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Abstract. In this article, we give a general exact mathematical framework that all
the fundamental relations and conservation equations of continuum mechanics can be
derived based on it. We consider a general integral equation contains the parameters
that act on the volume and the surface of the integral’s domain. The idea is to
determine how many local relations can be derived from this general integral equation
and what these local relations are. After obtaining the general Cauchy lemma, we
derive two other local relations by a new general exact tetrahedron argument. So,
there are three local relations that can be derived from the general integral equation.
Then we show that all the fundamental laws of continuum mechanics, including the
conservation of mass, linear momentum, angular momentum, energy, and the entropy
law, can be considered in this general framework. Applying the general three local
relations to the integral form of the fundamental laws of continuum mechanics in
this new framework leads to exact derivation of the mass flow, continuity equation,
Cauchy lemma for traction vectors, existence of stress tensor, general equation of
motion, symmetry of stress tensor, existence of heat flux vector, differential energy
equation, and differential form of the Clausius-Duhem inequality for entropy law.

The general exact tetrahedron argument is an exact proof that removes all the
challenges on derivation of the fundamental relations of continuum mechanics. In this
proof, there is no approximate or limited process and all the parameters are exact
point-based functions. Also, it gives a new understanding and a deep insight into the
origins and the physics and mathematics of the fundamental relations and conservation
equations of continuum mechanics. This general mathematical framework can be used
in many branches of continuum physics and the other sciences.

1. Introduction

Is there a general exact framework that all of the fundamental relations and conservation
equations of continuum mechanics can be derived in it?

Continuum mechanics is a subject that is the base of a wide range of phenomena and
physical behaviors of the nature and industry such as fluid mechanics, solid mechanics,
continuum thermodynamics, heat transfer, etc. The birth of modern continuum me-
chanics is the introduction of the traction vector in 1822 by Cauchy that describes the
nature of forces on the internal surfaces of the substance [6]. He gave a proof that is
called Cauchy tetrahedron argument for the existence of stress tensor. The other im-
portant Cauchy’s achievements in the foundations of continuum mechanics include the
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symmetry of stress tensor and the general equation of motion [6, 7, 12]. During about
two centuries, the scientists and authors in continuum mechanics presented some differ-
ent proofs and processes to derive the fundamental relations and conservation equations
of continuum mechanics, more generally and precisely [11], [10], [13], [9], [1], [4], [8], [5].

We already gave two articles on this subject. In the first one (2017, [2]), we provided
a comprehensive review of the different tetrahedron arguments and the proofs of the
existence of stress tensor, and discussed the challenges and improvements of each one.
In the second article (2017, [3]), for the first time, we presented and proved the exact
tetrahedron argument that removes all of the challenges on the previous tetrahedron
arguments and the proofs of the existence of stress tensor. Exact tetrahedron argument
led to derivation of both the relations for the existence of stress tensor and general
equation of motion, simultaneously. Also, we compared the exact tetrahedron argument
with the previous proofs of the existence of stress tensor. Exact tetrahedron argument
gave us a new understanding and a deep insight into the physics and mathematics of
the stress tensor, general equation of motion, and their origins [3].

In this article, we generalize the exact tetrahedron argument for all of the fundamental
relations and conservation laws of continuum mechanics. We prove a general exact
mathematical framework and consider the different fundamental laws of continuum
mechanics in this framework. Then, we will show that this leads to the exact derivation
of the relations for the mass flux, existence of stress tensor, symmetry of stress tensor,
surface heat flux, entropy flux, and the differential form of fundamental conservation
laws of mass, linear momentum, angular momentum, energy, and the entropy law.

Here we consider an integral equation over the control volume M as the form:

ż

M
B dV “

ż

BM
φ dS (1.1)

In general, B “ Bpr, tq is called body term and acts over the volume of M, and
φ “ φpr, t,nq is called surface term and acts on the surface of M, i.e., BM. Where r is
the position vector, t is time, and n is the outward unit normal vector on the surface of
the control volume. If B is scalar then φ must be scalar, and if B is vector then φ must
be vector. These two functions are continuous over their domains. In the later, we will
show that the integral form of all the fundamental laws of continuum mechanics can be
written in the form of the integral equation (1.1).

We want to find how many local relations can be derived from this integral equation
and what they are.

We use the Eulerian approach in the entire of this article, where a control volume is
utilized and the changes of quantities are recorded as the effective parameters on the
surface or volume of the control volume and the fluxes that pass through control volume
surface.
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Figure 1. The control volumes M1 and M2, where
BM1 “ S1 Y Sm and BM2 “ S2 Y Sm, and the control
volume M such that VM “ VM1 Y VM2 and BM “ S1 Y S2.

2. General Cauchy lemma

Suppose the control volume M splits into M1 and M2 by the surface Sm. So, VM “

VM1 Y VM2 , BM1 “ S1 Y Sm, BM2 “ S2 Y Sm, and BM “ S1 Y S2, see Figure 1. If the
integral equation (1.1) applies to M1 and M2, then the sum of these equations is:

ż

M1

B1 dV `

ż

M2

B2 dV “

ż

BM1

φ1 dS `

ż

BM2

φ2 dS

By VM “ VM1 Y VM2 , the sum of the body term integrals is equal to the integral of the
body term on M. In addition, by BM1 “ S1 Y Sm and BM2 “ S2 Y Sm, the surface
integrals split as:

ż

M
B dV “

ż

S1

φ1 dS `

ż

Sm

φ1 dS `

ż

S2

φ2 dS `

ż

Sm

φ2 dS

By BM “ S1Y S2, the sum of the surface integrals on S1 and S2 is equal to the surface
integral of φ on BM, so:

ż

M
B dV “

ż

BM
φ dS `

ż

Sm

φ1 dS `

ż

Sm

φ2 dS

Comparing this integral equation with the general integral equation (1.1), implies that:
ż

Sm

φ1 dS `

ż

Sm

φ2 dS “ 0

But φ1 on Sm is φpr, t,nq, and φ2 on Sm is φpr, t,´nq, so:
ż

Sm

 

φpr, t,nq ` φpr, t,´nq
(

dS “ 0

therefore, we have
φpr, t,nq “ ´φpr, t,´nq (2.1)

This is the first local relation that is derived from the integral equation (1.1), and is
called general Cauchy lemma. It states “the surface terms acting on opposite sides of
the same surface at a given point and time are equal in magnitude but opposite in sign”.

It means that if we have the surface term on one side of a surface at a given point and
time, then we can get the surface term on the other side of this surface at that point
and time by the equation (2.1).
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Figure 2. The geometry of tetrahedron
control volume and the exact surface term
vectors on the faces. Note that in this figure
we suppose that the surface term is a vector,
but in general it can be a scalar or a vector,
depending on the type of the body term.

3. General exact tetrahedron argument

Consider a tetrahedron control volume in continuum media that its vortex is at the
point o and its three orthogonal faces are parallel to the three orthogonal planes of the
Cartesian coordinate system. The fourth surface of the tetrahedron, i.e., its base, has
the outward unit normal vector n4. For simplicity, the vortex point is at the origin of
the coordinate system. The geometrical parameters are shown in Figure 2. The vector
r “ xex ` yey ` zez is the position vector from the origin of the coordinate system.
Applying the general integral equation (1.1) to the tetrahedron control volume leads to:

ż

∆s4

φ4 dS `

ż

∆s1

φ1 dS `

ż

∆s2

φ2 dS `

ż

∆s3

φ3 dS “

ż

M
B dV (3.1)

The key idea of this proof is to write the variables of this equation in terms of the exact
Taylor series about a point in the domain. Here, we derive these series about the vortex
point of tetrahedron (point o), where the three orthogonal faces pass through it. Note
that time (t) is the same in the all terms, so it does not exist in the Taylor series. For
Bpr, tq at any point in the domain of the control volume, we have:

B “ Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z

`
1

2!

´

B2Bo

Bx2
x2
`
B2Bo

By2
y2
`
B2Bo

Bz2
z2
` 2

B2Bo

BxBy
xy ` 2

B2Bo

BxBz
xz ` 2

B2Bo

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqB

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.2)

Here Bo and BBo{Bx are the exact values of B and BB{Bx at the point o, respectively.
Similarly, the other derivatives are the exact values of the corresponding derivatives of
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B at the point o. On the surface ∆s1, x “ 0 and n1 does not change, so:

φ1 “ φ1o `
Bφ1o

By
y `

Bφ1o

Bz
z `

1

2!

´

B2φ1o

By2
y2
`
B2φ1o

Bz2
z2
` 2

B2φ1o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqφ1

BymBzk

ˇ

ˇ

ˇ

o
ymzk

(3.3)

where φ1o is the exact value of φ1 on ∆s1 at the point o. On the surface ∆s2, y “ 0
and n2 does not change, and on the surface ∆s3, z “ 0 and n3 does not change, so:

φ2 “ φ2o `
Bφ2o

Bx
x`

Bφ2o

Bz
z `

1

2!

´

B2φ2o

Bx2
x2
`
B2φ2o

Bz2
z2
` 2

B2φ2o

BxBz
xz

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqφ2

BxmBzk

ˇ

ˇ

ˇ

o
xmzk

(3.4)

φ3 “ φ3o `
Bφ3o

Bx
x`

Bφ3o

By
y `

1

2!

´

B2φ3o

Bx2
x2
`
B2φ3o

By2
y2
` 2

B2φ3o

BxBy
xy

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqφ3

BxmByk

ˇ

ˇ

ˇ

o
xmyk

(3.5)

Similarly, φ2o and φ3o are the exact values of φ2 and φ3 at the point o on ∆s2 and ∆s3,
respectively. For the surface term on ∆s4 a more explanation is needed. The surface
term on ∆s4 expands based on the surface term on the inclined surface that is parallel
to ∆s4 and passes through the vortex point of tetrahedron (point o). Because the unit
normal vectors of these two surfaces are the same, see Figure 3. Therefore:

Figure 3. Inclined surface that is parallel to
∆s4 and passes through point o.
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φ4 “ φ4o `
Bφ4o

Bx
x`

Bφ4o

By
y `

Bφ4o

Bz
z

`
1

2!

´

B2φ4o

Bx2
x2
`
B2φ4o

By2
y2
`
B2φ4o

Bz2
z2
` 2

B2φ4o

BxBy
xy ` 2

B2φ4o

BxBz
xz ` 2

B2φ4o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqφ4

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.6)

where φ4o is the exact surface term at the point o on the inclined surface with unit
normal vector n4 that this surface passes exactly through point o, the vertex point of
tetrahedron control volume. Here x, y, and z are the components of the position vector
r on the surface ∆s4.

Note that φ1o , φ2o , φ3o , and φ4o are the exact surface terms at the point o but on
different surfaces with unit normal vectors n1, n2, n3, and n4, respectively. The body
term Bo is exactly defined at the point o. Therefore, all the surface terms and the body
term with subscript o and all their derivatives, such as B2φ4o{BxBy, are exactly defined
at the point o and are bounded. As a result, for the convergence of the above Taylor
series it is enough that we have |r| ď 1 in the domain of the control volume M. But
the scale of the coordinate system is arbitrary and we can define this scale such that
the greatest distance in the domain of the control volume from the origin, is equal to
one, i.e., |r|max “ 1. By this scale, in the entire of the tetrahedron control volume we
have |r| ď 1, that leads to the convergence condition for the above Taylor series.

Now all of the variables are prepared for integration in the integral equation (3.1). The
integration of B on the volume of M:

ż

M
B dV “

ż c

0

ż bp1´ z
c
q

0

ż ap1´ y
b
´ z

c
q

0

"

Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z ` . . .

*

dx dy dz

“
1

6
abc

!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

(3.7)

The integration of φ4 on ∆s4:

ż

∆s4

φ4 dS “

ż b

0

ż ap1´ y
b
q

0

"
c

`

´
c

a

˘2
`
`

´
c

b

˘2
` 1

ˆ

φ4o `
Bφ4o

Bx
x`

Bφ4o

By
y

`
Bφ4o

Bz

`

cp1´
x

a
´
y

b
q
˘

`
1

2!

´

B2φ4o

Bx2
x2
`
B2φ4o

By2
y2
`
B2φ4o

Bz2

`

cp1´
x

a
´
y

b
q
˘2

` 2
B2φ4o

BxBy
xy ` 2

B2φ4o

BxBz
x
`

cp1´
x

a
´
y

b
q
˘

` 2
B2φ4o

ByBz
y
`

cp1´
x

a
´
y

b
q
˘

¯

` . . .

˙*

dx dy

“
1

2

?
a2b2 ` a2c2 ` b2c2

!

φ4o `
1

3

´

Bφ4o

Bx
a`

Bφ4o

By
b`

Bφ4o

Bz
c
¯

`
1

12

´

B2φ4o

Bx2
a2
`
B2φ4o

By2
b2
`
B2φ4o

Bz2
c2
`
B2φ4o

BxBy
ab`

B2φ4o

BxBz
ac`

B2φ4o

ByBz
bc
¯

` . . .
)

(3.8)
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The integration of φ1 on ∆s1:

ż

∆s1

φ1 dS “

ż c

0

ż bp1´ z
c
q

0

"

φ1o `
Bφ1o

By
y `

Bφ1o

Bz
z

`
1

2!

´

B2φ1o

By2
y2
`
B2φ1o

Bz2
z2
` 2

B2φ1o

ByBz
yz
¯

` . . .

*

dy dz

“
1

2
bc
!

φ1o `
1

3

´

Bφ1o

By
b`

Bφ1o

Bz
c
¯

`
1

12

´

B2φ1o

By2
b2
`
B2φ1o

Bz2
c2
`
B2φ1o

ByBz
bc
¯

` . . .
)

(3.9)

The integration of φ2 on ∆s2 and φ3 on ∆s3 can be done, similarly. The geometrical
relations for the area of faces and the volume of the tetrahedron are:

∆s1 “
1

2
bc, ∆s2 “

1

2
ac, ∆s3 “

1

2
ab

∆s4 “
1

2

?
a2b2 ` a2c2 ` b2c2, ∆V “

1

6
abc

(3.10)

By substituting the obtained relations for the surface terms and the body term into the
equation (3.1) and using the above geometrical relations, we have:

∆s4

!

φ4o `
1

3

´

Bφ4o

Bx
a`

Bφ4o

By
b`

Bφ4o

Bz
c
¯

`
1

12

´

B2φ4o

Bx2
a2
`
B2φ4o

By2
b2
`
B2φ4o

Bz2
c2
`
B2φ4o

BxBy
ab`

B2φ4o

BxBz
ac`

B2φ4o

ByBz
bc
¯

` . . .
)

`∆s1

!

φ1o `
1

3

´

Bφ1o

By
b`

Bφ1o

Bz
c
¯

`
1

12

´

B2φ1o

By2
b2
`
B2φ1o

Bz2
c2
`
B2φ1o

ByBz
bc
¯

` . . .
)

`∆s2

!

φ2o `
1

3

´

Bφ2o

Bx
a`

Bφ2o

Bz
c
¯

`
1

12

´

B2φ2o

Bx2
a2
`
B2φ2o

Bz2
c2
`
B2φ2o

BxBz
ac
¯

` . . .
)

`∆s3

!

φ3o `
1

3

´

Bφ3o

Bx
a`

Bφ3o

By
b
¯

`
1

12

´

B2φ3o

Bx2
a2
`
B2φ3o

By2
b2
`
B2φ3o

BxBy
ab
¯

` . . .
)

´∆V
!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

“ 0

(3.11)

In the geometry of tetrahedron, h is the height of the vertex o from the base face,
i.e., ∆s4. So, we have the following geometrical relations for a tetrahedron with n4 “

nxex ` nyey ` nzez, where a, b, and c are greater than zero, see Figure 2.

h “ nxa, h “ nyb, h “ nzc

1

h2
“

1

a2
`

1

b2
`

1

c2
, ∆s4 “

abc

2h
∆s1 “ nx∆s4, ∆s2 “ ny∆s4, ∆s3 “ nz∆s4

∆V “
1

6
abc “

1

3
h∆s4

(3.12)

If we divide the equation (3.11) by ∆s4 and use the relations (3.12) for the faces and
volume of the tetrahedron, then substitute the relations a “ h{nx, b “ h{ny, and
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c “ h{nz into the equation and rearrange it based on the powers of h, we have:
!

φ4o ` nxφ1o ` nyφ2o ` nzφ3o

)

`

"

´

Bφ4o

Bx

1

nx

`
Bφ4o

By

1

ny

`
Bφ4o

Bz

1

nz

¯

` nx

´

Bφ1o

By

1

ny

`
Bφ1o

Bz

1

nz

¯

` ny

´

Bφ2o

Bx

1

nx

`
Bφ2o

Bz

1

nz

¯

` nz

´

Bφ3o

Bx

1

nx

`
Bφ3o

By

1

ny

¯

´Bo

*

1

3
h

`

"

´

B2φ4o

Bx2

1

n2
x

`
B2φ4o

By2

1

n2
y

`
B2φ4o

Bz2

1

n2
z

`
B2φ4o

BxBy

1

nxny

`
B2φ4o

BxBz

1

nxnz

`
B2φ4o

ByBz

1

nynz

¯

` nx

´

B2φ1o

By2

1

n2
y

`
B2φ1o

Bz2

1

n2
z

`
B2φ1o

ByBz

1

nynz

¯

` ny

´

B2φ2o

Bx2

1

n2
x

`
B2φ2o

Bz2

1

n2
z

`
B2φ2o

BxBz

1

nxnz

¯

` nz

´

B2φ3o

Bx2

1

n2
x

`
B2φ3o

By2

1

n2
y

`
B2φ3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

*

1

12
h2

` . . . “ 0
(3.13)

Note that by the coordinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is
exactly zero. So, all of the expressions in the braces tu of the equation (3.13) exist. We
can rename the expressions in the braces and rewrite the equation as:

E0 ` E1
1

3
h` E2

1

12
h2
` . . . “ 0 (3.14)

If we continue to integrate the higher order derivatives of all terms based on their Taylor
series, we have the following equation:

E0 ` E1
1

3
h` E2

1

12
h2
` E3

1

60
h3
` . . .` Em

2

pm` 2q!
hm ` . . . “ 0 (3.15)

or
8
ÿ

m“0

Em
2

pm` 2q!
hm “ 0 (3.16)

This is a great equation in the foundation of continuum mechanics. E0, E1, and E2 are
shown in the braces of the equation (3.13) and E3 and other Em’s will be presented.
We now discuss some aspects of the equation (3.15):

‚ Em’s are formed by the expressions of surface terms, body term and their deriva-
tives, and the components of unit normal vector of the inclined surface.

‚ Each of the Em’s exists, because the surface terms, body term and their deriva-
tives are defined as continuous functions in continuum media and by the coor-
dinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is exactly zero.

‚ Each of the Em’s depends on the variables at the point o and the components
of unit normal vector of the inclined surface that is parallel to ∆s4 and passes
through point o. Because the surface terms, body term, and their derivatives
are defined at the point o.
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‚ Em’s do not depend on the volume of tetrahedron.

‚ h is a geometrical variable and by the scale of the coordinate system on the
tetrahedron control volume such that |r|max ď 1, the altitude of the tetrahedron
(h) is not greater than one.

‚ Note that h “ 0 is not valid, because the general integral equation (1.1) is
defined for the control volumes with nonzero volume.

By these properties, we return to the equation (3.15).

E0 ` E1
1

3
h` E2

1

12
h2
` E3

1

60
h3
` . . .` Em

2

pm` 2q!
hm ` . . . “ 0

We must find Em’s. Since Em’s are independent of h, the series on the left hand side
is a power series. A power series is identically equal to zero if and only if all of its
coefficients are equal to zero. Therefore:

Em “ 0, m “ 0, 1, 2, . . . ,8 (3.17)

Note that these results are valid not only for h Ñ 0 but also for all values of h in
the domain. In other words, the results (3.17) are valid not only for an infinitesimal
tetrahedron but also for any tetrahedron in the scaled coordinate system in continuum
media. In addition, we have not done any approximate process during derivation of the
equations (3.15) and (3.17). So, the results (3.17) hold exactly, not approximately.

Furthermore, the subscript o in the expressions of Em’s in the equation (3.13) indicates
the vortex point of the tetrahedron. But any point in the domain in continuum me-
dia can be regarded as the vertex point of a tetrahedron and we could consider that
tetrahedron. So, the point o can be any point in continuum media. We conclude that
Em’s are equal to zero at any point in continuum media. This implies that all their
derivatives are equal to zero, as well. For example, we have for E0:

BE0

Bx
“
BE0

By
“
BE0

Bz
“ 0 (3.18)

and the other higher derivatives of E0 are equal to zero. This trend holds for other
Em’s. But what are Em’s?

For E0 “ 0, from the equation (3.13):

E0 “ φ4o ` nxφ1o ` nyφ2o ` nzφ3o “ 0 (3.19)

In this equation, the four surface terms are exactly defined at the point o on the surfaces
that pass exactly through this point. The surface term φ1o is defined on the negative
side of coordinate plane yz, i.e., n1 “ ´1ex, at the point o. If φxo is the surface term
on the positive side of coordinate plane yz at the point o, then by the equation (2.1),
i.e., φpr, t,nq “ ´φpr, t,´nq, we have:

φ1o “ ´φxo (3.20)

Similarly, for φ2o and φ3o :

φ2o “ ´φyo , φ3o “ ´φzo (3.21)
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By substituting these relations into (3.19) and rearranging it, we have:

φ4o “ nx4φxo ` ny4φyo ` nz4φzo (3.22)

where nx4 “ nx, ny4 “ ny, and nz4 “ nz. So, the surface term φ4o can be obtained
by a linear relation between the surface terms on the three orthogonal planes and the
components of its unit normal vector. But can we use the equation (3.22) for any unit
normal vector rather than n4o?

By considering the equations (3.11) and (3.13), we find that the equation (3.22) is really
the following equation:

φ4o “
∆s1

∆s4

φxo `
∆s2

∆s4

φyo `
∆s3

∆s4

φzo (3.23)

and this equation is:

φ4o “ |nx4|φxo ` |ny4|φyo ` |nz4|φzo (3.24)

In Figure 2, by a ą 0, b ą 0, and c ą 0, the components of unit normal vector on the
inclined surface are greater than zero. So, the equation (3.22) is valid for these cases.

For the surfaces that their unit normal vector components are negative and are not
zero, consider a tetrahedron control volume by the unit normal vector of its inclined
surface (base face), n´4, that all of its components are negative. Therefore, we have
n´4o “ nx´4ex`ny´4ey`nz´4ez “ ´nxex´nyey´nzez, where n´4o is the outward unit
normal vector of the surface that is parallel to the inclined surface and passes through
the vortex point of this tetrahedron (point o), and nx, ny, and nz are positive values.
Applying the process of exact tetrahedron argument to this new tetrahedron, leads to
the following equation similar to the equation (3.19):

E0 “ φ´4o ` |nx´4|φxo ` |ny´4|φyo ` |nz´4|φzo “ 0 (3.25)

As compared with the equation (3.19), in this equation we have φxo , φyo , and φzo rather
than φ1o , φ2o , and φ3o , respectively. Because the outward sides of orthogonal faces of this
new tetrahedron are in the positive directions of coordinate system. By the equation
(3.25) and the components of n´4o , we have:

φ´4o “ ´|nx´4|φxo ´ |ny´4|φyo ´ |nz´4|φzo

“ ´| ´ nx|φxo ´ | ´ ny|φyo ´ | ´ nz|φzo

“ ´nxφxo ´ nyφyo ´ nzφzo

“ nx´4φxo ` ny´4φyo ` nz´4φzo

(3.26)

So, the surface term φ´4o can be obtained by a linear relation between the surface terms
on the three orthogonal planes and the components of its unit normal vector. For the
surfaces that one or two components of their unit normal vectors are negative but the
other ones are not zero, the same process can be done.

For the other surfaces that one or two components of their unit normal vectors are
equal to zero, the tetrahedron does not form, but due to the continuous property of the
surface term on n and the arbitrary choosing for any orthogonal basis for the coordinate
system, the surface terms on these surfaces can be described by the equation (3.22), as
well. So, in general, the normal unit vector n4 can be related to any surface that passes
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through point o in three-dimensional continuum media. Thus, the subscript 4 removes
from the equation (3.22) and we have for every n “ nxex ` nyey ` nzez:

φo “ nxφxo ` nyφyo ` nzφzo (3.27)

The subscript o in this equation indicates the vortex point of the tetrahedron. But any
point in the domain in continuum media can be the vertex point of a tetrahedron and
we could consider this tetrahedron. So, the point o can be any point in continuum
media and the subscript o removes from the equation:

φ “ nxφx ` nyφy ` nzφz (3.28)

or

φpr, t,nq “ nxφpr, t, exq ` nyφpr, t, eyq ` nzφpr, t, ezq (3.29)

This is the second local relation that is derived from the general integral equation (1.1).
It states that “the surface term acting on any surface at a given point and time in the
continuum domain can be obtained by a linear relation between the surface terms on the
three orthogonal surfaces at that point and time and the components of the unit normal
vector of the surface”.

It means that if we have the surface terms on three orthogonal surfaces at a given point
and time, then we can get the surface term on any surface that passes through that
point at that time by using the unit normal vector of the surface and the linear relation
(3.29).

In the next section, we will show that if φpr, t,nq is scalar then the equation (3.29)
leads to the existence of a flux vector and if φpr, t,nq is vector then the equation (3.29)
leads to the existence of a second order tensor.

Note that if we do not have the relation (2.1), i.e., the general Cauchy lemma, the
equation (3.29) cannot be derived for every unit normal vector. Now the equation
(3.29) contains the relation (2.1).

Let us see what E1 “ 0 tells.
From the equation (3.13):

E1 “

´

Bφ4o

Bx

1

nx

`
Bφ4o

By

1

ny

`
Bφ4o

Bz

1

nz

¯

` nx

´

Bφ1o

By

1

ny

`
Bφ1o

Bz

1

nz

¯

` ny

´

Bφ2o

Bx

1

nx

`
Bφ2o

Bz

1

nz

¯

` nz

´

Bφ3o

Bx

1

nx

`
Bφ3o

By

1

ny

¯

´Bo

(3.30)

As previously stated, on the tetrahedron control volume with ∆V ‰ 0, no one of nx,
ny, and nz is exactly zero. Therefore, E1 exists. Furthermore, the unit normal vector
n4 does not change on ∆s4, so:

Bn4

Bx
“
Bn4

By
“
Bn4

Bz
“ 0 (3.31)
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Using the relations (3.31) and the equation (3.19), i.e., φ4o “ E0´nxφ1o´nyφ2o´nzφ3o ,
we have for (3.30):

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
´
Bφ1o

Bx
´
Bφ2o

By
´
Bφ3o

Bz
´Bo

If we define E as:

E “ ´
Bφ1o

Bx
´
Bφ2o

By
´
Bφ3o

Bz
´Bo (3.32)

therefore, we have

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
` E (3.33)

But we saw in (3.18) that the derivatives of E0 were equal to zero. So, from (3.33) and
E1 “ 0, we have:

E1 “ E “ 0 (3.34)

By (3.32), E is defined at the vertex point of tetrahedron. But as previously stated, the
vertex point of the tetrahedron can be at any point in continuum media. Therefore, by
(3.34), E “ 0 at any point in continuum media. This implies that all derivatives of E
are equal to zero at any point in continuum media. So:

BE

Bx
“
BE

By
“
BE

Bz
“ 0 (3.35)

By using the relations (3.20) and (3.21), i.e., φ1o “ ´φxo , φ2o “ ´φyo , and φ3o “ ´φzo ,
the equation (3.32) becomes:

E “
Bφxo

Bx
`
Bφyo

By
`
Bφzo

Bz
´Bo (3.36)

but E “ 0, so

Bo “
Bφxo

Bx
`
Bφyo

By
`
Bφzo

Bz
(3.37)

As explained earlier, we can remove the subscript o from the equation and tell that this
equation is valid at any point and at any time in the continuum domain. Therefore:

B “
Bφx

Bx
`
Bφy

By
`
Bφz

Bz
(3.38)

or

Bpr, tq “
Bφpr, t, exq

Bx
`
Bφpr, t, eyq

By
`
Bφpr, t, ezq

Bz
(3.39)

This is the third local relation that is derived from the general integral equation (1.1).
It is a partial differential equation and states that “the body term at a given point and
time in the continuum domain is equal to to the sum of the first order derivatives of the
surface terms acting on the three orthogonal surfaces at that point and time”.

It means that if we have the first derivatives of the surface terms on the three orthogonal
surfaces at a given point and time, then we can get the body term at that point and
time by using the equation (3.39).
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Let us see what E2 “ 0 tells.
From the equation (3.13):

E2 “

´

B2φ4o

Bx2

1

n2
x

`
B2φ4o

By2

1

n2
y

`
B2φ4o

Bz2

1

n2
z

`
B2φ4o

BxBy

1

nxny

`
B2φ4o

BxBz

1

nxnz

`
B2φ4o

ByBz

1

nynz

¯

` nx

´

B2φ1o

By2

1

n2
y

`
B2φ1o

Bz2

1

n2
z

`
B2φ1o

ByBz

1

nynz

¯

` ny

´

B2φ2o

Bx2

1

n2
x

`
B2φ2o

Bz2

1

n2
z

`
B2φ2o

BxBz

1

nxnz

¯

` nz

´

B2φ3o

Bx2

1

n2
x

`
B2φ3o

By2

1

n2
y

`
B2φ3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

(3.40)

For E2, similar to the process for E1 “ 0, we have:

E2 “
1

n2
x

B2E0

Bx2
`

1

n2
y

B2E0

By2
`

1

n2
z

B2E0

Bz2
`

1

nxny

B2E0

BxBy
`

1

nxnz

B2E0

BxBz
`

1

nynz

B2E0

ByBz

`
1

nx

BE

Bx
`

1

ny

BE

By
`

1

nz

BE

Bz

(3.41)

By the previous explanations, all derivatives of E0 and E were equal to zero. Therefore,
the equation (3.41) is a correct result of E2 “ 0.

Similar to the previous processes for E1 and E2, we have for E3 “ 0:

E3 “
1

n3
x

B3E0

Bx3
`

1

n3
y

B3E0

By3
`

1

n3
z

B3E0

Bz3
`

1

n2
xny

B3E0

Bx2By
`

1

n2
xnz

B3E0

Bx2Bz
`

1

n2
ynz

B3E0

By2Bz

`
1

nxn2
y

B3E0

BxBy2
`

1

nxn2
z

B3E0

BxBz2
`

1

nyn2
z

B3E0

ByBz2
`

1

nxnynz

B3E0

BxByBz

`
1

n2
x

B2E

Bx2
`

1

n2
y

B2E

By2
`

1

n2
z

B2E

Bz2
`

1

nxny

B2E

BxBy
`

1

nxnz

B2E

BxBz
`

1

nynz

B2E

ByBz

(3.42)

We saw that all derivatives of E0 and E were equal to zero. So, the equation (3.42) is
a correct result of E3 “ 0. This process for other Em’s, leads to the expressions that
contain the higher derivatives of E0 and E and the higher powers of the components of
the unit normal vector and the results are equal to zero.

Therefore, the general integral equation (1.1) leads to the three important local relations
(2.1), (3.29), and (3.39).

4. Fundamental laws of continuum mechanics, integral forms, basic
local relations, and differential forms

In this section, we show that each of the fundamental laws of continuum mechanics can
be written in the form of the general integral equation (1.1) on control volume M, i.e.:

ż

M
B dV “

ż

BM
φ dS (4.1)
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In this equation B “ Bpr, tq and φ “ φpr, t,nq are continuous over the volume and
the surface of M, respectively. Where r is the position vector, t is time, and n is the
outward unit normal vector on the surface of the control volume. Here if B is scalar then
φ must be scalar, and if B is vector then φ must be vector. In the previous sections, by
using the Eulerian approach, we showed that this integral equation leads to the three
local equations, as:
the first

φpr, t,nq “ ´φpr, t,´nq (4.2)

second
φpr, t,nq “ nxφpr, t, exq ` nyφpr, t, eyq ` nzφpr, t, ezq (4.3)

and third

Bpr, tq “
Bφpr, t, exq

Bx
`
Bφpr, t, eyq

By
`
Bφpr, t, ezq

Bz
(4.4)

In the following, we present some properties of a general integral equation in continuum
media. If we have the following relation:

Mt0`∆t ´Mt0 “

ż t0`∆t

t0

ψ dτ (4.5)

then by the definition of integrals it can be written as:
ż t0`∆t

t0

BM

Bt
dτ “

ż t0`∆t

t0

ψ dτ

Note that we use the Eulerian approach. This implies:
´

BM

Bt
´ ψ

¯

“ 0, t0 ď t ď pt0 `∆tq

If t0 and ∆t are any time and time interval in the time domain, then the general equation
(4.5) leads to below equation that holds for any time:

BM

Bt
“ ψ (4.6)

In addition, the following integral equation holds for the control volume M in the
Eulerian approach:

B

Bt

ż

M
Qdv “

ż

M

BQ

Bt
dv (4.7)

Before considering the fundamental laws of continuum mechanics, let us discuss the flow
of a physical quantity into a surface in continuum media. If we have a physical quantity
such as U “ Upr, tq that transfers by the velocity of the substance in continuum media,
and u “ upr, tq is U per unit volume, then the flow of this quantity into a surface with
outward unit normal vector n is in the form:

φU “ ´uv.n (4.8)

where v “ vpr, tq is the velocity vector of the substance. So, φU “ φUpr, t,nq and it has
the dimension of rU s{pm2.sq. The negative sign is used because n is the outward unit
normal vector of the surface. Here we suppose the fixed control volumes and for the
moving control volumes the relative velocity must be used. Note that by the equation
(4.8), φU satisfies the first and second local relations (4.2) and (4.3), as below:

´uv.n “ ´p´uv.p´nqq
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therefore

φUpr, t,nq “ ´φUpr, t,´nq (4.9)

and

´uv.n “ ´uv.pnxex ` nyey ` nzezq “ nxp´uv.exq ` nyp´uv.eyq ` nzp´uv.ezq

so

φUpr, t,nq “ nxφUpr, t, exq ` nyφUpr, t, eyq ` nzφUpr, t, ezq (4.10)

By these general relations, we will consider the fundamental laws of continuum mechan-
ics in the next subsections.

4.1. Conservation of mass.
The basic law of conservation of mass of a control volume M says:
The total mass over the control volume M at time pt0 `∆tq equals the total mass over
M at time t0 plus the net of mass flow into M from t0 to pt0 `∆tq. So:

"
ż

M
ρ dV

*

t0`∆t

“

"
ż

M
ρ dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φm dS

*

dτ (4.11)

where ρ “ ρpr, tq is the density (mass per unit volume) and φm “ φmpr, t,nq is the
mass flow into the surface that it acts. Using the equation (4.8), we have φm “ ´ρv.n.
By rearranging the equation:

"
ż

M
ρ dV

*

t0`∆t

´

"
ż

M
ρ dV

*

t0

“

ż t0`∆t

t0

"
ż

BM
´ρv.n dS

*

dτ (4.12)

This is similar to the general equation (4.5), using (4.6) it becomes:

B

Bt

ż

M
ρ dV “

ż

BM
´ρv.n dS (4.13)

This is the integral equation of mass conservation law in continuum mechanics. By
using (4.7) we have:

ż

M

Bρ

Bt
dV “

ż

BM
´ρv.n dS (4.14)

This equation is similar to the general integral equation (4.1), where B “ Bρ{Bt and
φ “ φmpr, t,nq “ ´ρv.n, so the three general local relations (4.2), (4.3), and (4.4) hold
for it. The first and second local relations (4.2) and (4.3) lead to:

φmpr, t,nq “ ´φmpr, t,´nq (4.15)

and

φmpr, t,nq “ nxφmpr, t, exq ` nyφmpr, t, eyq ` nzφmpr, t, ezq (4.16)

But as we showed in (4.9) and (4.10), the mass flow φmpr, t,nq “ ´ρv.n satisfies the
two local relations (4.2) and (4.3), and their meanings. So, the above two relations
do not give us new results. The third local relation (4.4) for B “ Bρ{Bt and φ “
φmpr, t,nq “ ´ρv.n leads to:

Bρ

Bt
“
B

Bx
p´ρv.exq `

B

By
p´ρv.eyq `

B

Bz
p´ρv.ezq
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for v “ vxex ` vyey ` vzez, we have v.ex “ vx, v.ey “ vy, and v.ez “ vz. Substituting
these relations into the equation and rearranging it, yields:

Bρ

Bt
`
Bpρvxq

Bx
`
Bpρvyq

By
`
Bpρvzq

Bz
“ 0 (4.17)

or
Bρ

Bt
`∇.pρvq “ 0 (4.18)

This is the differential equation of mass conservation law in continuum mechanics that
is called the continuity equation.

4.2. Conservation of linear momentum.
The basic law of conservation of linear momentum of a control volume M says:
The total linear momentum over the control volume M at time pt0`∆tq equals the total
linear momentum over M at time t0 plus the net of linear momentum flow into M from
t0 to pt0 `∆tq plus the total surface and body forces over M from t0 to pt0 `∆tq. So:

"
ż

M
ρv dV

*

t0`∆t

“

"
ż

M
ρv dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φlm dS

*

dτ

`

ż t0`∆t

t0

"
ż

BM
t dS

*

dτ `

ż t0`∆t

t0

"
ż

M
ρb dV

*

dτ

(4.19)

where ρv is the linear momentum per unit volume, φlm “ φlmpr, t,nq is the linear
momentum flow into the surface that it acts, t “ tpr, t,nq is the surface force per
unit area that is called traction vector, and b “ bpr, tq is the body force per unit
mass. By using the general equation (4.8) for the flow of linear momentum, we have
φlm “ ´pρvqv.n, and rearranging the equation yields:
"
ż

M
ρv dV

*

t0`∆t

´

"
ż

M
ρv dV

*

t0

“

ż t0`∆t

t0

"
ż

BM

 

t´ pρvqv.n
(

dS `

ż

M
ρb dV

*

dτ

(4.20)

This is similar to the general equation (4.5). So, by using (4.6) it becomes:

B

Bt

ż

M
ρv dV “

ż

BM

 

t´ pρvqv.n
(

dS `

ż

M
ρb dV (4.21)

This is the integral equation of linear momentum conservation law in continuum me-
chanics. Using (4.7) and rearranging the equation:

ż

M

!

Bpρvq

Bt
´ ρb

)

dV “

ż

BM

 

t´ pρvqv.n
(

dS (4.22)

This is similar to the general integral equation (4.1) by the vector forms of B and φ,
where B “ Bpρvq{Bt ´ ρb and φ “ t ´ pρvqv.n “ t ` φlm. So, the three general local
relations (4.2), (4.3), and (4.4) hold for it. The first and second local relations (4.2) and
(4.3) lead to:

tpr, t,nq ` φlmpr, t,nq “ ´tpr, t,´nq ´ φlmpr, t,´nq (4.23)
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and

tpr, t,nq ` φlmpr, t,nq “ nx

 

tpr, t, exq ` φlmpr, t, exq
(

` ny

 

tpr, t, eyq ` φlmpr, t, eyq
(

` nz

 

tpr, t, ezq ` φlmpr, t, ezq
(

(4.24)

But as we showed in (4.9) and (4.10), the linear momentum flow φlm “ ´pρvqv.n
satisfies the two local relations (4.2) and (4.3), and their meanings. i.e.:

φlmpr, t,nq “ ´φlmpr, t,´nq (4.25)

and

φlmpr, t,nq “ nxφlmpr, t, exq ` nyφlmpr, t, eyq ` nzφlmpr, t, ezq (4.26)

So, these terms remove from the equations (4.23) and (4.24). Thus, we have from (4.23):

tpr, t,nq “ ´tpr, t,´nq (4.27)

This is the Cauchy lemma for traction vectors and states that “the traction vectors
acting on opposite sides of the same surface at a given point and time are equal in
magnitude but opposite in direction”.

And from (4.24):

tpr, t,nq “ nxtpr, t, exq ` nytpr, t, eyq ` nztpr, t, ezq (4.28)

This means that if we have the traction vectors on the three orthogonal surfaces at a
given point and time then we can get the traction vector on any surface that passes
through that point at that time by having the unit normal vector of this surface and
using this linear relation. So, we must define the traction vectors on the three orthogonal
surfaces at any point and at any time. The traction vector on the surface with unit
normal vector ex by its components, defines as:

tpr, t, exq “ Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez (4.29)

here Txxpr, tq, Txypr, tq, and Txzpr, tq are scalars that depend only on r and t. In each
case the first subscript indicates the direction of normal unit vector of the surface that
this case acts on it, and the second subscript indicates the direction of this component of
traction vector. Similarly, the traction vectors on the surfaces with unit normal vectors
ey and ez, define as:

tpr, t, eyq “ Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez (4.30)

and

tpr, t, ezq “ Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez (4.31)

By substituting these equations in (4.28)

tpr, t,nq “ nx

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez
(

` ny

 

Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez
(

` nz

 

Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez
(



18 E. AZADI

by rearranging the equation

tpr, t,nq “
 

nxTxxpr, tq ` nyTyxpr, tq ` nzTzxpr, tq
(

ex

`
 

nxTxypr, tq ` nyTyypr, tq ` nzTzypr, tq
(

ey

`
 

nxTxzpr, tq ` nyTyzpr, tq ` nzTzzpr, tq
(

ez

this can be shown as

tpr, t,nq “

»

–

txpr, t,nq
typr, t,nq
tzpr, t,nq

fi

fl “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx

ny

nz

fi

fl (4.32)

using the vector relations, this becomes

t “ T T .n (4.33)

where T “ T pr, tq is a second order tensor and is called stress tensor. This tensor
depends only on the position vector and time. This relation means that “for describing
the state of stress on any surface at a given point and time we need the 9 components of
the stress tensor at that point and time”. So, the second local relation (4.3) for linear
momentum leads to the existence of stress tensor.

Let us apply the third local relation (4.4) for linear momentum, where B “ Bpρvq{Bt´ρb
and φ “ tpr, t,nq ´ pρvqv.n. Thus:

Bpρvq

Bt
´ ρb “

B

Bx

 

tpr, t, exq ´ pρvqv.ex
(

`
B

By

 

tpr, t, eyq ´ pρvqv.ey
(

`
B

Bz

 

tpr, t, ezq ´ pρvqv.ez
(

(4.34)

Using the relations (4.29), (4.30), and (4.31), we have:

tpr, t, exq ´ pρvqv.ex “ pTxx ´ ρvxvxqex ` pTxy ´ ρvyvxqey ` pTxz ´ ρvzvxqez

tpr, t, eyq ´ pρvqv.ey “ pTyx ´ ρvxvyqex ` pTyy ´ ρvyvyqey ` pTyz ´ ρvzvyqez

tpr, t, ezq ´ pρvqv.ez “ pTzx ´ ρvxvzqex ` pTzy ´ ρvyvzqey ` pTzz ´ ρvzvzqez

Substituting these equations into the equation (4.34) and rearranging it, yields:

Bpρvq

Bt
´ ρb “

B

Bx

 

Txxex ` Txyey ` Txzez
(

`
B

By

 

Tyxex ` Tyyey ` Tyzez
(

`
B

Bz

 

Tzxex ` Tzyey ` Tzzez
(

´
B

Bx

 

ρvxvxex ` ρvyvxey ` ρvzvxez
(

´
B

By

 

ρvxvyex ` ρvyvyey ` ρvzvyez
(

´
B

Bz

 

ρvxvzex ` ρvyvzey ` ρvzvzez
(

therefore

Bpρvq

Bt
´ ρb “

“

B

Bx
B

By
B

Bx

‰

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl´
“

B

Bx
B

By
B

Bx

‰

»

–

ρvxvx ρvxvy ρvxvz
ρvyvx ρvyvy ρvyvz
ρvzvx ρvzvy ρvzvz

fi

fl

“ ∇.T ´∇.pρvvq
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where ρvv “ ρvivj is the last second order tensor in the first line of the equation. By
rearranging the equation:

Bpρvq

Bt
`∇.pρvvq “ ∇.T ` ρb (4.35)

This is the differential equation of linear momentum conservation law in continuum
mechanics and is called the general equation of motion or Cauchy equation of motion.
Using the mass continuity equation (4.18), it becomes:

ρ
Bv

Bt
` ρpv.∇qv “ ∇.T ` ρb (4.36)

4.3. Conservation of angular momentum.
The basic law of conservation of angular momentum of a control volume M about point
r0 says:
The total angular momentum about point r0 over the control volume M at time pt0`∆tq
equals the total angular momentum about point r0 over M at time t0 plus the net of
angular momentum flow about point r0 into M from t0 to pt0`∆tq plus the total moment
of surface and body forces about point r0 over M from t0 to pt0 `∆tq. So:
"
ż

M
pr1 ˆ ρvq dV

*

t0`∆t

“

"
ż

M
pr1 ˆ ρvq dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φam dS

*

dτ

`

ż t0`∆t

t0

"
ż

BM
pr1 ˆ tq dS

*

dτ `

ż t0`∆t

t0

"
ż

M
pr1 ˆ ρbq dV

*

dτ

(4.37)

by r1 “ r ´ r0 then r1 ˆ ρv is the angular momentum about r0 per unit volume,
φam “ φampr, t,nq is the angular momentum flow about r0 into the surface that it
acts, r1 ˆ t is the moment of surface force about r0 per unit area, and r1 ˆ ρb is the
moment of body force about r0 per unit volume. By using the general equation (4.8)
for the flow of angular momentum about r0, we have φam “ ´pr

1ˆ ρvqv.n “ r1ˆφlm,
where φlm “ ´pρvqv.n is the linear momentum flow into M. By rearranging the
equation:
"
ż

M
pr1 ˆ ρvq dV

*

t0`∆t

´

"
ż

M
pr1 ˆ ρvq dV

*

t0

“

ż t0`∆t

t0

"
ż

BM

 

r1 ˆ
`

t´ pρvqv.n
˘(

dS `

ż

M
pr1 ˆ ρbq dV

*

dτ

(4.38)

This is similar to the general equation (4.5). So, by using (4.6) it becomes:

B

Bt

ż

M
pr1 ˆ ρvq dV “

ż

BM

 

r1 ˆ
`

t´ pρvqv.n
˘(

dS `

ż

M
pr1 ˆ ρbq dV (4.39)

This is the integral equation of angular momentum conservation law in continuum
mechanics. Using (4.7) and rearranging the equation:

ż

M

!

B

Bt
pr1 ˆ ρvq ´ pr1 ˆ ρbq

)

dV “

ż

BM

 

r1 ˆ
`

t´ pρvqv.n
˘(

dS (4.40)
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This is similar to the integral equation (4.1) by the vector forms of B and φ, where
B “ Bpr1 ˆ ρvq{Bt´pr1ˆρbq and φ “ r1ˆ

`

t´pρvqv.n
˘

“ r1ˆ
`

tpr, t,nq`φlmpr, t,nq
˘

.
So, the three general local relations (4.2), (4.3), and (4.4) hold for it. The first and
second local relations (4.2) and (4.3) lead to:

r1 ˆ
`

tpr, t,nq ` φlmpr, t,nq
˘

“ ´r1 ˆ
`

tpr, t,´nq ` φlmpr, t,´nq
˘

(4.41)

and

r1 ˆ
`

tpr, t,nq ` φlmpr, t,nq
˘

“ nx

 

r1 ˆ
`

tpr, t, exq ` φlmpr, t, exq
˘(

` ny

 

r1 ˆ
`

tpr, t, eyq ` φlmpr, t, eyq
˘(

` nz

 

r1 ˆ
`

tpr, t, ezq ` φlmpr, t, ezq
˘(

(4.42)

But these equations are the cross product of r1 and the equations (4.25) and (4.26),
respectively, that already were obtained in the subsection of the linear momentum. So,
these equations do not give us new results. The third local relation (4.4) for B “

Bpr1 ˆ ρvq{Bt´ pr1 ˆ ρbq and φ “ r1 ˆ
`

t´ pρvqv.n
˘

, leads to:

B

Bt
pr1 ˆ ρvq ´ pr1 ˆ ρbq “

B

Bx

 

r1 ˆ
`

tpr, t, exq ´ pρvqv.ex
˘(

`
B

By

 

r1 ˆ
`

tpr, t, eyq ´ pρvqv.ey
˘(

`
B

Bz

 

r1 ˆ
`

tpr, t, ezq ´ pρvqv.ez
˘(

(4.43)

In the Eulerian approach for r1 “ r ´ r0, we have:

Br1

Bt
“ 0,

Br1

Bx
“ ex,

Br1

By
“ ey,

Br1

Bz
“ ez (4.44)

By using these relations, the equation (4.43) becomes:

r1 ˆ
!

Bpρvq

Bt
´ ρb

)

“ r1 ˆ
!

B

Bx

`

tpr, t, exq ´ pρvqv.ex
˘

`
B

By

`

tpr, t, eyq ´ pρvqv.ey
˘

`
B

Bz

`

tpr, t, ezq ´ pρvqv.ez
˘

)

`

!

ex ˆ
`

tpr, t, exq ´ pρvqv.ex
˘

` ey ˆ
`

tpr, t, eyq ´ pρvqv.ey
˘

` ez ˆ
`

tpr, t, ezq ´ pρvqv.ez
˘

)

(4.45)

But the first two lines of this equation is the cross product of r1 and the equation (4.34)
that already was obtained in the subsection of the linear momentum. So, these parts
remove from the equation and we have:

ex ˆ
`

tpr, t, exq ´ pρvqv.ex
˘

` ey ˆ
`

tpr, t, eyq ´ pρvqv.ey
˘

` ez ˆ
`

tpr, t, ezq ´ pρvqv.ez
˘

“ 0
(4.46)
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thus
ex ˆ tpr, t, exq ` ey ˆ tpr, t, eyq ` ez ˆ tpr, t, ezq “

ex ˆ
`

pρvqv.ex
˘

` ey ˆ
`

pρvqv.ey
˘

` ez ˆ
`

pρvqv.ez
˘

“

ρvxpex ˆ vq ` ρvypey ˆ vq ` ρvzpez ˆ vq “

ρvxp´vzey ` vyezq ` ρvypvzex ´ vxezq ` ρvzp´vyex ` vxeyq “

pρvyvz ´ ρvyvzqex ` p´ρvxvz ` ρvxvzqey ` pρvxvy ´ ρvxvyqez “ 0

so
ex ˆ tpr, t, exq ` ey ˆ tpr, t, eyq ` ez ˆ tpr, t, ezq “ 0 (4.47)

substituting the components of the traction vectors from (4.29), (4.30), and (4.31) into
the equation, yields:

ex ˆ pTxx ex ` Txy ey ` Txz ezq ` ey ˆ pTyx ex ` Tyy ey ` Tyz ezq

` ez ˆ pTzx ex ` Tzy ey ` Tzz ezq “ 0

this implies

p´Txz ey ` Txy ezq ` pTyz ex ´ Tyx ezq ` p´Tzy ex ` Tzx eyq “

pTyz ´ Tzyq ex ` pTzx ´ Txzq ey ` pTxy ´ Tyxq ez “ 0

So, we have
Txy “ Tyx, Txz “ Tzx, Tyz “ Tzy (4.48)

or
T “ T T (4.49)

therefore, the third local relation (4.4) for conservation of angular momentum leads to
the symmetry of stress tensor. By (4.49) we can tell “for describing the state of stress
on any surface at a given point and time we need the 6 components of the symmetric
stress tensor at that point and time”.

4.4. Conservation of energy.
The basic law of conservation of energy of a control volume M says:
The total energy over the control volume M at time pt0 ` ∆tq equals the total energy
over M at time t0 plus the net of energy flow into M from t0 to pt0`∆tq plus the total
surface heat into M from t0 to pt0 ` ∆tq plus the total heat generation over M from
t0 to pt0 ` ∆tq plus the total work done by surface and body forces over M from t0 to
pt0 `∆tq. So:
"
ż

M
pρe`

1

2
ρv2
q dV

*

t0`∆t

“

"
ż

M
pρe`

1

2
ρv2
q dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φen dS

*

dτ

`

ż t0`∆t

t0

"
ż

BM
qs dS

*

dτ `

ż t0`∆t

t0

"
ż

M
ρ 9qg dV

*

dτ

`

ż t0`∆t

t0

"
ż

BM
t.v dS

*

dτ `

ż t0`∆t

t0

"
ż

M
pρbq.v dV

*

dτ

(4.50)

where e “ epr, tq is the internal energy per unit mass, and ρe`1{2ρv2 is the total energy
(internal energy + kinetic energy) per unit volume. Here v2 “ vivi “ v2

x ` v2
y ` v2

z . On
the right hand side, φen “ φenpr, t,nq is the energy flow into the surface that it acts,
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qs “ qspr, t,nq is the rate of surface heat into M per unit area, 9qg “ 9qgpr, tq is the
rate of heat generation per unit mass, t.v and pρbq.v are the rates of work done by the
surface force per unit area and body force per unit volume, respectively. By using the
general equation (4.8) for the flow of energy we have φen “ ´pρe` 1{2ρv2qv.n, and by
rearranging the equation:
"
ż

M
pρe`

1

2
ρv2
q dV

*

t0`∆t

´

"
ż

M
pρe`

1

2
ρv2
q dV

*

t0

“

ż t0`∆t

t0

"
ż

BM

 

t.v ` qs ´ pρe`
1

2
ρv2
qv.n

(

dS `

ż

M

 

pρbq.v ` ρ 9qg
(

dV

*

dτ

(4.51)

This is similar to the general equation (4.5). So, by using (4.6) it becomes:

B

Bt

ż

M
pρe`

1

2
ρv2
q dV “

ż

BM

 

t.v ` qs ´ pρe`
1

2
ρv2
qv.n

(

dS `

ż

M

 

pρbq.v ` ρ 9qg
(

dV

(4.52)
This is the integral equation of energy conservation law in continuum mechanics. Using
(4.7) and rearranging the equation:
ż

M

!

B

Bt
pρe`

1

2
ρv2
q ´ pρbq.v ´ ρ 9qg

)

dV “

ż

BM

 

t.v ` qs ´ pρe`
1

2
ρv2
qv.n

(

dS (4.53)

This is similar to the integral equation (4.1), where B “ Bpρe` 1{2ρv2q{Bt´pρbq.v´ρ 9qg
and φ “ t.v`qs´pρe`1{2ρv2qv.n “ t.v`qs`φen. So, the three general local relations
(4.2), (4.3), and (4.4) hold for it. The first and second local relations (4.2) and (4.3)
lead to:

tpr, t,nq.v ` qspr, t,nq ` φenpr, t,nq “ ´tpr, t,´nq.v ´ qspr, t,´nq ´ φenpr, t,´nq
(4.54)

and

tpr, t,nq.v ` qspr, t,nq ` φenpr, t,nq “ nx

 

tpr, t, exq.v ` qspr, t, exq ` φenpr, t, exq
(

` ny

 

tpr, t, eyq.v ` qspr, t, eyq ` φenpr, t, eyq
(

` nz

 

tpr, t, ezq.v ` qspr, t, ezq ` φenpr, t, ezq
(

(4.55)

But as we showed in (4.9) and (4.10), the energy flow φen “ ´pρe`1{2ρv2qv.n satisfies
the two local relations (4.2) and (4.3), and their meanings. Therefore, the energy flow
terms remove from the two above equations. Also, in (4.27) and (4.28), we saw that
the traction vector t satisfies the two local relations (4.2) and (4.3). As a result, t.v
satisfies that equations, as well. So, these terms remove from the two above equations
and we have from (4.54):

qspr, t,nq “ ´qspr, t,´nq (4.56)

This is the general Cauchy lemma for surface heat and states that “the surface heats
acting on opposite sides of the same surface at a given point and time are equal in
magnitude but opposite in sign”. From (4.55), we have:

qspr, t,nq “ nxqspr, t, exq ` nyqspr, t, eyq ` nzqspr, t, ezq (4.57)

This means that if we have the surface heats on the three orthogonal surfaces at a given
point and time then we can get the surface heat on any surface that passes through that
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point at that time by having the unit normal vector of this surface and using this linear
relation. So, we must define the scalar surface heats into the three orthogonal surfaces
with unit normal vectors ex, ey, and ez, respectively, as:

qspr, t, exq “ ´qxpr, tq, qspr, t, eyq “ ´qypr, tq, qspr, t, ezq “ ´qzpr, tq (4.58)

the negative sign is due to the fact that we suppose for example qxpr, tq is the exit heat
from the surface with unit normal vector ex but qspr, t, exq is the surface heat into that
surface. Here the subscripts in qx, qy, and qz indicate the direction of unit normal vector
of the surfaces that they act on them. So, we have from (4.57):

qspr, t,nq “ ´nxqxpr, tq ´ nyqypr, tq ´ nzqzpr, tq “ ´
“

qx qy qz
‰

»

–

nx

ny

nz

fi

fl (4.59)

thus

qspr, t,nq “ ´qpr, tq.n (4.60)

where qpr, tq is a vector that depends only on the position vector and time and is
called heat flux vector. So, the first and second local relations (4.2) and (4.3) for the
conservation of energy lead to the existence of heat flux vector qpr, tq. This means that
for describing the surface heat on any surface at a given point and time we need the 3
components of qpr, tq at that point and time. The third local relation (4.4) for energy
conservation is:

B

Bt
pρe`

1

2
ρv2
q ´ pρbq.v ´ ρ 9qg “

B

Bx

 

tpr, t, exq.v ´ q.ex ´ pρe`
1

2
ρv2
qv.ex

(

`
B

By

 

tpr, t, eyq.v ´ q.ey ´ pρe`
1

2
ρv2
qv.ey

(

`
B

Bz

 

tpr, t, ezq.v ´ q.ez ´ pρe`
1

2
ρv2
qv.ez

(

(4.61)

By using the equation (4.33), i.e., t “ T T .n, the above equation can be shown as:

B

Bt
pρe`

1

2
ρv2
q ´ pρbq.v ´ ρ 9qg “

“

B

Bx
B

By
B

Bz

‰

»

–

Txxvx ` Txyvy ` Txzvz
Tyxvx ` Tyyvy ` Tyzvz
Tzxvx ` Tzyvy ` Tzzvz

fi

fl

´
“

B

Bx
B

By
B

Bz

‰

»

–

qx
qy
qz

fi

fl´
“

B

Bx
B

By
B

Bz

‰

»

–

pρe` 1{2ρv2qvx
pρe` 1{2ρv2qvy
pρe` 1{2ρv2qvz

fi

fl

by vector relations, this becomes

B

Bt
pρe`

1

2
ρv2
q ´ pρbq.v ´ ρ 9qg “ ∇.pT .vq ´∇.q ´∇.

`

pρe`
1

2
ρv2
qv
˘

by rearranging the equation, we have

B

Bt
pρe`

1

2
ρv2
q `∇.

`

pρe`
1

2
ρv2
qv
˘

“ ∇.pT .vq ´∇.q ` pρbq.v ` ρ 9qg (4.62)

This is the differential equation of energy conservation law in continuum mechanics.
Also, there are some other forms of energy equation that are obtained from the above
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equation. We have:

B

Bt
p
1

2
ρv2
q “

1

2

B

Bt
pρv.vq “ v.

"

B

Bt
pρvq

*

∇.
`

p
1

2
ρv2
qv
˘

“
1

2
∇.

`

pρv.vqv
˘

“ v.

"

∇.pρvvq
*

∇.pT .vq “ v.
"

∇.T
*

` T : ∇v

(4.63)

where T : ∇v is the following scalar

T : ∇v “ Tij
Bvj
Bxi

“ Txx
Bvx
Bx

` Txy
Bvy
Bx

` Txz
Bvz
Bx

` Tyx
Bvx
By

` Tyy
Bvy
By

` Tyz
Bvz
By

` Tzx
Bvx
Bz

` Tzy
Bvy
Bz

` Tzz
Bvz
Bz

By using the relations (4.63), the equation (4.62) becomes:

Bpρeq

Bt
`v.

"

B

Bt
pρvq

*

`∇.pρevq`v.
"

∇.pρvvq
*

“ v.

"

∇.T
*

`T : ∇v´∇.q`pρbq.v`ρ 9qg

by rearranging this equation

Bpρeq

Bt
`∇.pρevq “ T : ∇v ´∇.q ` ρ 9qg

´ v.

"

Bpρvq

Bt
`∇.pρvvq ´∇.T ´ ρb

*

but due to the differential equation of linear momentum conservation law (4.35), the
expression in the braces in the second line of the above equation is equal to zero,
therefore this line removes from the equation and we have:

Bpρeq

Bt
`∇.pρevq “ T : ∇v ´∇.q ` ρ 9qg (4.64)

this is the differential equation of internal energy balance. Using the mass continuity
equation (4.18) it becomes:

ρ
Be

Bt
` ρv.∇e “ T : ∇v ´∇.q ` ρ 9qg (4.65)

4.5. Entropy law.
The basic law of entropy of a control volume M says:
The total entropy over the control volume M at time pt0 `∆tq is greater than or equal
to the total entropy over M at time t0 plus the net of entropy flow into M from t0 to
pt0 `∆tq plus the total surface heat per temperature into M from t0 to pt0 `∆tq plus
the total heat generation per temperature over M from t0 to pt0 `∆tq. So:

"
ż

M
ρs dV

*

t0`∆t

ě

"
ż

M
ρs dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φent dS

*

dτ

`

ż t0`∆t

t0

"
ż

BM

qs
T
dS

*

dτ `

ż t0`∆t

t0

"
ż

M

ρ 9qg
T

dV

*

dτ

(4.66)
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where s “ spr, tq is the entropy per unit mass and ρs is the entropy per unit volume. On
the right hand side, φent “ φentpr, t,nq is the entropy flow into the surface that it acts,
qs “ qspr, t,nq is the rate of surface heat into M per unit area, 9qg “ 9qgpr, tq is the rate
of heat generation per unit mass, and T “ T pr, tq is the absolute temperature. In order
to convert this inequality to an equation, we may define the rate of entropy generation
per unit mass as 9sg “ 9sgpr, tq, where 9sg ě 0, and add the total entropy generation over
M from t0 to pt0 `∆tq to the right hand side of the above inequality. So, we have the
following equation:
"
ż

M
ρs dV

*

t0`∆t

“

"
ż

M
ρs dV

*

t0

`

ż t0`∆t

t0

"
ż

BM
φent dS

*

dτ

`

ż t0`∆t

t0

"
ż

BM

qs
T
dS

*

dτ `

ż t0`∆t

t0

"
ż

M

ρ 9qg
T

dV

*

dτ `

ż t0`∆t

t0

"
ż

M
ρ 9sg dV

*

dτ

(4.67)

By using the general equation (4.8) for the flow of energy we have φent “ ´pρsqv.n,
and by rearranging the equation:

"
ż

M
ρs dV

*

t0`∆t

´

"
ż

M
ρs dV

*

t0

“

ż t0`∆t

t0

"
ż

BM

 qs
T
´ pρsqv.n

(

dS

`

ż

M

 ρ 9qg
T
` ρ 9sg

(

dV

*

dτ

(4.68)

this is similar to the general equation (4.5). So, by using (4.6) it becomes:

B

Bt

ż

M
ρs dV “

ż

BM

 qs
T
´ pρsqv.n

(

dS `

ż

M

 ρ 9qg
T
` ρ 9sg

(

dV (4.69)

This is the integral equation of entropy law in continuum mechanics. Since 9sg ě 0, by
removing the integral of ρ 9sg from the equation, we have:

B

Bt

ż

M
ρs dV ě

ż

BM

 qs
T
´ pρsqv.n

(

dS `

ż

M

ρ 9qg
T

dV (4.70)

This inequality is called the Clausius-Duhem inequality. Using (4.7) and rearranging
the equation (4.69), we have:

ż

M

!

Bpρsq

Bt
´
ρ 9qg
T
´ ρ 9sg

)

dV “

ż

BM

 qs
T
´ pρsqv.n

(

dS (4.71)

This is similar to the integral equation (4.1), where B “ Bpρsq{Bt ´ ρ 9qg{T ´ ρ 9sg and
φ “ qs{T ´ pρsqv.n “ qs{T ` φent. So, the three general local relations (4.2), (4.3), and
(4.4) hold for it. The first and second local relations (4.2) and (4.3) lead to:

qspr, t,nq{T ` φentpr, t,nq “ ´qspr, t,´nq{T ´ φentpr, t,´nq (4.72)

and

qspr, t,nq{T ` φentpr, t,nq “ nx

 

qspr, t, exq{T ` φentpr, t, exq
(

` ny

 

qspr, t, eyq{T ` φentpr, t, eyq
(

` nz

 

qspr, t, ezq ` φentpr, t, ezq
(

(4.73)

But we have from (4.60) that qspr, t,nq “ ´qpr, tq.n, therefore qs{T satisfies the two
local relations (4.2) and (4.3). Also, as we showed in (4.9) and (4.10), entropy flow
φent “ ´pρsqv.n satisfies the two local relations (4.2) and (4.3) and their meanings.
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Thus, the two above equations do not give us new results. Applying the third local
relation (4.4) to the entropy integral equation (4.71), where B “ Bpρsq{Bt´ρ 9qg{T ´ρ 9sg
and φ “ qs{T ` φent “ ´qpr, tq.n{T ´ pρsqv.n, leads to:

Bpρsq

Bt
´
ρ 9qg
T
´ ρ 9sg “

B

Bx

 

´
q.ex
T

´ pρsqv.ex
(

`
B

By

 

´
q.ey
T

´ pρsqv.ey
(

`
B

Bz

 

´
q.ez
T

´ pρsqv.ez
(

(4.74)

so, we have

Bpρsq

Bt
´
ρ 9qg
T
´ ρ 9sg “ ´

“

B

Bx
B

By
B

Bx

‰

»

–

qx{T
qy{T
qz{T

fi

fl´
“

B

Bx
B

By
B

Bx

‰

»

–

ρsvx
ρsvy
ρsvz

fi

fl

“ ´∇.p q
T
q ´∇.pρsvq

by rearranging this equation

Bpρsq

Bt
`∇.pρsvq “ ´∇.p q

T
q `

ρ 9qg
T
` ρ 9sg (4.75)

This is the differential equation of entropy law in continuum mechanics. Using the mass
continuity equation (4.18) it becomes:

ρ
Bs

Bt
` ρv.∇s “ ´∇.p q

T
q `

ρ 9qg
T
` ρ 9sg (4.76)

Since 9sg ě 0, by removing ρ 9sg from the equation (4.75) we have:

Bpρsq

Bt
`∇.pρsvq ě ´∇.p q

T
q `

ρ 9qg
T

(4.77)

This is the differential form of the Clausius-Duhem inequality.

5. Conclusion

We considered the general integral equation on the control volume M, as the form:
ż

M
B dV “

ż

BM
φ dS

where B “ Bpr, tq is called body term and φ “ φpr, t,nq is called surface term. These
functions are continuous over the volume and the surface of M, respectively. Here if B
is scalar then φ must be scalar, and if B is vector then φ must be vector. We wanted to
determine how many local relations can be derived from this general integral equation
and what they are.

We first derived the general Cauchy lemma for surface term from the above integral
equation as the first local relation. So:

The first local relation:

φpr, t,nq “ ´φpr, t,´nq



GENERAL EXACT TETRAHEDRON ARGUMENT, THIRD PAPER 27

Then by a new general exact tetrahedron argument we showed that applying the general
integral equation to a tetrahedron control volume leads to the following fundamental
equation:

E0 ` E1
1

3
h` E2

1

12
h2
` E3

1

60
h3
` . . .` Em

2

pm` 2q!
hm ` . . . “ 0

where h is the altitude of the tetrahedron. Em’s are expressions that contain the surface
term, body term, their derivatives, and the powers of the components of unit normal
vector of the base face of tetrahedron. Then we showed that the only solution of this
equation is:

Em “ 0, m “ 0, 1, 2, . . . ,8

i.e., all of the Em’s must be equal to zero. By these, we proved that E0 “ 0 leads to the
second local relation that obtains from the general integral equation as:

The second local relation:

φpr, t,nq “ nxφpr, t, exq ` nyφpr, t, eyq ` nzφpr, t, ezq

and E1 “ 0 leads to the third local relation that is a partial differential equation as:

The Third local relation:

Bpr, tq “
Bφpr, t, exq

Bx
`
Bφpr, t, eyq

By
`
Bφpr, t, ezq

Bz

In other equations Em “ 0, for m “ 2, 3, . . . ,8, the results of E0 “ 0 and E1 “ 0 are
repeated. Then we showed that all the fundamental laws of continuum mechanics can
be shown in the form of the general integral equation that we considered it. So, the
three general local relations hold for the integral forms of the fundamental laws.

These three local relations for the conservation of mass lead to the properties of mass
flow and derivation of the mass continuity equation. For the conservation of linear
momentum, the first local relation leads to the Cauchy lemma for traction vectors, the
second local relation leads to the existence of stress tensor, and the third local relation
leads to the general equation of motion. For the conservation of angular momentum,
the first and second local relations repeat the results of these two local relations in the
conservation of linear momentum but the third local relation leads to the symmetry
of stress tensor. For the conservation of energy, the first local relation leads to the
Cauchy lemma for surface heat, the second local relation leads to the existence of heat
flux vector, and the third local relation leads to the differential conservation equation of
total energy. For the entropy law the first and second local relations repeat the results
of these two local relations in the conservation of energy and the third local relation
leads to the differential form of entropy law and the Clausius-Duhem inequality.

Dedication: This article is dedicated to my mother B. Hussaini, my father M. Azadi, and my sisters

and brothers.
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