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Abstract

Shortly after Einstein’s announcement of general relativity in 1915, the German mathematical physicist Hermann
Weyl proposed a non-Riemannian variant of the theory that appeared to successfully unify gravitation with
electromagnetism. Several years later, the American mathematician Oswald Veblen derived a set of general
identities for the Riemann-Christoffel curvature tensor that complemented the more familiar Bianchi identities. As
we show in this brief paper, Veblen’s identities allow an interesting and previously unexplored connection between
Weyl’s theory and the homogeneous set of Maxwell’s equations. While neither Weyl nor Veblen seems to have
pursued this connection, it appears to show that Weyl’s failed 1918 theory might be deeper than previously thought.

Introduction

The Riemann-Christoffel curvature tensor is given by

Rλµαβ = Γ
λ
µα|β − Γ

λ
µβ |α + Γ

λ
βν Γ

ν
µα − Γ

λ
αν Γ

ν
µβ

where the single subscripted bar denotes ordinary partial differentiation with respect to the adjoining index. The
quantity Γ λµα is the coefficient of affine connection (which we do not immediately identify with the ordinary
Levi-Civita connection). We will assume that the affine connection is symmetric with respect to its lower indices,
but is otherwise completely arbitrary.

Given such a connection, the curvature tensor can be shown to obey the following familiar properties:

Rλµαβ = −Rλµβα (1)

Rλµλβ = −Rλµβλ = Rµβ (2)

Rµ
µαβ
= Rαβ − Rβα (3)

Rλµαβ + Rλβµα + Rλαβµ = 0 (4)

We also have the Bianchi identities, given by

Rλµαβ ||ν + Rλµνα||β + Rλµβν||α = 0 (5)

where the double subscripted bar denotes covariant differentiation. These are the most general expressions
possible for an arbitary affine connection, and we will assume no other properties for the curvature tensor.

Veblen’s Identities

In 1922 Veblen derived (perhaps not independently) an additional set of equations similar to (5), which we
reproduce here using the following (different) approach. If we add the cyclic set of the four Bianchi identities

Rλµνα||β + Rλµβν||α + Rλµαβ ||ν = 0

Rλβµν||α + Rλβαµ||ν + Rλβνα||µ = 0

Rλαβµ||ν + Rλανβ ||µ + Rλαµν||β = 0

Rλναβ ||µ + Rλνµα||β + Rλνβµ||α = 0
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we can write
�

Rλµβν + Rλβµν + Rλνβµ
�

||α
+
�

Rλµνα + Rλαµν + Rλνµα
�

||β

+
�

Rλβνα + Rλανβ + Rλναβ
�

||µ
+
�

Rλµαβ + Rλβαµ + Rλαβµ
�

||ν
= 0 (6)

Now, from (4), we have
Rλβµν = −Rλνβµ − Rλµνβ

Rλαµν = −Rλναµ − Rλµνα

Rλβνα = −Rλαβν − Rλναβ

Rλµαβ = −Rλβµα − Rλαβµ

Plugging these identities into (6) we get, after some simplification,

Rλµβν||α + Rλνµα||β + Rλανβ ||µ + Rλβαµ||ν = 0 (7)

This is the set of identities Veblen derived in 1922. Although obviously different from the Bianchi identities, we
maintain that (7) contains absolutely no additional geometric information. The two sets of identities are therefore
consistent and equivalent, but with one major difference: Veblen’s identities can be further simplified to give a
new set of non-trivial identities when the covariant derivative of the metric tensor (gµν||α) does not vanish. These
new identities are useful when considering a non-Riemannian geometry of the type Weyl considered, as we will
see in the following.

Connection to Weyl’s Theory

Let us contract the curvature tensor in (7) using λ= β and the contraction property in (2). Then (7) reduces to

Rµν||α + Rλνµα||λ − Rαν||µ + Rλλαµ||ν = 0 (8)

Using (3), this simplifies to
Rµν||α + Rλνµα||λ − Rαν||µ + Rαµ||ν − Rµα||ν = 0

We can get rid of the curvature tensor term by an appeal to (5), which leads to

Rµν||α − Rλνλµ||α − Rλναλ||µ − Rαν||µ + Rαµ||ν = 0

Using (2) once more and collecting terms, we have, finally,
�

Rµν − Rνµ
�

||α + (Rνα − Rαν)||µ +
�

Rαµ − Rµα
�

||ν = 0 (9)

Because the affine connection is assumed to be symmetric in its lower indices, the affine connection terms
associated with covariant differentiation cancel out, and (9) collapses to the equivalent ordinary partial
differential expression

�

Rµν − Rνµ
�

|α + (Rνα − Rαν)|µ +
�

Rαµ − Rµα
�

|ν = 0 (10)

The metric covariant derivative does not vanish in Weyl’s 1918 theory, and as a consequence the quantity
Rµν − Rνµ also does not vanish (as it does in Riemannian geometry). Conventional tensor calculus guarantees that
any rank-two tensor with the cyclic property exhibited by (10) is derivable from the curl of some potential vector
field φµ. Weyl associated this field with the four-potential of electromagnetism, along with

Fµν = Rµν − Rνµ

where Fµν = φµ|ν −φν|µ is the antisymmetric electromagnetic tensor. Since the set of homogenous Maxwell’s
equations exhibit exactly the property in (10), it is indeed tempting to associate the quantity Rµν − Rνµ with the
electromagnetic field, as did Weyl.
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Comments

In his 1918 theory, Weyl developed a non-Riemannian geometry in which the metric covariant derivative is given
by

gµν||α = 2 gµνφα

where φα is assumed to be proportional to the four-potential of the electromagnetic field. The non-vanishing of
gµν||α marks of abandonment of the notion of metricity, and so the Weyl geometry represents one example of a
non-Riemannian space. It is for this reason that certain properties of the curvature tensor in Riemannian geometry
no longer hold (such as Rµναβ = −Rνµαβ). Of course, non-metricity also means that the affine connection Γ λµν is no
longer the familiar Levi-Civita connection given by

§

λ
µν

ª

=
1
2

gλα
�

gµα|ν + gαν|µ − gµν|α
�

In Weyl’s 1918 theory, this connection is appended by terms involving the vector field φµ. The student is
encouraged to explore this highly interesting early effort by Weyl to unify gravitation and electromagnetism, the
only forces of Nature known at the time.

Despite its stunning mathematical beauty and the apparent initial success of Weyl’s unification scheme, Einstein
subsequently showed the theory to be unphysical, and it was eventually discarded. Nevertheless, Weyl’s
non-Riemannian geometry continues to appear in various guises today, including cosmology and quantum physics.
While the electromagnetic aspect of Weyl’s theory is today considered a dead end, it is surprising how often
quantities relating to electromagnetism seem to suddenly appear when exploring the theory, as the above
argument demonstrates.
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