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Abstract

This work considers Coulomb forces acting on a charged point particle located
between the two coaxial, likely charged rings laying at some distance between one
another. Conditions under which the charged particle, while being affected by
Coulomb repulsion forces of charges of the rings, localises in the space between
the rings and moves along a closed trajectory around the axis of charged rings,
not leaving the space between them, were determined. Also, conditions at which a
controlled ejection of the charged particle from its localisation zone (or the capability
to control the kinetic energy and direction of ejection of the particle) is possible,
were determined. Based on the obtained results, we conclude that the considered
method of localisation and controlled ejection of charged particles is applicable both
in experiments on the nuclear synthesis in swarms of localised positively charged
particles and for the formation of beams of likely charged particles with the given
velocity of motion relatively to the charged rings.

Keywords : Coulomb forces, electric charge, nuclear synthesis, particle beam.

Figure 1 illustrates an interaction between a particle and two rings having like electric
charges (charges of the particle and the rings are of the same sign). By ring we mean a
solid torus (a bagel-shaped manifold). The following definitions are used at the figure:
m is an electrically charged particle;
Pa is a Pa electrically charged ring;
Pb is a Pb electrically charged ring;
Fa is a surface on which unit vectors of forces acting on the particle from the side of the
Pa ring are laying;
Fb is a surface on which unit vectors of forces acting on the particle from the side of the
Pb ring are laying.

Let us assume that the particle is a point particle and forces acting from the side of
rings on the point particle are coming from the circles formed by centres of infinite set
of cross-sections of the rings. The rings have the same circular cross-sections (Figure 2).

The planes at which the circles of rings are laying are parallel. The axes of the X⃗ and
Y⃗ coordinate system in which the interaction is reviewed are laying in a plane which is
parallel to those of circles of the rings and is located in the middle between the planes
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Figure 1: Interaction of a charged particle and two charged rings.

Figure 2: 1 is a circular cross-section of the ring; 2 is a centre of the circular cross-section
of the ring; 3 is a circle formed by centres of infinite set of cross-sections of the ring (the
circle of the ring); 4 is the centre of the circle of the ring; 5 is a radius of the cross-section
of the ring.
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of circles of the rings. Projections of centres of circles on the X⃗, Y⃗ plane coincide. The
positive axis Z⃗ is coming from the projection point of centres of circles of the rings to the
X⃗, Y⃗ plane and directed toward the Pa ring. Coordinates of the centre of the circle of
the Pa ring are (0, 0, h) (the coordinate definition order is (x, y, z)). Coordinates of the
centre of the circle of the Pb ring are (0, 0,−h). Coordinates of the particle location are
(x, y, z).

In order to determine the equation of motion of the charged particle under the action
of Coulomb forces of charges of the rings, we will use the following variables and constants:
m is a mass of the particle;
R⃗ = x⃗+ y⃗ + z⃗ is the radius vector of the particle position;
r⃗ = x⃗+ y⃗ is a vector parallel to the X⃗, Y⃗ plane, linking the Z⃗ axis and the particle position
point;
q is an electric charge of the particle;
Qa is an electric charge distributed uniformly in the Pa ring;
Qb is an electric charge distributed uniformly in the Pb ring;
R⃗a0 is a vector coming from the centre of the circle of the Pa ring to the point on this
circle;
R⃗b0 is a vector coming from the centre of the circle of the Pb ring to the point on this
circle;
R⃗ma is a vector issued from the point of the circle of the Pa ring to which the R⃗a0 vector
comes to, to the point of location of the particle;
R⃗mb is a vector issued from the point of the circle of the Pb ring to which the R⃗b0 vector
comes to, to the point of location of the particle;
γ is an angle between the vectors r⃗ and R⃗a0 equal to the angle between the vectors r⃗ and
R⃗b0;
ω is a magnitude of an angular rotation velocity of the r⃗ vector.

In order to consider forces acting on the particle from the side of two rings as those
that are coming from the circles formed by centres of infinite set of cross-sections of the
rings, the following conditions should be satisfied: Rma >> rs and Rmb >> rs where rs is
the radius of cross-sections of the rings (Figure 2).

Let us write down the equation of motion of the particle as an equality of the force
acting on the particle to the sum of Coulomb forces applied to the particle from the side
of all electric charges of the rings:

m
d2R⃗

dt2
=

qQa

2π

∫ 2π

0

R⃗ma

R3
ma

dγ +
qQb

2π

∫ 2π

0

R⃗mb

R3
mb

dγ, (1)

where:

R⃗ma = r⃗ + (z − h) ẑ − R⃗a0, (2)

R⃗mb = r⃗ + (z + h) ẑ − R⃗b0, (3)

R2
ma = R2

a0 + (z − h)2 + r2 − 2rRa0 cos (γ), (4)

R2
mb = R2

b0 + (z + h)2 + r2 − 2rRb0 cos (γ). (5)

In the (1), the integration is performed with respect to the γ variable, with constants Ra0,

Rb0, R⃗, h, and variables R⃗ma and R⃗mb.
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Let us determine the projection of the force (1) to the r⃗ vector:

m

(
d2R⃗

dt2
· r⃗

)
=

qQa

2π

∫ 2π

0

(
R⃗ma · r⃗

)
R3

ma

dγ +
qQb

2π

∫ 2π

0

(
R⃗mb · r⃗

)
R3

mb

dγ. (6)

Let us determine the projection of the force (1) to the z⃗ vector:

m

(
d2R⃗

dt2
· z⃗

)
=

qQa

2π

∫ 2π

0

(
R⃗ma · z⃗

)
R3

ma

dγ +
qQb

2π

∫ 2π

0

(
R⃗mb · z⃗

)
R3

mb

dγ. (7)

After the transformation of equations (6) and (7), taking into account (2) - (5), we obtain:

m
d2r

dt2
−mω2r =

qQa

2π

∫ 2π

0

(r −Ra0 cos (γ))(
R2

a0 + (z − h)2 + r2 − 2rRa0 cos (γ)
)3/2dγ+

+
qQb

2π

∫ 2π

0

(r −Rb0 cos (γ))(
R2

b0 + (z + h)2 + r2 − 2rRb0 cos (γ)
)3/2dγ, (8)

m
d2z

dt2
=

qQa

2π

∫ 2π

0

(z − h)(
R2

a0 + (z − h)2 + r2 − 2rRa0 cos (γ)
)3/2dγ+

+
qQb

2π

∫ 2π

0

(z + h)(
R2

b0 + (z + h)2 + r2 − 2rRb0 cos (γ)
)3/2dγ. (9)

We introduce and determine the following functions:

r2a = R2
a0 + (z − h)2 + r2, r2b = R2

b0 + (z + h)2 + r2, (10)

sa =
r

ra
, sb =

r

rb
, ka =

Ra0

ra
, kb =

Rb0

rb
, la =

z − h

ra
, lb =

z + h

rb
. (11)

Using (10) and (11), we transform (8) and (9):

m
d2r

dt2
−mω2r =

q

2π

∫ 2π

0

(
Qa

r2a

(sa − ka cos (γ))

(1− 2saka cos (γ))
3/2

+
Qb

r2b

(sb − kb cos (γ))

(1− 2sbkb cos (γ))
3/2

)
dγ, (12)

m
d2z

dt2
=

q

2π

∫ 2π

0

(
Qa

r2a

la

(1− 2saka cos (γ))
3/2

+
Qb

r2b

lb

(1− 2sbkb cos (γ))
3/2

)
dγ. (13)

As the following conditions are satisfied:

h ̸= 0, z ̸= ±h, (14)

we will have from (10) and (11):

2saka =
2rRa0

R2
a0 + (z − h)2 + r2

< 1, 2sbkb =
2rRb0

R2
b0 + (z + h)2 + r2

< 1. (15)
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Therefore, for (12) and (13), under the conditions of (14), we can use the expansion into
a Maclaurin series:

1

(1− a)3/2
=

∞∑
n=0

(2n+ 1)!an

22n (n!)2
, a < 1. (16)

Applying the (16), we will obtain from the (12):

m
d2r

dt2
−mω2r =

q

2π

∞∑
n=0

(2n+ 1)!

2n (n!)2

(
Qa

r2a
sn+1
a kn

a +
Qb

r2b
sn+1
b kn

b

)∫ 2π

0

cosn (γ)dγ−

− q

2π

∞∑
n=0

(2n+ 1)!

2n (n!)2

(
Qa

r2a
snak

n+1
a +

Qb

r2b
snb k

n+1
b

)∫ 2π

0

cosn+1 (γ)dγ. (17)

Using the values of definite integrals:∫ 2π

0

cos2n (γ)dγ = 2π
(2n)!

22n (n!)2
,

∫ 2π

0

cos2n+1 (γ)dγ = 0, n = 0, 1, ...,∞, (18)

we integrate and transform the right part of the (17):

m
d2r

dt2
−mω2r = q

∞∑
n=0

(4n+ 1)!

24n (2n)! (n!)2

(
Qa

r2a
s2n+1
a k2n

a +
Qb

r2b
s2n+1
b k2n

b

)
−

−q

∞∑
n=1

(4n)!

24n (2n− 1)! (n!)2

(
Qa

r2a
s2n−1
a k2n

a +
Qb

r2b
s2n−1
b k2n

b

)
. (19)

Then, applying (16) and (18), we will have from the (13):

m
d2z

dt2
= q

∞∑
n=0

(4n+ 1)!

24n (2n)! (n!)2

(
Qala
r2a

s2na k2n
a +

Qblb
r2b

s2nb k2n
b

)
. (20)

Under the following conditions:

Qa = Qb = Q0, Ra0 = Rb0 = R0, F0 =
qQ0

R2
0

, (21)

we rewrite (19) and (20) as follows:

m

F0

(
d2r

dt2
− ω2r

)
=

∞∑
n=0

(4n+ 1)!R2
0

24n (2n)! (n!)2

(
s2n+1
a k2n

a

r2a
+

s2n+1
b k2n

b

r2b

)
−

−
∞∑
n=1

(4n)!R2
0

24n (2n− 1)! (n!)2

(
s2n−1
a k2n

a

r2a
+

s2n−1
b k2n

b

r2b

)
, (22)

m

F0

d2z

dt2
=

∞∑
n=0

(4n+ 1)!R2
0

24n (2n)! (n!)2

(
las

2n
a k2n

a

r2a
+

lbs
2n
b k2n

b

r2b

)
. (23)

Let us introduce and determine dimensionless functions:

r̆ =
r

R0

, z̆ =
z

R0

, h̆ =
h

R0

, (24)
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r̆2a =
r2a
R2

0

= 1 +
(
z̆ − h̆

)2
+ r̆2, r̆2b =

r2b
R2

0

= 1 +
(
z̆ + h̆

)2
+ r̆2, (25)

F̆r =
m

F0

(
d2r

dt2
− ω2r

)
, F̆z =

m

F0

d2z

dt2
. (26)

Then (22) and (23) will look as follows:

F̆r =
∞∑
n=0

(4n+ 1)!r̆2n+1

24n (2n)! (n!)2

(
1

r̆4n+3
a

+
1

r̆4n+3
b

)
−

∞∑
n=1

(4n)!r̆2n−1

24n (2n− 1)! (n!)2

(
1

r̆4n+1
a

+
1

r̆4n+1
b

)
.

(27)

F̆z =
∞∑
n=0

(4n+ 1)!r̆2n

24n (2n)! (n!)2

(
z̆ − h̆

r̆4n+3
a

+
z̆ + h̆

r̆4n+3
b

)
. (28)

As follows from (25), (26) and (28), if z = 0, then d2z/dt2 = 0 as well. Thus, at z = 0 and

dz/dt = 0 the particle will move within the X⃗, Y⃗ plane. Let us determine the projection
of the force (1) on a vector which is normal to the r⃗ vector also:

m

(
d2R⃗

dt2
× r⃗

)
=

qQa

2π

∫ 2π

0

(
R⃗ma × r⃗

)
R3

ma

dγ +
qQb

2π

∫ 2π

0

(
R⃗mb × r⃗

)
R3

mb

dγ, (29)

and let us consider the (29) under the conditions of (21), at z = 0 and at dz/dt = 0:

m

r

d (r2ω)

dt
= −qQ0

π

∫ 2π

0

R0 sin (γ)

(R2
0 + h2 + r2 − 2rR0 cos (γ))

3/2
dγ. (30)

Taking into account that:∫ 2π

0

R0 sin (γ))

(R2
0 + h2 + r2 − 2rR0 cos (γ))

3/2
dγ = 0, (31)

integrating the (30), we will get:

z = 0,
dz

dt
= 0, mr2ω = Const. (32)

Graphing the dependence of dimensionless functions F̆r and F̆z on the values of r̆, at
various values of z̆ and h̆, using the equations (27), (28), (32), and graphing the functions
similar to dimensionless those F̆r and F̆z obtained from the equations (19) and (20) at
Qa ̸= Qb allows for the following conclusions:

1. Under the condition of h̆ < 2−1/2, there are the values of variables
(r, z, dr/dt, dz/dt, ω) that determine initial conditions of particle motion at which the
particle can be localised in the space between the charged rings.

2. There are conditions of variation of the distance between the rings and conditions
of variation of charges of the rings, both overall and sectoral (i.e., charges of certain
segments of rings), at which localised particles will be ejected from the localisation zone
and will accelerate under the action of Coulomb repulsion forces of the rings along certain
directions and to certain kinetic energies.
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Figure 3: Zones of localisation and ejection of a charged particle during its interaction
with the two charged rings.

Figure 3 demonstrates two surfaces (marked transparent blue and yellow) that split

the space between the rings into three areas. The surfaces halved by the X⃗, Z⃗ plane
are shown. In the area between the surfaces two forces determined by the equations of
(27) and (28) act on the particle under the condition of h̆ = 0.5: the force parallel to

the Z⃗ axis is directed toward the X⃗, Y⃗ plane while the force parallel to the r⃗ vector is
directed to the Z⃗ axis. The magnitude of force parallel to the r⃗ vector and acting on the
particle at the transparent blue surface equals to zero. The magnitude of force parallel
to the Z⃗ axis and acting on the particle at the yellow surface equals to zero. In the area
beyond the transparent blue surface the force parallel to the r⃗ vector and acting on the
particle is directed away from the Z⃗ axis. In the area beyond the yellow surface the force
parallel to the Z⃗ axis and acting on the particle is directed away from the X⃗, Y⃗ plane.
Therefore, in the area between the surfaces there will exist some certain set of trajectories
not contacting to the surfaces; while moving along them, the particle will be localised.
This set includes a circular trajectory in the X⃗, Y⃗ plane at the following conditions:

h̆ = 0.5, z = 0,
dz

dt
= 0, ω2

0 =
F0

mR0

, ω̆2 =
ω2

ω2
0

, r̆ ≈ 0.556446..., (33)

ω̆2 ≈
∞∑
n=1

2 (4n)!

24n (2n− 1)! (n!)2
r̆2n−2(

1 + h̆2 + r̆2
)2n+1/2

−
∞∑
n=0

2 (4n+ 1)!

24n (2n)! (n!)2
r̆2n(

1 + h̆2 + r̆2
)2n+3/2

.

If the particle enters the area beyond the yellow surface (see Figure 3) while the distance
between the rings is changing or the charges of the rings are changing, it is repelled
from the zone between the rings with the force directed parallel to the Z⃗ axis away from
the X⃗, Y⃗ plane. If the particle enters the area beyond the transparent blue surface (see
Figure 3) while the distance between the rings is changing or the charges of the rings are
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changing, it is repelled from the zone between the rings with the force directed parallel
to the r⃗ vector away from the Z⃗ axis.

As calculations show, the localisation of particles in the inner space between the
rings is possible only for particles that have strictly determined initial conditions of their
motion relatively to the charged rings. Particles unit vectors of which velocities are laying
within the X⃗, Y⃗ plane and having definite initial values of moments of momenta relatively
to the Z⃗ axis and definite initial values of their radial velocities relatively to the Z⃗ axis
will overcome the repulsion of rings and will concentrate along certain circular trajectories
between the rings. These initial conditions of particles’ motion relatively to the rings are
determined as follows:

Based on the law of conservation of the sum of kinetic and potential energies of the
particle during its motion within the X⃗, Y⃗ plane (z = 0, dz/dt = 0), we will obtain:

m

2

(
dr

dt

)2

= E0 −
J2
0

2mr2
− U (r, h) , (34)

E0 =
m

2

(
dr0
dt

)2

+
J2
0

2mr20
+ U (r0, h) , J0 = mr20ω0, (35)

where:
r0 is a magnitude of a radius vector of initial position of the particle in the coordinate
system where the interaction is considered,
dr0/dt is an initial radial velocity of the particle,
ω0 is a magnitude of an initial angular velocity of the particle.

Using the definition of a potential [1], applying (10) and (11), we find the potential
energy of the particle in the system of two charged rings:

U (r, z, h) =
q

2π

∫ 2π

0

(
Qa

ra

1

(1− 2saka cos (γ))
1/2

+
Qb

rb

1

(1− 2sbkb cos (γ))
1/2

)
dγ. (36)

Under the conditions:

Qa = Qb = Q0, Ra0 = Rb0 = R0, z = 0, (37)

s =
(
1 + h̆2 + r̆2

)1/2
, k = r̆/s2, (38)

we will have from the (36):

U
(
r̆, h̆
)
=

qQ0

πR0s

∫ 2π

0

(
1

(1− 2k cos (γ))1/2

)
dγ, (39)

From the values of functions (38) we will get:

h̆ ̸= 0, 2k < 1. (40)

Therefore, under the conditions of (40), we can represent the integrated function in the
(39) as an infinite series:

U
(
r̆, h̆
)
=

qQ0

πR0s

∞∑
n=0

(2n)!kn

2n (n!)2

∫ 2π

0

cosn (γ)dγ. (41)
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Using the (18), we integrate the (41):

U
(
r̆, h̆
)
=

2qQ0

R0s

∞∑
n=0

(4n)!k2n

24n (2n)! (n!)2
. (42)

We substitute s and k with their determinations (38) and finally obtain:

U
(
r̆, h̆
)
=

2qQ0

R0

∞∑
n=0

(4n)!

24n (2n)! (n!)2
r̆2n(

1 + h̆2 + r̆2
)2n+1/2

. (43)

Then we will determine four dimensionless functions:

Ă =
mR3

0

4qQ0

(
dr̆

dt

)2

, B̆ =
E0R0

2qQ0

, C̆ =
J2
0

4mqQ0R0

,

Ŭ =
∞∑
n=0

(4n)!

24n (2n)! (n!)2
r̆2n(

1 + h̆2 + r̆2
)2n+1/2

. (44)

Using (44), we rewrite the (34):

Ă = B̆ − C̆

r̆2
− Ŭ . (45)

Let us find subsequently the first, the second and the third partial derivatives of Ă with
respect to r̆ and let us determine the three functions of r̆ and h̆:

∂Ă

∂r̆
=

2C̆

r̆3
− ∂Ŭ

∂r̆
. (46)

∂2Ă

∂r̆2
= −6C̆

r̆4
− ∂2Ŭ

∂r̆2
. (47)

∂3Ă

∂r̆3
=

24C̆

r̆5
− ∂3Ŭ

∂r̆3
. (48)

From the functions (45) - (47) we form a system of three algebraic equations relatively to
the unknowns B̆, C̆, r̆ depending on the value of h̆:

1. B̆ =
C̆

r̆2
+ Ŭ , 2. C̆ =

r̆3

2

∂Ŭ

∂r̆
, 3.

3

r̆

∂Ŭ

∂r̆
= −∂2Ŭ

∂r̆2
. (49)

From (48) and (49) we obtain an inequality:

12

r̆2
∂Ŭ

∂r̆
̸= ∂3Ŭ

∂r̆3
, (50)

for the purpose of determination of the h̆ values at which both the system of equations
(49) and the inequality (50) are true. The system of equations (49) and the inequality
(50) determine conditions under which the Ă function (45) has an inflection point at
which the value of the function equals to zero. As also follows from these conditions, the
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function (46) has an extremum at the inflection point of the function (45); at the point of
this extremum the function (46) also equals to zero. The function (45) is a dimensionless
function of the squared radial velocity of the particle. The function (46) is a dimensionless
function of radial acceleration of the particle. Therefore, the radial velocity and the radial
acceleration of the particle at the inflection point of the Ă function (45) will equal to zero.
The particle having the initial conditions of its motion as determined from (49) and (50),
with the negative value of radial velocity will overcome the repulsion of the rings, and the
trajectory of its motion will gradually transform to circular with certain constant values
of r̆ and ω̆. Particles which initial conditions of motion do not comply the conditions of
localisation will be ejected from the system of rings to the infinity.

The dynamics of the particle moving from the infinity toward the rings and which
trajectory transforms to the circular as determined by the conditions of (33) is demon-
strated at Figure 4. The graphs of the following three functions are drawn there:
- a red curve determines the magnitude of the dimensionless radial velocity of the parti-
cle depending on the distance to the origin of the coordinate system (the Ă1/2 function
obtained from the (45));
- a blue curve determines the dimensionless radial acceleration of the particle depending
on the distance to the origin of the coordinate system (the ∂Ă/∂r̆ function (46));
- a yellow curve determines the direction of the dimensionless force acting on the particle
parallel to the Z⃗ axis (the negative values of the function mean that forces are pressing

the particle to the X⃗, Y⃗ plane) depending on the distance to the origin of the coordinate
system, with z̆ = 0.01 (the F̆z function (28)).

0.5 1.0 1.5 2.0
r�Ro

0.2

0.4

0.6

0.8

1.0
FHr�Ro,z�Ro,h�RoL

Figure 4: The dynamics of localisation of a charged particle during its interaction with
the two charged rings.

The results of the study regarding trajectories of particles’ motion performed by
using the numeric methods demonstrate that there is a theoretical possibility of creating
the conditions for the nuclear synthesis in swarms of positively charged particles localised
using the method as determined hereinabove, and that there is a theoretical possibility
of formation of beams of likely charged particles with the given kinetic energy and with
the given direction of their motion relatively to the system of charged rings.

If conclusions formulated in ≪Modified Coulomb Forces and the Point Particles States
Theory≫ [2] concerning the existence of the proton and the electron condensates are
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correct, then the system of the two charged rings will help create the conditions for the
formation and localisation of volumes of both proton and electron condensates. Localised
volumes of condensates could possibly be used either as a mean for jet-propelled motion or
as a tool for the destruction of space objects (asteroids and comets) potentially threatening
Earth or for changing their motion trajectories.
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