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In deformed special relativity with commuting coordinates transforming according special relativity and deformed plane 

waves the field equations and interactions in coordinate space remain unchanged. However in momentum space Lorentz 

transformations of spinors, the Dirac equation and helicity spinors are modified. The calculation of some simple tree 

level scattering amplitudes is discussed.  

 

 

 

 

1. Introduction 
 

Deformed or doubly special relativity (DSR) is a modification of special relativity (SR) with two invariant scales, a 

velocity scale c (speed of light) and a fundamental length scale ℓ  (proportional to the Planck length), see the reviews in 

[1] and references therein. Recently [2] (see also [3]) we discussed the possibility to use commuting coordinates 

transforming according SR with deformed plane waves and a standard field theory in coordinates space. 

 

From the Dirac equation in coordinate space with commuting SR coordinates and deformed plane waves one obtains the 

deformed Dirac equation in momentum space. With modified Lorentz transformations of rest frame spinors the 

deformed spinor solutions and relations between them can be derived. Then solutions of the deformed massless Dirac 

equation and the modification of the spinor helicity formalism in DSR are investigated. The calculation of some simple 

tree level amplitudes in DSR is discussed. 

 

 

2. Commuting SR Coordinates and Dirac Equation in Momentum Space 
 

We begin with a deformed dispersion relation written in the form 

 
2 2 2 2 2( )f p F E G m= − =2p  (1) 

 

with the functions , ( , , )F G E ℓ
2
p  preserving rotational symmetry and ( )0

( ) ,
i

f p F p G p
µ = . We use here the metric 

( , , , )+ − − −  and 1c= =ℏ . Specific DSR models can be found in [1] and for G F=  in [4].  

 

Recently [2] we considered in the case G F=  commuting coordinates transforming according SR without momentum 

dependence in their transformation, but with deformed plane waves. We repeat here shortly some of the results. The 

dispersion relation (1) for G F=  is invariant under the transformation of the momenta p A pµ µ ν
ν′ = Λ , if /F F A′ = . 

The commuting SR coordinates µξ  transform as 
ν

µ µ νξ ξ′ = Λ . ,Λ Λ  are standard, standard inverse Lorentz 

transformations. The boost and rotation generators are 

 

( )M F p pµν ν µ µ νξ ξ= −  (2) 

 

and the commutators between them remain standard, as can be seen by introducing the auxiliary SR momenta 

F pµ µπ = . Noticing /F F A′ = , the invariants built from these coordinates and the momenta become  

  
2

F p p inv
µ

µ = , F p inv
µ

µξ = , inv
µ

µξ ξ =  (3) 
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From here on denote the commuting SR coordinates µξ  as xµ  and the derivatives with respect to them as / xµ
µ∂ = ∂ ∂ . 

Plane waves are therefore deformed as ( )exp i F p x− ⋅ . The advantage of these commuting SR coordinates is clearly, 

that the field equations in coordinate space and the interactions with a form dictated by gauge invariance remain in the 

standard form.  

 

Now consider the general dispersion relation in (1). The Klein Gordon equation is 
2

( ) ( ) 0m x
µ

µ ϕ∂ ∂ + = , inserting 

deformed plane waves of the general form 
0

( ) exp( i ( ) )x f p xϕ ϕ= − ⋅  gives again the above dispersion relation (1). 

Similarly the Dirac equation in coordinate space is (i ) ( ) 0m x
µ

µγ ψ∂ − = , the deformed plane wave solutions for 

particles and antiparticles are given by the following ansatz 

  

( ) ( ) exp( i ( ) )
s s

x u p f p xψ = − ⋅  , ( ) ( ) exp( i ( ) )
s s

x v p f p xχ = + ⋅  (4) 

 

where explicitly 0

0
( ) i

i
f p x F p x G p x F E t G⋅ = + = − ⋅p x . The Dirac equation then becomes deformed in momentum 

space and the solutions for the spinors 
s

u ,
s

v have been discussed in [5]. Here we take a slightly different approach, 

more adapted to the compact notation in the textbooks [6],[7]. We work in Weyl representation with (1, )
iµ

µσ σ σ= =  

and (1, )
iµ

µσ σ σ= = − , where iσ  are the Pauli matrices and the Gamma matrices are {{0 }{ 0}}µ µ µγ σ σ= . 

Inserting the deformed plane waves from (4) in the standard Dirac equation in coordinate space gives the deformed 

Dirac equation in momentum space, where 0

0
( ) i

i
f p F p G pσ σ σ⋅ = +  

 

( )
( ) 0

( )
s

m f p
u p

f p m

σ
σ

− ⋅ 
= ⋅ − 

 , 
( )

( ) 0
( )

s

m f p
v p

f p m

σ
σ

− − ⋅ 
= − ⋅ − 

  (5) 

 

One can obtain the solutions for 
s

u ,
s

v  by boosting from a rest frame. As mentioned above the algebra between 

rotations and boosts remains unchanged for the commuting SR coordinates and therefore one can write the pure boost 

transformation of a spinor as  

 

1
2

0
0 cosh 1 sinh

exp 2 2
cosh 1 sinh2 0

0 2 2

ii
ii

ii
i

n

n

β β
σσβ

β β
σσ

      ⋅ −      Λ = − =             ⋅ +−             

 

 

With the hyperbolic relations cosh( / 2) (cosh( ) 1) / 2β β= + , sinh( / 2) (cosh( ) 1) / 2β β= −  together with 

0 0cosh( ) ( ) / /f p m F p mβ = =  one can write the modified Lorentz transformation of a spinor similarly to [6],[7] in the 

very compact form 

 

1
2

0( )

( )

0

f p

m f p

m

σ
σ

 ⋅
 Λ = ⋅ 
 
 

 (6) 

 

0( ) ( ( ) ) / 2( ( ) )f p f p m f p mσ σ⋅ = ⋅ + +  (7) 

0( ) ( ( ) ) / 2( ( ) )f p f p m f p mσ σ⋅ = ⋅ + +  

 

which is in agreement with the expression given in [5]. Furthermore we note some useful relations showing amongst 

other things that (7) is correct: 

 
0 2( ) ( ) 2 ( ) ( )f p f p f p f p mσ σ σ⋅ ⋅ = ⋅ −  (8) 

0 2( ) ( ) 2 ( ) ( )f p f p f p f p mσ σ σ⋅ ⋅ = ⋅ −  

2( ) ( ) ( ) ( ) ( ) ( )f p f p m f p f p f p f pσ σ + − + −⋅ ⋅ = = − ɶ ɶ  

0 3( )f p F p G p± = ± , 1 2( ) ( )f p G p i p± = ±ɶ  

 

The rest frame solutions of (5) are  
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(0) , (0)
s s

s s

s s

u m v m
ξ η

ξ η
   

= =   −   
 with 

1 0
, or

0 1
s sξ η

   
=    
   

 

 

The boosted solutions now become with (6) 

 

1
2

( )
( ) (0)

( )

s

s s

s

f p
u p u

f p

σ ξ

σ ξ

 ⋅
 = Λ =
 ⋅ 

 , 1
2

( )
( ) (0)

( )

s

s s

s

f p
v p v

f p

σ η

σ η

 ⋅
 = Λ =
 − ⋅ 

 (9) 

 

With (7) and (8) one can show, that they fulfil the deformed Dirac equation in (5). Their normalisation and relations 

between these spinor solutions can be derived with (8) and (9), see also [5], and we write here some of them. 

 

( ) ( ) 2
r s rs

u p u p mδ= , ( ) ( ) 2
r s rs

v p v p mδ= − , ( ) ( ) ( ) ( ) 0
r s r s

u p v p v p u p= =  

( ) ( ) ( ) ( ) 2 ( )
r s r s rs

u p u p v p v p f pµ µ µγ γ δ= = , ( ) ( ) ( )
s s

s

u p u p f p m
µ

µγ= +∑ , ( ) ( ) ( )
s s

s

v p v p f p m
µ

µγ= −∑  

 

 

3. Deformed Massless Dirac Equation and Spinor Helicity 
 

Amplitudes in particle scattering can be calculated most easily in the spinor helicity formalism see [7],[8],[9]. For very 

high energies particles can be considered as massless. Therefore one has to investigate the solutions of the massless 

Dirac equation. The deformed massless Dirac equation in momentum space is given by (5) with 0m =  and is identical 

for u and v spinors. For outgoing antifermions and fermions, with ±  denoting their helicity, it reads 

 

0 ( )
( ) 0

( ) 0

f p
v p

f p

σ
σ ±

⋅ 
= ⋅ 

 , 
0 ( )

( ) 0
( ) 0

f p
u p

f p

σ
σ±

⋅ 
= ⋅ 

 (10) 

 

Helicity is defined as ( )/ / /h G G= ⋅ = ⋅ = ⋅π πS p S p p S p  and for the modified dispersion relation (1) remains the 

same as in SR if 0G > . This may be taken as an argument for considering the spatially isotropic modified dispersion 

relation in (1) and not a relation with different factors 
i

G  in front of every ip .  

 

As usual one can represent all four vectors by bispinors with the matrices ,σ σ . For an arbitrary four vector aµ  we 

write a a a
αα µ

µσ= =ɺ  and a a a
µ

αα µσ= =ɺ , in order to avoid the notation with dotted and undotted indices. The dot 

product between two four vectors is then { }1

2
a b a b tr a b

µ
µ⋅ = = ⋅ . For ( )f p  in (10) this leads to the following 

expressions 

 

( ) ( )
( ) ( )

( ) ( )

f p f p
f p f p

f p f p
σ

− −

+ +

 −
= ⋅ =   − 

ɶ

ɶ
 , 

( ) ( )
( ) ( )

( ) ( )

f p f p
f p f p

f p f p
σ

+ −

+ −

 
= ⋅ =   

 

ɶ

ɶ
 (11) 

 
0 3( )f p F p G p± = ± , 1 2( ) ( )f p G p i p± = ±ɶ  

 

For G F= one has ( ) ( )f p F p p=  and for SR simply ( )f p p=  and 1F G= = . The solutions of (10), where angle 

(square) spinors denote negative (positive) helicity states, similar to the SR case can be written in the following compact 

form, where again (un)dotted indices are not displayed. The index four denotes a four component Dirac spinor and is 

often omitted, since it is in most cases clear from the context whether a spinor has two or four components. 

 

] ] ( ) [ [( )4 44 4

0
, , 0 , 0

0

p
p p p p p p

p

  
= = = =       

  (12) 

 

Note that [ ] [ ]
4 4

,p q p q p q p q= =  and ]
44

0p q p q=  = . 

 

The deformed two component spinors in (12) are  
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( )

( )( )

f pz
p

f pf p

−

+−

 
=   − ɶ

 , ]
1 ( )

( )( )

f pz
p

f pf p

−−

−−

 
=   

 

ɶ
 (13) 

 

( )( ) ( )
( )

z
p f p f p

f p

+ −

−
= ɶ  , [ ( )

1

( ) ( )
( )

z
p f p f p

f p

−
− −

−
= − ɶ  

 

They are denoted in the same form as usually in spinor helicity, but are different from the corresponding spinors in SR. 

Even for G F=  with ( ) ( )f p F p p=  they differ from the SR spinors by a factor ( )F p . One sees easily by using 

(11) and the modified dispersion relation in the form ( ) ( ) ( ) ( ) 0f p f p f p f p+ − + −⋅ − ⋅ =ɶ ɶ , that the four component 

spinors in (12) are solutions of the deformed massless Dirac equation in (10). With (13) one can rewrite (11) as 

 

[( ) ( )f p f p p pσ= ⋅ = , ]( ) ( )f p f p p pσ= ⋅ = , [ ]
4 444

( ) ( )f p f p p p p p
µ

µ γ= = +  (14) 

 

The spinor products p q  and [ ]p q  are different from the SR ones, even for G F=  they differ by the factor 

( ) ( )F p F q , but their antisymmetry remains true as well as [ ] 0p p p p= = . We note the relation  

 

{ } [ ]1 1
( ) ( ) ( ) ( )

2 2
f p f q tr f p f q p q q p⋅ = ⋅ =   (15) 

 

Special attention must be paid to the addition of momenta. One knows that for the auxiliary SR momenta defined as 

( )f pπ =  the standard momentum conservation 
1 2tot

π π π= +  is valid. This translates into 
1 2

( ) ( ) ( )
tot

f p f p f p= +  

and a nonlinear law for 
tot

p . Squaring this relation together with the deformed massless dispersion relations 

2( ) 0
i

f p =  gives 2

1 2
( ) 2 ( ) ( )

tot
f p f p f p= ⋅ . The deformed Mandelstam variables i jsɶ  together with (15) are defined as 

 

( ) [ ]2
( ( )) 2 ( ) ( )

i j i j i j
s f p f p f p f p i j j i= + = ⋅ =ɶ  (16) 

 

For G F=  with ( ) ( )
i i i

f p F p p=  they are given by ( ) ( )
i j i j i j

s F p F p s=ɶ , where 2
i j i j

s p p= ⋅  are the SR like 

Mandelstam variables. 

 

Conservation of the all outgoing auxiliary momenta ( ) 0
i

f p =∑  can be written as [ ] 0p i i q =∑  in terms of the 

deformed spinors, see (14a). Many other relations of spinor helicity as for example the Schouten or Fierz identity 

remain valid, but are now expressed by deformed spinors, and we don’t repeat them here. However a momentum p , 

whenever appearing freely must be replaced by ( )f p . Two examples of this rule are the following identities  

 

[ [ ] ] ] [ ]
4 4 4

2 ( ) , ( )p p p p f p p p p p p f k q p k k qµ µ µ µ µ µ
µγ σ σ γ γ= = = = =  (17) 

 

Similarly the deformed massless propagators are for spin one bosons 
2

/ ( )i f pµνη−  and for fermions 
2

( ) / ( )i f p f p . 

 

In analogy to the momentum vector the current vectors ] ]
4

j p k p k
µ µ µγ σ−+ = =  and [ [

4
j p k p k
µ µ µγ σ+− = =  

can be represented as bispinors by j j σ= ⋅  and j j σ= ⋅ , which again are different from the SR case. 

 

[2j p k−+ =  , [2j k p+− =  , ]2j k p−+ =  , ]2j p k+− =  (18) 

 

Polarisation vectors of a massless vector bosons with momentum p are defined as ]( ) / 2p r p r p
µ µε γ+ =  and 

] [ ]( ) / 2p p r r p
µ µε γ− = − , where r  and ]r  are massless reference spinors, and can be written as bispinors  

 

 
[

2p

r p

r p
ε + =  ,

]
2p

p r

r p
ε + =  , 

[
[ ]

2p

p r

r p
ε − = −  , 

]
[ ]

2p

r p

r p
ε − = −  (19) 
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They obey 1
p p

ε ε± ⋅ = −∓
, 0

p p
ε ε± ±⋅ = , 

1
( ) { ( )} 0

2
p pf p tr f pε ε± ±⋅ = ⋅ = . In the case G F=  they are identical to the SR 

polarisation bispinors. Shifting r  by something proportional r  does not change the polarization, shifting r r p→ +  

gives 
[ ]

2
( )

p p
f p

p r
ε ε− −→ + . The products between polarisation bispinors are as usual, the products with the auxiliary 

momenta are from (14) 

 

[ ]1
( )

2

i

i j

i

j r i j
f p

r i
ε + ⋅ =  , 

[ ]
[ ]

1
( )

2

i

i j

i

i j r j
f p

r i
ε − ⋅ =  (20) 

 

Field theory with gauge invariant interactions remains undeformed in coordinate space by using the commuting SR 

coordinates. An interaction between bosons and fermions in coordinate space is 
I

g A
µ

µγ= Ψ ΨL�  yielding terms of the 

form 
31 2

j ε±
±⋅∓ . The interaction between bosons in nonabelian gauge theories involving derivatives is given by 

2
I

i g A A Aµ ν
µ ν= − ∂L� . Note that coordinate derivatives acting on deformed plane waves exp( ( ) )A i f p xµ µε= − ⋅  lead 

to contractions of the form ( )
i j k l

f pε ε ε⋅ ⋅ . Thereby calculations of amplitudes should in general run as in SR but with 

deformed spinors.  

 

A very simple example is the fermion antifermion photon three point amplitude [9]. 

 

[
]

[ ]
[ ]

[ ]3 31 2

3 3 1 2
(1 ,2 ,3 ) 2 1 2 2 2

2 3 3
e e

r re
A e j tr e

r r
γ ε− +

− + − −
  

= ⋅ = ⋅− = − 
  

  

 

After multiplying with 1 2 / 1 2  and using auxiliary momentum conservation in the form [ ] [ ]1 2 2 1 3 3 0r r+ =  

one obtains equation (21). Here the last equality gives the corresponding expression for G F= , where 
3

SRA  is the SR 

amplitude: 

 

[ ]
[ ]

2 2

1 3

3 3

2

3 1 1 3 3 1 3 ( ) ( )
(1 ,2 ,3 ) 2 2

1 2 3 1 2 ( )

SR

e e

r F p F p
A e e A

r F p
γ

− + − = = =  (21) 

 

As a further example we consider the process e e γ γ+ − → , see [8]. The spin averaged cross section derived there, 

becomes with (16) for G F=  

 

2 4 413 3 1 314 4 1 4

14 13 4 1 4 3 1 3

( ) ( )
2 2

( ) ( )

s F p p ps F p p p
e e

s s F p p p F p p p

   ⋅ ⋅
= + = +      ⋅ ⋅   

ɶ ɶ

ɶ ɶ
T   (22) 

 

Similarly in tree amplitudes for gluon scattering one can replace in the final cross section the SR Mandelstam variables 

by the DSR ones. For example in four gluon scattering in the case G F=  with 
i j i j i j

s F F s=ɶ  and ( )
i i

F F p= , one 

obtains a modified expression for the squared and averaged amplitude [7]. 

 

So one gets deviations from the usual results only in the extreme high energy regime, where the deformation function 

becomes important. The problem here is of course, that for higher energies processes with loops must be considered, 

which presumable would dominate the deformation effects. 

 

Massive spinors with momentum pm can also be defined in the deformed case with a corresponding massless 

momentum p and reference momentum r. With 2( ) 0f p = , 2( ) 0f r =  one gets 

 
2

( ) ( ) ( )
2 ( ) ( )

m

m
f p f p f r

f p f r
= +

⋅
 , 

2( )
( ) ( ) ( )

2 ( ) ( )

m

m

m

f p
f p f p f r

f p f r
= −

⋅
 (23) 

 

satisfying 2 2( )
m

f p m=  and ( ) ( ) ( ) ( )
m

f p f r f p f r⋅ = ⋅ . The solutions of the deformed massive Dirac equation 

( )( ) ( ) 0m mf p m u p
µ

µγ − =  , ( )( ) ( ) 0m mf p m v p
µ

µγ + =  are  
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[ ]
]

( ) ]
[ ]
( )

( )
m

m

f p m rm
u p p r

p r p r

µ
µγ

+

+
= + =  

]
( )( )

( )
m

m

f p m rm
u p p r

p r p r

µ
µγ

−

+
= + =   (24) 

]
( )( )

( )
m

m

f p m rm
v p p r

p r p r

µ
µγ

+

−
= − =  

[ ]
]

( ) ]
[ ]
( )

( )
m

m

f p m rm
v p p r

p r p r

µ
µγ

−

−
= − =  

 

Here the massless spinors have four components. The conjugate massive spinors can be obtained analogously. 

 

 

4. Summary 
 

In summary we have considered spinor fields in DSR theories based on commutative SR coordinates with deformed 

plane waves. The field theory and interaction structure in space-time remains unchanged in terms of these coordinates, 

while the Lorentz transformations and spinor solutions in momentum space are modified. Solutions of the massless 

deformed Dirac equation and their properties are investigated. With a modified spinor helicity formalism it is possible, 

to calculate some simple tree level scattering amplitudes in DSR. Of course several problems still remain to be solved, 

as for example the calculation of processes with loops.  
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