GENERAL EXACT TETRAHEDRON ARGUMENT FOR THE
FUNDAMENTAL LAWS OF CONTINUUM MECHANICS

EHSAN AZADI!

ABSTRACT. In this article, we give a general exact mathematical framework that all
the fundamental relations and conservation equations of continuum mechanics can be
derived based on it. We consider a general integral equation contains the parameters
that act on the volume and the surface of the integral’s domain. The idea is to
determine how many local relations can be derived from this general integral equation
and what these local relations are. After obtaining the general Cauchy lemma, we
derive two other local relations by a new general exact tetrahedron argument. So,
there are three local relations that can be derived from the general integral equation.
Then we show that all the fundamental laws of continuum mechanics, including the
conservation of mass, linear momentum, angular momentum, energy, and the entropy
law, can be considered in this general framework. Applying the general three local
relations to the integral form of the fundamental laws of continuum mechanics in
this new framework leads to exact derivation of the mass flow, continuity equation,
Cauchy lemma for traction vectors, existence of stress tensor, general equation of
motion, symmetry of stress tensor, existence of heat flux vector, differential energy
equation, and differential form of the Clausius-Duhem inequality for entropy law.

The general exact tetrahedron argument is an exact proof that removes all the
challenges on derivation of the fundamental relations of continuum mechanics. In this
proof, there is no approximate or limited process and all the parameters are exact
point-based functions. Also, it gives a new understanding and a deep insight into the
origins and the physics and mathematics of the fundamental relations and conservation
equations of continuum mechanics. This general mathematical framework can be used
in many branches of continuum physics and the other sciences.

1. INTRODUCTION

Is there a general exact framework that all of the fundamental relations and conservation
equations of continuum mechanics can be derived in it?

Continuum mechanics is a subject that is the base of a wide range of phenomena and
physical behaviors of the nature and industry such as fluid mechanics, solid mechanics,
continuum thermodynamics, heat transfer, etc. The birth of modern continuum me-
chanics is the introduction of the traction vector in 1822 by Cauchy that describes the
nature of forces on the internal surfaces of the substance [6]. He gave a proof that is
called Cauchy tetrahedron argument for the existence of stress tensor. The other im-
portant Cauchy’s achievements in the foundations of continuum mechanics include the
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symmetry of stress tensor and the general equation of motion [6,7,12]. During about
two centuries, the scientists and authors in continuum mechanics presented some differ-
ent proofs and processes to derive the fundamental relations and conservation equations
of continuum mechanics, more generally and precisely [11], [10], [13], [9], [1], [4], [8], [5]-

We already gave two articles on this subject. In the first one (2017, [2]), we provided
a comprehensive review of the different tetrahedron arguments and the proofs of the
existence of stress tensor, and discussed the challenges and improvements of each one.
In the second article (2017, [3]), for the first time, we presented and proved the exact
tetrahedron argument that removes all of the challenges on the previous tetrahedron
arguments and the proofs of the existence of stress tensor. Exact tetrahedron argument
led to derivation of both the relations for the existence of stress tensor and general
equation of motion, simultaneously. Also, we compared the exact tetrahedron argument
with the previous proofs of the existence of stress tensor. Exact tetrahedron argument
gave us a new understanding and a deep insight into the physics and mathematics of
the stress tensor, general equation of motion, and their origins [3].

In this article, we generalize the exact tetrahedron argument for all of the fundamental
relations and conservation laws of continuum mechanics. We prove a general exact
mathematical framework and consider the different fundamental laws of continuum
mechanics in this framework. Then, we will show that this leads to the exact derivation
of the relations for the mass flux, existence of stress tensor, symmetry of stress tensor,
surface heat flux, entropy flux, and the differential form of fundamental conservation
laws of mass, linear momentum, angular momentum, energy, and the entropy law.

Here we consider an integral equation over the control volume M as the form:

fMdezLMMS (1.1)

In general, B = B(r,t) is called body term and acts over the volume of M, and
¢ = ¢(r,t,m) is called surface term and acts on the surface of M, i.e., oM. Where r is
the position vector, t is time, and m is the outward unit normal vector on the surface of
the control volume. If B is scalar then ¢ must be scalar, and if B is vector then ¢ must
be vector. These two functions are continuous over their domains. In the later, we will
show that the integral form of all the fundamental laws of continuum mechanics can be
written in the form of the integral equation (1.1).

We want to find how many local relations can be derived from this integral equation
and what they are.

We use the Eulerian approach in the entire of this article, where a control volume is
utilized and the changes of quantities are recorded as the effective parameters on the
surface or volume of the control volume and the fluxes that pass through control volume
surface.
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FiGURE 1. The control volumes M7 and Moy, where
oMy =510 S, and oMy = Sy U S,,, and the control
5 volume M such that Vi = Vg, U Vg, and oM = S7 U Ss.

2. GENERAL CAUCHY LEMMA

Suppose the control volume M splits into M; and My by the surface S,,. So, Vi =
Vi, UV, OMy =510 S, OMs = Sy U Sy, and OM = S; U Sy, see Figure 1. If the
integral equation (1.1) applies to M; and M, then the sum of these equations is:

J BldV+f BydV = b1 dS + bo dS
My Mo oMy OMa

By Vm = Vi, U Vg, the sum of the body term integrals is equal to the integral of the
body term on M. In addition, by oM; = S; U S,, and oMy = Sy U S,,, the surface
integrals split as:

JBdV: ¢1dS+f ¢ dS + ¢2ds+f by dS
M S1 Sm Sa Sm

By oM = 51 u 95, the sum of the surface integrals on S; and S5 is equal to the surface
integral of ¢ on 0M, so:

f BdV = gde—kJ gzﬁldS—lrf P2 dS
M oM Sm Sm

Comparing this integral equation with the general integral equation (1.1), implies that:

J qbldS—irJ ¢$2dS =0
S77L S’"L
But ¢; on S,, is ¢(r,t,n), and ¢y on S, is ¢(r,t, —n), so:

{o(r,t,n) + ¢(r,t,—n)} dS = 0

S"L
therefore, we have
¢(r7tan) = —¢(T,t, _n) (21)
This is the first local relation that is derived from the integral equation (1.1), and is

called general Cauchy lemma. It states “the surface terms acting on opposite sides of
the same surface at a given point and time are equal in magnitude but opposite in sign”.

It means that if we have the surface term on one side of a surface at a given point and
time, then we can get the surface term on the other side of this surface at that point
and time by the equation (2.1).
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FIGURE 2. The geometry of tetrahedron
control volume and the exact surface term
vectors on the faces. Note that in this figure
we suppose that the surface term is a vector,
but in general it can be a scalar or a vector,
depending on the type of the body term.

3. GENERAL EXACT TETRAHEDRON ARGUMENT

Consider a tetrahedron control volume in continuum media that its vortex is at the
point o and its three orthogonal faces are parallel to the three orthogonal planes of the
Cartesian coordinate system. The fourth surface of the tetrahedron, i.e., its base, has
the outward unit normal vector ny. For simplicity, the vortex point is at the origin of
the coordinate system. The geometrical parameters are shown in Figure 2. The vector
r = xe, + ye, + ze, is the position vector from the origin of the coordinate system.
Applying the general integral equation (1.1) to the tetrahedron control volume leads to:

60dS+ | ¢1dS+ | dpdS+ ¢3ds—f Bdv (3.1)
As3 M

Asy Asy Asao

The key idea of this proof is to write the variables of this equation in terms of the exact
Taylor series about a point in the domain. Here, we derive these series about the vortex
point of tetrahedron (point o), where the three orthogonal faces pass through it. Note
that time (¢) is the same in the all terms, so it does not exist in the Taylor series. For
B(r,t) at any point in the domain of the control volume, we have:

0B 0B 0B,

B — BO + o + o +
oz oy R
e (6’230 2t 7B, + B, + 28230 + 2—8230 + 26230 >
_ €T z X Trz z
2\ Oz2 oy? Y 022 0xdy YT ooz é’y@zy (3:2)
OO X 1 olm+n+k) B N
.= m
mZO HZOZ; minlk! ozmdyrozFle” Y7

Here B, and dB,/dx are the exact values of B and 0B/dx at the point o, respectively.
Similarly, the other derivatives are the exact values of the corresponding derivatives of
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B at the point 0. On the surface Asy, x = 0 and n; does not change, so:

B 0pr,  O0by, 1/ PP, o Po1, (9 0",
1=, F Y (3zz+2!<(9y2 T2 2 Y252, Z)
Yoy, 33
e m2=0k2—0 mlk! dymozF 1o

where ¢y, is the exact value of ¢; on As; at the point 0. On the surface Asy, y = 0
and my does not change, and on the surface Ass, z = 0 and n3 does not change, so:

a¢20 a¢2o ]‘ anbQo 2 a ¢20 2 a ¢2o
92 =02, F ox 0z ar ( o2 v 022 +28x82 :EZ)
G 1 a<m+k)¢2 o (3.4)
mz_: Zzl k! ozmozk Lo
_ 5¢30 a¢30 1 52¢30 2 a2¢30 2 a2¢30
93 = 93, or v oy v+ ( o2 " * o0y? v 28azayxy> (35)
© 0 1 5(m+k’)¢ . :
e 2 Z mlk! oxmoyk Y

Similarly, ¢o, and ¢3, are the exact values of ¢o and ¢3 at the point o on Asy and Asg,
respectively. For the surface term on As, a more explanation is needed. The surface
term on As, expands based on the surface term on the inclined surface that is parallel
to Asy and passes through the vortex point of tetrahedron (point 0). Because the unit
normal vectors of these two surfaces are the same, see Figure 3. Therefore:

Parallel
to Asy

i~ FIGURE 3. Inclined surface that is parallel to
As, and passes through point o
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Ops, 0y, 04, B

1= 1, + é’a:x+ 5yy+ 0z
]' 02¢4o 2 a2¢40 2 a2¢40 2 82¢40 82¢4o 62¢4o
5( 2 T oY T2t +2(9x(3yxy+28x82x2+28y(9zyz> (3.6)

0 O © (m+n+k) ¢4

10 o
b= 2 D e Smagiatl,l Y

m=0n=0 k=0

where ¢4, is the exact surface term at the point o on the inclined surface with unit
normal vector n4 that this surface passes exactly through point o, the vertex point of
tetrahedron control volume. Here z, y, and z are the components of the position vector
7 on the surface Asy.

Note that ¢y, ¢a,, ¢3,, and ¢4, are the exact surface terms at the point o but on
different surfaces with unit normal vectors ni, no, ng, and ny, respectively. The body
term B, is exactly defined at the point o. Therefore, all the surface terms and the body
term with subscript o and all their derivatives, such as 0?¢,, /dx0y, are exactly defined
at the point o and are bounded. As a result, for the convergence of the above Taylor
series it is enough that we have |r| < 1 in the domain of the control volume M. But
the scale of the coordinate system is arbitrary and we can define this scale such that
the greatest distance in the domain of the control volume from the origin, is equal to
one, i.e., |7|nee = 1. By this scale, in the entire of the tetrahedron control volume we
have |r| < 1, that leads to the convergence condition for the above Taylor series.

Now all of the variables are prepared for integration in the integral equation (3.1). The
integration of B on the volume of M:

c rb(1=2) ra(1-%-2) B B B
f desz f ' {BO+O 0p 4 oy O Oz+...}dxdydz
M o Jo 0 Ox y 0z

_éabc{Bo—i-i(&aioa—k&azobJra;;%) —i—}

(3.7)

The integration of ¢4 on Asy:

b ra(1-%) P 0
N N R N e e (R
+ a¢4o ( (1 z y)) + l<a2¢4o 2 + a2¢4o 2 a2¢40 ( (1 _ E _ g))Z

0z T AT o\ oz * 8y2y+822 ¢ a b
0*¢a, 0% ¢, Ty 0*¢a, Ty
2 eyt 2 aale = L= ) 2 (e - - 5)))

—|—...)}dxdy
1 1 /09,4 04 04

— 2V a2h2 + a2c2 + b2 b 0 0 0
2\/ab + a?c +bc{¢40+3(axa+ 8yb+ P c)

L PPy, o PPay9  Pbs, o Pu, 0%y, 0% ¢y,
E( 2 T 2 T e ey T ma ayazbc> oo

(3.8)
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The integration of ¢; on Asy:

c rb(1-%) 0 0
onas = [ [ {ou+ ey
Asy 0 Jo y

0z

+l<32¢10 2 a gblo 2

21,
a23/—|—(92 —i—Zaayz) ..}dydz
o1,

i _bc{(blo 3( o - a;b; ) 1 (82251052 n 5;21002 g?glzb ) ; 9%

The integration of ¢o on Asy and ¢3 on Asz can be done, similarly. The geometrical
relations for the area of faces and the volume of the tetrahedron are:

1 1 1
As, = §bc, Asy = 546 Ass = §ab

(3.10)

1 1
Asy = 5\/a262 + a?c? + b2c2, AV = Eabc

By substituting the obtained relations for the surface terms and the body term into the
equation (3.1) and using the above geometrical relations, we have:

1 /0y, 0¢a, 0da,
AS4{¢4° * _< ox @t oy b 0z C)
(a ¢4o a2 a ¢4o b2 a ¢4o 2

0% ¢y, b+ 52(%540 52¢4ob ) }

o o 72 ¢ Tz ™ T ma " T Byos
+Asl{¢1o+é<@¢“ ) g (Gt T ) )
# doafon, (T o) + i(ifso e
amfen 3G 5) (G Gt s ) )

Av{Bo+i(a£” b+5£0c)+...}=o

(3.11)

In the geometry of tetrahedron, h is the height of the vertex o from the base face,
i.e.;, Asy. So, we have the following geometrical relations for a tetrahedron with n, =
ng€; + nye, + n.e., where a, b, and c are greater than zero, see Figure 2.

h = nga, h = nyb, h =n,c
1 1 N 1 N 1 A abe
_ = — J— _ Sy = ——
2 a2 B 2 YT on

As; = nyAsy, Asy = nyAsy, Ass = n,A\sy (3.12)

1 1
AV = éabc = ghAs4

If we divide the equation (3.11) by As, and use the relations (3.12) for the faces and
volume of the tetrahedron, then substitute the relations a = h/n,, b = h/n,, and
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¢ = h/n, into the equation and rearrange it based on the powers of h, we have:

{¢4o + ngyPr, + nyPo, + n2¢30}
+{<a¢4o L 0, 1 09y 1 ) +nz(6¢1o 1 9%, 1)

oy ny 0z n,

or ny, oYy mny 0z n,

+ny<a¢20i " 0a, i) +nz(5¢3ai n 03, i) —Bo}lh

0x Ny 0z n, oxr Ny oYy ny 3
Py, 1 0P¢a, 1 Pdy, 1 ¢y, 1 %y, 1 52¢40
* {( o0x? n_i 0y? n_g * 072 n_g * 0xdY nyny, * 0x0z nyn, 8yéz nyn)
P, 1 Ph, 1 Py, 1 o, 1 ¢y, 1 Py, 1
—i—nm( oy? n_z 022 n? - 0yoz nynz) n ( 0x? n2 - 022 n? - 0x0z nxnz)
<82¢30i 62¢30i+ Pps, 1 )_ (&Boi &Boi (9Bol> lhz
“\ 022 n2 dy* n2  dxdy ngn, or n, Oy mn, 0z n,/ )12
.=0
(3.13)

Note that by the coordinate system here and by AV # 0, no one of n,, n,, and n, is
exactly zero. So, all of the expressions in the braces {} of the equation (3.13) exist. We
can rename the expressions in the braces and rewrite the equation as:

1 1
E0+E1§h+E2Eh2+... =0 (3.14)

If we continue to integrate the higher order derivatives of all terms based on their Taylor
series, we have the following equation:

Fo+ Eroh + By h? + By h® + ...+ Bpe——— ™+ =0 3.15
0 Bagh Bt g S P T (3:15)

or

- 2
Ep—"h™ =0 (3.16)
m2=0 (m +2)!

This is a great equation in the foundation of continuum mechanics. Fy, Fq, and E5 are
shown in the braces of the equation (3.13) and E3 and other FE,,’s will be presented.
We now discuss some aspects of the equation (3.15):

e F,,’s are formed by the expressions of surface terms, body term and their deriva-
tives, and the components of unit normal vector of the inclined surface.

e FEach of the E,,’s exists, because the surface terms, body term and their deriva-
tives are defined as continuous functions in continuum media and by the coor-
dinate system here and by AV # 0, no one of n,, n,, and n, is exactly zero.

e Each of the F,,’s depends on the variables at the point o and the components
of unit normal vector of the inclined surface that is parallel to Ass and passes
through point o. Because the surface terms, body term, and their derivatives
are defined at the point o.
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e [/,,’s do not depend on the volume of tetrahedron.

e h is a geometrical variable and by the scale of the coordinate system on the
tetrahedron control volume such that |7|,,.. < 1, the altitude of the tetrahedron
(h) is not greater than one.

e Note that h = 0 is not valid, because the general integral equation (1.1) is
defined for the control volumes with nonzero volume.

By these properties, we return to the equation (3.15).

1 1 1 2
Ey+ Eizh+ Ey—h +E3—h +...+ Ep————h"+...=0
! 12 ?60 (m + 2)!
We must find E,,’s. Since E,,’s are independent of h, the series on the left hand side
is a power series. A power series is identically equal to zero if and only if all of its

coefficients are equal to zero. Therefore:
E, =0, m=0,1,2,...,0 (3.17)

Note that these results are valid not only for h — 0 but also for all values of h in
the domain. In other words, the results (3.17) are valid not only for an infinitesimal
tetrahedron but also for any tetrahedron in the scaled coordinate system in continuum
media. In addition, we have not done any approximate process during derivation of the
equations (3.15) and (3.17). So, the results (3.17) hold exactly, not approximately.

Furthermore, the subscript o in the expressions of E,,’s in the equation (3.13) indicates
the vortex point of the tetrahedron. But any point in the domain in continuum me-
dia can be regarded as the vertex point of a tetrahedron and we could consider that
tetrahedron. So, the point o can be any point in continuum media. We conclude that
E,.’s are equal to zero at any point in continuum media. This implies that all their
derivatives are equal to zero, as well. For example, we have for Ey:

oFky O0E, 0JE

== = = . 1
ox oy 0z 0 (3.18)

and the other higher derivatives of Ej are equal to zero. This trend holds for other
E,’s. But what are E,,’s?

For Ey = 0, from the equation (3.13):
E() = ¢40 + nnglo + ny¢20 + nz¢3o = 0 (319)

In this equation, the four surface terms are exactly defined at the point o on the surfaces
that pass exactly through this point. The surface term ¢, is defined on the negative
side of coordinate plane yz, i.e., ny = —le,, at the point o. If ¢, is the surface term
on the positive side of coordinate plane yz at the point o, then by the equation (2.1),
ie., ¢(r,t,n) = —¢(r,t,—n), we have:

b1, = —Pa, (3.20)
Similarly, for ¢, and ¢s,:

P2, = ~Pyor 3, =~z (3.21)
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By substituting these relations into (3.19) and rearranging it, we have:

¢40 = nx4¢zo + ny4¢yo + nz4¢zo (322)

where 14 = ng, nya = ny, and n,y = n,. So, the surface term ¢4, can be obtained
by a linear relation between the surface terms on the three orthogonal planes and the
components of its unit normal vector. But can we use the equation (3.22) for any unit
normal vector rather than n,,?

By considering the equations (3.11) and (3.13), we find that the equation (3.22) is really
the following equation:

B ﬁ Asy Ass

AS4 gbxo + AS4 ¢yo + A34

P4, ¢z, (3.23)

and this equation is:
¢40 = |n$4|¢$o + |ny4|¢yo + |nZ4‘¢Zo (324)

In Figure 2, by a > 0, b > 0, and ¢ > 0, the components of unit normal vector on the
inclined surface are greater than zero. So, the equation (3.22) is valid for these cases.

For the surfaces that their unit normal vector components are negative and are not
zero, consider a tetrahedron control volume by the unit normal vector of its inclined
surface (base face), n_y4, that all of its components are negative. Therefore, we have
MN_4, = Ng_1€y+Ny_s€y+n,_ 4, = —nge, —n,e,—n.e,, where n_,, is the outward unit
normal vector of the surface that is parallel to the inclined surface and passes through
the vortex point of this tetrahedron (point o), and n,, n,, and n, are positive values.
Applying the process of exact tetrahedron argument to this new tetrahedron, leads to
the following equation similar to the equation (3.19):

EO = ¢—4o + |nx_4|¢1’o + |ny—4|¢yo + |nz_4|¢zo = O (325)

As compared with the equation (3.19), in this equation we have ¢, , ¢,,, and ¢,, rather
than ¢, ¢o,, and ¢3,, respectively. Because the outward sides of orthogonal faces of this
new tetrahedron are in the positive directions of coordinate system. By the equation
(3.25) and the components of n_,4,, we have:

G-1, = —[Nu-a|bz, — [ny-aldy, — |N2-a|2,
= —| = na|ds, — | = nyloy, — | — n2l¢s,
= —NzPz, — NyPy, — NPz,
= Ng—1Qs, + Ny—ady, + Nzaz,

So, the surface term ¢_,4, can be obtained by a linear relation between the surface terms
on the three orthogonal planes and the components of its unit normal vector. For the
surfaces that one or two components of their unit normal vectors are negative but the
other ones are not zero, the same process can be done.

(3.26)

For the other surfaces that one or two components of their unit normal vectors are
equal to zero, the tetrahedron does not form, but due to the continuous property of the
surface term on n and the arbitrary choosing for any orthogonal basis for the coordinate
system, the surface terms on these surfaces can be described by the equation (3.22), as
well. So, in general, the normal unit vector n4 can be related to any surface that passes
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through point o in three-dimensional continuum media. Thus, the subscript 4 removes
from the equation (3.22) and we have for every n = n,e, + nye, + n.e.:

Po = Ny@r, + Nydy, + N0, (3.27)

The subscript o in this equation indicates the vortex point of the tetrahedron. But any
point in the domain in continuum media can be the vertex point of a tetrahedron and
we could consider this tetrahedron. So, the point o can be any point in continuum
media and the subscript o removes from the equation:

¢ = nydp + nydy + N2, (3.28)
or
o(r,t,n) = nyp(r,t,e;) + nyd(r,t,e,) + n.o(r,t e,) (3.29)

This is the second local relation that is derived from the general integral equation (1.1).
It states that “the surface term acting on any surface at a given point and time in the
continuum domain can be obtained by a linear relation between the surface terms on the
three orthogonal surfaces at that point and time and the components of the unit normal
vector of the surface”.

It means that if we have the surface terms on three orthogonal surfaces at a given point
and time, then we can get the surface term on any surface that passes through that
point at that time by using the unit normal vector of the surface and the linear relation

(3.29).

In the next section, we will show that if ¢(7,¢,n) is scalar then the equation (3.29)
leads to the existence of a flux vector and if ¢(r, ¢, ) is vector then the equation (3.29)
leads to the existence of a second order tensor.

Note that if we do not have the relation (2.1), i.e., the general Cauchy lemma, the
equation (3.29) cannot be derived for every unit normal vector. Now the equation
(3.29) contains the relation (2.1).

Let us see what £ = 0 tells.
From the equation (3.13):

Opg, 1 Oy, 1 0y, 1 Opr, 1 091, 1
E _ o _— o _— o _— o _— 7o
! ( or Ny * oy ny M 0z nz> +nx< oy ny * 0z nz>

ny(a%oi n %i) +nz(5¢3oi n a¢3oi> _B,

oxr ny 0z n, ox ny 0y ny

(3.30)

As previously stated, on the tetrahedron control volume with AV # 0, no one of n,,
ny, and n, is exactly zero. Therefore, F; exists. Furthermore, the unit normal vector
n, does not change on Asy, so:

6n4 (9114 6n4
= = = . 1
ox oy 0z 0 (3:31)
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Using the relations (3.31) and the equation (3.19), i.e., ¢4, = Eo—ngz¢1, —nyp2, —n.¢s3,,
we have for (3.30):

OBy | 10y | 10y 30, 06 06,

E = — — — — - B,
YT on, ox n, 0y n, 0z ox oy 0z
If we define F as:
g1,  0¢a, 03

E=—2— e — > — B, 3.32

ox oy 0z (3:32)
therefore, we have

1 OF, 1 0F 1 0F,
B - L% 1 0E Eo , g (3.33)

n_z ox n_y oy n_z 0z
But we saw in (3.18) that the derivatives of E, were equal to zero. So, from (3.33) and
E, =0, we have:
Ei=FE=0 (3.34)

By (3.32), E is defined at the vertex point of tetrahedron. But as previously stated, the
vertex point of the tetrahedron can be at any point in continuum media. Therefore, by
(3.34), E = 0 at any point in continuum media. This implies that all derivatives of F
are equal to zero at any point in continuum media. So:

JE O0E O0E

dr Oy 0z
By using the relations (3.20) and (3.21), i.e., ¢1, = —@4,, P2, = —y,, and @3, = —0.,,
the equation (3.32) becomes:

(3.35)

_ 0y, | 09y, 0,
E = o + 3 + o, B, (3.36)

but £ =0, so

09z, | 0y, | 09,
B, = o + 2y + o, (3.37)

As explained earlier, we can remove the subscript o from the equation and tell that this
equation is valid at any point and at any time in the continuum domain. Therefore:

0p, 0 09,

0, 00, 0

B=—=+
ox oy 0z

(3.38)

or
op(r,t,e,) N op(r,t, ey) N op(r,t,e,)
or oy 0z

This is the third local relation that is derived from the general integral equation (1.1).
It is a partial differential equation and states that “the body term at a given point and
time in the continuum domain is equal to to the sum of the first order derivatives of the
surface terms acting on the three orthogonal surfaces at that point and time”.

B(r,t) =

(3.39)

It means that if we have the first derivatives of the surface terms on the three orthogonal
surfaces at a given point and time, then we can get the body term at that point and
time by using the equation (3.39).
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Let us see what Fy = 0 tells.
From the equation (3.13):

2 1 2 1 2 1 2 1 2 1 2 1
0 ¢4o 0 ¢40 0 ¢4o I 0 92540 4 0 ¢4o n 0 ¢4O )

ox? n? 0y? nz 0z% n? = Oxdyngn, 0rdzngn, Oyoz nyn,

e

nm(ﬁzqﬁlo 1 P¢, 1 Py, 1 >+ny<&2¢20 1 ¢, 1 62¢20L>

ox? n2 022 n?2  0x0z ngn,

dy* n? 0z% n2 = Jyoz nyn,
0? 1 0? 1 0? 1 0B, 1 0B, 1 0B, 1
Z( b3, 3, " b3, ) _ < Z " _>

ox? n? dy* ng  O0xdy ngn, or ny 6_yn_y 0z n,
(3.40)
For FEj,, similar to the process for F; = 0, we have:
B 1 ?Ey, 1 0°E, 1 0%°E, 1 0%E, 1 0%E, 1 0°E,
2 nZ ox*  n2 oy*  n? 0z mngn, dxdy  ngn. 0xdz  myn, 0yoz (3.41)

L 10E 10E 10E
Nng 0x Ny 0y n, 02

By the previous explanations, all derivatives of Ey and E were equal to zero. Therefore,
the equation (3.41) is a correct result of Fy = 0.

Similar to the previous processes for F; and F,, we have for F3 = 0:

1 3E, 10E, 10K 1 3K, 1 3K, 1 3E,

nd ox®  nd oy nd 023 nin, dx?0y  nin.dx?0z  nin, 0y?0z
1 3FE, 1 %E, 1 3K, 1 *Ey

nxnz 0xdy?*  ngn?0xdz?  nyn?odydz?  ngnyn, 0rdyoz

1 0?E 10*FE 170°FE 1 0*FE 1 0°FE 1 0*F

e bt = + + +

n2 dx?  n2 dy*  n?02*  ngny 0xdy  ngn.dxdz  nyn, 0yoz

Es =

(3.42)

We saw that all derivatives of Fy and E were equal to zero. So, the equation (3.42) is
a correct result of F5 = 0. This process for other F,,’s, leads to the expressions that
contain the higher derivatives of Ey and E and the higher powers of the components of
the unit normal vector and the results are equal to zero.

Therefore, the general integral equation (1.1) leads to the three important local relations
(2.1), (3.29), and (3.39).

4. FUNDAMENTAL LAWS OF CONTINUUM MECHANICS, INTEGRAL FORMS, BASIC
LOCAL RELATIONS, AND DIFFERENTIAL FORMS

In this section, we show that each of the fundamental laws of continuum mechanics can
be written in the form of the general integral equation (1.1) on control volume M, i.e.:

JBde ¢ dS (4.1)
M oM
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In this equation B = B(r,t) and ¢ = ¢(r,t,n) are continuous over the volume and
the surface of M, respectively. Where r is the position vector, ¢ is time, and n is the
outward unit normal vector on the surface of the control volume. Here if B is scalar then
¢ must be scalar, and if B is vector then ¢ must be vector. In the previous sections, by
using the Eulerian approach, we showed that this integral equation leads to the three
local equations, as:

the first
o(r,t,n) = —¢(r,t,—n) (4.2)
second
o(r.t,n) = nyp(r,t,e;) + nyd(r,t,e,) + n.op(r,t e,) (4.3)
and third 2 3 5
B(r,t) = (ZS(%;’ €:) n ¢("°a=;7 ey) n ¢(Té§7 e.) (4.4)

In the following, we present some properties of a general integral equation in continuum
media. If we have the following relation:
rto+At

Miyine — My, = Y dr (4.5)

Jio

then by the definition of integrals it can be written as:

to+At aM rto+At
J —dr = ,J Wvdr
to at to
Note that we use the Eulerian approach. This implies:
oM
<3;—>=Q ty <t < (to + At)

If ty and At are any time and time interval in the time domain, then the general equation
(4.5) leads to below equation that holds for any time:

oM
Ml 4.6
o (4.6)
In addition, the following integral equation holds for the control volume M in the
Eulerian approach:
0 0
—JQMZJ—QM (4.7)
ot Jum M Ot

Before considering the fundamental laws of continuum mechanics, let us discuss the flow
of a physical quantity into a surface in continuum media. If we have a physical quantity
such as U = U(r,t) that transfers by the velocity of the substance in continuum media,
and u = u(r,t) is U per unit volume, then the flow of this quantity into a surface with
outward unit normal vector mn is in the form:

¢y = —uv.n (4.8)

where v = v(r, t) is the velocity vector of the substance. So, ¢y = ¢y(r,t,n) and it has
the dimension of [U]/(m?.s). The negative sign is used because mn is the outward unit
normal vector of the surface. Here we suppose the fixed control volumes and for the
moving control volumes the relative velocity must be used. Note that by the equation
(4.8), ¢y satisfies the first and second local relations (4.2) and (4.3), as below:

—uv.n =—(—uv.(—n))
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therefore
ou(r,t,n) = —oy(r,t,—n) (4.9)
and
—uv.n = —uv.(nge, +nye, +n.e,) =n,(—uv.e;) +n,(—uv.e,) +n.(—uv.e,)
SO
¢U(T', t; n) = nx¢U(r7 t) ex) + ny¢U(r7 2(:7 ey) + nZ¢U(r7 t’ ez) (410)

By these general relations, we will consider the fundamental laws of continuum mechan-
ics in the next subsections.

4.1. Conservation of mass.

The basic law of conservation of mass of a control volume M says:

The total mass over the control volume M at time (to + At) equals the total mass over
M at time to plus the net of mass flow into M from ty to (to + At). So:

{JM'OdV} = {JMpdV} + fHAt { " Om dS}dT (4.11)
to+At o Jto

where p = p(r,t) is the density (mass per unit volume) and ¢,, = ¢, (7, t,n) is the
mass flow into the surface that it acts. Using the equation (4.8), we have ¢, = —pv.n.
By rearranging the equation:

UM pdv}mm - {JMpdV}to - f:w { LM —pv.m dS}dT (4.12)

This is similar to the general equation (4.5), using (4.6) it becomes:

0

— | pdV = f —pv.ndS (4.13)
0t Jpm oM

This is the integral equation of mass conservation law in continuum mechanics. By

using (4.7) we have:
f L av zf —pv.ndS (4.14)
M Ot oM

This equation is similar to the general integral equation (4.1), where B = dp/dt and
¢ = ¢m(r,t,n) = —pv.m, so the three general local relations (4.2), (4.3), and (4.4) hold
for it. The first and second local relations (4.2) and (4.3) lead to:

Om (T, t,n) = —dp (7, t,—m) (4.15)

and
¢m(r7 t, ’I’L) = nx¢m(ra t, 690) + ny¢m(r7 t, ey) + nz¢m(r7 t, ez) (416)

But as we showed in (4.9) and (4.10), the mass flow ¢,,(r,t,n) = —pwv.n satisfies the
two local relations (4.2) and (4.3), and their meanings. So, the above two relations
do not give us new results. The third local relation (4.4) for B = dp/dt and ¢ =
Om(r,t,n) = —pv.n leads to:

dp 0

0 0
o a—x(—PU-em) + @(—pv.ey) + &(_P’U'ez)
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for v = v, e, + v,e, + v.e,, we have v.e, = v,, v.e, = v,, and v.e, = v,. Substituting
these relations into the equation and rearranging it, yields:

op , Opva)  Opvy)  Apv:)

ot " ow oy z (4.17)
or
op
s V.(pv) =0 (4.18)

This is the differential equation of mass conservation law in continuum mechanics that
is called the continuity equation.

4.2. Conservation of linear momentum.

The basic law of conservation of linear momentum of a control volume M says:

The total linear momentum over the control volume M at time (to+ At) equals the total
linear momentum over M at time toy plus the net of linear momentum flow into M from
to to (to + At) plus the total surface and body forces over M from ty to (to + At). So:

to+At
{f pvdV} = {f pfvdV} +J { qblmdS}dT
M to+AL M to to oM
to+At to+At
+f {f tdS}dT+J ” pde}dT
to oM to M

where pv is the linear momentum per unit volume, ¢, = ¢,,,(r,t,n) is the linear
momentum flow into the surface that it acts, ¢ = t(r,t,n) is the surface force per
unit area that is called traction vector, and b = b(r,t) is the body force per unit
mass. By using the general equation (4.8) for the flow of linear momentum, we have
b, = —(pv)v.n, and rearranging the equation yields:

”M pvdV}tHAt—{fMpfvdV}to = L:OW{LM {t — (pv)v.n} dS+JMpde}dT

(4.20)

(4.19)

This is similar to the general equation (4.5). So, by using (4.6) it becomes:

QJ pvdV = J {t — (pv)v.n}dS + f pbdV (4.21)
0t Jpm oM M

This is the integral equation of linear momentum conservation law in continuum me-
chanics. Using (4.7) and rearranging the equation:

[ [ fogwomss o

This is similar to the general integral equation (4.1) by the vector forms of B and ¢,
where B = 0(pv)/dt — pb and ¢ =t — (pv)v.n =t + ¢,,. So, the three general local
relations (4.2), (4.3), and (4.4) hold for it. The first and second local relations (4.2) and
(4.3) lead to:

tir,t,n) + ¢, (r,t,n) = —t(r,t,—n) — ¢,,(r,t,—n) (4.23)



GENERAL EXACT TETRAHEDRON ARGUMENT, THIRD PAPER 17

and
t(r,t,n) + ¢, (r,t,n) = nx{t(r,t, e.) + ¢, (r,t, em)} + ny{t(r,t, e,) + ¢y, (r,t, ey)}
+ nz{t(r,t, e.) + ¢, (r,t, ez)}

(4.24)
But as we showed in (4.9) and (4.10), the linear momentum flow ¢, = —(pv)v.n
satisfies the two local relations (4.2) and (4.3), and their meanings. i.e.:
¢lm(r7 tu n) = _¢lm(r7 ta —TL) (425)
and
¢lm(T7 2 n) = nw¢lm(r7 t, em) + ny¢lm('r> t, ey) + n2¢lm(rv t? ez) (426)

So, these terms remove from the equations (4.23) and (4.24). Thus, we have from (4.23):
t(r,t,n) = —t(r,t,—n) (4.27)

This is the Cauchy lemma for traction vectors and states that “the traction vectors
acting on opposite sides of the same surface at a given point and time are equal in
magnitude but opposite in direction”.

And from (4.24):
t(r.t,n) = n,t(r.t,e;) + nyt(r,t,e,) + n.t(r,t e,) (4.28)

This means that if we have the traction vectors on the three orthogonal surfaces at a
given point and time then we can get the traction vector on any surface that passes
through that point at that time by having the unit normal vector of this surface and
using this linear relation. So, we must define the traction vectors on the three orthogonal
surfaces at any point and at any time. The traction vector on the surface with unit
normal vector e, by its components, defines as:

t(r,t,e;) = Tou(r,t) e, + Toy(r,t) e, + Thn(r,t) e, (4.29)

here T, (7r,t), Tyy(r,t), and T,.(r,t) are scalars that depend only on 7 and ¢. In each
case the first subscript indicates the direction of normal unit vector of the surface that
this case acts on it, and the second subscript indicates the direction of this component of
traction vector. Similarly, the traction vectors on the surfaces with unit normal vectors
e, and e, define as:

t(r,tey) = Ty(r,t)e, + Tyy(r,t)e, + Ty.(r,t) e, (4.30)
and
tr.t,e,) =T, (r,t)e, + T,y(r,t) e, + T..(r,t) e, (4.31)
By substituting these equations in (4.28)
t(r.t,n) = n{To(r,t) e, + Toy(r.t) e, + Tpo(r,t) e.}
+ny{Tya(r,t) €s + Tyy(r,t) e, + T,.(r,t) €.}
+ AT (r,t) ey + Toy(r,t) ey + Tea(r,t) e}
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by rearranging the equation
t(r,t,n) = {nxTM(r,t) + ny Ty (r,t) + n,Top(r }ex
+ {na Ty (7, t) + nyTyy(r,t) + n.Toy(r, ) }e,
+ {nxTwZ(r,t) +ny, Ty (r,t) + nT( }ez

this can be shown as

to(rtn)| [T Ty T’ [0
tir,t,n) = [t,(r.t,n) | = | Ty Tyy Ty ny (4.32)
t.(r,t,n) T Ty T.. n,
using the vector relations, this becomes
t=T"n (4.33)

where T' = T'(r,t) is a second order tensor and is called stress tensor. This tensor
depends only on the position vector and time. This relation means that “for describing
the state of stress on any surface at a given point and time we need the 9 components of
the stress tensor at that point and time”. So, the second local relation (4.3) for linear
momentum leads to the existence of stress tensor.

Let us apply the third local relation (4.4) for linear momentum, where B = d(pv)/0t—pb
and ¢ = t(r,t,n) — (pv)v.n. Thus:

d(pv)
ot

0 0
—pb = —{t(r,t, e.) — (pv)v.e,} + a—{t(r, t,e,) — (pv)v.e,}
y (4.34)
{t ,te,) — (pv)v. ez}
Using the relations (4.29), (4.30), and (4.31), we have:
t(r,t,e;) — (pv)v.ey, = (Thw — pvavs)es + (Toy — pryvg)ey, + (T, — pvsvs)e,
t(r.t,ey) — (pv)v.e, = (Ty, — pusvy)e, + (Tyy — pvyvy)ey + (T — pvovye.
t(r,t,e,) — (pv)v.e, = (Top — pvyvs)e, + (Loy — pvyvs)ey, + (1, — pv,v,)e,

Substituting these equations into the equation (4.34) and rearranging it, yields:

o(pv) 0 0
Fra pb = 6_m{Tmez + Toyey + Th.e.} + — { s+ Tyye, +T,.e.}
0 9
+ %{Tmex +T.e, +T..e.} — %{pvmvxex + puyvzey + puvge. }
0 ¢
_ a_y{pvxvyex + pvyvy€ey + pvzvyez} — a{pvxvzex + pvyv.e, + pvzvzez}
therefore
Tpw Thy T. PUzVsp  PULVy,  PULV
a<p,v) B B B xx xy Tz B s B xVx x Yy xVz
o pb = [% 2y %] Tye Ty Ty | — [% 2y %] PUyUz  PUyVy  PUYU;
sz sz Tzz PUUg PUzUy pPUU,
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where pvv = pv;v; is the last second order tensor in the first line of the equation. By
rearranging the equation:
d(pv)

7 + V(pvv) =V. T+ pb (435)

This is the differential equation of linear momentum conservation law in continuum
mechanics and is called the general equation of motion or Cauchy equation of motion.
Using the mass continuity equation (4.18), it becomes:

ov

n + p(v.V)v =V.T + pb (4.36)

4.3. Conservation of angular momentum.

The basic law of conservation of angular momentum of a control volume M about point
To says:

The total angular momentum about point ro over the control volume M at time (to+ At)
equals the total angular momentum about point ro over M at time ty plus the net of
angular momentum flow about point ro into M from ty to (to+At) plus the total moment
of surface and body forces about point roy over M from ty to (to + At). So:

{JM<T/ X pv) dv}t0+m = {LA(TI X pv) dV}tO + Lt)ﬁm{ " Do dS}dT
+£ZOW{LM(T' ‘< t) dS}dTJrL:ﬁAt{JM(r’ < pb) dV}dT

(4.37)

by ' = r — rg then ' x pv is the angular momentum about 7 per unit volume,
Do = Do (7,1, n) is the angular momentum flow about 7 into the surface that it
acts, ¥’ x t is the moment of surface force about 7y per unit area, and r’ x pb is the
moment of body force about g per unit volume. By using the general equation (4.8)

for the flow of angular momentum about r(, we have ¢,,,, = —(r' x pv)v.n = ' x ¢,
where ¢,,, = —(pv)v.n is the linear momentum flow into M. By rearranging the
equation:

(Lwmar (L= -

£:0+At { LM {r' x (t - (pv)v.n)}dS + JM(T’ x pb) dV}dT
(4.38)

This is similar to the general equation (4.5). So, by using (4.6) it becomes:

0 , , /
pr JM(T X pv)dV = LM {r X (t — (pv)v.n)}dS + JM('r x pb) dV (4.39)

This is the integral equation of angular momentum conservation law in continuum
mechanics. Using (4.7) and rearranging the equation:

0

JM {a(r’ x pv) — (r’ x pb)} dV = LM {r' x (t - (pv)v.n)}dS (4.40)
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This is similar to the integral equation (4.1) by the vector forms of B and ¢, where
B = 0(r" x pv)/ot—(r'x pb) and ¢ = v’ x (t—(pv)v.n) = r' x (t(r,t,n)+ @, (v, t,n)).
So, the three general local relations (4.2), (4.3), and (4.4) hold for it. The first and
second local relations (4.2) and (4.3) lead to:

r’ x (t(’r,t,n) + gz’)lm(r,t,n)) = —r' x (t('r,t, —n) + ¢, (7, t, —n)) (4.41)

and

v x (t(r,t,n) + ¢, (r.t,n)) = n{r' x (t(r.t,e;) + ¢, (7.t e,))}

+n {r' x (tr,t,e,) + ¢y, (r.t.ey))} +n{r x (t(r.t,e.) + ¢y, (r.te.))}
(4.42)

But these equations are the cross product of 7' and the equations (4.25) and (4.26),
respectively, that already were obtained in the subsection of the linear momentum. So,
these equations do not give us new results. The third local relation (4.4) for B =
o(r' x pv)/ot — (r' x pb) and ¢ = 7' x (t — (pv)v.n), leads to:

a / / 6 /
a('r x pv) — (r' x pb) = 8_x{r x (t(r,t,e,) — (pv)v.e;)}

0 0

+ (9_y{r/ x (t(r,t,e,) — (pv)v.ey)} + g{r' x (t(r,t,e.) — (pv)v.e.)}
(4.43)
In the Eulerian approach for »' = r — ry, we have:
or’ or' or' or’
E = 07 % = €4, a_y = €y, g = €, (444)

By using these relations, the equation (4.43) becomes:

e {5(5:) _ pb} _ X {%(t(r,tex) — (pv)v.e,) + %(t(r,t, e,) — (pv)v.ey)

+ a—i(t(r,t, e,)— (pv)v.ez)}
+ {ex x (t(r,t,e,) — (pv)v.e;) + e, x (t(r,t,e,) — (pv)v.ey)

+e.x (tr te) - (pv)v.ez)}
(4.45)

But the first two lines of this equation is the cross product of 7" and the equation (4.34)
that already was obtained in the subsection of the linear momentum. So, these parts
remove from the equation and we have:

e, x (t(r,t,e;) — (pv)v.e;) + e, x (t(r,t,e,) — (pv)v.e,)

+e. x (t(r,t,e.) — (pv)v.e,) =0 (4.46)
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thus
e, xt(r,t,e;) +e, xt(r,t,e,) +e, xt(rte,) =

e, x ((pv)v.ex) + e, x ((pv)'v.ey) +e, x ((pv)v.ez) —
puz(e, x v) + puy(e, x v) + pv.(e, x v) =
pUL(—v.€y + vy€,) + puy(v.e, — vy€,) + pu.(—v e, + ve,) =
(pvyv, — poyvs)e, + (—puyv, + pugvs)e, + (puyuy, — puyuy)e, = 0
SO
e, xt(r,t,e;) +e, xt(r,t,e,) +e, xt(r,t,e,) =0 (4.47)
substituting the components of the traction vectors from (4.29), (4.30), and (4.31) into
the equation, yields:
e; X (Tnpe, +Toye,+Th.e,) +eyx (Type, +Tye,+T,.e,)
+e,x(Tye,+T,ye,+T,,e,) =0
this implies
(—Trey+Te.)+ (Tye.—Tpe)+ (—Tye, +T.e)) =
(Ty: —T.y) ex + (Toy —Tyo) ey + (Toy — Tyy) €, = 0
So, we have
Toy=Tyer  Too=Tooy Ty =T, (4.48)
or
T=T" (4.49)
therefore, the third local relation (4.4) for conservation of angular momentum leads to
the symmetry of stress tensor. By (4.49) we can tell “for describing the state of stress

on any surface at a given point and time we need the 6 components of the symmetric
stress tensor at that point and time”.

4.4. Conservation of energy.

The basic law of conservation of energy of a control volume M says:

The total energy over the control volume M at time (to + At) equals the total energy
over M at time to plus the net of energy flow into M from ty to (to + At) plus the total
surface heat into M from ty to (to + At) plus the total heat generation over M from
to to (to + At) plus the total work done by surface and body forces over M from ty to
(to + At) So:

1 1 to+At
{f (pe + —pv2)dV} = {J (pe + —pv2)dV} +J { ¢end5}d7'
M 2 to+At M 2 to to oM

to+ At to+At

—i—f {f qst}dT+J {J pquV}dT
to oM to M
to+At to+At

—i—f {f t.vdS}ch%—J {J (pb).vdV}dT
to oM to M

(4.50)

where e = (7, t) is the internal energy per unit mass, and pe+1/2pv? is the total energy
(internal energy + kinetic energy) per unit volume. Here v? = vv; = v2 + vg +v2 On
the right hand side, ¢, = @en(7,t,n) is the energy flow into the surface that it acts,
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¢s = qs(r,t,n) is the rate of surface heat into M per unit area, ¢, = ¢,(r,?) is the
rate of heat generation per unit mass, t.v and (pb).v are the rates of work done by the
surface force per unit area and body force per unit volume, respectively. By using the
general equation (4.8) for the flow of energy we have ¢.,, = —(pe + 1/2pv*)v.n, and by
rearranging the equation:

{ fM(Pe + %pUQ) dV}t0+At — { fm(pe + %pUQ) dv}to _

to+At 1
f { {tw+q,— (pe+ =pv*)v.n}dS + f {(pb).v + pgy} dV}dT
to oM 2 M
(4.51)
This is similar to the general equation (4.5). So, by using (4.6) it becomes:

QJ (pe + 1p1)2) dVv = f {tw+ g, — (pe + lpv2)'u.n} ds + J {(pb).v + pgy} dV
ot Jpm 2 oM 2 M

(4.52)
This is the integral equation of energy conservation law in continuum mechanics. Using
(4.7) and rearranging the equation:

1 1
J {ﬁ(pe + —pv?) — (pb).v — pq'g} dVv = {tw+q,— (pe + —pv*)v.n}dS (4.53)

This is similar to the integral equation (4.1), where B = d(pe + 1/2pv?)/0t— (pb).v — pq,
and ¢ = t.v+q,— (pe+1/2pv*)v.n = t.v + ¢, + den. So, the three general local relations
(4.2), (4.3), and (4.4) hold for it. The first and second local relations (4.2) and (4.3)
lead to:

t(r,t,n).v+ q(r,t,n) + ¢ep(r,t,n) = —t(r,t,—n).v — qs(r,t, —m) — ¢ep(r,t,—m)
(4.54)
and

tir,t,n)v+ q(r,t,n) + ¢e,(r,t,n) = nx{t('r', t,e). v+ qs(r,t,e;) + gen(r,t, ex)}
+ ny{t(r, t,ey).v+qs(r,t,e,) + den(r,t, ey)}

+n{t(r,t,e.) v+ q(r.t,e.) + gen(r, t,e.)}
(4.55)

But as we showed in (4.9) and (4.10), the energy flow ¢.,, = —(pe + 1/2pv?)v.n satisfies
the two local relations (4.2) and (4.3), and their meanings. Therefore, the energy flow
terms remove from the two above equations. Also, in (4.27) and (4.28), we saw that
the traction vector t satisfies the two local relations (4.2) and (4.3). As a result, t.v
satisfies that equations, as well. So, these terms remove from the two above equations
and we have from (4.54):

gs(r,t,m) = —qs(r,t,—m) (4.56)
This is the general Cauchy lemma for surface heat and states that “the surface heats
acting on opposite sides of the same surface at a given point and time are equal in
magnitude but opposite in sign”. From (4.55), we have:

gs(r,t,m) = nyqs(r, t,e,) + nyqs(r, t, ey) + n.qs(r, t, es) (4.57)

This means that if we have the surface heats on the three orthogonal surfaces at a given
point and time then we can get the surface heat on any surface that passes through that
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point at that time by having the unit normal vector of this surface and using this linear
relation. So, we must define the scalar surface heats into the three orthogonal surfaces
with unit normal vectors e,, e,, and e, respectively, as:

gs(r,t,e;) = —qu(r, 1), qs(r.t,ey) = —q,(r,1), gs(r.t,e;) = —q.(r,t) (4.58)

the negative sign is due to the fact that we suppose for example g, (r,t) is the exit heat
from the surface with unit normal vector e, but gs(7,t, e,) is the surface heat into that
surface. Here the subscripts in ¢, ¢,, and ¢, indicate the direction of unit normal vector
of the surfaces that they act on them. So, we have from (4.57):

Ny
qs(nt,n) = _nxQI(Tvt) - nyQy(rat) - anz(Tat) = - [Qx qy q,z] ny (459)
n,
thus
qs(rvtan) = —q(r,t)n (460)

where q(r,t) is a vector that depends only on the position vector and time and is
called heat flux vector. So, the first and second local relations (4.2) and (4.3) for the
conservation of energy lead to the existence of heat flux vector g(r,t). This means that
for describing the surface heat on any surface at a given point and time we need the 3
components of g(r,t) at that point and time. The third local relation (4.4) for energy
conservation is:

0 1 . 0 r
pn —(pe + 5PY %) — (pb).v — pg, = %{t(r,t, e,).v —q.e, — (pe + 5P Jv.e,}
1
+ i{t(r,t, e,).v—q.e, — (pe+ §p1)2)v.ey} (4.61)

1
{t ,t,e,)v—q.e, — (pe+ 5,0112)'0.62}
By using the equation (4.33), i.e., t = T” .n, the above equation can be shown as:

ToaVe + Toyvy + T,

0 1 .
o — (pe + 5PY %) = (pb).v — pdy = [a% % a_az] Tyave + Tyyvy + Ty20:
Topvy + Toyvy + 10,

o o o |k o o 2 (pe +1/200 0,
& &% &l|a| -1 5% &1 e+ 12007,
gz (pe +1/2pv%)v.
by vector relations, this becomes

0 1 . 1
pr —(pe + SPY ) = (pb).v — pgy = V.(T.v) — V.q — V.((pe + §pv2)v)

by rearranging the equation, we have

0
ot

This is the differential equation of energy conservation law in continuum mechanics.
Also, there are some other forms of energy equation that are obtained from the above

—(pe + 1pv ) + V.((pe + %p?ﬂ)v) = V.(T.w) —V.q + (pb).v + pq, (4.62)
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equation. We have:
0,1 10 0
G = 5o = v S}

1 1

V.((§pv2)v) = §V.((,0v.v)v) = v.{V.(pvv)} (4.63)

V.(Tw) = v.{V.T} +T: Vo

where T : Vv is the following scalar

0v; ov ov ov ov ov ov
T:V ’L J :me_x T:p - T:L"z_z Tx_m T, - Tz_z
v = tig, or oy ey Thweg, Thwg T ey
0v,, 0vy v,
T,— + T, +7T,,—
tTatg, + T, + T

By using the relations (4.63), the equation (4.62) becomes:

a(a’f) —|—v,{%(pv)}—i—V.(pe’v)—i—’v.{V.(p’UU)} = v.{v.T}+T : Vo—V.q+(pb).v+pdy

by rearranging this equation

0 :
(g;e)JrV( v) =T :Vv—V.q+ pq,
—’v.{a(aLt) + V.(pvv) —V.T—pb}

but due to the differential equation of linear momentum conservation law (4.35), the
expression in the braces in the second line of the above equation is equal to zero,
therefore this line removes from the equation and we have:

d(pe)
ot

this is the differential equation of internal energy balance. Using the mass continuity
equation (4.18) it becomes:

+ V.(pev) =T : Vv — V.q + pq, (4.64)

pat~|—va6—T Vv —V.q + pqy (4.65)

4.5. Entropy law.

The basic law of entropy of a control volume M says:

The total entropy over the control volume M at time (to + At) is greater than or equal
to the total entropy over M at time ty plus the net of entropy flow into M from t, to
(to + At) plus the total surface heat per temperature into M from to to (to + At) plus
the total heat generation per temperature over M from tq to (to + At). So:

to+At
{f pst} > {J pst} —i—J { qbemdS}dT
M to+At M to to oM
to+At to+At .
s P4
+ —dS}dT-l-j {f —ng}dT
Lo { LM T to M T

(4.66)
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where s = s(7, t) is the entropy per unit mass and ps is the entropy per unit volume. On
the right hand side, ¢eni = Pent(r,t, ) is the entropy flow into the surface that it acts,
¢s = qs(r,t,m) is the rate of surface heat into M per unit area, g, = ¢,(r, ) is the rate
of heat generation per unit mass, and 7" = T'(7, t) is the absolute temperature. In order
to convert this inequality to an equation, we may define the rate of entropy generation
per unit mass as §, = $,4(r,t), where $, > 0, and add the total entropy generation over
M from ty to (to + At) to the right hand side of the above inequality. So, we have the
following equation:

to+At
{J pst} = {J pst} +J { gbentdS}dT
M to+At M to to oM
to+At q to+At g to+At
+J {f Tst}dT-i—J {f ?ng}dT—l-J {f péng}dT
to oM to M to M

(4.67)

By using the general equation (4.8) for the flow of energy we have ¢,y = —(ps)v.n,
and by rearranging the equation:

to+At q
{J pst} —{J pst} :f {J > — (ps)v.n}dS
M to+ AL M om T

J {’)qf’ —i—pég}dV}dT

this is similar to the general equation (4.5). So, by using (4.6) it becomes:

(4.68)

0
< psdV = J (ps)v.n}dS + J {,OQQ 4 (4.69)

This is the integral equation of entropy law in continuum mechanics. Since §, > 0, by
removing the integral of ps, from the equation, we have:

p :
— f psdV = f (ps)v.n}dS + f Mg gy (4.70)
ot m T

This inequality is called the Clausms—Duhem inequality. Using (4.7) and rearranging
the equation (4.69), we have:

JM{a(QS)‘L%‘ fav - f {3~ (ps)on}ds (4.71)

This is similar to the integral equation (4.1), where B = d(ps)/dt — pq,/T — ps$, and
¢ = qs/T — (ps)v.n = q5/T + ¢ene. So, the three general local relations (4.2), (4.3), and
(4.4) hold for it. The first and second local relations (4.2) and (4.3) lead to:

qs(r, t,n) /T + Gepe(r,t,n) = —qs(r,t,—n) /T — Gene(T,t, —M2) (4.72)

and
QS(T7 ta n)/T + ¢ent(r7 tv n) = n:):{qs<'r: t, ex)/T + ¢ent(ra ta ex)}
+ ny{Qs(ry t, ey)/T + ¢ent(r7 t) ey)} + nz{Qs(ra t7 ez) + ¢ent(ra t7 ez)}
(4.73)

But we have from (4.60) that ¢s(r,t,n) = —q(r,t).n, therefore ¢;/T satisfies the two
local relations (4.2) and (4.3). Also, as we showed in (4.9) and (4.10), entropy flow
Gent = —(ps)v.n satisfies the two local relations (4.2) and (4.3) and their meanings.
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Thus, the two above equations do not give us new results. Applying the third local
relation (4.4) to the entropy integral equation (4.71), where B = d(ps)/dt — pq,/T — ps,
and ¢ = qs/T + Gt = —q(7,t).m/T — (ps)v.n, leads to:

Aps)  pdy _qe

q.e
at T - pSg = %{ T - (pS)’U.ex Ty - (pS)'U.ey}
) (4.74)
q.€,
+ Fr G (ps)v.e.}
so, we have
. T pPSU
dlps)  pd . o o 2 a/ o o @ ’
== la o wl|w/T | —lm o wl|es
: q./T pSU,
- —v.(%) —V.(psv)
by rearranging this equation
0
(gfﬁwp v) = -v.( )+%+psg (4.75)

This is the differential equation of entropy law in continuum mechanics. Using the mass
continuity equation (4.18) it becomes:

Py
_ My 4.
p8t~|—vas V( )+T~|—psg (4.76)
Since s, = 0, by removing ps, from the equation (4.75) we have:
A(ps) a, Py

This is the differential form of the Clausius-Duhem inequality.

5. CONCLUSION

We considered the general integral equation on the control volume M, as the form:

JMdez LMMS

where B = B(r,t) is called body term and ¢ = ¢(r,t,n) is called surface term. These
functions are continuous over the volume and the surface of M, respectively. Here if B
is scalar then ¢ must be scalar, and if B is vector then ¢ must be vector. We wanted to
determine how many local relations can be derived from this general integral equation
and what they are.

We first derived the general Cauchy lemma for surface term from the above integral
equation as the first local relation. So:

The first local relation:

o(r,t,n) = —¢(r,t,—n)
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Then by a new general exact tetrahedron argument we showed that applying the general
integral equation to a tetrahedron control volume leads to the following fundamental
equation:

1 1 1 2
Fo+ Ei=h+ Es—h?> +Es—h*+ ... +E,———h"+...=0
! 12 °60 (m + 2)!

where h is the altitude of the tetrahedron. E,,’s are expressions that contain the surface
term, body term, their derivatives, and the powers of the components of unit normal
vector of the base face of tetrahedron. Then we showed that the only solution of this
equation is:

E,, =0, m=0,1,2,...,0

i.e., all of the F),,’s must be equal to zero. By these, we proved that Ey = 0 leads to the
second local relation that obtains from the general integral equation as:

The second local relation:
¢(r7 ta n) = nxgb(’r, t) eac) + nyqb(r’ tv ey) + nng(’r, t? ez)
and E; = 0 leads to the third local relation that is a partial differential equation as:

The Third local relation:

op(r,t,e;) 0o(r,te,) 0o(r,t e,)
+ +
ox oy 0z

B(r,t) =

In other equations E,, = 0, for m = 2,3, ..., 00, the results of £y = 0 and E; = 0 are
repeated. Then we showed that all the fundamental laws of continuum mechanics can
be shown in the form of the general integral equation that we considered it. So, the
three general local relations hold for the integral forms of the fundamental laws.

These three local relations for the conservation of mass lead to the properties of mass
flow and derivation of the mass continuity equation. For the conservation of linear
momentum, the first local relation leads to the Cauchy lemma for traction vectors, the
second local relation leads to the existence of stress tensor, and the third local relation
leads to the general equation of motion. For the conservation of angular momentum,
the first and second local relations repeat the results of these two local relations in the
conservation of linear momentum but the third local relation leads to the symmetry
of stress tensor. For the conservation of energy, the first local relation leads to the
Cauchy lemma for surface heat, the second local relation leads to the existence of heat
flux vector, and the third local relation leads to the differential conservation equation of
total energy. For the entropy law the first and second local relations repeat the results
of these two local relations in the conservation of energy and the third local relation
leads to the differential form of entropy law and the Clausius-Duhem inequality.

Dedication: This article is dedicated to my mother B. Hussaini, my father M. Azadi, and my sisters
and brothers.



28

[1]
[2]

3]

[4

E. AZADI

REFERENCES

R. Aris. Vectors, Tensors and the Basis Equations of Fluids Mechanics. Dover, 1989. 1

E. Azadi. Cauchy tetrahedron argument and the proofs of the existence of stress tensor, a com-
prehensive review, challenges, and improvements. arXiv preprint arXiv:1706.08518, 2017. 1

E. Azadi. Exact tetrahedron argument for the existence of stress tensor and general equation of
motion. viXra preprint viXra:1707.0056, 2017. 1

G. Backus. Continuum Mechanics. Samizdat Press, USA, 1997. 1

S. E. Bechtel and R. L. Lowe. Fundamentals of Continuum Mechanics: with Applications to Me-
chanical, Thermomechanical, and Smart Materials. Academic Press, 2014. 1

A. L. Cauchy. Recherches sur ’équilibre et le mouvement intérieur des corps solides ou fluides,
élastiques ou non élastiques. Bull Soc Filomat Paris 913, 1823. 1

A. L. Cauchy. De la pression ou tension dans un corps solide (1822). Ez. de Math. 2, 42-56, 1827.
1

S. Godunov and E. I. Romenskii. Elements of Continuum Mechanics and Conservation Laws.
Springer US, Boston, MA, 2003. 1

M. E. Gurtin. An Introduction to Continuum Mechanics. Academic Press, New York, 1981. 1

G. Hamel. Theoretische Mechanik. Springer, Berlin, 1949. 1

A. E. H. Love. A Treatise on the Mathematical Theory of FElasticity. Courier Corporation, 1944. 1
G. A. Maugin. Continuum Mechanics Through the Fighteenth and Nineteenth Centuries: Historical
Perspectives from John Bernoulli (1727) to Ernst Hellinger (1914). Springer, Cham, 2014. 1

C. Truesdell and R. Toupin. The classical field theories. In Principles of Classical Mechanics and
Field Theory / Prinzipien der Klassischen Mechanik und Feldtheorie, pages 226-858. Springer,
1960. 1



	1. Introduction
	2. General Cauchy lemma
	3. General exact tetrahedron argument
	4. Fundamental laws of continuum mechanics, integral forms, basic local relations, and differential forms
	4.1. Conservation of mass
	4.2. Conservation of linear momentum
	4.3. Conservation of angular momentum
	4.4. Conservation of energy
	4.5. Entropy law

	5. Conclusion
	References

