Доказательство Великой теоремы Ферма для базового случая

Памяти МАМЫ

Суть противоречия. В гипотетическом равенстве Ферма после уменьшения до нуля вторых цифр в простых сомножителях чисел A, B, C новые УМЕНЬШЕННЫЕ числа A° , B° , C° оказываются бесконечно большими.

Все целые числа рассматриваются в системе счисления с простым основанием n>2. <u>Обозначения:</u> $A', A'', A_{(k)}$ – первая, вторая, k-я цифра от конца в числе A; $A_{[k]} - k$ -значное окончание числа A (т.е. $A_{[k]} = A \mod n^k$); $nn = n^n = n^$

Рассмотрим равенство Ферма в базовом случае (с известными свойствами 1° - 5°) для взаимно простых натуральных A, B, C, простого n, n>2:

$$1^{\circ}$$
) $A^n = C^n - B^n [= (C - B)P]$ //и $B^n = C^n - A^n [= (C - A)Q], C^n = A^n + B^n [= (A + B)R]$ //. Откуда

1a°) (C-B)P+(C-A)Q-(A+B)R=0, где наибольшие общие делители соответственно в парах чисел (A, C-B), (B, C-A), (C, A+B) мы обозначим буквами a, b, c. Тогда,

- 2°) если $(ABC)'\neq 0$, то C-B= a^n , P= p^n , A=ap; C-A= b^n , Q= q^n , B=bq; A+B= c^n , R= r^n , C=cr; 3°) число U=A+B-C= un^k , где k>I, откуда (A+B)-(C-B)-(C-A)=2U; $3a^{\circ}$) но если, например, $B_{[k]}$ =0 и $B_{[k+1]}\neq 0$, то (C- $A)_{[kn-1]}$ =0, где kn-I>k+I, и в равенстве $3b^{\circ}$) [(A+B)-(C-B)-(C- $A)_{[k+1]}$ = $(2U)_{[k+1]}$ (см. 3°) число (C- $A)_{[k+1]}$ =0.
- 4°) Цифра $A^n_{(t+1)}$ однозначно определяется окончанием $A_{[t]}$ (простое следствие из бинома Ньютона). То есть окончания $a^n_{[2]}$, $a^{n^2}_{[3]}$ и т.д. не зависят от цифры $a^{\prime\prime}!$ (Решающая лемма: возможно, ее следует считать Средней теоремой Ферма.) 4а°) Простое следствие: если $A_{[t+1]} = d^{n^2}_{[t+1]}$, где $d_{[2]} = e^n_{[2]}$, то $A_{[t+2]} = e^{n^2}_{[t+2]}$.

На старте (то есть в І-м цикле), при k=2 (см. 3°) и t=k-I=1: $5a\text{-}I^{\circ}$) $A_{[2]}=a^{n}_{\ [2]}=a^{m}_{\ [2]}(=a^{m^{\wedge t}}_{\ [2]},\text{ r.e. }t=1=k-I), B_{[2]}=b^{n}_{\ [2]}=b^{m}_{\ [2]}, C_{[2]}=c^{n}_{\ [2]}=c^{m}_{\ [2]};$ и $P_{[2]}=a^{(n-1)n}_{\ [2]}=1$ (с $p'=a^{n-1}_{\ [1]}=1$); $Q_{[2]}=b^{(n-1)n}_{\ [2]}=1$ (с $q'=b^{n-1}_{\ [1]}=1$); $R_{[2]}=c^{(n-1)m}_{\ [2]}=1$ (с $r'=c^{n-1}_{\ [1]}=1$); => (см. $4a^{\circ}$) => $5b\text{-}I^{\circ}$) $A^{n}_{\ [3]}=a^{mn}_{\ [3]}$ ($=a^{m^{\wedge t}}_{\ [3]},\text{ r.e. }t=2$), $B^{n}_{\ [3]}=b^{mn}_{\ [3]}$; $C^{n}_{\ [3]}=c^{mn}_{\ [3]}$; => (см. $1^{\circ}-2^{\circ}$) =>

5с-I°) $a^{nn}_{[3]} = (c^{nn}_{[3]} - b^{nn}_{[3]})_{[3]}$, откуда (см. формулы разложения и 2°) 5d-I°) $a^{nn}_{[3]} = \{(c^n_{[3]} - b^n_{[3]})_{[3]} P_{[3]}\}_{[3]}$ и $(c^{nn}_{[3]} - b^{nn}_{[3]})_{[3]} = \{(c^n_{[3]} - b^n_{[3]})p^n_{[3]}\}_{[3]}$, где 5e-I°) $P_{[2]} = a^{(n-1)n}_{[2]} = 01 = 1$.

6°) **Лемма** /факультативно/. Каждый простой делитель сомножителя R бинома $A^{n^{\wedge}t} + B^{n^{\wedge}t} = (A^{n^{\wedge}t-1} + B^{n^{\wedge}t-1})R$, где t > 1, числа A и B взаимно простые и число A + B не кратно простому n > 2, имеет вид: $m = dn^t + 1$. (См.Приложение.)

А теперь само <u>Доказательство ВТФ</u>. Оно состоит из бесконечной последовательности циклов, в которых показатель степени k (в 3°), начиная со значения 2, возрастает на 1.

Первый способ. Так как в равенстве $a^{nn}_{[3]} = \{(c^n_{[3]} - b^n_{[3]})_{[3]}P_{[3]}\}_{[3]}$ (5d-I°) окончания $(c^n_{[3]} - b^n_{[3]})_{[3]}$ и $P_{[3]}$ есть окончания взаимно простых сомножителей C-В и P, то эти окончания также (как и левая часть — $a^{nn}_{[3]}$) являются окончаниями степени nn, при этом (поскольку каждый простой сомножитель чисел P, Q, R оканчивается на цифру I см. 6°) каждый из nn сомножителей x числа $P_{[3]} / = x^{nn}_{[3]} /$ [и $Q_{[3]} / = y^{nn}_{[3]} /$ и $R_{[3]} / = z^{nn}_{[3]} /$] также оканчивается на цифру 1. Следовательно, $P_{[3]} = Q_{[3]} = R_{[3]} = 1$ и $p_{[2]} = q_{[2]} = r_{[2]} = 1$.

Второй способ. В каждом из оснований p, q, r, оканчивающихся на цифру l, мы УМЕНЬШАЕМ вторые цифры до нуля, в результате чего числа A, B, C в решении уравнения 1° УМЕНЬШАТСЯ, но мы, тем не менее, продолжим расчеты при условии: $P_{[3]} = Q_{[3]} = R_{[3]} = 1$ и $p_{[2]} = q_{[2]} = r_{[2]} = 1$.

Третий способ. В равенстве 5d-I°: $a^{nn}_{[3]} = \{(c^n_{[3]} - b^n_{[3]})_{[3]} P_{[3]}\}_{[3]}$ каждый простой сомножитель числа P оканчивается на 01 (см. 6°) и входит в число P в степени n (см. 2°). Следовательно, число P оканчивается на 001, т.е. $P_{[3]} /= Q_{[3]} = R_{[3]} /= 1$, откуда и $p_{[2]} = q_{[2]} = r_{[2]} = 1$.

А далее из равенства 3b° мы имеем: $[(C-B)+(C-A)-(A+B)]_{[3]}=0$. Откуда (см. 3°): 7-II°) число $U=A+B-C=un^3$ $[=un^k]$, то есть ТЕПЕРЬ k=3. [А если в 1°, например, $B_{[2]}=0$, тогда расчеты еще проще: $(C-A)_{[kn-1]}=(C-A)_{[2n-1]}=0$, откуда $(C-A)_{[5]}=0$, и из $U_{[3]}=0$ (см. 3°) находим, что $2B_{[3]}=0$, то есть k=3.]

И теперь из $A_{[2]}=(ap)_{[2]}$ (см. 2°, где ТЕПЕРЬ $p_{[2]}=1!$) и из равенств 5a-I° ($A_{[2]}=a^{m}_{[2]}$), мы находим важный инструмент для самовозрастания окончаний чисел A, B, C: 5-II°) $a_{[2]}=a^{m}_{[2]}$ /и $b_{[2]}=b^{m}_{[2]}$ и $c_{[2]}=c^{m}_{[2]}$ /, после чего составляем исходные данные 5a°-5d° для следующего цикла II (увеличивая в формулах 5a°-5b° показатели k /=2/ и t /=1/ в степенях чисел a,b,c и длины окончаний на I):

5а-II°)
$$A_{[3]} = a^{nn}_{[3]} = a^{nn}_{[3]}, B_{[3]} = b^{nn}_{[3]} = b^{nn}_{[3]}, C_{[3]} = c^{nn}_{[3]} = c^{nn}_{[3]};$$
 $P_{[3]} = a^{(n-1)nn}_{[3]} = 1$ (с $p_{[2]} = a^{(n-1)n}_{[2]} = 1$); $Q_{[3]} = b^{(n-1)nn}_{[3]} = 1$ (с $q_{[2]} = b^{(n-1)n}_{[2]} = 1$); $R_{[3]} = c^{(n-1)nn}_{[3]} = 1$ (с $r_{[2]} = c^{(n-1)n}_{[2]} = 1$); $=>$ 5b-II°) $A^n_{[4]} = a^{nnn}_{[4]}$ ($= a^{nn}_{[4]}, \text{ T.e. } t = 3$), $B^n_{[4]} = b^{nnn}_{[4]}; C^n_{[4]} = c^{nnn}_{[4]}; =>$ (см. $1^\circ - 2^\circ$) $=>$ 5c-II°) $a^{nnn}_{[4]} = (c^{nnn}_{[4]} - b^{nnn}_{[4]})_{[4]}, =>$ (см. формулы разложения и 2°) $=>$ 5d-II°) $a^{nnn}_{[4]} = \{(c^{nn}_{[4]} - b^{nn}_{[4]})_{[4]} P_{[4]}\}_{[4]}$ и $(c^{nnn}_{[4]} - b^{nnn}_{[4]})_{[4]} = \{(c^{nn}_{[4]} - b^{nn}_{[4]})p^n_{[4]}\}_{[4]}.$

А далее мы повторяем рассуждения І-го цикла, повторяя увеличение значений k и t и длин окончаний на I. И так до бесконечности. То есть окончания чисел A, B, C принимают вид:

8°) $A_{[t+1]} = a^{m^{\wedge_t}}{}_{[t+1]}$, $B_{[t+1]} = b^{m^{\wedge_t}}{}_{[t+1]}$, $C_{[t+1]} = c^{m^{\wedge_t}}{}_{[t+1]}$, где t стремится к бесконечности. И если во втором способе мы восстановим значения вторых цифр в сомножителях p, q, r, то бесконечные значения чисел A, B, C лишь увеличатся, что свидетельствует о невозможности равенства 1° и истинности ВТФ.

Мезос. 5-11 мая 2017

+++++++++++++

ПРИЛОЖЕНИЕ

Теорема. Все равенства Ферма $X^m = Z^m - Y^m$ (из ВТФ), за исключением случая $m = 2^k$, сводятся к базовому равенству $A^n = C^n - B^n$ (см. 1°) со свойствами 1°-5° (см. выше).

Доказательство

- $0a^{\circ}$) Если m=nd, то делается подстановка: $X^d=A$, $Y^d=B$, $Z^d=C$. $\Rightarrow A^n=C^n-B^n$ (см. 1°).
- 0b°) Если X=Ad, Y=Bd, Z=Cd, где d наибольший общий делитель чисел A, B, C, то делается подстановка X/d=A, Y/d=B, Z/d=C. \Rightarrow $A^n=C^n-B^n$ (см. 1°). \Rightarrow

1°)
$$A^n = C^n - B^n [= (C - B)P] = \frac{1}{B^n} = C^n - A^n [= (C - A)Q], C^n = A^n + B^n [= (A + B)R]/.$$

 $1a^{\circ}$) (C-B)P+(C-A)Q-(A+B)R=0 [$<=1^{\circ}$ после подстановки выражений в скобках в первое равенство], где наибольшие общие делители соответственно в парах чисел (A, C-B), (B, C-A), (C, A+B) мы обозначим буквами a, b, c. =>

$$2^{\circ}$$
) Если A'/B' , $C'/\neq 0$, то $C-B=a^n$, $P=p^n$, $A=ap$ //аналогично и $C-A=b^n$, $Q=q^n$, $B=bq$; $A+B=c^n$, $R=r^n$, $C=cr//$.

Это следует из того, что числа в парах (C-B, P), (C-A, Q), (A+B, R) являются взаимно простыми. Действительно после группировки членов, например, многочлена P в пары слагаемых, равноотстоящих от его концов, и выделяя в каждой паре полный квадрат, мы получаем сумму (n-1)/2 пар с сомножителем $(C-B)^2$ и еще одного элемента: $2a^\circ$) $P=D(C-B)^2+nC^{(n-1)/2}B^{(n-1)/2}$, где C-B и P взаимно простые, т.к. числа C-B, C, B и P являются взаимно простыми.

3°) Число
$$U=A+B-C=un^k$$
, где $k>1$, откуда $(A+B)-(C-B)-(C-A)=2U$. Равенство $A'+B'-C'=0$ следует из малой теоремы, ибо если A'/B' , $C'\neq 0$, то $3-1$ °) $A^{(n-1)}=B^{(n-1)}=C^{(n-1)}=1$. $=>$ $3-2$ °) $P'=Q'=R'=1$ (где $P=p^n$, $Q=q^n$, $R=r^n$). $=>$

$$3-3^{\circ}$$
) $p'=q'=r'=1. \Longrightarrow (cm. 5^{\circ}) \Longrightarrow$

$$3-4^{\circ}) P_{121} = Q_{121} = R_{121} = 01 = 1. = >$$

$$(3-5^\circ) U = A + B - C = un^2 [= un^k = > т.е.$$
 число нулей на конце числа $U, k = 2].$

3a°) Но если, например, $B_{[k]}=0$ и $B_{[k+1]}\neq 0$, то $(C-A)_{[kn-1]}=0$, где kn-1>k+1, и в равенстве 3b°) $[(A+B)-(C-B)-(C-A)]_{[k+1]}=(2U)_{[k+1]}$ (см. 3°) число $(C-A)_{[k+1]}=0$. Действительно, из равенства 2a° для Q видно, что если C-A делится на n, то Q на n^2 не делится, т.к. один и только один сомножитель n находится в числе Q.=> Если B делится на n^s , то C-A делится на n^{sn-1} и не делится на n^{sn} .

4°) Цифра $A^n_{(s+1)}$ однозначно определяется окончанием $A_{[s]}$ и, следовательно, окончания $a^n_{[2]}$, $a^{n+2}_{[3]}$ и т.д. не зависят от цифры $a^{\prime\prime}$!

Это вытекает из записи числа A в виде A = dn + A' и разложения бинома $A^n = (dn + A')^n$.

При наименьшем значении k=2 (см. 3°):

5а°)
$$A_{[2]} = a^{n}_{[2]} = a^{m}_{[2]}, B_{[2]} = b^{n}_{[2]} = b^{m}_{[2]}, C_{[2]} = c^{n}_{[2]} = c^{m}_{[2]};$$
 и $P_{[2]} = a^{(n-1)n}_{[2]} = 1$ (с $p' = a^{n-1}_{[1]} = 1$); $Q_{[2]} = b^{(n-1)n}_{[2]} = 1$ (с $q' = b^{n-1}_{[1]} = 1$); $R_{[2]} = c^{(n-1)n}_{[2]} = 1$ (с $r' = c^{n-1}_{[1]} = 1$). Это следует из равенств $(A + B - C)_{[2]} = 0$ (3°) и 2b°: $(A - a^{n})_{[2]} = (B - b^{n})_{[2]} = (c^{n} - C)_{[2]} = 0$.

5b°)
$$A^n_{[3]} = a'^{nn}_{[3]}$$
 (= $a'^{n^{\wedge}k}_{[3]}$, т.е. $k=2$), $B^n_{[3]} = b'^{nn}_{[3]}$; $C^n_{[3]} = c'^{nn}_{[3]}$; $<= 4^{\circ}. => ($ см. $1^{\circ}-2^{\circ})$ 5c°) $a'^{nn}_{[3]} = (c'^{nn}_{[3]} - b'^{nn}_{[3]})_{[3]}$, $=> ($ см. формулы разложения и $2^{\circ}) =>$ 5d°) $a'^{nn}_{[3]} = \{(c^n_{[3]} - b^n_{[3]})_{[3]} P_{[3]}\}_{[3]}$ и $(c'^{nn}_{[3]} - b'^{nn}_{[3]})_{[3]} = \{(c^n_{[3]} - b^n_{[3]}) p^n_{[3]}\}_{[3]}$, где $P_{[2]} = a'^{(n-1)n}_{[2]} = 1$;

6°) **Лемма** /факультативно/. Каждый простой делитель сомножителя R бинома $A^{n\wedge k} + B^{n\wedge k} = (A^{n\wedge (k-1)} + B^{n\wedge (k-1)})R$, где k > 1, числа A и B взаимно простые и число A + B не кратно простому n > 2, имеет вид: $m = dn^k + 1$.

Доказательство

Допустим, что среди простых делителей сомножителя R есть делитель вида: $m=dn^{k-1}+1$, где d не кратно n. Тогда числа

6-1°) $A^{n^{\wedge}k}+B^{n^{\wedge}k}$ и, согласно малой теореме Ферма для простой степени m, 6-2°) $A^{dn^{\wedge}(k-1)}-B^{dn^{\wedge}(k-1)}$ (где d четно) делятся на m.

Теорема о НОД двух степенных биномов $A^{dn}+B^{dn}$ и $A^{dq}+B^{dq}$, где натуральные A и B взаимно простые, n [>2] и q [>2] взаимно простые и d>0, утверждает, что наибольший общий делитель этих биномов равен A^d+B^d .

В нашем случае НОД, кратный m, есть число $A^{n^{n}(k-1)}$ - $B^{n^{n}(k-1)}$, которое является взаимно простым с числом R. Следовательно, никакой сомножитель m вида $m = dn^{n}(k-1) + 1$ не принадлежит числу R. Из чего следует истинность Леммы.

Тем самым теорема о базовом равенстве Ферма доказана.