A Generalized Similarity Measure ISSN 1751-3030

Author:

Ramesh Chandra Bagadi Data Scientist INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com +91 9440032711

Technical Note

Abstract

In this research Technical Note the author has presented a novel method of finding a Generalized Similarity Measure between two Vectors or Matrices or Higher Dimensional Data of different sizes.

Theory

Considering two different vectors of different sizes namely

 A_{1xm} and B_{1xn} , we first find the Proximity Matrix between elements of the given vectors wherein the Proximity Matrix is given by

$$
P_A = \begin{bmatrix} d(1,1) & d(1,2) & d(1,3) & \dots & d(1,(m-1)) & d(1,m) \\ d(2,1) & d(2,2) & d(2,3) & \dots & d(2,(m-1)) & d(2,m) \\ d(3,1) & d(3,2) & d(3,3) & \dots & d(3,(m-1)) & d(3,m) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d((m-1),1) & d((m-1),2) & d((m-1),3) & \dots & d((m-1),(m-1)) & d((m-1),m) \\ d(m,1) & d(m,2) & d(m,3) & \dots & d(m,(m-1)) & d(m,m) \end{bmatrix}
$$

and

$$
P_B = \begin{bmatrix} d(1,1) & d(1,2) & d(1,3) & \dots & d(1,(n-1)) & d(1,n) \\ d(2,1) & d(2,2) & d(2,3) & \dots & d(2,(n-1)) & d(2,n) \\ d(3,1) & d(3,2) & d(3,3) & \dots & d(3,(n-1)) & d(3,n) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ d((n-1),1) & d((n-1),2) & d((n-1),3) & \dots & d((n-1),(n-1)) & d((n-1),n) \\ d(n,1) & d(n,2) & d(n,3) & \dots & d(n,(n-1)) & d(n,n) \end{bmatrix}
$$

d indicates the distance measured in some metric (default = Eucleadean)

We then find the Norm Of P_A as $\|P_A \cdot P_A\|$. For the Euclidean case, it is given by $P_{A} \cdot P_{A}$ = $\sum_{i=1}^{m} \sum_{j=1}^{m} P(i, j) \cdot P(i, j)$ *j i* $A \cap A \parallel \neg \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} A \cdot (i, j) \cap A \cdot (i, j)$ $\Vert P_A \Vert = \sum_{i=1} \sum_{i=1} P(i, j).$. Also, $m < n$. Similarly, we compute the Norm of P_B as $\|P_B \cdot P_B\|$

. For the Euclidean case, it is given by $||P_B \cdot P_B|| = \sum_{i=1}^{n} \sum_{j=1}^{n} P(i, j) \cdot P(i, j)$ *j n i* $B \cap B \parallel \quad \sum_{i=1}^{\infty} \sum_{i=1}^{n} (x_i, y_i) \in (0, 1)$ $\Vert P_B \Vert = \sum_{i=1} \sum_{i=1} P(i, j).$.

We then find the ratio *A A B B P P* $P_{\cdot} \cdot P$ $k_1 = \frac{\mathbf{p} - \mathbf{b}}{\mathbf{p}}$ $\mathbf{I} = \frac{\left\| \mathbf{I}_B \cdot \mathbf{I}_B \right\|}{\left\| \mathbf{I}_B - \mathbf{I}_B \right\|}$

Actually, we can note that there are only $N_B = \frac{N}{2}$ $N_B = \frac{n^2 - n}{2}$ number of possibly distinct values of Proximity Matrix elements in P_B and similarly, there are only $N_A = \frac{m}{2}$ $N_A = \frac{m^2 - m}{2}$ number of possibly distinct values of Proximity Matrix elements in $P_{\scriptscriptstyle A}$.

Similarly, we find some more ratio's $k_{N_n-1} = \frac{f_{(N_B-1)}(P_B)}{f_{(N_B-1)}}$ $\dot{P}_{(N_B-1)}(P_{_A})$ N_p-1) \leftarrow *B* N_B-1 $f(N_B-1)(P)$ $f(x) = \frac{f_{(N_B-1)}(P)}{P}$ *B* f_{N_p-1} $I_{-1} = \frac{J(N_B-1)(I_B)}{I(R_B)}$ where $f_{(N_B-1)}(P_B)$ is some Scalar Function _ of the Matrix P_B . And so is $f_{(N_B-1)}(P_A)$. Note that $f_{(N_B-1)}$ is the same in $f_{(N_B-1)}(P_B)$ and $f_{(N_B-1)}(P_A)$. We now consider a fictitious Vector $A_{B_{1x\mu}}$, i.e., Vector A in the basis of Vector B, colloquially speaking. Let this be $A_{B_{1,m}} = \begin{bmatrix} c_1 & c_2 & c_3 & \dots & c_{n-1} & c_n \end{bmatrix}$. Now, for this, vector, we find the Proximity Matrix $P_{A_{B_{1,m}}}$ and now assert that $k_{N_B-1} = \frac{f_{(N_B-1)}(P_B)}{f_A}$ $\sum_{(N_B-1)}^{N_B-1} (A_{B_{1xn}})$ $\int_{(N_B-1)}^{B^{-1}} (A_B - A)$ N_B -1) $\left\{$ *B* N_B ⁻¹ $f_{(N_B-1)}(A)$ $f_{(N_{n-1})}(P)$ *k* $-1)$ $(4 - B_1)$ 1 1 - $I_{-1} = \frac{J(N_B-1)(I_B)}{I_{-1}}$. This gives us N_B number of equations from which we can solve for elements of $A_{B_{1:n}}$. Now, we can find distance between $A_{B_{1:n}}$ and B_{1xn} and can also consequently find the Similarity co-efficient between them. We can also, repeat this procedure using the normalized values of the vectors A_{1xm}^+ and B_{1xn}^+ . In the same fashion as detailed above, we can repeat this procedure for Matrices or Higher Dimensional Data of differing sizes.

References

<http://www.philica.com/advancedsearch.php?author=12897>

http://www.vixra.org/author/ramesh_chandra_bagadi