Fw]

�
H0
0 [h]� [H0] [H0]

t
��
detP 0

[�Fw] = �
�
[Fr] [h]�1 deth+ [Fw] [h] j (H0)

�
detP 0

So, using �FG = dK and inversing the relation one gets :
[Fr] = �

�
[dKr] j (H) [h] + [dKw]

�
[H] [H]

t � [H]00 [h]
��
(detP 0)

[Fw] =
�
[dKr] [h]�1 deth+ [dKw] [h] j (H)

�
(detP 0)
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Chern Identity

The Chern identity reads for the gravitational �eld in complex notation : ReTr
�
[Fr]t [Fw]

�
= 0

A straightforward computation gives :

Tr
�
[Fr]t [Fw]

�
= (detP 0)

2�

Trf� [h] j (H) [dKr]t [dKr] [h]�1 deth+
�
[H] [H]

t � [H]00 [h]
�
[dKw]t [dKr] [h]�1 deth

� [h] j (H) [dKr]t [dKw] [h] j (H) +
�
[H] [H]

t � [H]00 [h]
�
[dKw]t [dKw] [h] j (H)g

= (detP 0)
2
n
Tr [dKw]t [dKr] (detP )2 +

�
Ht [h]

�1
H
�
Tr [dKw] j

�
[h]

�1
H
�
[dKw]t det [h]�1

o
Tr
�
[Fr]t [Fw]

�
= Tr [dKw]t [dKr] = Tr [dKr]t [dKw] = Tr [�Fr]t [�Fw]

with�
[H] [H]

t � [H]00 [h]
�
=
�
[h] j (H) [h] j (H) [h] + (detP )

2
[h]
�
det [h]

�1

Tr [M ] j (r) [M ]
t
= 0

For any di¤erential of a one form :
P3
p=1

�
[dKw]p [dKr]p

�
= 0

(@0k1 � @1k0) (@3k2 � @2k3) + (@0k2 � @2k0) (@1k3 � @3k1) + (@0k3 � @3k0) (@2k1 � @1k2) = 0
Thus : Tr

�
[Fr]t [Fw]

�
= Tr

�
[dKr]t [dKw]

�
= 0

and the Chern-Weil identity is always met, which comforts the codi¤erential equation. A similar
computation can be done for the �elds other than the EM �eld.

Identi�cation of the one form

The question which arises is : what is this one form K ? It should be a one form on M valued in
the Lie algebra, which is equivariant in a change of gauge (thus this precludes the potential).
The current J for particles can be de�ned everywhere, through a section  2 X (Q [E 
 F; #]) :

Its dual J� is then a one form valued in the Lie algebra. If there is only one type of particle,
that is a unique fundamental state  0; the natural answer for the choice of the one form K is then
: �F = dJ�; for each type of �eld, except the EM �eld, which implies, with the previous result :
�F (m) = d�� (m) and the �eld follows a PDE, involving the metric, which replaces the codi¤erential
equation.
This assumption is sensible in a model of the �rst type, the density is then part of the current J .

If there are di¤erent types of particles it does not stand, but then a continuous model is probably
not realistic.
So I let open this assumption. If it checks it would provide a direct path to the computation of

the �elds.

7.4.4 Currents equations

Gravitational �eld

The goal is to give a more convenient expression to the current equations �G = JG; using the Hodge
dual �FG:
[�G] ; [JG] are 4� 6 matrices.
JG = � CI

16CG
MAd�� (k0; 0)
 V

[JG]
�
a = �

CI
16CG

M fAd�� (k0; 0)ga V �
In complex format let us denote in the basis of T1Spin (3; 1)
[kG]1�3 = �

CI
16CG

M fAd�� (k0; 0)g
then [JG] = [V ] [kG]
In complex format the equations read :
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�0Ga =
P3
�=1

�
j (G�) [�Fr]�

�a
(detP ) =

�
V 0
�
[kG] = c [kG]a

�1Ga = (�j (G0) [�Fr]1 � j (G2) [�Fw]3 + j (G3) [�Fw]2)
a
(detP ) = v1 [kG]a

�2Ga = (�j (G0) [�Fr]2 + j (G1) [�Fw]3 � j (G3) [�Fw]1)
a
(detP ) = v2 [kG]a

�3Ga = (�j (G0) [�Fr]3 � j (G1) [�Fw]2 + j (G2) [�Fw]1)
a
(detP ) = v3 [kG]a

We denote :

[G]3�3 =
h
Ga�

ia=1::3
�=1::3

; [G0]3�1 = [G
a
0 ]
a=1::3

The �rst equation
(detP )

P3
�=1 j (G�) [�Fr]� = c [kG]

is equivalent to :

[�Fr] [G]t �
�
[�Fr] [G]t

�t
= c [j (kG)] (detP

0)

with [M ] [N ]� ([M ] [N ])t = j
�P3

�=1 j
�
[N ]

�
�
[M ]�

�
The other equations read :

�

24 j (G0) [�Fr]1
j (G0) [�Fr]2
j (G0) [�Fr]3

35
9�1

+

24 0 j (G3) �j (G2)
�j (G3) 0 j (G1)
j (G2) �j (G1) 0

35
9�9

24 [�Fw]1
[�Fw]2
[�Fw]3

35
9�1

=

24 v1 [kG]
t

v2 [kG]
t

v3 [kG]
t

35
9�1

detP 0

The second 9� 9 matrix is invertible if detG 6= 0 :24 0 j (G3) �j (G2)
�j (G3) 0 j (G1)
j (G2) �j (G1) 0

35�1 =
24 N11 N12 N13
N21 N22 N23
N31 N32 N33

35
with :
[Npq]3�3 =

�
2 [Gq]3�1 [Gp]

t
1�3 � [Gp]3�1 [Gq]

t
1�3

�
3�3

1
det[G]

[Npq]
a
b =

�
2GaqG

b
p �GapGbq

�
1

det[G]

Then these equations give [�Fw]p ; p = 1; 2; 3 with respect to JG; [�Fr] ; G:24 [�Fw]1
[�Fw]2
[�Fw]3

35 =
24 N11 N12 N13
N21 N22 N23
N31 N32 N33

350@24 v1 [kG]
t

v2 [kG]
t

v3 [kG]
t

35detP 0 +
24 j (G0) [�Fr]1
j (G0) [�Fr]2
j (G0) [�Fr]3

351A
a; p = 1; 2; 3 :

[�Fw]ap =
P3
q;b=1 [Npq]

a
b v

q [kG]b + [Npq]
a
b

�
j (G0) [�Fr]q

�b
= 1

det[G]

P3
q;b=1

�
2GaqG

b
p �GapGbq

�
vq [kG]b detP

0 +
�
2GaqG

b
p �GapGbq

� �
j (G0) [�Fr]q

�b
= 1

det[G]

P3
q;b=1

�
2Gaq ([kG] [G])p v

q �Gap ([G] [v])
b
[kG]b

�
detP 0

+
P3
b=1

�
2 [G]

b
p

�
j (G0) [�Fr] [G]t

�b
a
� [G]ap (j (G0) [�Fr])

b
q

�
[G]

t
�q
b

�
g

= 1
det[G]f

�
2 ([G] [v])

a
([kG] [G])p � ([kG] [G] [v]) [G]

a
p

�
detP 0

+

�
�2
�
[G] [�Fr]t j (G0) [G]

�a
p
� [G]ap Tr

�
j (G0) [�Fr] [G]t

��
g

[�Fw] = 1
det[G] (2 ([G] [v]) ([kG] [G])� ([kG] [G] [v]) [G]) detP

0

+
�
�2 [G] [�Fr]t j (G0) [G]� [G]Tr

�
j (G0) [�Fr] [G]t

��
g

= 2 detP
0

det[G] ([G] [v]) ([kG] [G])�
detP 0

det[G] ([kG] [G] [v]) [G]

�2 1
det[G] [G] [�F

r]
t
j (G0) [G]� [G] 1

det[G]Tr
�
j (G0) [�Fr] [G]t

�
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From the �rst equation :
[G] [�Fr]t = [�Fr] [G]t � c [j (kG)] (detP 0)
[G] [�Fr]t j (G0) [G] =

�
[�Fr] [G]t � c [j (kG)] (detP 0)

�
j (G0) [G]

= [�Fr] [G]t j (G0) [G]� c [j (kG)] [j (G0)] [G] (detP 0)
= [�Fr] j

�
[G]

�1
G0

�
det [G]� c [j (kG)] [j (G0)] [G] (detP 0)

with [G]t j (G0) [G] = j
�
[G]

�1
G0

�
det [G]

Tr
�
j (G0) [�Fr] [G]t

�
= �Tr

��
[�Fr] [G]t

�t
j (G0)

�
= �Tr

��
[�Fr] [G]t � c [j (kG)] (detP 0)

�
j (G0)

�
= �Tr

�
[�Fr] [G]t j (G0)

�
+ cTr (([j (kG)] (detP

0)) j (G0))

= �Tr
�
j (G0) [�Fr] [G]t

�
+ cTr (([j (kG)] (detP

0)) j (G0))

Tr
�
j (G0) [�Fr] [G]t

�
= 1

2cTr ([j (kG)] [j (G0)]) (detP
0) = �c [kG] [G0] (detP 0)

[�Fw] = 2 detP 0

det[G] ([G] [v]) ([kG] [G])�
detP 0

det[G] ([kG] [G] [v]) [G]

�2 1
det[G]

�
[�Fr] j

�
[G]

�1
G0

�
det [G]� c [j (kG)] [j (G0)] [G] (detP 0)

�
+[G] 1

det[G]c [kG] [G0] (detP
0)

= �2 [�Fr] j
�
[G]

�1
G0

�
+ detP 0

det[G] f2 ([G] [v]) [kG]� ([kG] [G] [v]) + 2c [j (kG)] [j (G0)] + c [kG] [G0]g [G]

[�Fw]+2 [�Fr] j
�
[G]

�1
G0

�
= detP 0

det[G] f2 (([G] [v]) [kG] + c [j (kG)] [j (G0)]) + [kG] (c [G0]� [G] [v])g [G]
= detP 0

det[G] f2 (j (kG) j ([G] [v]) + [kG] [G] [v] + c [j (kG)] [j (G0)]) + [kG] (c [G0]� [G] [v])g [G]
= detP 0

det[G] f2j (kG) (j ([G] [v]) + c [j (G0)]) + [kG] (c [G0] + [G] [v])g [G]

[�Fw] + 2 [�Fr] j
�
[G]

�1
G0

�
= detP 0

det[G] f2j (kG) j (cG0 + [G] [v]) + [kG] (c [G0] + [G] [v])g [G]
So the currents equations for the gravitational �eld are equivalent to :

[�Fr] [G]t �
�
[�Fr] [G]t

�t
= c [j (kG)] (detP

0)

[�Fw] + 2 [�Fr] j
�
[G]

�1
G0

�
=

detP 0

detG f2j (kG) j (cG0 + [G] [v]) + [kG] (c [G0] + [G] [v])g [G]

(7.31)

These equations give 18 �rst order PDE on the 12 variables for the potentials, with parameters
the metric and the currents for the particles.

EM �eld

For the EM �eld there is a single equation, which reads :
� 12�FEM (m) =

1
2�

�AEM (m) = [J
�
EM (m)] with

As above we can compute PDE expressed with the Hodge dual �FEM or the potential. In SR
the use of the Laplacian and the potential is more usual, but in RG actually the use of �FEM is
simpler.
[JEM (m)]4�1 = � (m) CI

8CEM
qM [V (m)] ; � = 1 in the second model.

Denote kE = � CI
4CEM

qM

[J�EM ]1�4 =
1
2kE [V ]

t
[g]

The equation reads : [�FEM ]1�4 = �kE [V ]
t
[g]

with (see Annex) :

�FEM =
P3
�=0 g��

�P3
�=0 @�

�
F��EM detP 0

��
(detP ) d��

= g00

�P3
�=0 @�

�
F0�EM detP 0

��
(detP ) d�0 +

P3
�=1 g��@0

�
F�0EM detP 0

�
(detP ) d��
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+g11
�
@2
�
F12EM detP 0

�
+ @3

�
F13EM detP 0

��
(detP ) d�1

+g22
�
@1
�
F21EM detP 0

�
+ @3

�
F23EM detP 0

��
(detP ) d�2

+g33
�
@1
�
F31EM detP 0

�
+ @2

�
F32EM detP 0

��
(detP ) d�3

= fg00
�P3

�=0�@� [�F ]
�
0

�
d�0

+g11

�
�@0 [�F ]01 � @2 [�F ]

2
1 � @3 [�F ]

3
1

�
d�1

+g22

�
�@0 [�F ]02 � @1 [�F ]

1
2 � @3 [�F ]

3
2

�
d�2

+g33

�
�@0 [�F ]03 � @1 [�F ]

1
3 � @2 [�F ]

2
3

�
d�3gdetP

= �
P3
�;=0fg@�

�
[�FEM ]�

�
d�gdetP

= �kE
P3
�;=0

n
[V ]

t
[g]
o
�
d��

And we get the 4 scalar linear �rst order PDE in E;B :

 = 0::3 : g
P3
�=0f@�

�
[�FEM ]�

�
gdetP = �kE

n
[V ]

t
[g]
o


(7.32)
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7.5 ENERGY AND MOMENTUM OF THE SYSTEM

7.5.1 Energy of the system

The lagrangian is the balance of energy between the components of the system.

Energy of the �elds

The energy density is, for the gravitational �eld :
hFG;FGiG
= 1

4

P3
a=1

P
f��g Fa��r Far�� �Fa��w Faw��

= 1
4

P3
a=1G2 (Far ;Far )�G2 (FawFaw)

= 1
4

P3
a=1G2 (Far ; dGar) + 2G2

�
Far ;

P3
f�;�g=0 (j (Gr�)Gr� � j (Gw�)Gw�)

a
d�� ^ d��

�
�G2 (FawdGaw)� 2G2

�
Faw;

P3
f�;�g=0 (j (Gw�)Gr� + j (Gr�)Gw�)

a
d�� ^ d��

�
The codi¤erential is the adjoint of the exterior di¤erential :
G2 (Far ; dGar) = G1 (�Far ; Gar)
G2 (Faw; dGaw) = G1 (�Faw; Gaw)
and on shell 2 : �FG = 0
hFG;FGiG = 1

2

P3
a=1fG2

�
Far ;

P3
f�;�g=0 (j (Gr�)Gr� � j (Gw�)Gw�)

a
d�� ^ d��

�
�G2

�
Faw;

P3
f�;�g=0 (j (Gw�)Gr� + j (Gr�)Gw�)

a
d�� ^ d��

�
g

= 2
D
FG;

P6
a=1

P3
f�;�g=0 [G�; G� ]

a
d�� ^ d�� 
�!� a

E
G

We have proven earlier that :
hX; [Y;Z]iG =

P
f��g



X�� ; [Y�; Z� ]

�
Cl
=
P

f��g

�
X�� ; Y�

�
; Z�

�
ClD

FG;
P6
a=1

P3
f�;�g=0 [G�; G� ]

a
d�� ^ d�� 
�!� a

E
G

= �
D
FG;

P6
a=1

P3
f�;�g=0 [G� ; G�]

a
d�� ^ d�� 
�!� a

E
G

= �
P

f��g

Dh
F��G ; G�

i
; G�

E
Cl
= � 12

P
��

Dh
F��G ; G�

i
; G�

E
Cl

= � 12
P
�

DP
�

h
F��G ; G�

i
; G�

E
Cl

= � 12
P
� h��G; G�iCl = �

1
2G (�)

On shell :

hFG;FGiG = �G (�G) (7.33)

And we have similarly for the �elds other than EM :
hFA;FAi
=
Pm
a=1

P
f��g F

a��
A FaA��

=
Pm
a=1G2 (FaA;FaA)

=
Pm
a=1G2

�
FaA; d �Aa

�
+ 2G2

�
FaA;

P3
f�;�g=0

h
�A�; �A�

ia
d�� ^ d��

�
=
Pm
a=1G1

�
�FaA; �Aa

�
+ 2G2

�
FaA;

P3
f�;�g=0

h
�A�; �A�

ia
d�� ^ d��

�
= 2

Pm
a=1G2

�
FaA;

P3
f�;�g=0

h
�A�; �A�

ia
d�� ^ d��

�
= 2

Pm
a=1

P
f��g F

a��
A

h
�A�; �A�

ia
= 2

P
f��g

D
F��A ;

h
�A�; �A�

iE
T1U

2 In the usual jargon "on shell" means "when the equations for equilibrium are met".
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= 2
P

f��g

Dh
F��A ; �A�

i
; �A�

E
T1U

= �2
P

f��g

Dh
F��A ; �A�

i
; �A�

E
T1U

= �
P
��

Dh
F��A ; �A�

i
; �A�

E
T1U

= �
P
�

DP
�

h
F��A ; �A�

i
; �A�

E
T1U

= �
P
�

D
�A� ; �A�

E
T1U

= ��A (�A)

hFA;FAiU = ��A (�A) (7.34)

For the EM �eld the currents are null.
hFEM ;FEM i =

P
f��g F

��
EMFEM�� = G2 (FEM ;FEM ) = G2

�
FEM ; d �A

�
= G1

�
�FEM ; �A

�
= �AEM (�FEM )

hFEM ;FEM iEM = �AEM (�FEM ) (7.35)

So that on shell :
LFields =P
��

n
CG

�P3
a=1 FaG��F

a��
G �

P6
a=4 FaG��F

a��
G

�
+ CA

Pm
a=1 FaA��F

a��
A + CEMFEM��F��EM

o
= 8CG hFG;FGiG + 2CA hFA;FAiU + CEM

D
FEM�� ;F��EM

E
= �8CGG (�G)� 2CA �A (�A) + CEM �AEM (�FEM )

Energy of the system on shell

On shell :
JG = �G; JA = �A;

1
2�FEM = �JEM

LFields = �8CGG (JG)� 2CA �A (JA)� 2CEM �AEM (JEM )
We have seen previously that the energy of the particles can be expressed as :
LParticles = CI

1
i
1
Mp
h ;rV  i = CI

dK
dt + 32CGG (JG) + 8CA

�A (JA) + 8CEM �AEM (JEM )

And on shell : h ;rV  i = 0
Then, on shell :

LSystem = LFields = �8CGG (JG)� 2CA �A (JA)� 2CEM �AEM (JEM ) = �
1

4
CI
dK

dt
(7.36)

This holds at each point for a continuous distribution of particles or for individual particles. This
is equivalent to say that the variation of kinetic energy of the particles is equal to the variation of
energy of the �elds. In the vacuum, at equilibrium, LSystem = LFields = 0:
For a perfect gas the internal energy is proportional to the kinetic energy of the molecules, and

to the temperature (in �Kelvin). So we can say that LSystem is proportional to the variation of the
temperature, and that at equilibrium the temperature is constant.

7.5.2 Energy-momentum tensor

Energy momentum tensor with the perturbative lagrangian

T =
P
��f
P
ij

@L
@r� ij

@� 
ij +

P
a;

@L
@@� �Aa



@� �A
a
 +

P
a

@L
@@�Ga


@�G

a
g@�� 
 d��

With the perturbative lagrangian in a model of the �rst type :
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Particles :
@L

@@�ra
= CI

1
i�

1
Mp

V �
D
 0;
h
C
��
��1 � @�@ra

��i
[ 0]

E
@L

@@�wa
= CI

1
i�

1
Mp

V �
D
 0;
h
C
��
��1 � @�@wa

��i
[ 0]

E
P
a

@L
@@�ra

@�ra +
@L

@@�wa
@�wa

= CI
1
i�

1
M V �

D
 0;
h
C
��
��1 �

P
a

�
@�
@ra

@�ra +
@�
@wa

@�wa

���i
[ 0]

E
= CI

1
i�

1
M V �



 0;
�
C
��
��1 � @��

���
[ 0]

�
= CI

1
i�

1
M V �

�
�iM2

2 k
t
0ReD (�Z) @�Z

�
= �CI�M2 V

�kt0ReD (�Z) @�Z
Fields:
@L

@@�Ga
r
= �4CGFa�r

dL
d@�Ga

w
= 4CGFa�w

dL
d@� �Aa



= �4CAFa�AP3
=0

P3
a=1

@L
@@�Ga

r
@�G

a
r +

dL
d@�Ga

w
@�G

a
w = 4

P3
=0

P3
a=1 CG

�
�Fa�r @�G

a
r + Fa�w @�G

a
w

�
= �16CG

P3
=0 hF

�
G ; @�GiClP3

=0

Pm
a=1

dL
d@� �Aa



= �4CAFa�A @� �A
a
 = �4CA

P3
=0

D
F�A ; @� �A

E
T1U

Total :
T = �

P
��fCI�M

2

2 V
�kt0ReD (�Z) @�Z

+4
P3
=0

�
4CG hF�G ; @�GiCl + CA

D
F�A ; @� �A

E
T1U

�
g@�� 
 d��

which can be written :

T = �1
2
CI�MV 
 kt0ReD (�Z) dZ+4

X
��

�
4CG hF�G ; @�GiCl + CA

D
F�A ; @� �A

E
T1U

�
@��
 d��

(7.37)
For a deformable solid which is not submitted to external �elds the interactions induced by the

motion of the particles can be seen as the forces resulting from the deformation. So one can state
similarly that for any deformation (�r; �w) the energy-momentum tensor provides, in a continuous
deformation at equilibrium, the value of the induced �elds, or equivalently the deformation induced
by external �elds.

Trace

The trace of the tensor is :

Tr (T ) = � 12CI�Mkt0ReD (�Z) dZdt + 4
P3
�;=0

�
4CG hF�G ; @�GiCl + CA

D
F�A ; @� �A

E
T1U

�
� 12CI�Mkt0ReD (�Z) dZdt = CI

dK
dtP3

�;=0 hF
�
G ; @�GiCl =

P3
f�;g=0 hF

�
G ; @�G � @G�iCl =

P3
f�;g=0 hF

�
G ;FG� � 2 [G�; G ]iCl

=
P3

f�;g=0 hF
�
G ;FG�iCl + 2

P3
f�;g=0 hF

�
G ; [G ; G�]iCl

=
P3

f�;g=0 hF
�
G ;FG�iCl + 2

P3
f�;g=0 h[F

�
G ; G ] ; G�iCl

= hFG;FGiG + 2
P3
�=0 h��; G�iCl

= hFG;FGiG + 2G (�G)
Tr (T ) = CI

dK
dt + 16CG hFG;FGiG + 4CA hFA;FAiA + 32G (�G) + 8 �A (�A)

CI
1
i
1
Mp
h ;rV  i = CI

dK
dt + 8

�
4CGG (JG) + CA �A (JA)

�
Tr (T ) = CI

1
i
1
Mp
h ;rV  i+ 16CG hFG;FGiG + 4CA hFA;FAiA
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Tr (T ) = LParticles + 4LFields
So it represents the energy exchanged in a transformation of the system.

Momentum of the �elds

The Energy Momentum tensor related to the �elds is :

TF = 4
P
��

P3
=0

�
4CG hF�G ; @�GiCl + CA

D
F�A ; @� �A

E
T1U

�
@��
d�� =

P
�� T

�
F�@��
d��

which can be written :
TF =

Tr (TF )
P3
�=0 @��
d��+

P
��

�
T�F� + T

�
F� � ���Tr (TF )

�
@��
d��+

P
��

�
T�F� � T

�
F�

�
@��


d��

In the vacuum :
Tr (TF ) = 4LFields
In a motion along the direction @�� the value of the potential change as : � �A = @� �A and the

system reacts by a change of energy by Tr (T ) ; a transversal force
P3
�=0

�
T�� + T

�
� � ���Tr (T )

�
@��

and a torque :
P
��

�
T�� � T ��

�
@��:

These forces are present everywhere, and in presence of particles the equilibrium is reached by
an adjustment of the momentum of the particle � 12CI��MpV 
 kt0ReD (�Z) dZ such that �T = 0:
This mechanism, which is responsible for the �radiation wind�, imparts a momentum to the

�elds.

7.5.3 Tetrad equation

The tetrad equation reads :
8�; � = 0:::3 : CI 1i

1
M V � h ;r� i = 4 [X]�� � 2���Tr [X]

with : [X]�� = �
P3
=0f4CG hF

�
G ;FG�iCl + CA hF

�
A ;FA�iT1Ug

It expresses the balance of energy in the system, between all the elements of the system.

Terms related to the particles

The equation is computed by varying the tetrad P�i , and this is equivalent to a variation ��� with
respect to the �xed tetrad of the observer : ��� =

P3
j=0 P

0j
� (�P

�
i ) "j

In the equation the terms related to the particles are :
�; � = 0:::3 : CI

1
i
1
M V � h ;r� i = V � �E

���

with the variational derivative of the energy of the particles in the direction @�� of the chart :
�E
���

= CI
1
i
1
M h ;r� i = �

1
2CIM

n
kt0Re

�
rG� �

�
+ ktc

h
�A�

io
So it implies the variation of the trajectories of the particles. The equation must be understood

�in the meaning of distributions�and for particles we must consider the matter �elds to which they
belong.
The quantityP3
�;�=0 V

� �E
���

@�� 
 d�� =
�P3

�=0 V
�@��

�


�P3

�=0
�E
���

d��
�
2 TM 
 TM�

is a tensor. Its trace is null at equilibrium : h ;rV  i =
P3
�=0 V

� h ;r� i = 0
We will denote, with �0 = ct :

[�E ] = CI
1

i

1

M
� [h ;r� i]�=0::3 =

h
�E
c�t

�E
��1

�E
��2

�E
��3

i
=
�
1
c
�E
�t

�E
�x

�
(7.38)

and as usual the velocity of the particle : V =
�
V �
�
4�1 =

�
c
v

�
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And : h ;rV  i = 0)

�E
�t
+

�
�E
�x

�
[v] = 0 (7.39)

The tetrad equation reads :
8�; � = 0:::3 : CI 1i

1
M V � h ;r� i = 4 [X]�� � 2���Tr [X] = V � [�E ]�

[X]
�
� � 1

2�
�
�Tr [X] =

1
4V

� [�E ]�

Terms related to the �elds

The terms
P
 hF

�
G ;FG�iCl ;

P
 hF

�
A ;FA�iT1U can be expressed in a form more appropriate to

the computations.P3
=0 hF

�
G ;FG�iCl =

1
4

P3
=0

P3
a=1 F

a;�
G FaG� �F

a+3;�
G Fa+3G�

= 1
4

P3
=0

P3
a=1 [F�aG ]

�
 [FaG]

�
 �

�
F�a+3G

��


�
Fa+3G

��


= � 14
P3
=0

P3
a=1 [F�aG ]

�
 [FaG]


� �

�
F�a+3G

��


�
Fa+3G

�
�

= � 14
P3
a=1

�
[F�aG ] [FaG]�

�
F�a+3G

� �
Fa+3G

�	�
�

With the complex format :P3
=0 hF

�
G ;FG�iCl = �

1
4 Re

P3
a=1 f[F�aG ] [FaG]g

�
�

Similarly :P3
=0 hF

�
A ;FA�iT1U =

P3
=0

Pm
a=1 F

a;�
A FaA� =

P3
=0

Pm
a=1 [F�aA ]

�
 [FaA]

�


= �
Pm
a=1 f[F�aA ] [FaA]g

�
�

[X]
�
� = �

P3
=0f4CG hF

�
G ;FG�iCl + CA hF

�
A ;FA�iT1Ug

= �f�4CG 1
4 Re

P3
a=1 f[F�aG ] [FaG]g

�
� � CA

Pm
a=1 f[F�aA ] [FaA]g

�
�g

= CGRe
P3
a=1 f[F�aG ] [FaG]g

�
� + CA

Pm
a=1 f[F�aA ] [FaA]g

�
�g

[X] = CGRe
P3
a=1 [F�aG ] [FaG] + CA

Pm
a=1 [F�aA ] [FaA]

To compute the summations with respect to the index a it is useful to go through the Hodge
dual.
[F�] = � [�F ] detP
[X] = �

n
CGRe

P3
a=1 [�FaG] [FaG] + CA

Pm
a=1 [�FaA] [FaA]

o
detP

[Y a] = [�Fa] [Fa] is a 4� 4 matrix :

[�Fa] [Fa] =
�

0 [�Fr]a

� ([�Fr]a)t j ([�Fw]a)

� �
0 [Fw]a

� ([Fw]a)t [j ([Fr]a)]

�
[Y ] =

P
a [Y

a] =
P
a [Fa] [�Fa]

�; � = 1; 2; 3 :
[Y ]

0
0 = �

P
a [�Fr]

a
([Fw]a)t

[Y ]
0
� = f

P
a [�Fr]

a
[j ([Fr]a)]g�

[Y ]
�
0 = �

nP
a j ([�Fw]

a
) ([Fw]a)t

o�
[Y ]

�
� =

P
a

n
� ([�Fr]a)t [Fw]a + ([Fr]a)t ([�Fw]a)

o�
�
� ��� ([Fr]

a
) ([�Fw]a)t

where the index a runs from a = 1; 2; 3 for the gravitational �eld, and a = 1:::m for the other
�elds.
Then the computation of each element of [Y ] is straightforward.

[Y ]
0
0 = �Tr

�
[�Fr] [Fw]t

�
[Y ]

0
1 =

n
[Fr]t [�Fr]

o3
2
�
n
[Fr]t [�Fr]

o2
3

[Y ]
0
2 = �

n
[Fr]t [�Fr]

o3
1
+
n
[Fr]t [�Fr]

o1
3
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[Y ]
0
3 =

n
[Fr]t [�Fr]

o2
1
�
n
[Fr]t [�Fr]

o1
2

[Y ]
1
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n
[Fw]t [�Fw]
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[�Fr]t [Fw]
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�
+
n
[Fr]t [�Fw]
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�
� ���Tr

�
[Fr]t [�Fw]

�
and using
[�Fr] = [Fw] [g3]�1 detQ0
[�Fw] = � [Fr] [g3] detQ
[Y ]

0
0 = �Tr
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[Fw] [g3]�1 [Fw]t

�
detQ0
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�
n
[Fr]t [Fw] [g3]�1

o2
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detQ0
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1
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detQ0
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detQ0
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detQ
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detQ
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�
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detQ

�; � = 1; 2; 3 :

[Y ]
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� = �

n
[g3]
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[Fw]t [Fw] detQ0
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�
�
n
[Fr]t [Fr] [g3] detQ
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�
+ ���Tr

�
[Fr]t [Fr] [g3] detQ
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The results are conveniently expressed with :

[YRR] = CGRe [FrG]
t
[FrG] + CA [FrA]

t
[FrA]

[YWW ] = CGRe
�
[FwG ]

t
[FwG ]

�
+ CA [FwA ]

t
[FwA ]

[YRW ] = CGRe [FrG]
t
[FwG ] + CA [FrA]

t
[FwA ]

(7.40)

[YWR] = CGRe
�
[FwG ]

t
[FrG]

�
+ CA [FwA ]

t
[FrA] = [YRW ]

t

For the EM �eld :
[FrA]
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[X]
3
0 =
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Equations

The tetrad equation reads :
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The last equations can also be written :
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So we have :
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�x
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= � �E�t
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The only solution is �E�t = 0)
�
�E
�x

�
= 0

The tetrad equation is about the energy. The quantities �E
�t ;
�
�E
�x

�
are components of the vari-

ational derivative �E
�� of the energy of the particles in a variation ��: In a continuous process this

variational derivative should be null. This can be understood in another way. We have assumed
that the state of the particle can be modelled on a section  2 X (Q [E 
 F; #]) in order to vary the
trajectory. The energy of the particle reads :

�E = CI
1
M

1
i

P3
�=0 V

� h ;r� i = CI
1
M

1
i

P3
�;j=0 P

�
j U

j h ;r� i
CI

1
i
1
M h ;r� i is the variational derivative with respect to V

� ; the component of V , which can
vary with the tetrad, U being �xed, or with U; with a �xed tetrad. In a continuous process the
integral curves U of a given section are curves of constant energy : h ;rV  i = 0: So �E

�t = 0;
�
�E
�x

�
= 0

is equivalent to the condition that the particle stays on the same integral curve.
And the equations sum up to :

Tr f[YRR] [g3]g = Tr
�
[YWW ] [g3]

�1
�
= 0

[g3] [YRW ] = [YRW ]
t
[g3]

[YWW ] = � [g3] [YRR] [g3] det [g3]�1
(7.41)

We get 20 equations, from which the metric can be computed directly without di¤erential equa-
tions.
For instance with the speci�cation of the metric used before :

g3 =

24 �21 a3�1�2 a2�1�3
a3�1�2 �22 a1�2�3
a2�1�3 a1�2�3 �23

35
The equation [g3] [YRW ] = [YRW ]

t
[g3] gives 3 linear equations :

a1 = ��13 ��12
�
�21A11 + �

2
2A12 + �

2
3A13

	
a2 = ��13 ��11

�
�21A21 + �

2
2A22 + �

2
3A23

	
a3 = ��12 ��11

�
�21A31 + �

2
2A32 + �

2
3A33

	
where Apq depends on [YRW ] only. Then the second equation gives �:
The results have no simple expression, but they are explicit, the computations are straightforward

and do not involve di¤erential equations.

Remarks :
i) These equations involve only the �elds and the metric : the metric is de�ned by the value of

the �elds, even if they are themselves de�ned through their interactions with particles. The physical
universe has a �nite number of symmetries and these symmetries hold also for the �elds, which could
be expected from their propagation curves.
ii) The equations are not independent : we have overall 20 equations for 6 parameters in [g] :

So the 21 coe¢ cients in the matrices [YWW ] ; [YRR] ; [YWR] are related. They involve all the �elds
on the same footing, that is, practically the EM and the gravitational �elds. It implies that, even
if the �elds are assumed to not interact with each others, their value is not independent. This is
not totally new : in the Einstein�s theory of gravitation one can include the EM �eld in the energy-
momentum tensor, however the mechanism involved is then more classic (the EM �eld contributes
to the general equilibrium). Here we have a more direct mechanism, which opens the way to act
on the gravitational �eld through the EM �eld, as a recent experiment shows (H.White and alii).
Moreover the possibility to act on the metric opens also many possibilities. Of course these results
should be checked, but due to their potential importance, this path deserves to be explored further.
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7.6 CONCLUSION

The implementation of the Principle of Least Action provides several sets of equations, to which
must be added the laws of propagation. They can be used separately, according to the problem,
or together. The computation of a general solution is always complicated in GR, but, with the
numerous tools which are provided, one can go much further than usual.
The continuous models, in spite of their limitations, comfort the framework which has been

introduced here, and gives a profound meaning to the relationship between matter �elds and force
�elds, both from a mathematical and physical point of view.

Matter Fields Force Fields
� : Sections of PG G; �A : equivariant sections of J1PG; J1PU

# #
Motion : trajectories F : Propagation

# #
Spinors,  0 : momenta Potential : force, torque

# #
Currents J  ! Currents �

(7.42)

At �rst everything seems to oppose particles, moving on curves, and force �elds, de�ned every-
where. But, in a system at equilibrium, the trajectories and the motion of particles can be rep-
resented through sections of PG de�ned everywhere, meanwhile the �elds propagate along Killing
curves. Sections of PG give, with a unique constant  0; matter �elds and momenta, principal connec-
tions are equivariant sections of a the �rst jet prolongation of principal bundle, their Lie derivative
give the strength F , which rules the propagation, and the potentials which de�ne forces and torques.
Particles and �elds generate currents, which are de�ned everywhere, and are equal. And the general
equilibrium is achieved through the metric, which de�nes the symmetries of the physical universe.



Chapter 8

DISCONTINUOUS PROCESSES

Continuous models address a large scope of problems. They represent ideal physical cases : no
collision, no discontinuity, no change in the number or the characteristics of the particles. By
analogy with �uid mechanics they represent steady �ows. These limitations can be alleviated, by
the introduction of densities. And if an equilibrium is not necessarily the result of a continuous
process, in the physical world, no process is totally discontinuous : the discontinuity appears as a
singular event, between periods of equilibrium. The Principle of Least Action and continuous models
hold for the conditions existing before and after the discontinuity. Meanwhile discontinuous models
are focused on the transitions between equilibrium.

Many physical phenomena involve, at some step, processes which are discontinuous.
At our scale : collision or breaking of material bodies, shock-waves on �uids, change of phase,...
At the atomic scale : collision of molecules or particles, elastic (without loss of energy) or not,

disintegration of a nucleus, spontaneous or following collisions, creation or annihilation of particles,
change of spin,...
If discontinuous processes are ubiquitous, they present an issue for the Physicists. There is no

general method to deal with them. It is a fact that we have by far more convenient and powerful
mathematical tools to deal with smooth variables than with discontinuous ones, even if, in the
practical computation, one uses numerical (and discontinuous) methods. Whatever our personal
preferences, it su¢ ces to open any book on Physics to see that, as quickly as possible, one comes
back to more comfortable di¤erential equations. Models of discontinuous processes naturally rely
on statistics and probability. This dichotomy has an important impact on the theories. The study
of discontinuous process leads naturally to probabilist, non determinist models. At the atomic level
they are prevalent - all the more so that most experiments are focused on them. And, since all
proceeds from the atomic level, this leads to a bias towards a discreet, probabilist, weltanschauung,
which is obvious in many interpretations of QM. When one has a hammer, everything looks like a
nail. But, for practical purpose, the border between continuous / discontinuous depends on the scale.
Many discontinuous phenomena can be dealt with in continuous models if one accepts to neglect
what happens at the basic level : this is at the foundation of Fluid Mechanics and Thermodynamics.
We do not know what is the physical world, one can only try to �nd its most sensible and e¢ cient
representations, and must not be confused, taking our representations, or worse, our formalism, for
the real world. In the Copenhagen interpretation of QM, it is assumed that there are two Physics,
one which applies at the atomic scale, and another to the usual world. Actually the border should be
between continuous and discontinuous processes, and this border depends on the scale considered.
They require di¤erent types of representations, depending on the purpose or the problem, but the
di¤erence in the formalism is not the proof of a dichotomic world, and even less of a continuous or
discontinuous world.
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If we acknowledge the existence of discontinuities in solids or �uids, we should consider their
existence in force �elds. So one should accept the idea that �elds are not necessarily represented
by smooth maps, and �nd a way to represent discontinuities of the �elds themselves. This is the
main purpose of this chapter. We will see how to deal with discontinuities in �elds, how they can be
represented in the framework that we have used so far, and show that, actually, these discontinuities
�look like�particles : bosons, the force carriers of the Standard Model, can be seen as discontinuities
of the �elds. But we will start with collisions, which are the basic discontinuous processes.
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8.1 COLLISIONS

By a collision we mean the encounter of two (or more, which should be very unusual) particles which
at some time, occupy the same location. It is �elastic�when the kinetic energy is preserved, which
has a meaning for deformable solids : no energy is spent in the deformation. We will consider only
particles, then an elastic collision means that the particles keep their fundamental state  0 : for
elementary particles there is no creation or annihilation, and for other material bodies the inertial
spinors S0 are preserved. In non elastic collisions it is necessary to involve the forces and charges of
the particles, directly or through phenomenological laws.

8.1.1 Collisions in Newtonian Mechanics

Solving the problem of collision between particles is commonly said to come from the Principle of
Conservation of Momentum, but this is deceptive. The key point is that, in Galilean Geometry, it is
possible to de�ne a center of mass G for any system of material points : (

P
ama)

��!
OG =

P
ama

��!
OMa:

Then the system is equivalent to a particle of mass
P
ama located at G and the sum

�!
F G =

P
a

�!
F a,

exercised at G, has a physical meaning. And the Law of Mechanics can be written, by derivation :P
a
d�!p a
dt = d�!p G

dt =
�!
F G

In the collision of two particles, the sum of the momenta : �!p 1 +�!p 2 is conserved only if d
�!p G
dt =

�!
F G = 0: Then with

m1
�!v 1 +m2

�!v 2 = m1

�!
v0 1 +m2

�!
v0 2 = (m1 +m2)

�!v G
and the conservation of the kinetic energy, if the collision is elastic :

m1 k�!v 1k2 +m2 k�!v 2k2 = m1

�!v0 12 +m2

�!v0 22
we have 4 equations, for 6 unknown variables. So this is not enough to solve the problem. We

need to account for a rotational momentum. The total torque on the system is :
P
a=1;2 �a (O) =P

a �a (G) : If it is null then the total rotational momentum is conserved :P
a �a (O) =

P
a �a (G) = Ct

���!
OM1 ��!p 1 +

���!
OM2 ��!p 2 = Ct

At the point of collision :
��!
OG� (m1

�!v 1 +m2
�!v 2) =

��!
OG� (m1

�!v 01 +m2
�!v 02), which is equivalent

to say that
�!
v0 1;
�!
v0 2 are in the plane de�ned by

�!v 1;�!v 2 : we have only 4 unknown variables, and the
problem is solved.
This solution is commonly extended to Special Relativity (the conservation of kinetic energy

comes then from the 4th component), but this cannot be done in RG.
Using this method, it is possible to de�ne a �collision operator� to represent elastic collisions

between particles (the operator gives
�!
v0 1;
�!
v0 2 from

�!v 1;�!v 2), which is then incorporated in general
models based on the Principle of Least Action. The oldest are the kinetic models. They usually derive
from a hydrodynamic model (similar to the continuous models) and are based upon a distribution
function f(m; p) of particles of linear momentum p which shall follow a conservation law, using
the collision operator. So the distribution of charges is itself given by a speci�c equation. Then
the 4 dimensional action, with a lagrangian adapted to the �elds considered, gives an equation
relating the �eld and the distribution of charges. Usually the particles are assumed to have the
same physical characteristics (mass and charge), which imposes an additional condition on the
linear momentum : hp; pi = mc2: The frequency of collisions is related to a thermodynamic variable
similar to temperature. Such models have been extensively studied with gravitational �elds only
(Boltzman systems), notably in Astrophysics, and the electromagnetic �eld for plasmas (Vlasov-
Maxwell systems).
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8.1.2 Collisions in RG

Particles in RG are represented by maps R! J1Q [E 
 F; #] :: (q (t) ;  (t) ; � (t)) : So the location
is part of the de�nition. The variation of momentum is then � (t) = # (� (Xr; Xw) � �;{) 0 where
� (Xr; Xw) 2 T1Spin (3; 1) and � (Xr; Xw) =

d�
dt ��

�1 in a continuous motion.  (t) ; � (t) 2 E
F;
that is a �xed vector space (this is the advantage of the �ber bundle representation). The link with
the physical, located, quantity is done through the gauge of the observer at q (t) :
The tetrad attached to the particle is such that : ei (t) = Ad�(t)"0 where "0 is a �xed vector.

The relation between � (t) and the velocity V goes through the tetrad P of the observer at q (t)
V = dq

dt = c"0 +
�!v =

P3
j;�=0 P

�
j U

j@��

U = � c
hAd�"0;"0iCl

Ad�"0 =
P3
j=0 U

j"j

A spinor can be computed for a deformable solid, de�ned by a section � 2 X (PG), an inertial
spinor S0 and a density � by :

S (t) = C
�R

!(t)
� (m)� (m)$3 (m)

�
S0

This can be extended to a matter �eld with a fundamental state  0. In these representations the
assumptions are that the particles have the same characteristics (charge and kinematic) and their
trajectories do not cross.
However the representation holds, at least formally, for a collection of individual particles p =

1:::N .
To each particle is associated a section of X (Q [E 
 F; #]) ; and the particle is a map :
Zp : [0; T ]! C3 :: Z (t) such that :  (t) =  (Z (t))

The density is a function � : M ! R but actually we can consider a map valued in the set of
scalar measures on M : � (t)$4 (m) : Then the density is equal to 0 or 1, this is equivalent to a
Dirac�s function �p for each particle.
The aggregation is done by the measure

P
p �p �$4:

 (t) =
R

(t)

PN
p=1  p (Z (t)) �p (p (t))$3 =

R

(t)

PN
p=1  p (Z (t)) �p ('o (t; xp (t)))$3 (t)

 (t) 2 E 
 F and we can de�ne :
 (t) = # (� (t) ;{) 0 =

R

(t)

PN
p=1 # (�p (t) ;{) 0p�p (p (t))$3

with a �xed gauge in F (which identi�es the �avor of particles). It sums up to take :
 (t) = # (� (t) ;{) 0 =

PN
p=1 # (�p (t) ;{) 0p

In a continuous motion :
d
dt (t) =

PN
p=1 #

�
d
dt�p (t) ;{

�
 0p

=
PN
p=1 #

�
d
dt�p (t) � �p (t)

�1
;{
�
 0p =

PN
p=1 # (� (Xrp; Xwp) ;{) p = # (� (Xr; Xw) ;{) (t)

 0 is �xed along the trajectories with � (Xr; Xw) =
PN
p=1 � (Xrp; Xwp) :

There is no speci�c location q (t), equivalent to a center of mass, attached to the collection of
particles. But we can de�ne a momentum � = # (� (Xr; Xw) ;{) (t) which is equal to the sum of
the momentum of the particles.
The momentum of each particle changes with the actions of the �elds :

� p ! � p +
P3
�=0 V

�
p # (�p;{)

�
[C (Ad��1 (G� (qp (t))))] 0p + [ 0p]

h
Ad{ �A� (qp (t))

i�
so the momenta and the total momentum � are not conserved in the presence of �elds.
The speci�city of a collision is that the particles are at the same location, so the location of the

center of mass is de�ned, moreover in the process of collision the �elds are not involved : the action
of the �elds comes from the motion of the particles, which entails a change in the potentials. In a
collision the particles exchange only kinetic momentum. So we can write :PN

p=1 � p =
PN
p=1 �

e p where e p is the state of the particle after the collision.
Moreover, in an elastic collision, the fundamental states do not change, and :e (t0) = # (e� (t0) ;{) 0 =PN

p=1 # (e�p (t0) ;{) 0p
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The collision is an isolated point, occurring at m0 = 'o (t0; x0) : before and after the collision
the particles have a continuous motion :

� (Xrp; Xwp) =
d�p
dt � �

�1
p

�
� eXrp; eXwp

�
=

df�p
dt �f�p�1

And we have the equations :PN
p=1 # (�p (t0) ;{) 0p =

PN
p=1 # (f�p (t0) ;{) 0pPN

p=1 #
�
d
dt�p (t0) � �p (t0)

�1
;{
�
 p (t0) =

PN
p=1 #

�
d
dtf�p (t0) �f�p (t0)�1 ;{� p (t0)

,
PN
p=1 # (� (Xrp; Xwp) ;{) p (t0) =

PN
p=1 #

�
�
� eXrp; eXwp

�
;{
�
 p (t0)

Moreover the total kinetic energy of the particles is conserved :PN
p=1

1
i
1
Mp
h p; � pi =

PN
p=1

1
i
1
Mp

D e p; � e pE
For spinors we have a set of 17 real scalar equations for 12 unknown variables for each particle.

As in Newtonian Mechanics we need an additional equation, and it comes from the conservation of
the rotational momentum. For spinors :

�SR =
P3
�=0 C (� (Xr; 0))S is the equivalent of a change of rotational momentum or an inertial

torque.
�ST =

P3
�=0 C (� (0; Xw))S is the equivalent of a change of translational momentum or a

translational inertial force.
In the collision the conservation of the momenta is equivalent to the fact that the forces and

torques exercised on the �out�particles are equal to the forces and torques exercised by the �in�
particles. So we must replace the equation :PN

p=1 # (� (Xrp; Xwp) ;{) p (t0) =
PN
p=1 #

�
�
� eXrp; eXwp

�
;{
�
 p (t0)

by the 2 equations :PN
p=1 # (� (Xrp; 0) ;{) p (t0) =

PN
p=1 #

�
�
� eXrp; 0

�
;{
�
 p (t0)PN

p=1 # (� (0; Xwp) ;{) p (t0) =
PN
p=1 #

�
�
�
0; eXwp

�
;{
�
 p (t0)

and we have 24 real scalar equations, which solves the problem for the collision of 2 particles.
One can check that then the kinetic energy : �K = �Mp

2 k
t
0ReAd��1� (Xr; Xw) is conserved.

It is convenient to introduce auxiliary variables. The tetrad attached to each particle is such
that : ei (t) = Ad�(t)"0: At m0 :

ei (t0) = Ad�(t0)"0eei (t0) = Ade�(t0)"0
and there is a �xed s 2 Spin (3; 1) such that e� (t0) = s � � (t0)
U (t0) = � c

hAd�"0;"0iCl
Ad�(t0)"0eU (t0) = � c

hAdsAd�"0;"0iCl
AdsAd�(t0)"0 = �AdsU (t0) = � [h (s)]U (t0)

[h (s)] 2 SO (3; 1)
with the additional variable � = hAd�"0;"0iCl

hAdsAd�"0;"0iCl
The velocity, in the holonomic basis, is then :eV � =Pj P

�
j
eU j = �

P
j P

�
j [h (s)]

j
k U

k = �
P
j;� P

�
j [h (s)]

j
k P

0k
� V

�

= �
P3
�=0 ([P ] [h (s)] [P

0])
�
� V

� = �
P3
�=0 [X]

�
� V

�

8.1.3 Solution by the gravitational currents

There is another way to proceed. Let us consider 2 particles A;B colliding in a point O.
It has been assumed that the gravitational current �G is continuous. At any point in the neigh-

borhood of O, it re�ects the sum of the gravitational currents JA; JB associated to A and B.
Then we have :
before the collision : �G (O) = JA + JB
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after the collision : �G (O) = J 0A + J
0
B

The currents are de�ned in T1Spin (3; 1)
 TM; they depend on 16 parameters � (r; w) ; V :
JA =

CI
16CG

�MA� (� [A (wA)] [C (rA)] kA0; [B (wA)] [C (rA)] kA0)
 VA
and similarly for B.
Then we have :
MA� (� [A (wA)] [C (rA)] kA0; [B (wA)] [C (rA)] kA0)V �A
+MB� (� [A (wB)] [C (rB)] kB0; [B (wB)] [C (rB)] kB0)V �B
=MA� (� [A (w0A)] [C (r0A)] kA0; [B (w0A)] [C (r0A)] kA0)V 0�A
+MB� (� [A (w0B)] [C (r0B)] kB0; [B (w0B)] [C (r0B)] kB0)V 0�B
that is 24 equations, for the 12 variables (r0A; w

0
A) ; (r

0
B ; w

0
B) (V depends then on w).

It is obvious that, through the gravitational �eld, the motion of the particles will adjust before
the collision, so that the variables are not independent. However this simple (but coming from a
long way...) model shows that, actually, the process of collision is determinist. One could proceed
independently to the same computation with the currents related to the other �elds, but not for the
EM �eld because �EM = 0:
We have the estimate :.

JG ' CI
16CG

�M�

�
� [C (r)] k0;

�
1 + 1

2

k�!v k2
c2

�
j
��!v
c

�
[C (r)] k0

�

 V

and for non rotating particles : JG ' CI
16CG

�M� (�k0; 0)
 V
so that :
MA� (�kA0; 0)
 VA +MB� (�kB0; 0)
 VB =MA� (�kA0; 0)
 V 0A +MB� (�kB0; 0)
 V 0B
MA� (�kA0; 0)
 �VA +MB� (�kB0; 0)
 �VB = 0
and we get back the usual equation for the momentum.
Notice that, in both methods, one accounts for the possible rotations of the particles, something

which is di¢ cult to achieve even in Classic Mechanics.

8.1.4 Scattering

The typical experiment in Particles Physics is the impact of a beam of particles on a target. Dis-
continuous processes occur when the incoming particles interact with the atoms of the target. This
is represented as a transition between a population of incoming particles in �in� states, and out-
going particles in �out� states, called a scattering. It is generally assumed that before and after
the interactions the beam is in equilibrium, and the particles follow a continuous motion. So the
mechanisms are collisions, but the number of particles is not necessarily �xed : annihilations and
creations of particles can occur, so more complex models are necessary.
When the weak or strong interactions are involved, additional rules apply, empirical or based on

strict principles, depending on the problem, such as the conservation of charge, the conservation of
the sum of weak isospin or of the number of baryons. The CPT conservation provides also a guide
in predicting the outcome. Moreover the strong interaction and electromagnetic interaction seem to
be invariant under the combined CP operation,
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8.2 BOSONS

The topic of this section is discontinuity in the force �elds. One of the characteristic of force �elds
is that they are de�ned everywhere and propagate, so to get an idea about the representation of a
discontinuity it is useful to look at how this is done in a continuous medium (a �uid or a deformable
solid).

8.2.1 Discontinuity in a continuous medium

Material medium, deformable solids or �uids, can transport a �signal�which comes from a speci�c
motion (spin or vibration) of its molecules. Wave propagations, wave packets, bursts or solitons
are continuous processes : they are solutions, sometimes very speci�c to initial conditions or to the
nature of the medium in which the �eld propagates, of regular di¤erential equations such as �A = 0:
The signal is still represented by smooth maps. Discontinuities are di¤erent : the maps are no longer
smooth. At the macroscopic level we have shock waves. The model of deformable solid (in the GR
framework !) is actually well suited for this study.
The key property of �uids, as well as deformable solids, is that they are comprised of material

points which can be identi�ed by their location x at t = 0 and follow trajectories which do not
cross, along a vector �eld V . A tetrad is attached to each material point, and the system is then
represented by a section S 2 X (PG [E; C]) : Along an integral curve of V :

dei
dt = [� (Xr; Xw) ; ei]
dU
dt =

U
c h[� (Xr; Xw) ;U ] ; "0iCl + [� (Xr; Xw) ; U ]

with � (Xr; Xw) =
P3
�=0 V

�@�� � ��1
So the material points (say molecules) can have a spinning or vibrating motion, which is contin-

uously di¤erentiable.
A shock wave does not disrupt (usually) the continuity of the medium, but the derivatives dVdt ;

dei
dt

are no longer continuous. One characteristic of a shock wave is that it propagates : this is typically
the sonic �boom�which occurs when the shock propagates faster than V .
Because the model is based on material points, identi�ed by their location x 2 
3 (0) at t = 0;

there is a function :
� : 
3 (0)! R :: � (x) = �

which tells that the shock occurs to the particle x at the time (for the observer) : � = � (x).
The shock wave is then located at t on the points ! (t) = f'o (ct; x) :: t = � (x)g : And spatially

it propagates on !3 (t) = ft = � (x)g : The equation t = � (x) de�nes a foliation of 
3 (0) in 2
dimensional hypersurfaces, which represent the waves. The spatial speed of propagation is given by
the gradiant of the function �:
The discontinuity can then be represented by some map :
�X : 
3 (0)! T1Spin (3; 1) :: �X ('o (� (x) ; x))

and :
� (Xr ('o (t; x)) ; Xw ('o (t; x))) =

P3
�=0 V

�@�� � ��1 + �X ('o (� (x) ; x))
The discontinuity appears as a map, valued in the same vector space as � (Xr; Xw) ; null every-

where but on the waves, and which is added to the continuous derivative. Mathematically this is
the usual representation of a discontinuous derivative with distributions (or generalized functions) :
the jump in the derivative appears as a Dirac�s function.

We could consider to extend this scheme to force �elds. But there is a major di¤erence : there is
no �material points�in force �elds, and they propagates along lines which are not integral curves of
a single vector �eld. Actually there are in�nitely many such curves which originate from any given
point. So the propagation of discontinuities in a force �eld occurs along lines, and not 3 dimensional
waves. And this is at the root of the bosons.
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We have seen in the study of the �eld equations that, even in a continuous model, there is an
issue to �nd solutions which both meet the conditions in the vacuum (that is, in a real world, almost
everywhere) and at the location of particles (at least in models which identify individual particles,
in model of the �rst kind there is no propagation to speak of). The root of the problem is in the
concepts of �elds and particles : according to the Principle of Causality we should distinguish an
incoming �eld and an outgoing �eld before and after it encounters a particle. The adjustment implies
some discontinuity, because of the identi�cation of the particle with a geometric point. Albeit the
concept of �eld and its propagation implies its continuity, at least at some level. We have solved this
issue, from a mathematical point of view, by assuming that the variables F are distinct, continuous
variables (which is the requirement for the propagation). This solution is acceptable when the
purpose of the model is to compute the properties of the �eld over some extended area, that is
at a macroscopic scale, in what is already a dreadful endeavour. However we need a more robust
solution, which goes beyond the computational necessities. We will proceed by coming back to the
de�nition of F from the basic variable which is the connection itself, and we will take as example a
general connection �A associated to the group U (whose precise de�nition does not matter here).

8.2.2 Mathematical representation

The mathematical representation of discontinuities of force �elds

Our purpose is to represent a discontinuity in the derivative of the connection �A on PU , which
propagates. For this we start from the de�nition of F (see Chapter 5).
A vector X (p) 2 TpPU reads X (p) =

P3
�=0X

�
m (p) @m� + � (XU ) (p) where � (XU ) (p) is a

fundamental vector located at p 2 PU and de�ned by XU =
Pm
a=1X

a
U (p)

�!
� a 2 T1U:

The connection is a tensor acting on vectors of TpPU and valued in the vertical bundle :
�A (p) (Xm + � (XU ) (p)) = �

�b�A (p) (X)� (p)
with the connection form b�A 2 �1 (TPU ;T1U) :
For a principal connection :b�A ('U (m; g)) ((Xm + � (XU )) ('U (m; g))) = XU +Adg�1

�
�A (m)Xm

�
where �A (m) is the potential �A 2 �1 (TM ;T1U) :
The derivative of the connection at a point p 2 PU is de�ned along a vector �eld W 2 X (TPU )

through :

�R (s) =
1
s

�
�W (s; p)

� b�A (p)� b�A (p)�
�L (s) =

1
s

�b�A (p)� �W (�s; p)� b�A (p)�
If lims!0�R (s) = lims!0�L (s) then the connection is di¤erentiable at p and $W

b�A (p) =
lims!0�R (s) :
But the quantities may have limits which are not equal : we have a discrepancy in the derivative,

which can be measured by :

�W

�
�A (p)

�
= lims!0

1
s

�
�W (s; p)

� b�A (p)� �W (�s; p)� b�A (p)�
F is de�ned as a derivative with respect to a displacement inM . So the derivative is for a section

S 2 X (PU ) and the horizontal lift �L of a vector �eld V on TM .
Let us just take a section P 2 X (PU ) : P (m) = 'U (m;  (m)) and a projectable vector �eld W

on TPU : �0U (p)W (p) = V (�U (p)) (�L (p (m)) (V (m)) is projectable): The a¢ ne parameter s is
the same along the integral curves of V;W :
�W (s;P (m)) = �W (s; 'U (m;  (m))) = 'U (�V (s;m) ;  (�V (s;m))) = P (�V (s;m))
�W (s;P (m))

0
= P0 (�V (s;m))�V (s;m)

0

�W (s;P (m))
0
((Xm + � (XU )) (P (m))) = �V (s;m)

0
Xm + �

��
L0�1

�
XU

�
(P (m))
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b�A (P (m)) ((Xm + � (XU )) (P (m))) = XU +Ad(m)�1
�A (m)Xm

�W (s; p)
� b�A (p) (X (p)) = b�A (�W (s; p))�W (s; p)

0
(X (p))

�W (s;P (m))
� b�A (P (m)) (X (P (m))) = �L0�1�XU +Ad�1

�
�A (�V (s;m))�V (s;m)

0
(Xm)

�
So the derivative is computed by :�
�W (s; p)

� b�A (p)� �W (�s; p)� b�A (p)� (X (P (m)))
=
��
L0�1

�
(�V (s;m))�

�
L0�1

�
(�V (�s;m))

�
XU

+Ad(�V (s;m))�1
n�

�A (�V (s;m))�V (s;m)
0
(Xm)

�
�
�
�A (�V (�s;m))�V (s;m)0 (Xm)

�o
If there is a discontinuity, let us de�ne :

�W

�
�A (P (m))

�
(X (P (m)))

= Ad(m)�1
n
lims!0

1
s

�
�A (�V (s;m))� �A (�V (�s;m))

�o
�V (0;m)

0
(Xm)

thus�W
�
�A (P (m))

�
2 �1 (TM ;T1U) ; in particular with the standard gauge p (m) = 'U (m; 1) :

�W

�
�A (p (m))

�
=
n
lims!0

1
s

�
�A (�V (s;m))� �A (�V (�s;m))

�o
�V (0;m)

0

so that : �W
�
�A (P (m))

�
= Ad(m)�1�W

�
�A (p (m))

�
:Because�W �A is de�ned by a di¤erence,

it transforms by Ad��1 ; as F (for the same reasons) : it can be seen as a 1 form on TM valued
in T1U: This result is important : the reason why a potential cannot explicitly be present in the
lagrangian comes from its special rule in a change of gauge (see lagrangian), and in QTF bosons are
represented like the potential, and the transformations rules are one of the main motivations for the
introduction of the Higgs boson. But this restriction applies no longer to �W �A:

�W

�
�A (p (m))

�
can be written :

�
b�A (p (m) ;W ) =Pm

a=1

P3
�;�=0�

�Aa� (m)
�
�V (0;m)

0��
�
d�� 
�!� a

so actually it does not depend on the choice of the projectable vector �eld W , but of course, to
be consistent with F we can choose the horizontal lift of any vector �eld V , or of the tangent to a
curve de�ned by V .

�
b�A (p (m) ; �L (V )) =Pm

a=1

P3
�;�=0�

�Aa� (m)
�
�V (0;m)

0��
�
d�� 
�!� a

that we denote : � �A (m) =
Pm
a=1

P3
�=0�

�Aa� (m) d�
� 
�!� a

If there is no discontinuity then �W
�
�A (p (m))

�
= 0:

So far � �A (m;V ) is a covector on TmM valued in T1U:We assume that the discontinuity propa-
gates. We can proceed as for a discontinuity in a continuous medium : it is represented as a quantity
which is added to the continuous derivative, here F . We need also to de�ne the vectors V: We have
seen that �elds propagate along Killing curves at a constant speed. Clearly discontinuities emanate
from a point (usually the interaction with a particle) and the propagation is along such a curve. So
this is very similar to the propagation of a signal.
The propagation of the strength F follows speci�c rules :
[�Fa (�)] = � (�) [K (�)]

t
[�Fa (O)] [K (�)]

The signal �Fa originating at O is transported along the curve, thus its components change
through [K (�)] : This process depends only on the curve, it is the same for all the components a.
But there is an additional process, linked to the attenuation of the signal along its propagation, and
represented by �:
We can assume safely that the discontinuity propagates along the same curves as the signals of

the same type of �elds. There are Killing curves, with a speed w depending on the type of �eld.
The attenuation process is clearly linked to the fact that the propagation of a signal occurs on

hypersurfaces S3 (O; �) : the energy is spread. We have nothing equivalent here, the discontinuity
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propagates along a curve. So we can safely assume that there is no attenuation1 . And actually there
is none for the photons (the �red shift�is just a Doppler e¤ect, and the attenuation in Astrophysics
is assumed to come from the expansion of the Universe). So there is no � involved and the motion
of bosons is characterized by $V� �A = 0:
And we state :

Proposition 103 Discontinuities of �elds can be represented as maps � �A 2 �1 (TM ;T1U) ; with
support a Killing curve and propagate at the same speed as the type of �elds to which they belong,
by transport such that $V� �A = 0:

We have a picture similar to particles : an object living on a curve, with a constant velocity
hV; V i = w2 � c2 and travelling on the curve with the parameter of the �ow. Here the world line
is an integral curve of the propagation of the �eld. And we call boson such an object. The boson
associated to the gravitational �eld is the graviton (which has never been observed). When only the
gravitational and EM �eld are present the boson associated to the EM �eld is the photon (this is a
composite boson when the weak and strong interactions are present).

Motion

The discontinuity is actually a discontinuity in the derivative of the potential, and not of the
potential or the strength. We have noticed that the �eld can be represented in the jet formal-

ism by :
�
m; �Aa�; �� �A

a
�; a = 1:::m; �; � = 0:::3

�
where �Aa�; �� �A

a
� are independent variables, and if

the potential is continuously di¤erentiable then �� �A
a
� = @� �A

a
�: Because we represent the dis-

continuity as added to a underlying, smooth, �eld, we keep the de�nition of the strength as

Fa�� = @� �A
a
� � @� �Aa� + 2

h
�A�; �A�

ia
; that is a smooth variable.

The motion of the boson is represented as for particles in the jet formalism.
The trajectory is given by the curve q (t) = �V (t; O) with tangent V , and the motion itself by

the map �0V (t; O) :: TOM ! TmM

Because $V� �A = 0 : � �A (�V (t; O)) = �V (t; :)�� �A (O) and with a matrix [K (t)] representing
the transport along the curve :
� �A� (t) =

P3
�=0 [K (t)]

�
��

�A� (O)
that we can represent in matrix form :h
� �A (t)

i
=
h h
� �A0 (t)

i
m�1

[�a (t)]m�3

i
and in the standard chart :

[K (t)] =

�
1 0
0 [k]3�3

�
h
� �A (t)

i
=
h h
� �A0 (0)

i
[�a (0)] [k]

i
So the motion of the boson can be represented by :

�
q (t) ; V �; [K (t)]

�
� ; �; � = 0:::3

�
2 J2TM:

To particles one can associate a section of PG, this is based on the fact that any time like, future
oriented, vector can be represented in the tetrad as U = � c

hAd�"0;"0iCl
Ad�"0: This is no longer

possible, at least for photons and gravitons whose trajectories are null curves.

Fundamental state

A boson originates from a point and travels on a precise curve. The vector V is part of the de�nition
of the boson.
Along a propagation curve both � �Aa; V are transported :

1This is the opposite to shock waves in deformable solids, which expand over 2 dimensional areas and dissipate
quickly their energy.
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� �Aa (q (�))

i
=
h
� �Aa (q (0))

i
[K (q (�))]

[V (q (�))] = [K (q (�))]
�1
[V (q (0))]

so the quantity :Pm
a=1

P3
�=0 V

�� �Aa� (m)
�!
� a 2 T1U

is preserved :h
� �Aa (q (�))

i
[V (q (�))] =

h
� �Aa (q (0))

i
[V (q (0))] = BA = Ct

It does not depend on the chart :

BA = c� �Aa0 (q (0)) +
h
� �Aa (q (0))

i
[v]

BA is similar to the fundamental state of a particle : it is preserved along the propagation.

3X
�=0

V �� �Aa� = BA = Ct 2 T1U (8.1)

8.2.3 Quantization of Bosons

Types of bosons

For an observer bosons are maps :
� �A : [0; T ]! TM� 
 T1U
They belong to a normed vector space F; invariant by a global change of gauge on PU :
pU (m) = 'U (m; 1)! epU (m) = e'U (m; 1) = pU (m) � � (m)�1
� �A! Ad�� �A

Along the curve :
P3
�=0 V

�� �Aa� = BA = Ct 2 T1U which depends on the boson.
Let be an observable � : F ! F0 where F0 is a �nite dimensional vector space of F .
We can implement the Theorem 24 of the Chapter 2.
F is isomorphic to an open of a Hilbert space H : � : F ! H and the action Ad has for image :cAd 2 L (H;H) : cAd� = � �Ad� ���1cAd (� (F0)) = bF0�
H; cAd� is a unitary representation of U , � bF0; cAd� is a �nite dimensional, unitary representation

of U .
The vector space F0 is invariant by Ad, and (F0; Ad) is a representation of U .
The relation of equivalence :
R : � �A � � �A0 ,

P
� V

�� �A� =
P
� V

�� �A0�
de�nes on the sets F;H a partition and for a given value of BA the corresponding subset H (BA)

of H is invariant by U . The speci�cation of � : F ! F0 chosen to measure � �A corresponds to an
irreducible representation.

As a consequence each observable � corresponds to a de�nite value of BA 2 T1U: The corre-
sponding vector space F0 can be identi�ed by BA; it is �nite dimensional, and we can assume that
it can be identi�ed with a vector

�!
� a of the basis of T1U : there are as many kinds of bosons as the

dimension of U . Bosons can be labelled by the vectors �a and Ba = ba
�!
�a where ba is constant along

the propagation and changes in a change of gauge according to the rules in PU [T1U;Ad] :
For U = U (1) ; T1U (1) = R : photons are characterized by a �xed scalar � 2 R:
For Spin (3; 1) we should have 6 kinds of graviton, one for each vector �!� a: But Spin (3; 1) is

not compact. Its only unitary, irreducible representations are in�nite dimensional, parametrized by

k 2 R; z 2 Z: So we cannot have a unitary, �nite dimensional representation
� bF0;dAd� ; whatever

the Hilbert space H; for all gravitons. However T1Spin (3; 1) = L0�P0 which are globally invariant
by Spin (3) ; the scalar product is de�nite (positive or negative) and preserved by Ad; so L0; P0
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are 3 dimensional Hilbert spaces, and for each choice of "0; (L0;Ad) ; (P0;Ad) are 3 dimensional
unitary representations of Spin (3) : So, for a given observer (who de�nes "0) there could be 3 types of
gravitons di¤erentiated by a = 1; 2; 3; and another category of gravitons di¤erentiated by a = 4; 5; 6:
In a change of spatial gauge (that is with the same observer), gravitons stay in one or the other
category. In time reversal the categories change into the other. We have a situation similar to the
distinction particles / antiparticles and we will call gravitons the bosons for a = 1; 2; 3; antigravitons
the bosons for a = 4; 5; 6:
And we can state :

Proposition 104 There are :
3 kinds of gravitons, associated to the vectors �!� a = 1; 2; 3 2 T1Spin (3; 1)
3 kinds of antigravitons, associated to the vectors �!� a = 4; 5; 6 2 T1Spin (3; 1)
There is only one type of photon, characterized by a scalar � 2 R:
There is one type of boson associated to each vector

�!
� a 2 T1U

A boson is then represented by a map :
Photon :�' : [0; T ]! TM� :: �' (t) =

P3
�;�=0 [K (t)]

�
��'�d�

� (q (t))

Graviton : �� : [0; T ] ! TM� 
 L0 :: �� (t) =
P3
�;�=0 [K (t)]

�
����d�

� (q (t)) 
 �!� a with a
equal either 1; 2; 3
Antograviton : �� : [0; T ]! TM� 
 P0 :: �� (t) =

P3
�;�=0 [K (t)]

�
����d�

� (q (t))
�!� a with a
equal either 4; 5; 6
Other bosons : � �A : [0; T ]! TM� 
 T1U :: � �A (t) =

P3
�;�=0 [K (t)]

�
��

�Aa�d�
� (q (t))
�!� a

where [K (t)] is associated to the propagation curve.
The vectors ��

�!� a; ::: change in a change of gauge as usual. '� is constant.
And the fundamental states are the real scalars :
Photon :

P3
�=0 V

��'�

Graviton :
P3
�=0���V

�

Antigraviton :
P3
�=0���V

�

Other bosons :
P3
�;�=0�

�Aa�V
�

where V is the tangent to the propagation curve.

Spin

The spin of a particle comes from the representation of its motion, which distinguishes two rotations
with respect to the velocity. The motion of bosons with respect to the holonomic basis of a chart
is given by the matrix [K (t)]. For bosons the equivalent is the rotation of the holonomic basis with
�0V (t; O) : The map is assumed to be smooth, so over a connected interval of time the sign of the
determinant det [K] has a �xed value �1; and we have two possible spinning motions. Bosons have a
spin 1, with two possible states of the spin. This can be seen equivalently as two classes of irreducible
representations in the quantization of the maps � �A (t) :
And this should hold also for the gravitons. Moreover if gravitons are associated to vectors of

T1Spin (3) with the group Spin (3) a change of gauge by �1 has the same e¤ect as the inversion of
the rotation.

Anti-particles

Anti-particles have been introduced to account for the two possible representations of fermions by
spinors. Except for the gravitons, we have nothing equivalent here and the other bosons can be their
own anti-particles. But time reversal has a clear meaning for particles which travels at the speed of
light : it sums up to inverse the trajectory. Mathematically this is equivalent to take the opposite
spin, and photons are their own anti-particles. But the situation is less obvious for the other bosons.
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Charge of the bosons

The charge of a particle is, except for the EM �eld, de�ned by comparison with particles which
have the same behavior with respect to the �elds. Because bosons are represented by a vector of
their Lie algebra, they inherit the charges which are imputed to the corresponding particles in the
representation (F; %) : For each of them there are as many �charges�as the dimension of U (8 gluons
for SU (3), 3 bosons for SU (2) and 4 for SU (2)� U (1)):
When they are considered alone all photons have the same behavior with the EM �eld, so they

have no charge.

Observables of bosons

Whatever the primary observable �, the measure which is observed is an eigen vector of the operator
�; with a probability depending on the state of the boson, that is on the map � �A : [0; T ] !
TM� 
 T1U which belongs to a subset of F characterized by the kind of boson.
A discontinuity is certainly a singular phenomenon. A discontinuous process is a transition be-

tween states of equilibrium which can be represented as the result of continuous processes. The
continuous models are still useful, but their equations must be understood in the meaning of distrib-
utions, as giving the result of measures taken in a 4 dimensional area which encompasses the singular
point. Any observable of a boson is related to measures which can be similarly performed on force
�elds, such as energy. The detection and measures of bosons are then the detection and measures
of a singular phenomenon, with respect to the continuous �elds which exist in the background. We
have seen in the 2nd chapter that, to be successful, there is a condition related to the signal to
noise ratio. Bosons will not be detected if this ratio is too low. It does not mean that they do not
exist, but that any attempt to detect them will fail (or more precisely deemed not �scienti�cally
conclusive�).
Build an observable sums up to choose a speci�cation for the variable. A Killing curve is de�ned

by the value of the tangent at a point, and a boson is then de�ned by a vector v 2 R3 and the 4
components� �Aa� along a vector of the Lie algebra. And on this point there is an important di¤erence
between the photon and the other bosons. There is only one type of boson attached to the EM �eld,
so any measure about it will involve only the components v�; '� : But there are di¤erent types of
bosons attached to the other force �elds (6 for the gravitational �elds, 3 for the weak interactions
and 8 for the strong interactions). Even if a given boson belongs only to one type, its type must
be identi�ed. The only way to identify a boson is to compare its behavior with bosons or fermions
interacting with the same force �eld. The observables are then maps from the whole of TM�
 T1U
to F0:

Bosonic �elds

To a particle one can associate a, non unique, matter �eld with the fundamental state  0 and a
section � 2 X (PG) such its trajectory is one of the integral curves of the associated vector �eld.
A boson is de�ned by its point of origin O; a curve which is a Killing curve with a future

oriented vector of speci�c Lorentz length, and a tensor � �Aa� which is propagated with a de�nite
law, depending only on the curve, and transforms regularly in a change of gauge. So to a boson at
a given location, one can associate a bosonic �eld, which is not unique. And conversely a Killing
vector �eld (with the adequate vector) and a single vector � �Aa� (m) at a point m de�nes uniquely
a boson.

Bosons in SR Geometry

In SR geometry a spherical chart centered at a point O is : m = ct"0 + ��!u where �!u is a unitary
vector u 2 R3 normal to S3 (O; �) : The Killing curves are straight lines, and a signal originating at
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O is then a wave with wave vector �!u : [�F (t+ �; w�; u)] = � (�) [�F (t; 0; u)] and similarly for the
potential :

h
� �A (t+ �; w�; u)

i
=
h
� �A (t; 0; u)

i
[� (�)]

So that a boson propagates along a straight line with �xed spatial direction �!u as :h
� �A (t+ �; w�; u)

i
=
h
� �A (t; 0; u)

i
The components � �Aa� are constant.
The fundamental state is with : V = c"0 + w

�!u
BA =

P3
�=0 V

�� �Aa� = c� �Aa0 + w
P3
�=1 u

�� �Aa�

QED and QTF

The EM and gravitational �elds have an in�nite range, meanwhile the range of the weak and strong
interactions is very short, and this has a direct consequence on the way the related bosons are
considered practically.
Whenever weak or strong interactions are involved, the motion of the boson does not matter. The

dominant feature is their interaction with fermions as a localized potential � �A; modelled through a
lagrangian. This is the topic of the Quantum Theory of Fields (QTF). Photons are then composite
particles, and gravitons are not considered.
The photons, and the gravitons as far as we can assume, propagate without attenuation on

great distances, and their propagation curves are part of their de�nition. When the weak or strong
interactions are not involved their dominant feature is as discontinuity of an underlying �eld and
their action is then modelled as collisions, through the Energy-Momentum tensor. This is what is
done in Quantum Electro-dynamics (QED).
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8.3 BOSONS IN QED

In QED only the photons, which are then elementary particle, are considered, but gravitons should
have similar properties.
The potential �A of the EM �eld is a one form : �A =

P
�
�A�d�

� 2 X (TM�) :

F�� =
P
�

�
@� �A� � @� �A�

�
d�� ^ d��

In the standard chart
h
d �Ar

i
is related to the magnetic �eld, and

h
d �Aw

i
to the electric �eld :

[FrEM ] = � [B]
t
detQ0 =

h
d �Ar

i
[FwEM ] = [E]

t
[g3] =

h
d �Aw

i
Using the same decomposition in the tetrad of an observer, a photon has an �electric component�

�E' in the time direction "0 and a �magnetic component��B' in the 3 dimensional space, such
that :
�' = (�E') "

0 +
P3
j=1 (�Bj') "

j

c�E'+�B' (v) = Ct

8.3.1 Interaction of photons with particles

Photons appear or disappear during interactions of the EM �eld with particles - essentially electrons
- and their properties are de�ned through these discontinuous interactions.
In condensed matter there are electrons which are free, or whose link with atoms is weak. They

are the carriers of the usual electric current. Atoms and molecules can also vibrate. In normal
circumstances their interaction with the EM �eld is represented in a continuous process, as in our
2 models. The �eld modi�es the motion of the particle, and the change in the �eld propagates
following a law which smears out the local discrepancy. The e¤ects of this continuous process are :
- a re�ection and refraction of the incoming �eld
- a thermal e¤ect : the �eld transfers kinetic energy to the particles, increasing the temperature

of the solid, and conversely the thermal agitation of the electrons induces a �eld which is then
reemitted as radiance heat
- a pressure on the solid : the change in the motion of the particles is transferred to the solid

through the internal links.
At a macroscopic scale these phenomena appear as continuous, and their amplitude depends only

on the intensity of the �eld.
However, the states of a system composed of microsystems interacting are quantized, as seen in

the 2nd Chapter. In an atom electrons are arranged in shells, corresponding to speci�c states of a
common matter �eld, and notably to di¤erent level of energy. Free electrons in condensed matter
show similar properties, as well as the vibration modes of crystals. When the levels of energy are
close (as for electrons on the �exterior� shells) the change appears as continuous, but when the
discrepancy is too big, the change involves a discontinuous process.
When the electron loses energy the balance is provided to the �eld. The point where the in-

teraction occurs is singular, as in any interaction. The local excess of energy is dissipated through
a mechanism involving a �xed law (the matrix �) which has a limited capacity to do it in a given
volume. When this capacity is exceeded a discontinuity appears in the �eld, and the excess of energy
is carried away as a photon, propagating on a line.
Conversely an electron can be upgraded to a shell with a greater level of energy, but this requires

a supply of energy localized at a point, which is not possible with a continuous �eld. This supply of
energy can only come from a discontinuity, that is from a photon.
These discontinuous processes are common, and indeed there are the dominant phenomena at

the atomic level. Their main characteristic is the existence of a threshold : if their e¤ect at the
macroscopic scale still depends on the intensity of the �eld, they happen only if some conditions,
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linked essentially to the energy, are met. The system which should be considered comprises the
electrons, atoms and the �elds, so it is complicated, and any conceivable model is based on speci�ca-
tions of each of the components, as we have done for particles with matter �elds, and of interacting
microsystems. Even if the individual processes are not random, any measure which can be done
appears as the result of a process in which a transition happens with some probability.
These mechanisms explain phenomena such as :
- photo-electric emission : if the energy brought by the �eld is su¢ cient, the link with the atom

is broken and a free electron appears. The conversion of energy between the incoming �eld and the
current collected is not 100 % : above the threshold there is only a probability, increasing with the
intensity, that an electron is ejected
- black-body radiation : thermal agitation of electrons causes the emission of a EM �eld, as radi-

ance heat. Its spectrum in frequencies depends on the balance between the emission / reabsorbtion
of the �eld by the electrons, internal to the material. The existence of a threshold has an impact to
the aspect of the spectrum.
- Compton e¤ect : the encounter between a photon and a free charged particle changes both the

trajectory of the particle and the characteristic of the �eld.

8.3.2 Representations of the mechanisms

The tetrad equation

The mechanisms above can be represented as transitions between two states of equilibrium, so the
continuous models are useful. In particular the tetrad equation, which gives the balance of energy,
understood in the meaning of distributions, still holds. Particles are represented as belonging to a
matter �eld : their trajectories are integral curves of a given vector �eld. The variation of the energy
of a particle is given by the tensor :P3

�;�=0 V
� �E
���

@�� 
 d�� =
�P3

�=0 V
�@��

�


�P3

�=0
�E
���

d��
�
2 TM 
 TM�

with the variational derivative �E
���

: The integral curves associated to a given section are curve
of constant energy : h ;rV  i = 0: A change of the energy of the particle implies that the particle
goes from one integral curve to another, and we can no longer assume that �E�x = 0;

�E
�t = 0; it implies

a change in the quantities on the left hand side of the tetrad equations. One can assume that the
metric does not change : this is a continuous variable, de�ned all over M; so the balance is imputed
to the �elds. Actually it could be either the EM �eld or the gravitational �eld, the discrepancy
between the intensity of the �elds makes that the change, as it can be measured, is imputed to the
EM �eld. However one cannot discount a change in the gravitational �eld, di¢ cult if not impossible
to measure.

The Energy-Momentum tensor

Moreover the change involves other variables than the energy, and the most complete picture is given
by the Energy-Momentum tensor, which gives the impact of a change of any variable of the system
along a vector �eld V .

T =

� 12CI�MV 
kt0ReD (�Z) dZ+4
P
��

�
4CG hF�G ; @�GiCl + CA

D
F�A ; @� �A

E
T1U

�
@��
d��

The balance is such that T (V ) = 0:For a particle, which belongs to a matter �eld, the partial
derivatives @�Z are de�ned for any direction d�� . For the �eld this is a change � �A along a de�nite
curve : it is null except along the curve. So that TEM (V ) = 0 except in the direction of the
propagation of the photon. Which is similar to imparting a momentum to the photon in the direction
of its propagation
The energy is given by the trace of the tensor :
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Tr (T ) = LParticles + 4LFields
and at equilibrium :

hFEM ;FEM i = G1

�
�FEM ; �A

�
For the underlying �eld the equation ��FEM = 2J�EM holds, so that the variation of energy can

be written as :

�EField = �2� �A (JEM ) = �
1

4
CI�K (8.2)

where the current is understood as the current induced by the underlying matter �eld (this is
the current related to one of the integral curves of the matter �eld). This is clearly what happens
to an electron in an atom : its trajectories are periodic motions with di¤erent periods, a change of
kinetic energy implies a change of trajectory, inside the same section of PG .

The usual representations

In SR geometry �elds and photons propagate along straight lines, and a photon is characterized
by a scalar and a single spatial vector. A photon carries energy, it looks also like it carries a
momentum, so the natural representation is as a particle with momentum travelling along a straight
line. Moreover, because the usual paradigm of the EM �eld is the �plane wave�, the picture was easy
to hold. However there are two points which need some explanation : the reference to a frequency,
as in the celebrated Plank�s law, and the null mass of the photon.

The use of a frequency to describe a photon has historical reasons : its existence came in light
with the study of the spectrum of the black-body, in which the frequency is a central variable.
The distortion of the spectrum, due to the threshold e¤ect, is then explained by the idea that the
exchanges between particles and �eld could happen only in de�nite �quanta�, expressed as multiple
of the frequency.
There is another motivation. The existence of a photon is acknowledged through one of the

mechanisms above. A photon appears as a discrepancy in the EM �eld, a continuous �eld which
exists everywhere and to which the discontinuity is added. Whatever the observable, a singularity is
acknowledged as such as a deviation from a continuous phenomenon. Any measure of the EM �eld
is done over a de�nite period of time. For a periodic �eld, over any interval of time any observable of
the �eld changes with some frequency �: Practically a sample is taken over some period of time, and
the values measured (z1; z2; :::zN ) are compared to the values (x1; x2; :::xN ) which would be expected
according to the underlying �eld. If there is a discrepancy : zp = yp 6= xp then a discontinuity has
been detected, and the experiment can be repeated : over more than one period the probability to
detect the anomaly is always the same, and is proportional to the frequency. This is similar to what
has been shown in the 2nd Chapter on QM. The threshold for the detection of the photon decreases
with the frequency. And actually it is quite impossible to detect a photon with �elds of large wave
lengths. Because the observable is usually linked to the energy, this is the basic interpretation of
the Planck�s law : E = h�:

A mass could be given to the photon, it could be deduced from the energy, as corresponding to a
�mass at rest�in the traditional picture, however this not would be compatible with a propagation
at the speed of light. The usual theoretical justi�cation for the null mass of the photon is that a non
null mass would violate the Maxwell�s laws. Actually this reasoning is based on a model with an
interacting term where the photon is represented as the potential, with its a¢ ne transformation law
(see Guidry p.81) but, as we have seen, the right representation of boson avoids this issue. Actually
the idea to give a mass to the photon comes from the want to agree with its assumed momentum.
But the de�nition of the mass of a particle is somewhat conventional. For particles it comes from
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the inertial spinor, and more precisely from the inertial vector. We have nothing equivalent here,
and there is no need to invent a mass for the photon, null or otherwise.

8.3.3 Extension to gravitons

Gravitons should have properties similar to the photon, as they propagate also at the speed of light.
Because they have never been observed, any idea on the subject is speculative.
There would be 3 kinds of gravitons, and 3 kinds of antigraviton, with Spin 1.
The equations for the energy is :
�EField = �8CG��(JG) = � 14CI�K
with the currents JG associated to the gravitational �eld.

The quantity ��(JG) =
P3
�=0

nP3
a=1

�
��a�J

a;�
G

�
�
P6
a=4

�
��

a

�J
a;�
G

�o
so gravitons and antigravitons should have opposite interactions with particles, as it appears also

in the Energy-Momentum tensor.
All that has been said about periodic motions represented by matter �elds holds also the gravi-

tational �eld. In a star system the orbits of planets are organized in a con�guration which is usually
stable. A change of orbit occurring in a short period of time, as in a collision, would result in a
signi�cant discontinuity in the gravitational �eld. Gravitons and anti-gravitons would propagate in
opposite directions, so that, at a given point, only one kind would appear.
According to the tetrad equation the impact of a discontinuity in the gravitational �eld can be

imparted to the �eld itself or to the metric. With a photon the choice seems obvious, however with a
graviton it is less so. A discontinuous process is a transition between 2 states of equilibrium, and it is
clear that in a phenomenon such as a collision in a star system the metric in the new state would not
be the same. But, far away, the metric is de�ned by local conditions and only the local gravitational
�eld would be a¤ected. Which gives some credence to the idea of �gravitational waves�. Notice that
there is always an EM �eld present, and a discontinuity of the gravitational �eld could also, through
the tetrad equation, create a discontinuity in the EM �eld, that is the emission of photons of strong
energy. This could be one explanation for the bursts of X or gamma rays.
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8.4 QUANTUM THEORY OF FIELDS

Whenever the weak or strong interactions are considered, due to their very small range, the focus
is on the interactions between fermions and bosons, in which the particles usually do not keep their
fundamental state. QTF is a Theory of its own, and encompasses many topics, using several tools
and models. We will just give an overview of them and see how they can be consistent with our
picture.

8.4.1 Micro-Systems interacting

Lagrangian

In the 2nd continuous model, with individual particles, the equations for the particles involve only
the value of the potentials at the location of the particle. The location (in M) of the events is
not involved : only the value of the maps. So, when the topic is focused on the particles (without
consideration of the propagation of the �elds in the vacuum) and on the transitions between states,
it makes sense to use a model where the �elds are themselves represented as bosons.
Bosons interact with particles when they meet : the interaction occurs at a point m0 common to

their respective trajectory. Bosons act on particles through the same mechanism as the �elds, and
according to the charge of the particles. All known elementary particles, except the neutrinos, have
an electric charge, so they interact with photons.
The action of a boson on the momentum of a particle with velocity U is :

� B = # (�;{) [ 0]
h
Ad{

�P3
�=0 U

�� �A�

�i
with bosons

If the particle keeps its fundamental state  0 its momentum changes as :

#
�
�
� eXr; eXw

�
� e�;{� e = # (� (Xr; Xw) � �;{) + � B

Then, as in a collision, we can assume that the particle has a continuous motion before and after
interacting with the boson. So  ; e follow the same PDE, the only di¤erence is the initial condition,
de�ned at m0 for e :
The change of kinetic energy is : �K = 1

Mp

1
i h ; � i ; so it is not necessarily equal to the energy

of the boson, and di¤erent outcomes are possible. The boson can disappear, or it can survive the
encounter, but with a loss of energy. Then it follows one of the propagation curve of the �eld
emanating from the particle.

The variables  ; b�A; bG;� �A;�G; considered as maps on R valued in the respective vector spaces,
can be introduced in a lagrangian, either as �bosonic �elds�, similar to �ferminonic �elds�(similar
to the �rst model), or as isolated bosons on their trajectories (similar to the second model). This is
actually the lagrangian of the standard model. However in QTF bosons are introduced with the same
format as the potential, and its a¢ ne transformation law in a change of gauge. This complication,
and the use of the Dirac�s operator, require the introduction of the Higgs boson. In our picture one
can build a lagrangian including bosons without the need for the Higgs boson.

Micro-Systems interacting

The continuous model of type 1 was inspired by Fluid Mechanics, and the natural extension is Gas
Mechanics, where a great number of particles interact together. We can consider micro systems,
comprising one particle, the �elds and possibly one boson represented by the variables which enter

the lagrangian :  ;FA;FG; b�A; bG;B;�. These variables are seen as fermionic, bosonic or force �elds
but, because their location does not matter, this is the value in the associated vector spaces which
is considered. If the conditions of the theorem 29 are met, then the state of a microsystem is
represented in a Hilbert space H by a vector, which is the direct product of vectors representing
each variable.
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For a system of N such microsystems, where the bosons and fermions are of the same type, they
have the same behavior, and are indistinguishable : we have a homogeneous system and we can
apply the theorems 32 and 34. The interactions between the micro systems lead to the quantization
of the states. This is done in several steps.

1. The states of the microsystems (encompassing all the variables

 ;
b�A; bG;� �A;�G) are associated to a Hilbert space H , and the states of the system are asso-

ciated to the tensorial product 
Nn=1H of the Hilbert space H associated to each microsystem. An
equilibrium of the system corresponds to a vector subspace h of 
Nn=1H which is de�ned by :

i) a class of conjugacy S (�) of the group of permutations S (N)

ii) p distinct vectors (e"j)pj=1 of a Hermitian basis of H which together de�ne a vector space HJ

And h is then either �n1HJ 
�n2HJ :::
�npHJ or ^n1HJ 
 ^n2HJ :::
 ^npHJ

The state 	 of the system is then : 	 =
P

(i1:::in)
	i1::ine"i1 
 ::
 e"in with an antisymmetric or

a symmetric tensor.

2. We have global variables, which can be taken equivalently as the number of particles, or their
charge, and the energy of the system. For each value of the global variables the state 	 of the system
belongs to one of the irreducible representations. The class of conjugacy � and the vectors (e"j)pj=1
are �xed.

3. At the level of each microsystem, each vector e"j 2 H represents a de�nite state of a micro sys-
tem, and the value of each variable of the micro-system is quantized. In a probabilist interpretation
one can say that there are (ni)

p
i=1 microsystems in the state e"ji :But one cannot say with certainty

what is the state of a given microsystem.

The quantization of each microsystem means that the vector � representing its state in H belongs
to a �nite dimensional vector space :

� =
P

(i1;:::;iq)
�i1:::iq jei1 ; ei2 :::eiq > where the vectors jei1 ; ei2 :::eiq > correspond to the e"j

The spin of the particle corresponds to one of the vectors ej of the basis and is represented
by a variable associated to a vector of T1Spin (3). The action of s 2 Spin(3) and �s 2 Spin(3)
give opposite results. If the spin number j is an integer then the particle has a speci�c, physical
symmetry, and its spin is invariant by SO(3). This property must be re�ected in the states of the
system.

If j is half an integer the representation of the system is by antisymmetric tensors to account for
the antisymmetry by Spin(3). As a consequence in each vector space �nHJ the components of the
tensors, expressed in any basis, which correspond to the diagonal are null :

 i1::in = 0 for i1 = i2 = :: = in

The micro systems belonging to the same �nHJ must be in di¤erent states. This the Pauli�s
exclusion

principle.

The particles whose spin number is half an integer are called fermions and are said to follow the
Fermi-Dirac statistic. The particles whose spin number is an integer are called bosons and are said
to follow the Boose-Einstein statistic.

So the denominations fermions / bosons are here di¤erent from that we have used so far. All
elementary particles are fermions, all discontinuities of the �elds are bosons, but composite particles
or atoms can be bosons if the spin number is an integer.

The exclusion principle does not apply to all the micro-systems. In a system there are usually
di¤erent sets of microsystems, which corresponds to di¤erent subspaces �nHJ and therefore micro-
systems belonging to di¤erent subspaces can have the same spin, however each of these subspaces is
distinguished by other global variables, such the energy (for instance the electrons are organized in
bands of valence in an atom).
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Fock Spaces

So far, in all the models the number of interacting particles (fermions or bosons) is constant, and
the particles keep their fundamental state. The main topic of QTF is the study of events when these
rules do not hold any longer : creation or annihilation of particles. Each of these events occur at a
given location and involve discontinuous processes, the �elds are represented as bosons, so we have
a system consisting of a variable number of micro-systems, represented by vectors in some Hilbert
space H, interacting.
Interacting microsystems are represented in the tensorial product of H, but because their number

is not �xed, we need to consider the Fock space, de�ned as F = �1k=0 (
kH) (Maths.12.5.8). k can
be 0 so scalars can be vectors of the Fock spaces.
A vector 	 of Fn = �nk=0 (
kH) is given by n+ 1 tensors :
( m;  m 2 
mH;m = 0:::n)
The �ground state�is the vector (1; 0; 0; ::::) in the algebra.
Any operator on the Hilbert spaces can be extended to a linear continuous operator on the Fock

space.
For each Fock space �1k=1 (
kH) there is a number operator N , whose, dense, domain is :
D (N) =

n
 m 2 
mH;

P
k�0m

2 k mk2 <1
o

N (	) =
�
0;  1; 2 2; :::m m:::

�
N is self adjoint.
The annihilation operator cuts a tensor at its beginning :
am : H ! L (
mH;
m�1H) ::
am ( ) ( 1 
  2:::
  m) = 1p

m
h ; 1iH  2 
  3:::
  m

The creation operator adds a vector to a tensor at its beginning :
a�m : H ! L (
mH;
m+1H) ::
a�m ( ) ( 1 
  2:::
  m) =

p
m+ 1 
  1 
  2 
  3:::
  m

a�m is the adjoint of am and am; a�m can be extended to the Fock space as a; a�.
The physical meaning of these operators is clear from their names. They are the main tools to

represent the variation of the number of particles.
The spaces of symmetric (called the Bose-Fock space) and antisymmetric (called the Fermi-

Fock space) tensors in a Fock space have special properties. They are closed vector subspaces,
so are themselves Hilbert spaces, with an adjusted scalar product. Any tensor of the Fock space
can be projected on the Bose subspace (by P+) or the Fermi space (by P�) by symmetrization
and antisymmetrization respectively, and P+; P� are orthogonal. The operator exp itN leaves both
subspaces invariant. Any self-adjoint operator on the underlying Hilbert space has an essentially
self adjoint prolongation on these subspaces (called its second quantization). However the creation
and annihilation operators have extensions with speci�c commutation rules :
Canonical commutation rules (CCR) in the Bose space:
[a+ (u) ; a+ (v)] =

�
a�+ (u) ; a

�
+ (v)

�
= 0�

a+ (u) ; a
�
+ (v)

�
= hu; vi 1

Canonical anticommutation rules (CAR) in the Fermi space :
fa+ (u) ; a+ (v)g =

�
a�� (u) ; a

�
� (v)

	
= 0�

a+ (u) ; a
�
+ (v)

	
= hu; vi 1

where
[X;Y ] = X � Y � Y �X
fX;Y g = X � Y + Y �X
These di¤erences have important mathematical consequences. In the Fermi space the operators

a�; a
�
� have bounded (continuous) extensions. Any con�guration of particles can be generated by

the product of creation operators acting on the ground state. There is nothing equivalent for the
bosons.
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8.4.2 Path integrals

In a discontinuous process usually there can be several possible outcomes. The question is then to
�nd which one will occur. This is the main purpose of the path integral theory. As many others in
Quantum Physics, its idea comes from Statistical Mechanics, and was proposed notably by Wiener.
If the evolution of the system meets the criteria of the Theorem 26 (the variables are maps

depending on time and valued in a normed vector space and the process is determinist) there is an
operator �(t) such that : X (t) = � (t)X (0). When in addition the variables X (t) and X (t+ �)
represents the same state, �(t) = exp t� with a constant operator. The exponential of an operator
on a Banach space is a well known object in Mathematics, so the law of evolution is simple when
� is constant, which requires fairly strong conditions. However, because discontinuities are isolated
points, at least at an elementary level, between the transitions points� can be considered as constant.
Then we have a succession of laws :

t 2 [tp; tp+1[: X (t) = (exp t�p)X (tp)
and :
X (t) = (exp (t� tp)�p) (exp (tp � tp�1)�p�1) ::: (exp t1�p)X (0)
which are usually represented, starting from the derivative.
This is a generalization of the mathematical method to express the solution of the di¤erential

equation in Rm : dXdt = �(t)X (t) :

X (t) = limn!1

 
nY
p=0

exp (tp+1 � tp)� (tp)
!
X (0)

The�p and the intermediary transition points are not known, but if we can attribute a probability
to each transition, then we have a stochastic process (see Maths.11.4.4). The usual assumption is
that the transitions are independent events, and the increment (�p+1 � �p) follow a �xed normal
distribution law (a Wiener process). In this scheme all possible paths must be considered.

In QM the starting point is the Schrödinger equation, i~d dt = H ; which has a similar meaning.
However in a conventional QM interpretation there is no de�nite path (only the initial and the
�nal states are considered) and furthermore, because of the singular role given to t, it seemed not
compatible with Relativity. Dirac proposed the use of the lagrangian, and Feynman provided a full
theory of path integrals, which is one of the essential tools of QTF. The fundamental ideas, as
expressed by Feynman, are that :
- to any physical event is associated a complex scalar �; called an amplitude of probability,
- a physical process is represented by a path, in which several events occur successively,
- the amplitude of probability of a process along a path is the sum of the amplitude of probability

of each event,
- the probability of occurrence of a process is the square of the module of the sum of the amplitudes

of probability along any path which starts and ends as the initial and �nal states of the process (at
least if there is no observation of any intermediate event).
The amplitude of probability of a given process is given by : e

i
~S[z] where S [z] is the action,

computed with the lagrangian :
S [z] =

R B
A
L
�
zi; zi�:::z

i
�1:::�r

�
dm evaluated from the r-jet extension of z. The total amplitude

of probability to go from a state A to a state B is � =
R
e
i
~S[z]Dz where Dz means that all the

imaginable processes must be considered. Then the probability to go from A to B is j�j2 : So each
path contributes equally to the amplitude of probability, but the probability itself is the square of
the module of the second integral.
The QM wave function follows :  (x; t) =

R +1
�1 � (x; t; �; �) (�; �) d�d�

If a process can be divided as : A! B ! C then
� (A;C) = � (A;B)� (B;C) which is actually the idea of dividing the path in small time intervals.
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It can be shown that, in the classical limit (~! 0) and certain conditions, the path integral is
equivalent to the Principle of Least Action. With simpli�cations most of the usual results of QM
can be retrieved.
Even if the literature emphasizes simple examples (such as the trajectory of a single particle),

the path integral is used, with many variants, mainly to address the case of discontinuous processes
in QTF, as this is the only general method known. It leads then to consider the multiple possibilities
of collisions, emissions,... involving di¤erent kinds of particles or bosons, in paths called Feynman�s
diagrams.
The quantities which are involved are either force �elds (gravitation is not considered), fermionic

�elds or bosonic �elds. In the last two cases a trajectory is computed as a path.
It is clear that this formalism is grounded in the philosophical point of view that all physical

processes are discreet and random. One can subscribe or not to this vision, but it leads to some
strange explanations. For instance all the paths must be considered, even when they involve un-
physical behaviors for the particles (the virtual particle are not supposed to follow the usual laws
of physics). An explanation which is not necessary : we have eventually a variational calculus, so
r-jets, in which the derivatives are independent variables, are the natural mathematical framework
and we must consider all possible values for the variables, independently of their formal relations.
Beyond the simplest case, where it has no added value, the computation of path integrals is a

dreadful mathematical endeavour. This is done essentially in a perturbative approach, where the
lagrangian is simpli�ed as we have done previously, so as to come back to quadratic expressions. The
results are then developed in series of some scale constant. However it is full of mathematical incon-
sistencies, such as divergent integrals. The theory of path integrals is then essentially dedicated to
�nd new computational methods or tricks, without few or no physical justi�cation : renormalization,
ghosts �elds, Gladston bosons, Wick�s rotation, BRST,...
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Chapter 9

CONCLUSION

At the end of this book I hope that the reader has a better understanding of how Theoretical
Physics, encompassing the most advanced topics, can be grounded in a deep understanding of
the usual concepts and First Principles, with the use of the adequate mathematical tools. Group
Representations, Cli¤ord Algebras, Fiber Bundles, Connections, jet prolongations, are a bit abstract,
but well suited, and quite e¢ cient to address the issues of modern Physics. The many tools presented
(such as the operators j,�, the complex representation, the decomposition Fr;Fw; the charts with
r; w:::) make manageable the problems in RG, without the usual assumptions, made essentially to
simplify the computations and not fully physically justi�ed. I hope also to have brought some
clari�cation on Quantum Mechanics, Relativity and gauge theories, as well as on ideas, such as the
duality between particles and �elds.
1. In the Second Chapter it has been proven that most of the axioms of QM come from the

way models are expressed in Physics, and the following chapters have shown how the theorems can
be used. They state precise guidelines and requirements for their validity, and these requirements,
albeit expressed as Mathematical conditions, lead to a deeper investigation of the physical meaning
of the quantities which are used. For a property, the fact to be geometric is not a simple formality :
it means that this is an entity which exists beyond the measures which can be made, and that these
measures vary according to precise rules. The role of the observer in the process of measurement is
clearly speci�ed. The condition about Fréchet space, which seemed strange, takes all its importance
in the need to look for norms on vector spaces. The relation between observables and statistical
procedures has found an application to explain the Plank�s law. There has been few examples of
the use of observables, whose role is more central in models representing practical experiments, but
their meaning should be clear.
2. Relativity, and particularly General Relativity, which is often seen as a di¢ cult topic, can

be understood if we accept to start from the beginning, from Geometry, the particularities of our
Universe and accept to give up schemes and representations which have become too familiar, such
as inertial frames. With the formalism of �ber bundles it is then easy to address very general topics
without losing the mathematical rigor. We have given a consistent and operational de�nition of
a deformable solid, which can be important in Astrophysics. We have also shown the necessity
to review the concept of motion, incorporating translation and rotations, leading to the general
assumption of the existence of a tetrad attached to all material bodies, at any scale, which adds
relief to the Geometry of RG. Cli¤ord algebras are not new, but they appear really useful when one
accepts fully the riches of their structure, without resorting to hybrid concepts such as quasi or axial
vectors. And they are the natural, and necessary, framework to represent the motion of material
bodies. They can be used in SR, or even in Galilean Geometry.
3. The enlargement of the concept of motion leads naturally to revisit the concept of momentum.
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The framework given in the Chapter 4 is actually the natural prolongation of Classic Mechanics,
when the adjustments required by the Geometry of General Relativity are accounted for. They
lead to a sound de�nition of the Spinors, give a clear meaning to the Spin and the introduction of
anti-particles. With spinors the concept of matter �elds becomes clear. In my opinion they are the
only way to represent in a consistent and e¢ cient manner the motion and the kinematics properties
of material bodies in the GR context. So Spinors should be useful in Astrophysics, where gravitation
is the only force involved and GR cannot be dismissed.
4. The use of connections to represent the force �elds has become a standard in gauge theories.

The strict usage of �ber bundles and spinors enables to put the gravitational �eld in the same
framework, and it appears clearly that the traditional method based on the metric and the Levi-
Civita connection imposes useless complications and misses some features which can be physically
important, such that the decomposition in transversal and spatial components. Propagation of force
�elds is a widely used concept, but to which too little theoretical work has been devoted. The results
presented in the Chapter 5 are signi�cant, and should be useful for understanding the propagation of
the gravitational �eld. They provide a general speci�cation for the metric which should be precious
in all studies involving GR.
5. In the Chapter 6 we have presented the di¤erent issues in the implementation of the Principle

of Least Action. We have proven that, in the most general lagrangian, 6 variables su¢ ce, but
others, and notably the potentials, are excluded. We have given a strong mathematical backing to
the functional derivatives calculus, based of an original theory of distributions on vector bundles.
This is the key to understand the meaning of the Energy-Momentum tensor. We have shown that
the tetrad equation, in the most general context, is equivalent to the conservation of energy, which
emphasizes the role of the metric.
6. The two models presented are essentially examples of how the theory of Lagrangians can be

used practically. They are the starting point for the concepts of currents. Important theorems have
been proven, such that non relativist particles follow geodesics, and we have provided guidelines
which can be used to �nd explicit solutions of the most general problems, in particular for the
computation of the �elds and of the metric.
7. The idea of bosons as discontinuities in the �elds seems more speculative. But it is clear that

one cannot reconcile the concepts of localized material bodies and continuous force �elds without
some discontinuities. The common answer of the two Physics, based on a totally discreet and
random vision of the world, on one hand, and a continuous classic and practical Physics on the other
hand, lacks both of ambition and imagination. As it has been done on the other topics a deeper
understanding of the concepts, and the extension of the well known phenomenon of discontinuities
in a continuous medium give a natural solution. The presentation leaves some gaps, which are due to
our limited knowledge of the propagation of weak and strong interactions and the non observation
of gravitons.

There are some new results in this book : QM, deformable solids in RG, spinors, motion of
material bodies, propagation of �elds, bosons. They are worth to be extended, by �lling the gaps,
or simply using the methods which have been introduced. For instance many other theorems could
be proven in QM, a true Mechanics of deformable solids could be built, with the addition of the
concepts of Thermodynamics, the representation of bosons could be more �rmly grounded by the
consideration of the known properties of all bosons. But from my point of view the most important
topic should be gravitation. This is the most common and weakest of all force �elds, but we are
still unable to use it or to understand it properly. The representation of the gravitational �eld by
connections on one hand, and of the gravitational charges by spinors on the other hand, shows
striking similarities with the EM �eld : indeed they are the only �elds which have an in�nite range,
the EM charge can be incorporated in the gravitational charge, and the photon, the only well known
boson, shows distinct properties than the other bosons. This similitude has been remarked by many
authors, Heaviside, Negut, Je�menko, Tajmar, de Matos,...and it has been developed in a full Theory,
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which has sometimes be opposed to GR. We �nd here that these similitudes exist in the frame of
a GR theory which allows for a more general connection and the use of the Riemann tensor, so it
seems more promising to explore this venue than to �ght against GR. The gravitational �eld shows,
in all its aspects, two components, and it seems logical that it has a cosmological interpretation : it
would be the engine which moves matter on its world line. Both components have di¤erent e¤ects,
and there is no compelling reason that it should always be attractive.
This new look on the relation between the gravitational and the EM �elds leads also to reconsider

the �Great Uni�cation�. The Standard Model has not been the starting point for the uni�cation
of all force �elds. It has brought the EM �eld with the weak and strong interactions with which it
shares very few characteristics, meanwhile it has been unable to incorporate the gravitational �eld
which seems close to the EM �eld, and all that at the price of the invention of a 5th force. For
theoretical as well as practical purpose the right path seems to consider the forces which manifest
at long range together, and to �nd a more speci�c framework for the nuclear forces. This seems
a strange conclusion for a book which puts the gauge theories at the front. But �ber bundles,
connection and gauge theories have their place in Physics as e¢ cient tools, not as the embodiment
of a Physical Theory. The fact that they can be used at any scale, and for practical studies, should
su¢ ce to support their interest.

QM and Relativity have deeply transformed the way we do Physics.
We were used to an eternal, �at, in�nite Universe (an idea which is, after all, not so obvious).

With Relativity we had to accept that we could represent the Universe as a four dimensional, curved,
structure, which integrates the time. Beyond the change of mathematical formalism, Relativity has
also put limits to our capability to know the Universe. We are allowed to model it as we want, with
an in�nite extension, in space and time, but the only Universe that is accessible to our measures
and experiments is speci�c to each observer : we have as many windows on the Reality that there
are observers. We can dream the whole world, we can put in our models variables which are related
to the past or the future, as if they were there, but the world that I can perceive is the world that
I see from my window, and my neighbor uses another window. I can imagine what is beyond my
window, but to get a comprehensive picture I need to patch together di¤erent visions.
With QM we have realized that we can model the reality, whatever the scale, with mathematical

objects, but these objects exist only in the abstract world of Mathematics, they are some idealization
that we use because they are e¢ cient in our computations, but we can access reality only with cruder
objects, �nite samples and statistic estimations. The discrepancy between the measures, necessarily
circumstantial and probabilist, and the real world does not mean that the real world is discreet and
proceeds according to random behaviors, only that we have to acknowledge the di¤erence between
a representation and the reality. And conversely it does not preclude the use of the models, as long
as we are aware of their speci�c place : it is not because we cannot measure simultaneously location
and speed that their concepts are void.
The Copenhagen interpretation of QM states the existence of 2 Physics, one which holds at

the atomic level, and another at our scale. Actually the way we can use Mathematics to represent
and model the physical world leads to distinguish continuous and discontinuous processes. The
distinction holds at any scale, but the scale also matters, because discontinuous processes can be
simpli�ed and represented as continuous, if we accept to neglect part of the phenomena.
Contrary to many, I am a realist, I believe that there is a unique real world outside, it can be

understood, it is not ruled by strange and erratic behaviors. But modern Physics, in a mischievous
turn, has imposed the need to reintroduce the individual in Science, in the guise of the observer,
and the discrepancy between imagination, which enables us to see the whole as if it was there, and
the limited possibility to keep it in check. The genuine feature of the human brain is that it can
conceive things that do not exist, that will never occur as we dreamed them. This is precious and
Science would be impossible without it. To impart to reality our limitations or to limit our ambitions
to what we can check are equally wrong. Actually the only way for a Scientist to keep his sanity in
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front of all the possible explanations which are provided is that to remember that there is one world
: the one in which he lives.

jc.dutailly@free.fr
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Appendix A

ANNEX

A.1 CLIFFORD ALGEBRAS

This annex gives proofs of some results presented in the core of the paper.

A.1.1 Products in the Cli¤ord algebra

Many results are consequences of the computation of products in the Cli¤ord algebra. The computa-
tions are straightforward but the results precious. In the following h"0; "0i = �1 with the signature
(3,1) and +1 with the signature (1,3). "5 = "0 � "1 � "2 � "3
The numerous formulas involving the operator j are given at the end of this Annex.

Product � (r; w) � � (r0; w0)

� (r; w) = 1
2

�
w1"0 � "1 + w2"0 � "2 + w3"0 � "3 + r3"2 � "1 + r2"1 � "3 + r1"3 � "2

�
� (r0; w0) = 1

2

�
w01"0 � "1 + w02"0 � "2 + w03"0 � "3 + r03"2 � "1 + r02"1 � "3 + r01"3 � "2

�
With signature (3,1) :

� (r; w) � � (r0; w0) = 1
4 (w

tw0 � rtr0)� 1
4 (w

tr0 + rtw0) "5
+ 1
4

�
�r3w02 + r2w03 + w2r03 � w3r02

�
"0"1 +

1
4

�
r3w01 � w1r03 + w3r01 � r1w03

�
"0"2

+ 1
4

�
r1w02 � r2w01 + w1r02 � w2r01

�
"0"3

+ 1
4

�
w2w01 � w1w02 + r1r02 � r2r01

�
"2"1 +

1
4

�
�w3w01 + w1w03 � r1r03 + r3r01

�
"1"3

+ 1
4

�
w3w02 � w2w03 + r2r03 � r3r02

�
"3"2

� (r; w)�� (r0; w0) = 1
4 (w

tw0 � rtr0)+ 1
2� (j (r) r

0 � j (w)w0; j (w) r0 + j (r)w0)� 1
4 (w

tr0 + rtw0) "5
From there the bracket on the Lie algebra :
[� (r; w) ; � (r0; w0)] = � (r; w) � � (r0; w0)� � (r0; w0) � � (r; w)

[� (r; w) ; � (r0; w0)] = � (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0) (A.1)

With signature (1,3) :

� (r; w)�� (r0; w0) = 1
4 (w

tw0 � rtr0)� 12� (�j (r) r
0 + j (w)w0; j (w) r0 + j (r)w0)� 14 (w

tr0 + rtw0) "5
From there the bracket on the Lie algebra :

[� (r; w) ; � (r0; w0)] = �� (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0) (A.2)

More over, with both signatures : � (x; y) � "5 = "5 � � (x; y) = � (�y; x)
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Product on Spin(3; 1)

Because they belong to Cl0 (3; 1) the elements of Spin(3; 1) can be written :
s = a+ 1

2

�
w1"0 � "1 + w2"0 � "2 + w3"0 � "3 + r3"2 � "1 + r2"1 � "3 + r1"3 � "2

�
+ b"0 � "1 � "2 � "3

where a; (wj ; rj)3j=1; b are real scalar which are related. That we will write with

s = a+ � (r; w) + b"5 (A.3)

And similarly in Cl (1; 3) : s = a+ � (r; w) + b"0 � "1 � "2 � "3
The product of two elements of the spin group expressed as :
s = a+ � (r; w) + b"5
s0 = a0 + � (r0; w0) + b0"5
can be computed with the previous formulas.
(a+ � (r; w) + b"5) � (a0 + � (r0; w0) + b0"5)
= aa0 � bb0 + � (a0r + ar0 � bw0 � b0w; a0w + aw0 + br0 + b0r) + � (r; w) � � (r0; w0) + (a0b+ ab0) "5
i) With signature (3,1)

� (r; w)�� (r0; w0) = 1
4 (w

tw0 � rtr0)+ 1
2� (j (r) r

0 � j (w)w0; j (w) r0 + j (r)w0)� 1
4 (w

tr0 + rtw0) "5
(a+ � (r; w) + b"5) � (a0 + � (r0; w0) + b0"5) = a" + � (r"; w") + b""5
a" = aa0 � bb0 + 1

4 (w
tw0 � rtr0)

b" = (a0b+ ab0)� 1
4 (w

tr0 + rtw0)

r" = a0r + ar0 � bw0 � b0w + 1
2 (j (r) r

0 � j (w)w0)
w" = a0w + aw0 + br0 + b0r + 1

2 (j (w) r
0 + j (r)w0)

ii) With signature (1,3)

� (r; w)�� (r0; w0) = 1
4 (w

tw0 � rtr0)� 12� (�j (r) r
0 + j (w)w0; j (w) r0 + j (r)w0)� 14 (w

tr0 + rtw0) "5
(a+ � (r; w) + b"5) � (a0 + � (r0; w0) + b0"5) = a" + � (r"; w") + b""0 � "1 � "2 � "3
a" = aa0 � bb0 + 1

4 (w
tw0 � rtr0)

b" = (a0b+ ab0)� 1
4 (w

tr0 + rtw0)

r" = a0r + ar0 � bw0 � b0w + a0r + ar0 � bw0 � b0w + 1
2 (j (r) r

0 � j (w)w0)
w" = a0w + aw0 + br0 + b0r � 1

2 (j (w) r
0 + j (r)w0)

A.1.2 Characterization of the elements of the Spin group

Inverse

The elements of Spin(3; 1) are the product of an even number of vectors of norm �1: So we have :
s � st = (v1 � :::v2p) � (v2p � ::: � v1) = 1
The transposition is an involution on the Cli¤ord algebra, thus :

(a+ � (r; w) + b"0 � "1 � "2 � "3) �
�
a+ � (r; w)

t
+ b"3 � "2 � "1 � "0

�
= 1

(a+ � (r; w) + b"0 � "1 � "2 � "3) � (a� � (r; w) + b"0 � "1 � "2 � "3) = 1
, (a+ � (r; w) + b"0 � "1 � "2 � "3)�1 = (a� � (r; w) + b"0 � "1 � "2 � "3)
and we have the same result in Cl (1; 3)

(a+ � (r; w) + b"5)
�1
= a� � (r; w) + b"5 (A.4)

Relation between a,b, r, w

By a straightforward computation this identity gives the following relation between a; b; r; w :
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1. With signature (3,1)
(a+ � (r; w) + b"0 � "1 � "2 � "3) � (a� � (r; w) + b"3 � "2 � "1 � "0) = 1
= a" + � (r"; w") + b""0 � "1 � "2 � "3
with :
a" = a2 � b2 + 1

4 (�w
tw + rtr) = 1

b" = ab+ ba� 1
4 (�w

tr � rtw) = 0
r" = 1

2 (�j (r) r + j (w)w) + ar � ar � bw + bw = 0
w" = 1

2 (�j (w) r � j (r)w) + aw � aw + br � br = 0
a2 � b2 = 1 + 1

4 (w
tw � rtr)

So, for any element : a+ � (r; w) + b"5 we have :

a2 � b2 = 1 + 1
4 (w

tw � rtr) (A.5)

ab = � 14r
tw (A.6)

and if we keep only 6 free parameters, a; b are de�ned from r; w, up to sign, with the conditions:
i) rtw 6= 0 : b = � 1

4ar
tw

a2 = 1
2

��
1 + 1

4 (w
tw � rtr)

�
+

q�
1 + 1

4 (w
tw � rtr)

�2
+ 1

4 (r
tw)

2

�
ii) rtw = 0 :

(wtw � rtr) � �4 : a = �
q
1 + 1

4 (w
tw � rtr); b = 0

(wtw � rtr) � �4 : b = �
q
�
�
1 + 1

4 (w
tw � rtr)

�
; a = 0

So :
if r = 0 then : s = �

q
1 + 1

4w
tw + � (0; w)

if w = 0 then
rtr � 4 : s = �

q
1� 1

4r
tr + � (r; 0)

rtr � 4 : s = � (r; 0) + �
q

1
4r
tr � 1"5

2. With signature (1,3)
We get the same relations.

A.1.3 Adjoint map

The adjoint map : Ad : Spin (3; 1)�Cl (3; 1)! Cl (3; 1) :: AdsX = s�X �s�1 is expressed di¤erently
when it acts on vectors or elements of the Lie algebra T1Spin (3; 1) :

Action on vectors of F

A straightforward computation gives the following results :
8X 2 F; s 2 Spin (3; 1) : AdsX = s �X � s�1
X = X0"0 +X1"1 +X2"2 +X3"3
s = a+ � (r; w) + b"5
AdsX = (a+ � (r; w) + b"5) �X � (a� � (r; w) + b"5)
= a2X + ab (X � "5 + "5 �X) + b2"5 �X � "5 + a (� (r; w) �X �X � � (r; w))
+b (� (r; w) �X � "5 � "5 �X � � (r; w))� � (r; w) �X � � (r; w)
X � "5 = �X0"1"2"3 �X1"0"2"3 +X2"0"1"3 �X3"0"1"2
"5 �X = X0"1"2"3 +X1"0"2"3 �X2"0"1"3 +X3"0"1"2
X � "5 + "5 �X = 0
"5 �X � "5 = �X"5"5 = X
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� (r; w) �X � "5 � "5 �X � � (r; w) = �� (�w; r) �X +X � � (�w; r)
AdsX =

�
a2 + b2

�
X + a (� (r; w) �X �X � � (r; w))

�b (� (�w; r) �X �X � � (�w; r))� � (r; w) �X � � (r; w)
2� (r; w) �X
= X0 (y1"1 + y2"2 + y3"3 � x3"0"1"2 + x2"0"1"3 � x1"0"2"3)
+X1 (y1"0 � y2"0"1"2 � y3"0"1"3 + x3"2 � x2"3 � x1"1"2"3)
+X2 (y1"0"1"2 + y2"0 � y3"0"2"3 � x3"1 � x2"1"2"3 + x1"3)
+X3 (y1"0"1"3 + y2"0"2"3 + y3"0 � x3"1"2"3 + x2"1 � x1"2)
2X � � (r; w)
= X0 (�y1"1 � y2"2 � y3"3 � x3"0"1"2 + x2"0"1"3 � x1"0"2"3)
+X1 (�y1"0 � y2"0"1"2 � y3"0"1"3 � x3"2 + x2"3 � x1"1"2"3)
+X2 (y1"0"1"2 � y2"0 � y3"0"2"3 + x3"1 � x2"1"2"3 � x1"3)
+X3 (y1"0"1"3 + y2"0"2"3 � y3"0 � x3"1"2"3 � x2"1 + x1"2)

(� (r; w) �X �X � � (r; w)) = X0w +
�
wtx

�
"0 + j (r)x (A.7)

[h (s)] =�
a2 + b2 + 1

4 (r
tr + wtw) awt � brt + 1

2w
tj (r)

aw � br + 1
2j (r)w a2 + b2 + 1

4 (r
tr + wtw) + aj (r) + bj (w) + 1

2 (j (r) j (r) + j (w) j (w))

�

Action on the Lie algebra

With
g = a+ � (r; w) + b"5
Z = � (x; y)

AdgX = (a+ � (r; w) + b"5) � � (x; y) � (a� � (r; w) + b"5)
A straightforward computation gives :
Adg� (x; y) = (a+ � (r; w) + b"5) � � (x; y) � (a� � (r; w) + b"5)
= �f

�
a2 � b2 + aj (r)� bj (w)

�
x� [2ab+ aj (w) + bj (r)] y;

[2ab+ aj (w) + bj (r)]x+
�
a2 � b2 + aj (r)� bj (w)

�
yg � � (r; w) � (x; y) � (r; w)

with
� (x; y) "5 = "5� (x; y) = � (�y; x)
"5� (x; y) "5 = �� (x; y)
� (r; w) � � (x; y) � � (r; w)
= 1

2�f
�
j (w) j (w)� j (r) j (r) + 2

�
a2 � b2 � 1

��
x+ (j (r) j (w) + j (w) j (r)� 4ab) y;

� (j (r) j (w) + j (w) j (r)� 4ab)x+
�
j (w) j (w)� j (r) j (r) + 2

�
a2 � b2 � 1

��
yg

Adg� (x; y)

= �f
�
1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w))
�
x�
�
aj (w) + bj (r) + 1

2 (j (r) j (w) + j (w) j (r))
�
y;�

aj (w) + bj (r) + 1
2 (j (r) j (w) + j (w) j (r))

�
x+
�
1 + aj (r)� bj (w)� 1

2 (j (w) j (w)� j (r) j (r))
�
yg

[Adg] =�
1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w)) �
�
aj (w) + bj (r) + 1

2 (j (r) j (w) + j (w) j (r))
�

aj (w) + bj (r) + 1
2 (j (r) j (w) + j (w) j (r)) 1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w))

�
With sw = aw + � (0; w)

[Ads] =

� �
1� 1

2j (w) j (w)
�

� [awj (w)]
[awj (w)]

�
1� 1

2j (w) j (w)
� �

With sr = ar + � (r; 0)

[Ads] =

� �
1 + arj (r) +

1
2j (r) j (r)

�
0

0
�
1 + arj (r) +

1
2j (r) j (r)

� �
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A.1.4 Homogeneous Space

The Cli¤ord algebras and Spin Group structures are built from the product of vectors. The Cli¤ord
Algebras as well as the corresponding Spin groups, for any vector space F of the same dimension
and bilinear form of the same signature are algebraically isomorphic.
The structure Cl (3) can be de�ned from a set of vectors only if their scalar product is always

de�nite positive. So, in a given vector space (F; hi) with Cli¤ord Algebra isomorphic to Cl (3; 1)
the set isomorphic to Cl (3) is not unique : there is one set for each choice of a vector "0 2 F
such that h"0; "0i = �1: In each set isomorphic to Cl (3) there is a unique group with the algebraic
structure Spin (3) :The Cli¤ord Algebra Cl (3) is a subalgebra of Cl (3; 1) and Spin (3) a subgroup
of Spin (3; 1) :

The sets isomorphic to Spin (3)

Let us choose a vector "0 2 F : h"0; "0i = �1 (+1 for the signature (1,3)). In F let be F? the
orthogonal complement to "0 : F? = fu 2 F : h"0; ui = 0g : This is a 3 dimensional vector space.
The scalar product induced on F? by hi is de�nite positive : in a basis of F? its matrix has 3 positive
eigen values, otherwise with "0 we would have another signature. The Cli¤ord Algebra Cl

�
F?; hi?

�
generated by

�
F?; hi?

�
is a subset of Cl (F; hi) ; Cli¤ord isomorphic to Cl (3) : The Spin group of

Cl
�
F?; hi?

�
is algebraically isomorphic to Spin(3):

Theorem 105 The Spin group Spin(3) of Cl
�
F?; hi?

�
is the set of elements of the spin group

Spin(3; 1) of Cl (F; hi) which leave "0 unchanged : Adsr"0 = sr � "0 � s�1r = "0:They read : s =

�
q
1� 1

4r
tr + � (r; 0)

Proof. i) In any orthonormal basis the elements of Spin(3) are a subgroup of Spin(3; 1): They read
:

sr = a+ � (r; w) + b"5
but b = 0; w = 0 because they are built without "0 and then
a2 = 1� 1

4r
tr

sr � "0 � s�1r = Adsr"0

[Adsr ] =

�
1 0
0 1 + aj (r) + 1

2 (j (r) j (r))

�
Adsr"0 =

�
1
0

�
ii) Conversely let us show that E = fs 2 Spin (3; 1) : s � "0 = "0 � sg = Spin (3)
sr = a+ � (r; w) + b"0 � "1 � "2 � "3
If sr � "0 = "0 � sr
In Cl(3; 1) :
s � "0 = a"0 + � (r; w) "0 � b"1 � "2 � "3 = "0 � s = a"0 + "0� (r; w) + b"1 � "2 � "3
� (r; w) "0 =
= 1

2

�
w1"1 + w

2"2 + w
3"3 � r3"0 � "1 � "2 + r2"0 � "1 � "3 � r1"0 � "2 � "3

�
"0� (r; w)
= 1

2

�
�w1"1 � w2"2 � w3"3 � r3"0"1 � "2 + r2"0"1 � "3 � r1"0"2 � "3

�
a"0 +

1
2

�
w1"1 + w

2"2 + w
3"3 � r3"0 � "1 � "2 + r2"0"1 � "3 � r1"0"2 � "3

�
� b"1 � "2 � "3

= a"0 +
1
2

�
�w1"1 � w2"2 � w3"3 � r3"0"1 � "2 + r2"0"1 � "3 � r1"0"2 � "3

�
+ b"1 � "2 � "3

) w = 0; b = 0
In Cl(1; 3) :
s � "0 = a"0 � � (g) "0 � b"1 � "2 � "3 = "0 � s = a"0 � "0� (g) + b"1 � "2 � "3 ) b = 0
� (g) "0
= 1

2

�
�w4"1 � w2"2 � w3"3 � r3"0 � "1 � "2 + r2"0"1 � "3 � r1"0"2 � "3

�
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"0� (g)
= 1

2

�
w41"1 + w

2"2 + w
3"3 � r3"0"1 � "2 + r2"0"1 � "3 � r1"0"2 � "3

�
) w = 0

So the elements such that s = � (r; 0) + �
q

1
4r
tr � 1"5 are excluded and we are left with

E = fs 2 Spin (3; 1) : s � "0 = "0 � sg =
n
�
q
1� 1

4r
tr + � (r; 0)

o
E has a group structure with � as it can be easily checked :�
�
q
1� 1

4r
tr + � (r; 0)

�
�
�
�0
q
1� 1

4r
0tr0 + � (r0; 0)

�
= �
q
1� 1

4r
tr�0
q
1� 1

4r
0tr0 � 1

4r
tr0 + �

�
1
2j (r) r

0 + r�0
q
1� 1

4r
0tr0 + r0�

q
1� 1

4r
tr; 0

�
It is comprised of products of vectors of ("i)

3
i=1 ; so it belongs to Cl

�
F?; hi?

�
, it is a Lie group

of dimension 3 and so E = Spin(3):
The scalars � = �1 belong to the group. The group is not connected. The elements s =q
1� 1

4r
tr + � (r; 0) constitute the component of the identity.

Homogeneous space

The quotient space SW = Spin (3; 1) =Spin (3) (called a homogeneous space) is not a group but a 3
dimensional manifold. It is characterized by the equivalence relation :

s = a+ � (r; w) + b"0 � "1 � "2 � "3 � s0 = a0 + � (r0; w0) + b0"0 � "1 � "2 � "3
, 9sr 2 Spin (3) : s0 = s � sr
As any quotient space its elements are subsets of Spin (3; 1) :

Theorem 106 In each class of the homogeneous space there are two elements, de�ned up to sign,
which read : sw = � (aw + � (0; w))

Proof. Each coset [s] 2 SW is in bijective correspondence with Spin (3) :

Any element of Spin (3) reads �
q
1� 1

4�
t�+ � (�; 0) :

So [s] =
n
s0 = s �

�
�
q
1� 1

4�
t�+ � (�; 0)

�
; �t� � 4

o
i) In Spin(3; 1) :
s = a+ � (r; w) + b"5
s0 = a0 + � (r0; w0) + b0"5

a0 = a�
q
1� 1

4�
t�� 1

4r
t�

b0 = b�
q
1� 1

4�
t�� 1

4w
t�

r0 = 1
2j (r) �+ r�

q
1� 1

4�
t�+ a�

w0 = 1
2j (w) �+ w�

q
1� 1

4�
t�+ b�

a2 � b2 = 1 + 1
4 (w

tw � rtr)
ab = � 14r

tw
ii) We can always choose in the class an element s0 such that : r0 = 0: It requires :

�
1
2j (r) + aI

�
� =

�r�
q
1� 1

4�
t�

x =
�
1
a �

b
a2+b2rtr j (r)�

b2

a(a2+b2rtr)j (r) j(r)
�
y

This linear equation in � has always a unique solution :

� = ��
q
1� 1

4�
t� 1ar

�t� =
�
1� 1

4�
t�
�
1
a2 (r

tr))�
a2 + 1

4 (r
tr)
�
�t� = (rtr)
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�t� =
4(rtr)

4a2+(rtr) � 4q
1� 1

4�
t� =

q
4a2

4a2+rtr =
2ap

4a2+rtr

� = �� 2p
4a2+rtr

r

�
q
1� 1

4�
t�+ � (�; 0) = � 2ap

4a2+rtr
� �

�
� 2p

4a2+rtr
r; 0
�
= �

�
2ap

4a2+rtr
� �

�
2p

4a2+rtr
r; 0
��

a0 = a�
q
1� 1

4�
t�� 1

4r
t� = 1

2
�p

4a2+rtr

�
4a2 + rtr

�
= 1

2�
p
4a2 + rtr

w0 = 1
2j (w) �+ w�

q
1� 1

4�
t�+ b� = � 2p

4a2+rtr

�
1
2j (r)w + aw � br

�
b0 = b�

q
1� 1

4�
t�� 1

4w
t� = � 2p

4a2+rtr

�
ab+ 1

4w
tr
�
= 0

s0 = sw =
1
2�
p
4a2 + rtr + �

�
0; � 2p

4a2+rtr

�
1
2j (r)w + aw � br

��
= �

�
1
2

p
4a2 + rtr + �

�
0; 2p

4a2+rtr

�
1
2j (r)w + aw � br

���
s0 = s �

�
�
q
1� 1

4�
t�+ � (�; 0)

�
s = s0 �

�
�
q
1� 1

4�
t�+ � (�; 0)

��1
= sw:

�
�
q
1� 1

4�
t�� � (�; 0)

�
= �

�
1
2

p
4a2 + rtr + �

�
0; 2p

4a2+(rtr)

�
1
2j (r)w + aw � br

���
��
�

2ap
4a2+rtr

+ �

�
2p

4a2+(rtr)
r; 0

��
s = a+ � (r; w) + b"5 = sw � sr
iii) In Cl(1; 3) we have the same decomposition with the same components.
s = a+ � (r; w) + b"5 = sw � sr
r" = 1

2�
p
4a2 + rtr� 2p

4a2+(rtr)
r = r

w" = 1
2j
��
�
p
4a2 + rtr

�
� 2
4a2+(rtr)

�
1
2j (r)w + aw � br

���
� 2p

4a2+(rtr)

�
r

+

�
� 2p

4a2+(rtr)

�
a
�
�
p
4a2 + rtr

�
� 2
4a2+(rtr)

�
1
2j (r)w + aw � br

�
= 2j

�
� 1
4a2+(rtr)

�
1
2j (r)w + aw � br

��
r + a� 4

4a2+(rtr)

�
1
2j (r)w + aw � br

�
=
�
� 2
4a2+(rtr)

� �
1
2j (j (r)w) r � aj (w) r + aj (r)w + 2a

2w � 2abr
�

=
�
� 2
4a2+(rtr)

� �
1
2 (wr

t � rwt) r + 2a2w + 1
2 (r

tw) r
�

=
�
� 2
4a2+(rtr)

� �
1
2w (r

tr)� 1
2r (w

tr) + 2a2w + 1
2 (r

tw) r
�

=
�
� 1
4a2+(rtr)

� ��
4a2 + (rtr)

�
w
�
= w

a2 � b2 = 1 + 1
4 (w

tw � rtr)) 4a2 + rtr = 4 + wtw + 4b2

So any element of Spin (3; 1) can be written uniquely (up to sign) :
s = a+ � (r; w) + b"5 = �sw � �sr = � (aw + � (0; ww)) � � (ar + � (0; rr))
sw = aw + � (0; ww) =

1
2

p
4a2 + rtr + �

�
0; 2p

4a2+rtr

�
1
2j (r)w + aw � br

��
sr = (ar + � (rr; 0)) =

2ap
4a2+rtr

+ �

�
2p

4a2+(rtr)
r; 0

�
�arawa > 0

Remark : the elements �sw are equivalent :
(aw + � (0; ww)) � � (aw + � (0; ww))
Take sr = �1 2 Spin (3) : �sw = sw � sr
So �sw belong to the same class of equivalence. In the decomposition : s = �sw � �sr; �sw is a

speci�c projection of s on the homogenous space.
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Decomposition of the Lie algebra

To each Cli¤ord bundle Cl (3) is associated a unique Lie algebra T1Spin (3) which is a subset of
Cl (3) and thus of Cl(3; 1): In any orthonormal basis an element of T1Spin (3; 1) reads :

X = � (r; 0) + � (0; w) and � (r; 0) 2 T1Spin (3) ; � (0; w) 2 T1SW
The vectors r; w depends on the basis (they are components), however the elements � (r; 0) ; � (0; w) 2

T1Spin (3; 1) depend only on the choice of "0 as we will see now.
For any given vector "0 : "0 � "0 = �1 let be the linear map :
� ("0) : T1Spin (3; 1)! T1Spin (3; 1) : � ("0) (X) = "0 �X � "0
If is easy to see that for any basis built with "0 :
8a = 1; 2; 3 : "0 � �!� a � "0 = ��!� a
8a = 4; 5; 6 : "0 � �!� a � "0 = �!� a
Thus � ("0) � (r; w) = � (�r; w)
� ("0) has two eigen values �1 with the eigen spaces :
L0 = fX 2 T1Spin (3; 1) : � ("0) (X) = �Xg =

�
� (r; 0) ; r 2 R3

	
P0 = fX 2 T1Spin (3; 1) : � ("0) (X) = Xg =

�
� (0; w) ; w 2 R3

	
T1Spin (3; 1) = L0 � P0
Thus L0; P0 and the decomposition depend only on the choice of "0 and L0 = T1Spin (3) ; P0 '

T1SW:
� ("0) commutes with the action of the elements of Spin (3) :
8sr 2 Spin (3) ; X 2 T1Spin (3; 1) :
Adsr� ("0) (X) = sr � "0 �X � "0 � s�1r = "0 � sr �X � s�1r � "0 = � ("0) (Adsr (X))
with Adsr"0 = sr � "0 � s�1r = "0
The vector subspaces L0; P0 are globally invariant by Spin (3) : in a change of basis with sr 2

Spin (3) :

Adsr =

� �
1 + arj (r) +

1
2j (r) j (r)

�
0

0
�
1 + arj (r) +

1
2j (r) j (r)

� �
X = � (x; 0)! �

��
1 + arj (r) +

1
2j (r) j (r)

�
x; 0
�

X = � (0; y)! �
�
0;
�
1 + arj (r) +

1
2j (r) j (r)

�
y
�

L0 is a Lie subalgebra, [L0; L0] � L0; [L0; P0] � P0; [P0; P0] � L0
This is a Cartan decomposition of T1Spin (3; 1) (Maths.1742). It depends on the choice of "0 but

not of the choice of ("i)
3
i=1 :

The scalar product on the Cli¤ord algebra reads in T1Spin (3; 1)
h� (r; w) ; � (r0; w0)iCl = 1

4 (r
tr0 � wtw0)

and then it is de�nite positive on T1Spin (3) = L0 and de�nite negative on P0:
L0; P0 are globally invariant by Spin (3) ; the scalar product is de�nite (positive or negative) and

preserved byAd; so L0; P0 are 3 dimensional Hilbert spaces, and for each choice of "0 (L0;Ad) ; (P0;Ad)
are 3 dimensional unitary representations of Spin (3) :
Let us de�ne the projections :
�L ("0) : T1Spin (3; 1)! L0 :: �L ("0) (X) =

1
2 (X � � ("0) (X)) =

1
2 (X � "0 �X � "0) = � (r; 0)

�P ("0) : T1Spin (3; 1)! P0 :: �L ("0) (X) =
1
2 (X + � ("0) (X)) =

1
2 (X + "0 �X � "0) = � (0; w)

X = �L ("0) (X) + �P ("0) (X)
and the projections commute with the action of the elements of Spin (3) :
8sr 2 Spin (3) ; X 2 T1Spin (3; 1) :
�L ("0) (Adsr (X)) = Adsr (�L ("0) (X))
�P ("0) (Adsr (X)) = Adsr (�P ("0) (X))
� ("0) preserves the scalar product and L0; P0 are orthogonal, thus :
hX;XiCl = h�L (X) ; �L (X)iCl + h�P (X) ; �P (X)iCl
Let us de�ne the map :
kXk : T1Spin (3; 1)! R+ : kXk =

p
h�L (X) ; �L (X)iCl � h�P (X) ; �P (X)iCl

This is a norm on T1Spin (3; 1) :
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kXk = 0, �L (X) = �P (X) = X = 0
k�Xk = j�j kXk
kX +X 0k2 = h�L (X +X 0) ; �L (X +X 0)iCl � h�P (X +X 0) ; �P (X +X 0)iCl
h�L (X +X 0) ; �L (X +X 0)iCl � h�L (X) ; �L (X)iCl + h�L (X 0) ; �L (X

0)iCl
�h�P (X +X 0) ; �P (X +X 0)iCl � �h�P (X) ; �P (X)iCl � h�P (X 0) ; �P (X)iCl
)
kX +X 0k2 � kXk+ kX 0k
It reads :

k� (r; w)k = 1

2

p
rtr + wtw =

1

2

q
h�L (X) ; �L (X)iCl � h�P (X) ; �P (X)iCl (A.8)

It depends only on the choice of "0:
A change of basis changes the decomposition only if it changes "0; that is if it is done by

some sw = aw + � (0; w) 2 SW: Then the elements of F or T1Spin (3; 1) do not change, but their
components change. The value of the norm depends on the choice of "0 but, as there is always a
vector such as "0 in any orthonormal basis, its existence is assured.
In any Lie algebra there is a bilinear symmetric form B called the Killing form,which does not

depend on a basis and is invariant by Ad. In any orthonormal basis, de�ned as above,it has on
T1Spin(3; 1) the same expression as in so (3; 1) :

B (� (r; w) ; � (r0; w0)) = 4 (rtr0 � wtw0) = 16 h� (r; w) ; � (r0; w0)iCl

A.2 LIE DERIVATIVE

For the de�nition and properties of Lie derivatives see Maths.16.2.

Vector

A vector �eld U 2 X (TM) is Lie transported along the vector �eld V 2 X (TM) if the commutator
(Maths.1437) :
$V U = [V;U ] = 0 =

P3
�;�=0

�
V �@�U

� � U�@�V �
�
@�� = �$UV

One form

The Lie derivative of a 1 form on M :� (m) =
Pm
a=1

P3
�=0 �

a
� (m) d�

� 
 �!� a 2 �2 (M ;T1U) valued
in a �xed vector space (T1U can be replaced by any �xed vector space) with respect to the vector
�eld V =

P3
�=0 V

�@�� 2 X (TM) reads :
$V � (m) =

Pm
a=1

P
f��g$V (�

a
� (m) d�

�)
�!� a
Using the properties of the Lie derivative :
$V (�

a
� (m) d�

�)

=
P3
�=0 ($V �

a
� (m)) d�

� + �a� (m)$V (d�
�)

$V �
a
� (m) =

P3
=0 (V

@�
a
�)

$V (d�
�) = iV d (d�

�) + d (iV d�
�) = dV � =

P
 @V

�d�

$V (�
a
� (m) d�

�) =
P3
�=0

�P3
=0 (V

@�
a
�)
�
d�� + �a�

P3
=0 @V

�d�

=
P3
�=0

�P3
=0 (V

@�
a
�)
�
d�� +

P3
�=0 �

a


P3
=0 @�V

d��

=
P3
�;=0

�
V @�

a
� + �

a
@�V


�
d��

$V � (m) =

mX
a=1

3X
�;=0

�
V @�

a
� + �

a
@�V


�
d�� 
�!� a (A.9)
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2 form

The Lie derivative of a 2 form on M :F (m) =
Pm
a=1

P
f��g Fa�� (m) d�� ^ d�� 


�!
� a 2 �2 (M ;T1U)

valued in a �xed vector space with respect to the vector �eld V =
P3
�=0 V

�@�� 2 X (TM) reads :
$V F (m) =

Pm
a=1

P
f��g$V

�
Fa�� (m) d�� ^ d��

�

�!� a

Using the properties of the Lie derivative :

$V

�
Fa�� (m) d�� ^ d��

�
=
P

f��g

�
$V Fa�� (m)

�
d�� ^ d�� + Fa�� (m)$V

�
d�� ^ d��

�
=
P

f��g

�
$V Fa�� (m)

�
d�� ^ d�� + Fa�� (m)

�
($V d�

�) ^ d�� + d�� ^$V d��
�

=
P

f��g

�P3
=0 V

@Fa��d�� ^ d��
�
+ Fa��

�
($V d�

�) ^ d�� + d�� ^$V d��
�

$V (d�
�) = iV d (d�

�) + d (iV d�
�) = dV � =

P
 @V

�d�

$V
�
d�� ^ d��

�
=
�P

 @V
�d�

�
^ d�� + d�� ^

P
 @V

�d�

We get the general formula :

$V F (m) =
mX
a=1

0@X
f��g

3X
=0

V @Fa��d�� ^ d�� + Fa��
�
@V

�d� ^ d�� + @V �d�� ^ d�
�1A
�!� a

(A.10)
A straightforward computation gives :

[($V F)r] =
3X

=0

V  [@Fr] + [Faw] j
�
@V 0

�
+ [Far]

�
� [@v]t + (div (v)) I3

�
(A.11)

[($V F)w] =
3X

=0

V  [@Fw] + [Faw]
�
@0V

0 + [@v]
�
� [Far] j (@0V ) (A.12)

with :

[@v] =

24 @1V
1 @2V

1 @3V
1

@1V
2 @2V

2 @3V
2

@1V
3 @2V

3 @3V
3

35
[@0V ] =

�
@0V

1 @0V
2 @0V

3
�

�
@V 0

�
=

24 @1V
0

@2V
0

@3V
0

35
[($V F)r] =

P3
=0 V

 [@Fr] + [Faw] j
�
@V 0

�
+ [Far]

�
� [@v]t + (div (v)) I3

�
[($V F)w] =

P3
=0 V

 [@Fw] + [Faw]
�
@0V

0 + [@v]
�
� [Far] j (@0V )

Lie derivative of the metric

We have similarly :

$V

�P
�� g�� (m) d�

� 
 d��
�

=
P
�� ($V g�� (m)) d�

� 
 d�� + g�� (m)$V
�
d�� 
 d��

�
=
P
��

�P3
=0 V

@g��d�
� 
 d��

�
+ g��

�
($V d�

�)
 d�� + d�� 
$V d��
�

$V (d�
�) = iV d (d�

�) + d (iV d�
�) = dV � =

P
 @V

�d�

$V
�
d�� 
 d��

�
=



A.3. HODGE DUAL 369�P
 @V

�d�
�

 d�� + d�� 


P
 @V

�d� =
P


�
@V

�d� 
 d�� + @V �d�� 
 d�
�P

�� g��$V
�
d�� 
 d��

�
=
P
�� g��

P


�
@V

�d� 
 d�� + @V �d�� 
 d�
�

The Lie derivative is a symmetric tensor of 2nd order :

$V

�P
�� g�� (m) d�

� 
 d��
�
=
P
�� eg�� (m) d�� 
 d��eg�� (m) =P3

=0 V
@g�� + g�@�V

 + g�@�V


A.3 HODGE DUAL

(Maths.4.6.)
On M the Hodge dual of a scalar :
0 form (a function) : �f = f$4

1 form : ��1 = �
�P3

�=0 ��d�
�
�
=
P3
�=0 (�1)

�
g����d�

0 ^ :::dd��::: ^ d�3
2 form :
�Fr = �

�
F01d�3 ^ d�2 + F02d�1 ^ d�3 + F03d�2 ^ d�1

�
detP 0

�Fw = �
�
F32d�0 ^ d�1 + F13d�0 ^ d�2 + F21d�0 ^ d�3

�
detP 0

F�� =
P3
��=0 g

��g��F��
3 form : F = F0d�

1 ^ d�2 ^ d�3 + F1d�0 ^ d�2 ^ d�3 + F2d�0 ^ d�1 ^ d�3 + F3d�0 ^ d�1 ^ d�2
�F =

P3
�=0 (�1)

�
F� (detP 0) d��

F 0 = F 123 =
P
�� g

1�g2�g3F�� =
P
�� g

1�g2�g3� (�; �; )F123 =Min00 [g]
�1
F1

F 1 = F 023 =
P
�� g

0�g2�g3� (�; �; )F123 =Min11 [g]
�1
F1

F 2 = F 013 =
P
�� g

0�g1�g3� (�; �; )F123 =Min22 [g]
�1
F2

F 3 = F 012 =
P
�� g

0�g1�g2� (�; �; )F123 =Min33 [g]
�1
F3

F� =Min�� [g]
�1
F� whereMin�� [g]

�1 is the determinant of the matrix [g]�1 with the removal
of the line and column �.

g� = 1
det[g] (�1)

�+
(Min�; [g]) (Maths.472)

g� = det [g] (�1)�+
�
Min�; [g]

�1
�

g�� = det [g] (�1)�+�
�
Min�;� [g]

�1
�

�
Minp;p [g]

�1
�
= 1

det g g�� = (detP )
2
g��

�F =
P3
�=0 (�1)

�
g��F� (detP ) d�

�

4 form : ��4 = �
�
�d�0 ^ d�1 ^ d�2 ^ d�3

�
= � (detP )�

A.4 CODIFFERENTIAL

��r = (�1)r(4�r)�r � d � �r = �d � �r
For any form : �2� = 0
0 form : �f = 0

1 form : �
�P3

�=0 ��d�
�
�
= (detP )

P3
�;�=0 @�

�
g���� (detP

0)
�

2 form : �F = �d � F
d � F =

�P3
�=0 (�1)

�
�P3

�=0 @�
�
F�� detP 0

��
d�0 ^ :::dd��::: ^ d�3�

�F =
P3
�=0 (�1)

�
g��

�P3
�=0 @�

�
F�� detP 0

��
(detP ) d��

3 form : �
�P3

�=0 F�d�
0 ^ :::dd��::: ^ d�3� = �d�P3

�=0 (�1)
�
g��F� (detP ) d�

�
�

= �
nP3

�=0 @�

�P3
�=0 (�1)

�
g��F� (detP )

�
d�� ^ d��

o
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�F r = �
�
F 01d�3 ^ d�2 + F 02d�1 ^ d�3 + F 03d�2 ^ d�1

�
detP 0

�Fw = �
�
F 32d�0 ^ d�1 + F 13d�0 ^ d�2 + F 21d�0 ^ d�3

�
detP 0

F�� =
P3
��=0 g

��g��@�

�P3
�=0 (�1)

�
g��F� (detP )

�
4 form : �

�
�d�0 ^ d�1 ^ d�2 ^ d�3

�
= �d (� (detP )�) = � �

P3
�=0 @� (� detP ) d�

�

= �
P3
�=0 (�1)

�
g��

�P3
�=0 @� (� detP )

�
d�0 ^ :::dd��::: ^ d�3
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A.5 FORMULAS

A.5.1 ALGEBRA

Operator j

r 2 C3; w 2 C3 :

[j (r)] [w] =

24 0 �r3 r2
r3 0 �r1
�r2 r1 0

3524 w1
w2
w3

35 =
24 r2w3 � r3w2
�r1w3 + r3w1
r1w2 � r2w1

35
[w]

t
[j (r)] =

�
w1 w2 w3

� 24 0 �r3 r2
r3 0 �r1
�r2 r1 0

35
=
�
�r2w3 + r3w2 r1w3 � r3w1 �r1w2 + r2w1

�
[j (r)]

�
� = �� (�; �; ) r

[j (r)w]
a
=
P3
b;c=1 � (a; b; c) rbwc

[wj (r)]a = �
P3
b;c=1 � (a; b; c) rbwc

[j(r)]
t
= � [j(r)] = [j(�r)]

[j(x)] [y] = � [j(y)] [x]
[y]

t
(j(x)) = � [x]t [j(y)]

[j(x)] [y] = 0, 9k 2 R : y = kx

[x]
t
[j (y)] [z] = �det

24 x1 y2 z1
x2 y2 z2
x3 y3 z3

35
24 M11 M12 M13

M21 M22 M23

M31 M32 M33

35�
24 M11 M21 M31

M12 M22 M32

M13 M23 M33

35 = j

0@ �M23 +M32

M13 �M31

�M12 +M21

1A
Eigenvectors of j(r)

0 :

24 r1
r2
r3

35
ir :

24 � (�r1r2 + ir3r)�
�
r21 + r

2
3

�
r2r3 + ir1r

35
�ir :

24 � (r1r2 + ir3r)�
r21 + r

2
3

�
�r2r3 + r1ir

35
Eigen vectors of j(r)j(r)
0 : [r]

�
�
r21 + r

2
2 + r

2
3

�
:

24 �r2r1
0

35 ;
24 �r30

r1

35
Identities
With 2 operators :

[j(x)] [j(y)] = [y] [x]
t �
�
[y]

t
[x]
�
I

Tr ([j (x)] [j (y)]) = �2 [x]t [y]
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[x]
t
[j (r)] [j(s)] [y] =

�
[x]

t
[s]
��
[r]
t
[y]
�
�
�
[x]

t
[y]
��
[r]
t
[s]
�

With 3 operators :

[j(x)] [j(y)] [j(x)] = �
�
[y]

t
[x]
�
[j(x)]

[j (y)] [j (x)] [j (x)] + [j (x)] [j (x)] [j (y)] = �
�
[y]

t
[x]
�
[j (x)]�

�
[x]

t
[x]
�
[j (y)]

Powers :

k > 0 : [j(r)]
2k
=
�
� [r]t [r]

�k�1
[j(r)] [j(r)]

k � 0 : [j(r)]2k+1 =
�
� [r]t [r]

�k
[j(r)]

exp [j (r)] = I3 +
sin

p
rtrp

rtr
[j (r)] + 1�cos

p
rtr

rtr [j (r)] [j (r)]

Iteration :
[j(j(x)y)] = [y] [x]

t � [x] [y]t = [j(x)] [j(y)]� [j(y)] [j(x)]h
j([w]

t
j(r))

i
= �

h
j([j (r)w]

t
)
i
= � [w] [r]t + [r] [w]t = � [j(r)] [j(w)] + [j(w)] [j(r)]

[j(j(x)j (x) y)] =
�
[y]

t
[x]
�
[j (x)]�

�
[x]

t
[x]
�
[j (y)]

With Matrices :
[M ] ; [X] 2 L(3) :

[M ]
t
[j (r)] [M ] = j

�
[M ]

�1
[r]
�
detM = j

�
[r]
t
�
[M ]

t
��1�

detM

[j ([M ] [r])] =
�
[M ]

�1
�t
[j (r)] [M ]

�1
detM

j
�
[r]
t
[M ]

�
=
�
[M ]

�1
�
[j (r)]

�
[M ]

�1
�t
detM

([M ]1)
t
[j ([M ]2)] [M ]3 = detM�

j ([M ]2) [M ]3 j ([M ]3) [M ]1 j ([M ]1) [M ]2
�
= (detM)

�
M�1�t

([X]1)
t
[M ]

t
j([M ] [X]2) [M ] [X]3 = (det [M ]) (det [X])

Tr
�
[M ]

t
[j (x)] [M ]

�
= 0

M 2 O(3) : j([M ] [x]) [M ] [y] = [M ] [j(x)] [y],Mx�My =M (x� y)
Miscellaneous :24 0 j (z) �j (y)
�j (z) 0 j (x)
j (y) �j (x) 0

35�1 = 1
2xtj(y)z

24 xxt 2yxt � xyt 2zxt � xzt
2xyt � yxt yyt 2zyt � yzt
2xzt � zxt 2yzt � zyt zzt

35
Polynomials
The set of polynomials of matrices P (z) = aI+bj (z)+cj (z) j(z) where z 2 C3 is �xed, a; b; c 2 C

is a commutative ring.
(a+ bj(z) + cj(z)j(z)) (a0 + b0j(z) + c0j(z)j(z))
= aa0 + (ab0 + a0b� (ztz) (c0b+ b0c)) j(z) + (ac0 + a0c+ b0b� (ztz) c0c) j(z)j(z)
det (a+ bj (z) + cj (z) j (z)) = a

�
a2 +

�
b2 + c2 (ztz)� 2ac

�
(ztz)

�
[a+ bj (z) + cj (z) j (z)]

�1
=

�
1
aI �

ab
detP j (z)�

(ac�b2�c2(ztz))
detP j (z) j (z)

�
eigenvectors of P (z) : the only real eigen value is a with eigen vector z

Matrices on SO(3,1)

signature (3; 1) : hu; vi = u1v1 + u2v2 + u3v3 � u0v0
signature (1; 3) : hu; vi = �u1v1 � u2v2 � u3v3 + u0v0
[�]

t
[�] [�] = [�], [�] 2 SO (3; 1) � SO (1; 3)

[�] = exp [K (w)] exp [J (r)]
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exp [K (w)] = I4 +
sinh

p
wtwp

wtw
K(w) + cosh

p
wtw�1

wtw K(w)K(w)

[�] =

2664
�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

3775
Basis of so (3; 1) � so (1; 3)

[�1] =

2664
0 0 0 0
0 0 0 0
0 0 0 �1
0 0 1 0

3775 ; [�2] =
2664
0 0 0 0
0 0 0 1
0 0 0 0
0 �1 0 0

3775 ; [�3] =
2664
0 0 0 0
0 0 �1 0
0 1 0 0
0 0 0 0

3775
[�4] =

2664
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

3775 ; [�5] =
2664
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

3775 ; [�6] =
2664
0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

3775
[�] = [J (r)] + [K (w)] 2 so (3; 1) with

[J (r)] =

2664
0 0 0 0
0 0 �r3 r2
0 r3 0 �r1
0 �r2 r1 0

3775 ; [K (w)] =
2664
0 w1 w2 w3
w1 0 0 0
w2 0 0 0
w3 0 0 0

3775
Dirac�s matrices

�1 =

�
0 1
1 0

�
;�2 =

�
0 �i
i 0

�
;�3 =

�
1 0
0 �1

�
;�0 =

�
1 0
0 1

�
2664
1n2 �1 �2 �3
�1 �0 i�3 �i�2
�2 �i�3 �0 i�1
�3 i�2 �i�1 �0

3775
��j = � = ��1j
�j�k + �k�j = 2�jk�0
j 6= k; l = 1; 2; 3 : �j�k = � (j; k; l) i�l
�1�2�3 = i�0

Matrices � (z)P3
a=1 za�a = � (z) with z 2 C3

� (z) =

�
z3 z1 � iz2

z1 + iz2 �z3

�
2 sl (C; 2)

(� (z))
�
= � (z)

� (z)� (z0) = � (j (z) z0) + ztz0�0
� (z)

�1
= 1

ztz� (z)
� (z)� (z0)� � (z0)� (z) = 2� (j (z) z0)
� (z0)� (z)� (z0) =

�
(z0)

t
z0
�
� (z)

� (z) = k�0; k 2 C) z = 0

eigenvectors of � (z) : � = �1 : �
p
ztz :

�
z1 � iz2

�
p
ztz � z3

�

 matrices

0 =

�
0 �i�0
i�0 0

�
; 1 =

�
0 �1
�1 0

�
; 2 =

�
0 �2
�2 0

�
; 3 =

�
0 �3
�3 0

�
;
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ij + ji = 2�ijI4
i = �i = �1i

j = 1; 2; 3 : ej = ��j 0
0 �j

�
266664
1n2 0 1 2 3
0 0 �i5e1 �i5e2 �i5e3
1 i5e1 0 ie3 �ie2
2 i5e2 �ie3 0 ie1
3 i5e3 ie2 �ie1 0

377775
123 = i

�
0 �0
�0 0

�
5 = 0123 =

�
�0 0
0 ��0

�
55 = I
5a = �a5

C matrices

Cl (3; 1) : C ("j) = j ; j = 1; 2; 3; C ("0) = i0; C ("5) = i5
Cl (1; 3) : C 0 ("j) = ij ; j = 1; 2; 3; C

0 ("0) = 0; C
0 ("5) = 5

a = 1; 2; 3 : C (�!� a) = � 12 i
�
�a 0
0 �a

�
= � 12 iea

a = 4; 5; 6 : C (�!� a) = 1
2

�
�a 0
0 ��a

�
= � 1

2i0j

C (� (r; w)) = � 12 i
�
� (r + iw) 0

0 � (r � iw)

�
= � 12 i

�
� (Z) 0
0 �

�
Z
��

C (a+ � (r; w) + b"5)

=

�
a+ ib� 1

2 i� (r + iw) 0
0 a� ib� 1

2 i� (r � iw)

�
=

�
A� 1

2 i� (Z) 0
0 A� 1

2 i�
�
Z
� �

A.5.2 CLIFFORD ALGEBRA

"i � "j + "j � "i = 2�ij
"5 � "5 = �1
X � "5 + "5 �X = 0

Adjoint map

8X 2 Cl (3; 1) ; s 2 Spin (3; 1) : AdsX = s �X � s�1
hAdsX;AdsY i = hX;Y i
Ads �Ads0 = Ads�s0
8s 2 Spin (3; 1) : Ads"5 = "5

Action of the Adjoint map on vectors :
V =

P3
i=0 V

i"i ! eV = AdsV =P3
i=0

eV i"ieV i =P3
j=0 [h (s)]

i
j v

j

[h (s)] =�
a2 + b2 + 1

4 (r
tr + wtw) awt � brt + 1

2w
tj (r)

aw � br + 1
2j (r)w a2 + b2 + 1

4 (r
tr + wtw) + aj (r) + bj (w) + 1

2 (j (r) j (r) + j (w) j (w))

�
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[h(s)]
t
[�] [h (s)] = [�]

If s = aw + � (0; w)

[h(s)] =

�
2a2w � 1 aww

t

aww 2a2w � 1 + 1
2j (w) j (w)

�
If s = ar + � (r; 0)

[h(s)] =

�
1 0
0 1 + arj (r) +

1
2j (r) j (r)

�
[C (r)] = 1 + arj (r) +

1
2j (r) j (r) 2 SO (3)

Action of the adjoint map on the Lie algebra:
Z =

P6
a=1 Za

�!� a ! eZ =P6
a=1

eZa�!� a
With :
Z = � (X;Y )! eZ = �

� eX; eY �" eXeY
#
= [Ads]

�
X
Y

�
[Ads] =�
1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w)) �
�
aj (w) + bj (r) + 1

2 (j (r) j (w) + j (w) j (r))
�

aj (w) + bj (r) + 1
2 (j (r) j (w) + j (w) j (r)) 1 + aj (r)� bj (w) + 1

2 (j (r) j (r)� j (w) j (w))

�
With sw = aw + � (0; w)

[Ads] =

� �
1� 1

2j (w) j (w)
�

� [awj (w)]
[awj (w)]

�
1� 1

2j (w) j (w)
� � = � A �B

B A

�
A = At; Bt = �B;AB = BA
A2 +B2 = I

[Adsw ]
�1
=
h
Ads�1w

i
=

�
A B
�B A

�
With sr = ar + � (r; 0)

[Ads] =

� �
1 + arj (r) +

1
2j (r) j (r)

�
0

0
�
1 + arj (r) +

1
2j (r) j (r)

� � = � C 0
0 C

�
CCt = CtC = I3

[Adsr ]
�1
=
h
Ads�1r

i
=

�
Ct 0
0 Ct

�
Lie Algebra

� (r; w) = 1
2

�
w1"0 � "1 + w2"0 � "2 + w3"0 � "3 + r3"2 � "1 + r2"1 � "3 + r1"3 � "2

�
�!� 1 = � ((1; 0; 0) ; (0; 0; 0)) = 1

2"3 � "2;�!� 2 = � ((0; 1; 0) ; (0; 0; 0)) = 1
2"1 � "3;�!� 3 = � ((0; 0; 1) ; (0; 0; 0)) = 1
2"2 � "1;�!� 4 = � ((0; 0; 0) ; (1; 0; 0)) = 1
2"0 � "1;�!� 5 = � ((0; 0; 0) ; (0; 1; 0)) = 1
2"0 � "2;�!� 6 = � ((0; 0; 0) ; (0; 0; 1)) = 1
2"0 � "3

Multiplication table :2664
�1 �2 �3

�1 � 14
1
2�3 � 12�2

�2 � 12�3 � 14
1
2�1

�3
1
2�2 � 12�1 � 14

3775
� (r; w) � "5 = "5 � � (r; w) = � (�w; r)
V = V 0"0 + v :
[� (r; w) ; V ] = � (r; w) � V � V � � (r; w) = 1

2

�
V 0r + (rtv) "0 � j (w) v

�
In Cl(3; 1):



376 APPENDIX A. ANNEX

� (r0; w0) � � (r; w)
= 1

4 (w
tw0 � rtr0) + 1

2� (�j (r) r
0 + j (w)w0;�j (w) r0 � j (r)w0)� 1

4 (w
tr0 + rtw0) "5

[� (r; w) ; � (r0; w0)] = � (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0)
In Cl(1; 3):
� (r; w) � � (r0; w0)
= 1

4 (w
tw0 � rtr0)� 1

2� (�j (r) r
0 + j (w)w0; j (w) r0 + j (r)w0)� 1

4 (w
tr0 + rtw0) "5

[� (r; w) ; � (r0; w0)] = �� (j (r) r0 � j (w)w0; j (w) r0 + j (r)w0)
Scalar product :
h� (r; w) ; � (r0; w0)iCl = 1

4 (r
tr0 � wtw0)

Spin groups

s = a+ � (r; w) + b"5
a2 � b2 = 1 + 1

4 (w
tw � rtr)

ab = � 14r
tw

if r = 0 then a = �
q
1 + 1

4w
tw; b = 0

if w = 0 then

rtr � 4 : a = �
q
1� 1

4r
tr; b = 0

rtr � 4 : b = �
q
�1 + 1

4r
tr; a = 0

Product :
(a+ � (r; w) + b"5)

�1
= a� � (r; w) + b"5

s � s0 = a" + � (r"; w") + b""0 � "1 � "2 � "3
with :
a" = aa0 � b0b+ 1

4 (w
tw0 � rtr0)

b" = ab0 + ba0 � 1
4 (w

tr0 + rtw0)

i) In Cl(3; 1) :
r" = 1

2 (j (r) r
0 � j (w)w0) + a0r + ar0 � b0w � bw0

w" = 1
2 (j (w) r

0 + j (r)w0) + a0w + aw0 + b0r + br0

(a+ � (0; w)) � (a0 + � (0; w0)) = aa0 + 1
4w

tw0 + �
�
� 12 (j (w)w

0; a0w + aw0)
�

(a+ � (r; 0)) � (a0 + � (r0; 0)) = aa0 � 1
4r
tr0 + �

�
1
2j (r) r

0 + (a0r + ar0) ; 0
�

(aw + � (0; w)) � (ar + � (r; 0)) = awar + �
�
awr;

1
2j (w) r + arw

�
� 1

4 (w
tr) "5

ii) In Cl(1; 3) :
r" = 1

2 (j (r) r
0 � j (w)w0) + a0r + ar0 + b0w + bw0

w" = � 12 (j (w) r
0 + j (r)w0) + a0w + aw0 + b0r + br0

Complex structure

Cl (3; 1) :
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real imaginary
Ej Ej � "5 = iEj
1 "5
"1 "0 � "3 � "2
"2 "0 � "1 � "3
"3 "0 � "2 � "1

"3 � "2 "0 � "1
"1 � "3 "0 � "2
"2 � "1 "0 � "3

"1 � "2 � "3 "0

3777777777777775
Lie Algebra
� (r; w) =

P3
a=1 (ra + iwa)

�!� a =
P3
a=1 Z

a�!� a = (r + iw)
Z 0 � Z = � 14Z

tZ 0 + 1
2j (Z

0)Z
[� (r; w) ; � (r0; w0)] = j (Z)Z 0

Spin group
g = a+ � (r; w) + b"5 = A+ Z
A2 = 1� 1

4Z
tZ

Derivative :
@�
@x � �

�1 = D (Z) @Z@x
��1 � @�@x = D (�Z) @Z@x
D (Z) = 1

A +
1
2j (Z) +

1
4Aj (Z) j (Z)

[D (Z)]
�1
= A� 1

2j (Z)
Adjoint map :
AdsiX = iAdsX
Ads� (r; w) = Ad (Z) [X] =

�
1 +Aj (Z) + 1

2j (Z) j (Z)
�
[X]

[Ad (Z)] [D (Z)] = D (�Z)

A.5.3 GEOMETRY

Pull back, push forward

f� = (f�)
�1

M;N manifolds, f 2 C1 (M ;N)
Tf : TM ! TN :: Tf (m;um) = (f (m) ; f

0 (m)um)
push forward of a vector �eld : f�V = Tf (V )
f� : V 2 TM ! f�V 2 TN :: f�V (f (m)) = f 0 (m)V (m)
pull back of a 1 form : f�� = � (Tf)
f� :: � 2 TN� ! f�� 2 TM� :: f�� (m) (um) = � (f (m)) f 0 (m)um
If f is a di¤eomorphism :
pull back of a vector �eld : f�V = (Tf)�1 (V )
f� :: V 2 TN ! f�V 2 TM :: f�V (m) = (f 0)

�1
(n)V (n)

push forward of a 1 form : f�� = �
�
(Tf)

�1
�

f� : � 2 TM� ! f�� 2 TN� :: f�� (f (m))
�
uf(m)

�
= �

�
f�1 (n)

�
(f 0 (n))

�1
(un)

Flow of a vector �eld

�V (�; a) : R�M !M
@
@��V (�; a) j�=� = V (�V (�; a))
�V (0; a) = a
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�V (� + �
0; a) = �V (�;�V (�

0; a))
@
@m�V (�;m) : TmM ! T�V (�;m)M

�0Vm (�;m) (@�� (q (0))) =
P3
�=0 [J (�)]

�
� @�� (q (�))

�0Vm (�;m) (d�
� (q (0))) =

P3
�=0 [K (�)]

�
� d�

� (q (�)) with [K (�)] = [J (�)]�1

$V S = 0, S (�V (�;m)) = �
0
Vm (�;m)� S (m), S (�V (0;m)) = �

0
Vm (�;m)

�
S (m)

Integral curve : q (�) = �V (�; a)

Divergence of a vector �eld V

$V$4 = div (V )$4

divV = 1p
� det g

P3
�=0 @�

�
V �
p
�det g

�
=
P3
�=0

@V �

@�� +
1
2V

�
P3
�=0 g

�@�g�

Hodge dual of r-forms

Metric :
Gr (�; �) =

P
f�1:::�rgf�1:::�rg ��1:::�r��1:::�r det

�
g�1

�f�1:::�rg
f�1:::�rg

Hodge dual :
8�; � 2 �r (M ;R) : �� ^ � = Gr (�; �)$4 = Gr (�; �)$4

0 form (a function) : �f = f$4

1 form : ��1 = �
�P3

�=0 ��d�
�
�
=
P3
�=0 (�1)

�
g����d�

0 ^ :::dd��::: ^ d�3
2 form :
�Fr = �

�
F01d�3 ^ d�2 + F02d�1 ^ d�3 + F03d�2 ^ d�1

�
detP 0

�Fw = �
�
F32d�0 ^ d�1 + F13d�0 ^ d�2 + F21d�0 ^ d�3

�
detP 0

F�� =
P3
��=0 g

��g��F��
3 form : �F =

P3
�=0 (�1)

�
g��F� (detP ) d�

�

4 form : ��4 = �
�
�d�0 ^ d�1 ^ d�2 ^ d�3

�
= � (detP )�

Codi¤erential

��r = (�1)r(4�r)�r � d � �r = �d � �r
For any form : �2� = 0
0 form : �f = 0

1 form : �
�P3

�=0 ��d�
�
�
= (detP )

P3
�;�=0 @�

�
g���� (detP

0)
�

2 form :
�F =

P3
�=0 (�1)

�
g��

�P3
�=0 @�

�
F�� detP 0

��
(detP ) d��

Lie derivative

Vector �eld :
$V U = [V;U ] = 0 =

P3
�;�=0

�
V �@�U

� � U�@�V �
�
@�� = �$UV

One form :
$V � (m) =

Pm
a=1

P3
�;=0

�
V @�

a
� + �

a
@�V


�
d�� 
�!� a

2 form :
[($V F)r] =

P3
=0 V

 [@Fr] + [Faw] j
�
@V 0

�
+ [Far]

�
� [@v]t + (div (v)) I3

�
[($V F)w] =

P3
=0 V

 [@Fw] + [Faw]
�
@0V

0 + [@v]
�
� [Far] j (@0V )

Metric :
$V

�P
�� g�� (m) d�

� 
 d��
�
=
P
�� eg�� (m) d�� 
 d��eg�� (m) =P3

=0 V
@g�� + g�@�V

 + g�@�V
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Algebra of two forms

Matricial representations :
F = 1

2

P3
�;�=0 F��d�� ^ d�� =

P3
f�;�g=0 F��d�� ^ d��

F = Fr + Fw
Fr = F32d�3 ^ d�2 + F13d�1 ^ d�3 + F21d�2 ^ d�1
Fw = F01d�0 ^ d�1 + F02d�0 ^ d�2 + F03d�0 ^ d�3
[Fr] =

�
F32 F13 F21

�
; [Fw] =

�
F01 F02 F03

�
[F�� ]�=0:::3�=0:::3 =

2664
0 F01 F02 F03
F10 0 F12 F13
F20 F21 0 F23
F30 F31 F32 0

3775 = � 0 [Fw]1�3
� ([Fw])t3�1 j ([Fr])3�3

�

Change of chart :h eFi = [K]t [F ] [K]h h eFri h eFwi i = � [Fr] [Fw]
�
[LK ]

[LK ] =

" �
[k]

�1
�t
det k �j ([K0]) [k]

[k] j
��
K0
��

K0
0 [k]� [K0]

�
K0
�
#

[LK1K2
] = [LK1

] [LK2
]

[F�] =
�
F��

��=0::3
�=0::3

= [g]
�1
[F ] [g]�1�

F�r F�w
�
=
�
Fr Fw

� �
Lg�1

�
Scalar product :
G2 (F ;K) = � 12Tr

�
[F ] [g]�1 [K] [g]�1

�
= � 12Tr ([F ] [K

�])

= � 1
detP 0

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�
=
P

f��g F��K�� =
1
2

P3
��=0 F��K��

Standard chart :
G2 (F ;K) = [Fw] [g3]�1 [Kw]

t
+ [Fr] [g3] [Kr] det [g3]

�1

Hodge duality :
�Fr = �

�
F01d�3 ^ d�2 + F02d�1 ^ d�3 + F03d�2 ^ d�1

�
detP 0

�Fw = �
�
F32d�0 ^ d�1 + F13d�0 ^ d�2 + F21d�0 ^ d�3

�
detP 0

�F�� = �F�� detP 0 = �
�P3

��=0 g
��g��F��

�
detP 0

�F = �Fr + �Fw
[�Fr] =

�
�F01 �F02 �F03

�
= �

�
F01 F02 F03

�
(detP 0)

[�Fw] =
�
�F32 �F13 �F21

�
= �

�
F32 F13 F21

�
(detP 0)

[�F ] =
�

0 [�Fr]
� [�Fr]t j ([�Fw])

�
= � [F�] detP 0 = � [g]�1 [F ] [g]�1 detP 0�

[�Fw] [�Fr]
�
= �

�
[Fr] [Fw]

�
[LH ] detP

0

[LH ] =

�
[h]

�1
deth �j (H0) [h]

[h] j (H0) H0
0 [h]� [H0] [H0]

t

�
[H]

0
0 = [H0]

t
[h]

�1
[H0] + (det g) det [h]

�1

Standard chart :
[�Fr] = [Fw] [g3]�1 detQ0
[�Fw] = � [Fr] [g3] detQ
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Exterior di¤erential of a 2 form
dfF32d�3 ^ d�2 + F13d�1 ^ d�3 + F21d�2 ^ d�1 + F01d�0 ^ d�1 + F02d�0 ^ d�2 + F03d�0 ^ d�3g
= (�@0F21 + @2F01 � @1F02) d�0 ^ d�1 ^ d�2 + (@0F13 + @3F01 � @1F03) d�0 ^ d�1 ^ d�3
+(�@0F32 + @3F02 � @2F03) d�0 ^ d�2 ^ d�3 � (@1F32 + @2F13 + @3F21) d�1 ^ d�2 ^ d�3

d (�F) =
P3
�=0 (�1)

�
�P3

�=0 @�
�
F�� detP 0

��
d�0 ^ :::dd��::: ^ d�3

=
�P3

�=1 @�

�
� [�Fr]�

��
d�1 ^ d�2 ^ d�3

� (@0 [�Fr]1 + @2 [�Fw]3 � @3 [�Fw]2) d�0 ^ d�2 ^ d�3
+(@0 [�Fr]2 � @1 [�Fw]3 + @3 [�Fw]1) d�0 ^ d�2 ^ d�3
� (@0 [�Fr]3 + @1 [�Fw]2 � @2 [�Fw]1) d�0 ^ d�1 ^ d�2

Transport of a 2 form by the �ow of a vector �eldhf�Fa (�V (�; a))i = [K (�)]t [�Fa (a)] [K (�)]
Killing vector �elds and isometries

$V g = 0
[g (q (�))] = [K (�)]

t
[g (q (0))] [K (�)]

�; � = 0:::3 :
P3
=0 V

 [@g]
�
� + [g]

�
 [@�V ]


+ [g]

�
 [@�V ]


= 0

Isometries :
F :M !M :: g (F (m)) = F (m)
8u; v 2 TmM : hF 0 (m)u; F 0 (m) vi = hu; vi
8� 2 �r (TM ;R) : � (F ��) = F � (��)

A.5.4 RELATIVIST GEOMETRY

Standard chart

'o : R4 ! 
 :: 'o
�
ct; �1; �2; �3

�
= �c"0 (t; x)

'
 : R3 ! 
3 (0) :: x = '

�
�1; �2; �3

�
�0 = ct
@�0 (m) = "0 (m)
World line of the observer : po (t) = 'o

�
ct; �1; �2; �3

�
= �c"0 (t; x)

Tetrad

"i (m) =
P3
�=0 P

�
i (m) @�� , @�� =

P3
i=0 P

0i
� (m) "i (m)

"i (m) =
P3
i=0 P

0i
� (m) d�

� , d�� =
P3
i=0 P

�
i (m) "

i (m)h eP (m)i = [P (m)] [� (m)]�1
[P 0] =

2664
P 000 P 010 P 020 P 030
P 010 P 011 P 012 P 013
P 020 P 021 P 022 P 023
P 030 P 031 P 032 P 033

3775 ; [P ] =
2664
P00 P01 P02 P03
P10 P11 P12 P13
P20 P21 P22 P23
P30 P31 P32 P33

3775
Standard chart :

[P ] =

�
1 0
0 Q

�
; [Q] =

24 P11 P12 P13
P21 P22 P23
P31 P32 P33

35
[P 0] =

�
1 0
0 Q0

�
; [Q0] =

24 P 011 P 012 P 013
P 021 P 022 P 023
P 031 P 032 P 033

35
[Q] [Q0] = I3
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Metric

[g] =

2664
g00 g01 g02 g03
g01 g11 g21 g13
g02 g21 g22 g32
g03 g13 g32 g33

3775 = [g]t
[g] = [P 0]

t
[�] [P 0], [g]

�1
= [P ] [�] [P ]

tp
�det [g] = detP 0

@� detP
0 = (detP 0)Tr ([@�P

0] [P ])

Standard chart :

[g] =

�
�1 0
0 [g]3

�
=

�
�1 0

0 [Q0]
t
[Q0]

�
[g]

�1
=

�
�1 0

0 [g]
�1
3

�
=

�
�1 0

0 [Q] [Q]
t

�
det [g3] = �det g = (detQ0)2

det [g3]
�1
= (detQ)

2

$4 = det [P
0] d�0 ^ d�1 ^ d�2 ^ d�3

$3 = det [Q
0] d�1 ^ d�2 ^ d�3

Fiber bundles

i) PG (M;Spin0 (3; 1) ; �G) :

p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
� (m) = p (m) � � (m) = ep (m) � e� (m) = ep (m) � (� (m) :� (m))
� (m)! e� (m) = � (m) � � (m)
ii) Cl (TM) :
(p (m) ; X) �

�ep (m) ;Ad�(m)X�
ii) P

G

�
R4;Ad

�
:

"i (m) = (p (m) ; "i)! e"i (m) = Ad�(m)�1"i (m) =P3
j=0

h
h
�
� (m)

�1
�ij

i
"j (m)

vm =
Pn
i=1 v

i"i (m) =
Pn
i=1 evie"i (m)) evi =Pj

�
Ad�(m)

�i
j
vjh

P̂ 0 (m)
i
= [h (� (m))] [P 0 (m)]h eP (m)i = [P (m)] [� (m)]�1

Spatial coordinates de�ned by Killing vector �elds

g32 = a1 (t; �1; �2; �3)
p
g22 (�2) g33 (�3)

g13 = a2 (t; �1; �2; �3)
p
g11 (�1) g33 (�3)

g21 = a3 (t; �1; �2; �3)
p
g22 (�2) g11 (�1)

@ap = � (g)1=2 @0ap; ; p = 1; 2; 3

[g3] =

24 �21 a3�1�2 a2�1�3
a3�1�2 �22 a1�2�3
a2�1�3 a1�2�3 �23

35
det [g3] = �23�

2
2�
2
1

�
2a1a2a3 � a21 � a22 � a23 + 1

�
[g3]

�1
= 1

a21+a
2
2+a

2
3�1�2a1a2a3

2664
a21�1
�21

a3�a1a2
�2�1

a2�a1a3
�3�1

a3�a1a2
�2�1

a22�1
�22

a1�a2a3
�3�2

a2�a1a3
�3�1

a1�a2a3
�3�2

a23�1
�23

3775
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A.5.5 PARTICLES

Trajectory of a particle

Velocity u of the particle, measured in its proper time :
u = dp

d�

hu; ui = �c2
Trajectory of a particle, in the standard chart of an observer :
q (t) = 'o

�
�0 (t) ; �1 (t) ; �2 (t) ; �3 (t)

�
�0 (t) = ct
Velocity V of a particle as measured by an observer :
V (t) = dq

dt = c"0 (q (t)) +
�!v

�!v =
P3
�=1

d��

dt @��
Between the proper time � of a particle and the time t of an observer :
u = dq

d� =
1r

1�k
�!v k2
c2

(�!v + c"0 (m))

d�
dt =

r
1� k

�!v k2
c2 = 1

c

p
�hV; V i

Motion

ei = Ad�"i
U = c ("0 +

�!u ) = � c
hAd�"0;"0iCl

Ad�"0

V = dq
dt = c"0 +

�!v =
P
�;j [P ]

�
j [U ]

j
@��

h�!u ;�!u i = 1�
�

1
hAd�"0;"0iCl

�2
d�
dt � �

�1 = � (Xr; Xw) 2 T1Spin (3; 1)
8i = 0::3 : deidt = [� (Xr; Xw) ; ei]
dU
dt =

U
c h[� (Xr; Xw) ;U ] ; "0iCl + [� (Xr; Xw) ; U ]

ut dudt = (1� (u
tu)) (utXw)

dV �

dt =
P3
i=0 [P

0]
�
i
dUi

dt

chart : � = �w � �r = � (aw + � (0; w)) � � (ar + � (r; 0))
U = c

�
"0 +

P3
a=1

aw
2a2w�1

wa"a

�
Xr = � 12j (w)

dw
dt +

�
1� 1

2j (w) j (w)
� �

1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

Xw =
1
aw

�
1� 1

4j (w) j (w)
�
dw
dt + [awj (w)]

�
1
ar
+ 1

2j (r) +
1
4ar

j (r) j (r)
�
dr
dt

dU
dt = cXw +

�
j (Xr)� (Xt

wv)
1
c

�
v

aw ' �
�
1 + 1

8

k�!v k2
c2

�
w ' �

�
1 + 3

8

k�!v k2
c2

�
�!v
c

V ' c
�
"0 + �

�
1� 3

8

k�!v k2
c2

�
�!w
�

complex chart : � = A+ Z

U = c
�
"0 � 1

AA+ 1
4Z

tZ
Im
��
A+ 1

4j (Z)
�
Z
	�

d�
dt � �

�1 = D (Z) dZdt = Yr + iYw
dZ
dt =

�
A� 1

2j (Z)
�
(Yr + iYw)

dU
dt = cYw +

�
j (Yr)�

�
[Yw]

t
[v]
�
1
c

�
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A ' �ar
�
1 + 1

8

k�!v k2
c2

�
� i 14�r

t�!v
c

Z ' �
�
1 + 1

8

k�!v k2
c2

�
r + i

�
ar � 1

2j (r)
�
�
�!v
c

Deformable solid

� 2 X (PG)! J1� =
�
m;� (m) ; @�� � ��1; � = 0:::3

�
2 J1Cl (TM)

V = dq
dt = c"0 +

�!v = � c
hAd�"0;"0iCl

Ad�"0
8i; � = 0::3 :
@�ei = [� (Xr�; Xw�) ; ei]
@�V =

V
c h[� (Xr�; Xw�) ;V ] ; "0iCl + [� (Xr�; Xw�) ; V ]

� > 0 : @�V
� =

P3
j=0

�
P�j � 1

cP
0
j V

�
� �
@�� � ��1;U

�j
Rigid solid :
� (�V (t; x)) = s (t) � � (�V (0; x)) with s (t) 2 Spin (3; 1)

Spinor

Spinor bundle PG [E; C]
p (m) = 'G (m; 1)! ep (m) = p (m) � � (m)�1 :
ei (m) = (p (m) ; ei)! eei (m) = C

�
� (m)

�1
�
ei (m)

(p (m) ; S) � (ep (m) ; C (� (m))S)
Scalar product :
hS; S0iE = [S]

�
[0] [S

0] = i
�
[SL]

�
[S0R]� [SR]

�
[S0L]

�
hS; SiE = �2 Im

�
[SL]

�
[SR]

�
Single particle :
j1S : R!J1PG [E; C] :: j1S (t) = (q (t) ; S (t) ; �S (t))
S : R!J1PG [E; C] ::

�
q (t) ; S (t) ; dSdt (t)

�
M (q (t) ; � (t) ; � (Xr; Xw)) = (q; S = C (�)S0; �S = C (� (Xr; Xw))S)

E� =

��
SR
SL

�
2 E : SL = �iSR

�
Mass and kinetic energy :

Mp =
p
jhS0; S0ij =

q
2
��Im �[SL]� [SR]��� =p2 [SR]� [SR]

SR =
Mpp
2

�
ei�1 cos�0
ei�2 sin�0

�
�K = 1

Mp

1
i hS; �Si =

1
Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i

dK
dt =

1
Mp

1
i



S0; C

�
��1 � d�dt

�
S0
�

Inertial vector :
a = 1; 2; 3 : ka = S�L�aSR =

1
2 i hS0; (0a � ea)S0iE

8Z 2 T1Spin (3; 1) : hS0; C (Z)S0i = i Im ktZ
�K = 1

Mp

1
i hS0; C (Ad��1� (Xr; Xw))S0i = 1

Mp
Im ktAd��1� (Xr; Xw)

S0 2 E0 : k = �i�
M2

p

2 k0

k0 =

24 (sin 2�0) cos (�1 � �2)
� (sin 2�0) sin (�1 � �2)

cos 2�0

35 ; kt0k0 = 1
�K = ��Mp

2 k
t
0ReAd��1� (Xr; Xw)

Continuity equation :
d�
dt + �divV = 0



384 APPENDIX A. ANNEX

divV =
P3
�;j=1Q

�
j

n�
@�� � ��1;U

�j
+ 1

2
1

det gU
j@� (det g)

o
Charged Particles

Fiber bundles :
i) PU
pU (m) = 'U (m; 1)! epU (m) = e'U (m; 1) = pU (m) � � (m)�1
{ (m) = 'U (m;{ (m)) = e'U (m;� (m) � { (m))
ii) PU [F; %]

fj (m) = (p (m) ; fj)! efj (m) = %
�
� (m)

�1
�
(fj (m))

� (m)! e� (m) = % (� (m))� (m)
iii) Q (M;Spin(3; 1)� U; �U )
('Q (m; (1; 1)) ;  ) �

�
'Q
�
m;
�
s�1; g�1

��
; # (s; g) 

�
(ei (m)
 fj (m))j=1:::ni=0::3 = ('Q (m; (1; 1)) ; ei 
 fj)
q (m) = 'Q (m; (1; 1))! eq (m) = e'Q (m; (1; 1)) = q (m) � � (m)�1
(� (m) ;{ (m)) = 'Q (m; (�;{)) = e'Q (m; (e�; e{)) : (e�; e{) = � (m) � (�;{)
iv) State of a particle : Q [E 
 F; #]
ei (m)
 fj (m) = (p (m) ; ei 
 fj)! eei (m)
 efj (m) = #

�
� (m)

�1
�
(ei (m)
 fj (m))

 (m) =
P4
i=1

Pn
j=1 [C (� (m))]

i
k [% ({ (m))]

j
l  

kl
0 (m) ei (m)
 fj (m)

[ ]4�n = [C (�)]4�4 [ ]4�n [� ({)]n�n
[ (m)]!

h e (m)i = # (� (m)) [ (m)] = [C (s)] [ ] [% (g)]

[ 0] =

�
 R
�i R

�
h ; 0i = Tr

�
[ ]

�
[0] [ 

0]
�

Mass : Mp =
p
� h 0;  0i =

p
�2Tr ( �R R)

Momentum : M =(m; = # (�;{) 0; � = # (� (Xr; Xw) � �;{) 0) 2 J1Q [E 
 F; #]
Inertial vector :
ka = Tr [ �L]�a [ R] =

1
2 h 0; (0a � iea) 0iE

k = �i�M
2
p

2 k0

h 0; # (Z; 1) 0i = i Im ktZ = �i�M
2
p

2 k
t
0ReZ

Kinetic Energy :
�K = 1

Mp

1
i h ; � i =

1
Mp

1
i h 0; # (Ad��1� (Xr; Xw) ; 1) 0i

�K = � 12�Mpk
t
0Re (Ad��1� (Xr; Xw))

Connections

Potential :
G 2 �1 (M ;T1Spin (3; 1)) : TM ! T1Spin(3; 1) ::

G (m) =
P6
a=1

P3
�=0G

a
� (m)

�!� a 
 d�� =
P3
�=0 � (Gr� (m) ; Gw� (m)) d�

�

p (m)! ep (m) = p (m) � � (m)�1 : G (m)! eG (m) = Ad� �G (m)� L0��1 (�)�0 (m)�
[�M�] =

P6
a=1G

a
� [�a] =

2664
0 G1w� G2w� G3w�

G1w� 0 �G3r� G2r�
G2w� G3r� 0 �G1�
G3w� �G2r� G1r� 0

3775
�A 2 �1 (M ;T1U) : TM ! T1U :: �A (m) =

P3
�=0

Pm
a=1

�Aa� (m)
�!
� a 
 d��

pU (m)! epU (m)=e'U (m; 1) = pU (m) � � (m)�1
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�A (m)! e�A (m) = Ad�

�
�A (m)� L0��1 (�)�0 (m)

�
Covariant derivative :
rG : X (PG)! �1 (M ;T1Spin) :: rG�=

P3
�=0Ad��1

�
@�� � ��1 +G�

�
d��

rG : J1Cl (TM)! J1Cl (TM) : rG� j1� =
P3
�=0Ad��1 (� (Xr�; Xw�) +G�) d�

�

rG� !]rG�=rG�
rS : X (PG [E; C])! �1 (M ;X (PG [E; C]))
rSS =

P3
�=0 (@�S + C (G�)S) d�

� =
P3
�=0 (@�S + C (� (Gr�; Gw�))S) d�

�

rSS !]rSS = C (�)rSS
rMV =

P3
�i=0

�
@�V

i +
P3
j=0 [�M� (m)]

i
j V

j
�
"i (m)
 d��

Total connection of a matter �eld :
[r� ] = # (�;{)

��
C
�
Ad��1

�
@�� � ��1 +G�

���
[ 0] + [ 0]

h
Ad{

�
�A�

�i�
[r� ] = # (�;{)

��
C
�
rG��

��
[ 0] + [ 0]

h
Ad{

�
�A�

�i�
�
r�j1 

�
= # (�;{)

�
[C (Ad��1 (� (Xr�; Xw�) +G�))] [ 0] + [ 0]

h
Ad{

�
�A�

�i�
[rV  ] =

P3
j=0 [U ]

jP3
�=0 [P ]

�
j [r� ]

Single particle :

[rV  ] = # (�;{)
�h
C
�
Ad��1

�
� (Xr; Xw) + bG��i [ 0] + [ 0] hAd{ b�A (t)i�bG (t) = �

� bGr (t) ; bGw (t)� =P3
j=0 [U (t)]

jP3
�=0i [P (q (t))]

�
j � (Gr� (q (t)) ; Gw� (q (t)))b�A (t) =P3

j=0 [U (t)]
jP3

�=0 [P (q (t))]
�
j
�A� (q (t))

Energy :
�E = 1

Mp

1
i h ;rV  i

= 1
Mp

1
i



 0;
�
C
�
rGV �

��
[ 0]

�
+ 1

Mp

1
i

D
 0; [ 0]

h
Ad{

�b�A�iE
=� 1

2�Mp

n
kt0ReAd��1

�
� (Xr; Xw) + bG�+ ktc �Ad{ b�A�o

a = 1:::m : kac = �2� 1
M2

^p

1
i h 0; [ 0] [�a]i

�K = 1
Mp

1
i h ; � i =

1
Mp

1
i h 0; # (Ad��1� (Xr; Xw) ; 1) 0i

�K = � 12�Mpk
t
0Re (Ad��1� (Xr; Xw))

EM �eld : kc = �2q

A.5.6 FORCE FIELDS

Gravitational Field

Strength of the �eld
FG =

P6
a=1

�
dGa +

P3
��=0 [G�;G� ]

a
d�� ^ d��

�

�!� a

=
P6
a=1

P3
f�;�g=0

�
@�G

a
� � @�Ga� + 2 [G�; G� ]

a
�
d�� ^ d�� 
�!� a

=
P6
a=1

P3
�;�=0 FaG��d�� ^ d�� 


�!� a
=
P3

f�;�g=0 � (Fr�� ;Fw��) d�� ^ d��

[FG�� ] =
P6
a=1 FaG�� [�a] = [K (Fw��)] + [J (Fr��)]

[F�� ] = [@��M� ]� [@��M�] + [�M�] [�M� ]� [�M� ] [�M�]
with the signature (3,1) :
Fr�� = � (@�Gr� � @�Gr� + 2 (j (Gr�)Gr� � j (Gw�)Gw�) ; 0)
Fw�� = � (0; @�Gw� � @�Gw� + 2 (j (Gw�)Gr� + j (Gr�)Gw�))
ReF�� = Re (@�G� � @�G� + 2j (G�)G�)
ImF�� = Im (@�G� � @�G� + 2j (G�)G�)
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F�� = @�G� � @�G� + 2j (G�)G�
Change of gauge : pG (m) = 'G (m; 1)! epG (m) = pG (m) � s (m)�1 :
FG�� ! eFG�� (m) = Ads(m)FG��
Matrix representation :

[F ]6�6 =
�
Frr Fwr
Frw Fww

�
=
h
FaG��

i
[Frr ]3�3 =

24 F1G32 F1G13 F1G21
F2G32 F2G13 F2G21
F3G32 F3G13 F3G21

35
[Fwr ]3�3 =

24 F1G01 F1G02 F1G03
F2G01 F2G02 F2G02
F3G01 F3G02 F3G03

35
[Frw]3�3 =

24 F4G32 F4G13 F4G21
F5G32 F5G13 F5G21
F6G32 F6G13 F6G21

35
[Fww ]3�3 =

24 F4G01 F4G02 F4G03
F5G01 F5G02 F5G02
F6G01 F6G02 F6G03

35
Complex formalism :
[FrG] = [Frw] + i [Frw]
[FwG ] = [Fww ] + i [Fww ]

[G0]3�1 =

24 G10 + iG
4
0

G20 + iG
5
0

G30 + iG
6
0

35
[G]3�3 =

24 G11 + iG
4
1 G12 + iG

4
2 G13 + iG

4
3

G21 + iG
5
1 G22 + iG

5
2 G23 + iG

5
3

G31 + iG
6
1 G32 + iG

6
2 G33 + iG

6
3

35
[FG] =

�
FrG FwG

�
3�6 =

�
[dGr]� 2 (det [G]) [G]�1 [dGw] + 2 [j (G0)] [G]

�
Hodge dual :

�
[�FwG ] [�FrG]

�
= �

�
[FrG] [FwG ]

�
[LH ] detP

0

Riemann tensor :h bR��i = [R�� ] = [P ] [FG�� ] [P 0], [FG�� ] = [P 0] [R�� ] [P ]
Ricci tensor : Ric =

P3
��=0

P6
a=1 ([Fa] [P ] [�a] [P 0])

�
� d�

� 
 d��
Scalar curvature :
R =

P6
a=1 Tr

�
[P ]

t
[Fa] [P ] [�a] [�]

�
R = Tr

n
�2 [Frr ] [Q0]

t
det [Q]� 2 [Fwr ] [Q] j

��
P 0
��
+ [Frw] j ([P0]) [Q]� [Fww ]

�
P 00 [Q]� [P0]

�
P 0
��o

Scalar product :
hF ;KiG = 1

4 (G2 (Fr;Kr)�G2 (Fw;Kw)) =
1
4

P
f��g F��r Kr�� �F��w Kw��

= 1
4

1
detP 0

�
[�Fww ] [Kr

w]
t
+ [�Frw] [Kw

w ]
t �
�
[�Fwr ] [Kr

r ]
t
+ [�Fr] [Kw]

t
��

= � 18Tr
�
[Fr] [g]�1 [Kr] [g]

�1 � [Fw] [g]�1 [Kw] [g]
�1
�

= � 14
1

detP 0 Re
�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�
= � 18 ReTr

�
[F ] [g]�1 [K] [g]�1

�
Standard chart :
hF ;KiG = 1

4

P3
a=1ReTr

�
[Fw] [g3]�1 [Kw]

t
+ [Fr] [g3] [Kr]

t
det [g3]

�1
�

hF ;KiG$4 =
1
4

P3
a=1 �Far ^Ka

r � �Faw ^Ka
w =

1
4

P3
a=1 �Ka

r ^ Far � �Ka
w ^ Faw

hX; [Y;Z]iG =
P

f��g


X�� ; [Y�; Z� ]

�
Cl
=
P

f��g

�
X�� ; Y�

�
; Z�

�
Cl

Chern-Weil theorem :
Tr
�
[Frr ]

t
[Fwr ]� [Frw]

t
[Fww ]

�
= 0, TrRe [FrG]

t
[FwG ] = 0
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Electromagnetic �eld

F�� =
P
�

�
@� �A� � @� �A�

�
d�� ^ d��

�!
E =

P3
i=1E

i"i =
P3
i=1

P3
�=0E

iP �i @���!
B =

P3
i=1B

i"i =
P3
i=1

P3
�=0B

iP �i @��

[FrEM ] = � [B]
t
[Q0]

t
detQ+ [E]

t
[Q] j

��
P 0
��

[FwEM ] = [B]
t
j ([P0]) [Q] + [E]

t �
P 00 [Q]� [P0]

�
P 0
��h

d �Ar
i
= [FrEM ] = � [B]

t
[Q0]

t
detQ+ [E]

t
[Q] j

��
P 0
��h

d �Aw
i
= [FwEM ] = [B]

t
j ([P0]) [Q] + [E]

t �
P 00 [Q]� [P0]

�
P 0
��

Scalar product : hFEM ;FEM i = [E]t [g3] [E] + [B] [g3] [B]t

Other Fields

Strength of the �eld
FA =

Pm
a=1

P
f�;�g

�
FaA��d�� ^ d��

�

�!� a 2 �2 (M ;T1U)

FA =
Pm
a=1

�
d
�P3

�=0
�Aa�d�

�
�
+
P
��

h
�A�; �A�

i
d�� ^ d��

�

�!� a

FaA�� = @� �A
a
� � @� �Aa� + 2

h
�A�; �A�

ia
Change of gauge : pU (m) = 'PU (m; 1)! epU (m) = pU (m) � { (m)�1 :
FA�� ! eFA�� (m) = Ad{(m)FA��
Hodge dual :

�
[�FwA ] [�FrA]

�
= �

�
[FrA] [FwA ]

�
[LH ] detP

0

Scalar product :
hF ;KiA =

Pm
a=1G2 (Fa;Ka) =

Pm
a=1

P
f��g Fa��Ka

��

= � 1
detP 0

Pm
a=1

�
[�Faw] [Kar]

t
+ [�Far] [Kaw]

t
�

= � 1
detP 0Tr

�
[�Fw] [Kr]

t
+ [�Fr] [Kw]

t
�

= � 12
Pm
a=1 Tr

�
[Fa] [g]�1 [Ka] [g]

�1
�

Standard chart :
hF ;KiA = Tr [FwA ] [g3]

�1
[Kw]

t
+ [FrA] [g3] [Kr

A]
t
det [g3]

�1

hF ;KiA$4 =
Pm
a=1 �FaA ^Ka

A =
Pm
a=1 �Ka

A ^ FaA
hX; [Y;Z]iA =

P
f��g



X�� ; [Y�; Z� ]

�
T1U

=
P

f��g

�
X�� ; Y�

�
; Z�

�
T1U

Chern-Weil theorem : Tr
�
[FrA]

t
[FwA ]

�
= 0

Propagation

Conservation of energy in the vacuum :
@
@t hF ;Fi+ hF ;Fi

1
2

1
det g@0 (det g) = 0

Propagation along a curve of tangent V :
V = v + c"0
$V g = 0
hV; V i = w2 � c2
Evolution of a signal along a propagation curve :
[�Fa (�)] = � (�) [K (�)]

t
[�Fa (O)] [K (�)]�

[�Fr (�)] [�Fw (�)]
�
= � (�)

�
[�Fr (O)] [�Fw (O)]

� �
LK(�)

�
d
d�

�
[�Fr (�)] [�Fw (�)]

�
=
�
[�Fr (O)] [�Fw (O)]

� �
LK(�)

� �
1
�
d�
d� I3 + [D (�)]

�
d
d�

�
[�Fr (�)] [�Fw (�)]

�
=
�
[�Fr (�)] [�Fw (�)]

�
1
�

�
1
�
d�
d� I3 + [D (�)]

�
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[D (�)] =

" �
[@v]

t � (Tr [@v]) I3
�

0

0 � [@v]

#

[@v] =

24 @1v
1 @2v

1 @3v
1

@1v
2 @2v

2 @3v
2

@1v
3 @2v

3 @3v
3

35
Potentials :h
� �A (�)

i
= � (�)

h
� �A (O)

i
[K (�)]

[�G (�)] = � (�) [�G (O)] [K (�)]

�Ga0 (�) = � (�) �Ga0 (O)

� �Aa0 (�) = � (�) � �Aa0 (O)

Bosons

Photon :�' : [0; T ]! TM� :: �' (t) =
P3
�;�=0 [K (t)]

�
��'�d�

� (q (t))

Graviton : �� : [0; T ] ! TM� 
 L0 :: �� (t) =
P3
�;�=0 [K (t)]

�
����d�

� (q (t)) 
 �!� a with a
equal either 1; 2; 3
Antigraviton : �� : [0; T ]! TM� 
 P0 :: �� (t) =

P3
�;�=0 [K (t)]

�
����d�

� (q (t))
�!� a with a
equal either 4; 5; 6

Other bosons : � �A : [0; T ]! TM� 
 T1U :: � �A (t) =
P3
�;�=0 [K (t)]

�
��

�Aa�d�
� (q (t))
�!� a

A.5.7 LAGRANGIANS

Complex variables

@L
@z =

1
2

�
@L

@ Re z +
1
i

@L
@ Im z

�
; @L@z =

1
2

�
@L

@ Re z �
1
i

@L
@ Im z

�
@L

@ Re z =
@L
@z +

@L
@z ;

@L
@ Im z = i

�
@L
@z �

@L
@z

�
@L

@ Re z Reu+
@L

@ Im z Imu = 2Re
@L
@z u;�

@L
@ Re z Imu+

@L
@ Im z Reu = �2 Im

@L
@z u

Equivariance and covariance

L = L ( ;r� ; P�i ;FG�� ;FA�� ; V �)

Lagrange equations

8zi : d(L detP
0)

dzi �
P
�

d
d��

d(L detP 0)
dzi�

= 0

Tetrad equation

8�; � = 0:::3 :
P
i
dL
dP�

i
P �i � L��� = 0

Energy-Momentum tensor

T : X
�
J1E

�
! X (TM� 
 TM 
 E�) :: T =

P
i��

@L
@zi�

zi�@�� 
 d�� 
 ei

�i =
P
��

@L
@zi�

zi�@�� 
 d�� 
 ei 2 X (TM� 
 TM 
 E�)
�` =

R


(div (T (V )) + Tr (T ) (V ))$4

T =
P
��f
P
ij

@L
@r� ij

�� 
ij + 2

P
a;

�
@L

@Fa
A�

�� �A
a
 +

@L
@Fa

G�
��G

a


�
g@�� 
 d��
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A.5.8 CONTINUOUS MODELS

Lagrangians

Interactions Fields / FieldsR



�P
�� CG

�P3
a=1 FaG��F

a��
G �

P6
a=4 FaG��F

a��
G

�
+ CA

Pm
a=1 FaA��F

a��
A

�
$4 (m)P

��

n
CG

�P3
a=1 FaG��F

a��
G �

P6
a=4 FaG��F

a��
G

�
+ CA

Pm
a=1 FaA��F

a��
A + CEMFEM��F��EM

o
=
P
�� 4CG

D
F��G ;FG��

E
Cl
+ CA

D
F��A ;FA��

E
T1U

+ CEM

D
FEM�� ;F��EM

E
T1U(1)

= 8CG hFG;FGiG + 2CA hFA;FAiU + 2CEM
D
FEM�� ;F��EM

E
T1U(1)

Particles
�E = CI

1
Mp

1
i h ;rV  i=� CI

1
2Mp

n
kt0ReAd��1

�
� (Xr; Xw) + bG�+ ktc �Ad{ b�A�o

[r� ] = # (�; 1)
��
C
�
rG��

��
[ 0] + [ 0]

h
�A�

i�
rG�� = Ad��1 (� (Xr�; Xw�) +G�)

� (Xr�; Xw�) = @�� � ��1

Model with matter �eldsR


CI

1
M

1
i h (r (m) ; w (m)) ;rV  r (m) ; w (m)i� (m)$4 (m)

Model with individual particles
 p (t) =  p (qp (t)) = # (�p (rp (t) ; wp (t)) ; 1) 0pPN

p=1

R T
0
CI

1
Mp

1
i h (rp (t) ; wp (t)) ;rV  (rp (t) ; wp (t))i dt

ParticlesP3
�=0 V

� h ;r� i = 0D
 0;
h
C
�h
��1 � @�@ra ;r

G
V �
i�i

[ 0]
E
=
P3
�;j=0 P

�
j

h
@�
@ra
� ��1;U

ij
h ;r� iD

 0;
h
C
�h
��1 � @�@wa ;r

G
V �
i�i

[ 0]
E
=
P3
�;j=0 P

�
j

h
@�
@wa
� ��1;U

ij
h ;r� i

kt0Re
�
[D (�Z)]

�
dZ
dt

�
+ [Ad (�Z)]

h bGi�+ ktc hb�Ai = 0
1
c [D (Z)] [j (k0)]

n
[D (�Z)]

�
dZ
dt

�
+ [Ad (�Z)]

h bGio
= �2Re

n
[D (�Z)]

�
i
�
[u]

t
[u]� 1

�
+ j (u) + ij (u) j (u)

�oP3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
Re ([D (Z)] [j (k0)] [D (�Z)]) dwdt + Im ([D (Z)] [j (k0)] [D (�Z)])

dr
dt

= � Im
n
[D (Z)] [j (k0)] [Ad (�Z)]

h bGio
Bonded particle :
dr
dt =

�
ar +

1
2j (r)

� �
2q �A0k0 �Gr0

�
Geodesics

Re
n
[D (�Z)]

�
i
�
[u]

t
[u]� 1

�
+ j (u) + ij (u) j (u)

�oP3
�=1

�
[Q]

�
�t n

kt0Re
�
rG� �

�
+ ktc

h
�A�

io
= 0
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Currents

Currents for the �elds
�G =

P3
�=0

h
F��G ; G�

i
T1Spin(3;1)


 @�� 2 T1Spin (3; 1)
 TM

�A =
P3
�=0

h
F��A ; �A�

i
T1U

 @�� 2 T1U 
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[�G]
�=0::3
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a
�!� a 
 @��
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a
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 @��
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Current for the particles
JG = � CI

16CG
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 TM

JA = � CI
16CA

�M
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a=1 k

a
c

�!
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 V 2 T1U 
 TM

JEM = CI
8CEM

�qMV 2 TM
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Fields equations
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On shell :
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hFG;FGiG = �G (�G)
hFA;FAiU = ��A (�A)
hFEM ;FEM iEM = �AEM (�FEM )
LSystem = LFields = �8CGG (JG)� 2CA �A (JA)� 2CEM �AEM (JEM ) = � 14CI
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dt
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