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Abstract. In 1822, Cauchy presented the idea of traction vector that contains both
the normal and tangential components of the internal surface forces per unit area and
gave the tetrahedron argument to prove the existence of stress tensor. These great
achievements form the main part of the foundation of continuum mechanics. For about
two centuries, some versions of tetrahedron argument and a few other proofs of the
existence of stress tensor are presented in every text on continuum mechanics, fluid
mechanics, and the relevant subjects. In this article, we show the birth, importance,
and location of these Cauchy’s achievements, then by presenting the formal tetrahedron
argument in detail, for the first time, we extract some fundamental challenges. These
conceptual challenges are related to the result of applying the conservation of linear
momentum to any mass element, the order of magnitude of the surface and volume
terms, the definition of traction vectors on the surfaces that pass through the same
point, the approximate processes in the derivation of stress tensor, and some others.
In a comprehensive review, we present the different tetrahedron arguments and the
proofs of the existence of stress tensor, discuss the challenges in each one, and classify
them in two general approaches. In the first approach that is followed in most texts,
the traction vectors do not exactly define on the surfaces that pass through the same
point, so most of the challenges hold. But in the second approach, the traction vectors
are defined on the surfaces that pass exactly through the same point, therefore some of
the relevant challenges are removed. We also study the improved works of Hamel and
Backus, and indicate that the original work of Backus removes most of the challenges.
This article shows that the foundation of continuum mechanics is not a finished subject
and there are still some fundamental challenges.

1. Introduction

In 1822, for the first time, Cauchy in his lecture announced the forces on the surface
of an internal mass element in continuum media in addition to the normal component
on the surface can have the tangential components. An abstract of his lecture was
published in 1823, [17]. In translation of Cauchy’s lecture from the French by Maugin
(2014, [63]), on page 50, we have:

However, the new “pressure” will not always be perpendicular to the faces
on which it act, and is not the same in all directions at a given point.
. . . Furthermore, the pressure or tension exerted on any plane can easily
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be deduced, in both amplitude and direction, from the pressures or ten-
sions exerted on three given orthogonal planes. I had reached this point
when M. Fresnel, who came to me to talk about his works devoted to the
study of light . . .

Here the new pressure is the traction vector that acts on the internal surface and contains
both the normal and tangential components. Cauchy’s works in continuum mechanics
from 1822 to 1828 led to the derivation of Cauchy lemma for traction vectors, the
existence of stress tensor, Cauchy equation of motion, symmetry of stress tensor, and
some other achievements in the foundation of continuum mechanics [99]. Cauchy’s proof
of the existence of stress tensor is called Cauchy tetrahedron argument. From Truesdell
(1971, [97]), on page 8:

CAUCHY’s theorem of the existence of the stress tensor, published in
1823. CAUCHY, who knew full well the difference between a balance
principle and a constitutive relation, stated the result clearly and proudly;
he gave a splendid proof of it, which has been reproduced in every book
on continuum mechanics from that day to this; and he recognized the
theorem as being the foundation stone it still is.

On the importance of Cauchy’s idea for traction vector and tetrahedron argument for
the existence of stress tensor, Truesdell (1968, [96]), on page 188, says:

Clearly this work of Cauchy’s marks one of the great turning points of
mechanics and mathematical physics, even though few writers on the his-
tory of that subject seem to know it, a turning point that could well stand
comparison with Huygens’s theory of the pendulum, Newton’s theory of
the solar system, Euler’s theory of the perfect fluid, and Maxwell’s theo-
ries of the monatomic gas and the electromagnetic field.

This article gives a comprehensive review of the tetrahedron arguments and the proofs
of the existence of stress tensor that represented during about two centuries, from 1822
until now, in many books and articles on continuum mechanics, fluid mechanics, solid
mechanics, elasticity, strength of materials, etc. There are some different methods
and processes to prove the existence of stress tensor and presentation of the Cauchy
tetrahedron argument in the literature. We extract some fundamental challenges on
these proofs and discuss these challenges in each one. To enter the subject, we first
show the location of the Cauchy tetrahedron argument for the existence of stress tensor
in the general steps of the foundation of continuum mechanics. Then, a formal proof
of the Cauchy tetrahedron argument according to the accepted reference books will
be given. We extract some fundamental challenges on this proof and discuss their
importance in the foundation of continuum mechanics. Then we review different proofs
in the literature and discuss their challenges. During this review, we also show the
general approaches, important works, and their improvements.
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2. Location of Cauchy tetrahedron argument in the foundation of
continuum mechanics

Although the birth of modern continuum mechanics is considered as the Cauchy’s idea in
1822 [63], some remarkable achievements were obtained earlier by famous mathematical
physicians like Daniel Bernoulli, Euler, D’Alembert, Navier, Poisson, and the others. In
general, these achievements can be addressed as the splitting of forces to the body forces
and surface forces, the defining of pressure as the normal surface force per unit area,
the considering of the internal mass element in continuum media, the Euler equation of
motion, etc. But this was the genius of Cauchy to use the idea of his friend Fresnel, who
worked on optics, in continuum mechanics and develop the idea of traction vector, the
existence and properties of stress tensor, and the general equation of motion [17,18,63].
Cauchy’s achievements were quickly taken as the foundation of continuum mechanics
and the relevant subjects such as fluid mechanics, solid mechanics, elasticity, mechanics
of deformable bodies, strength of materials, etc., [95]. Recently, a good representation
and description of the Cauchy’s papers and the situation of continuum mechanics at
that time was given by Maugin (2014, [63]).

The general steps that lead to the general concept of stress in continuum mechanics can
be described as the following. Some of these steps were developed before Cauchy and
others were developed or revised by Cauchy based on the new idea of traction vector
that contains both the normal and tangential components on the surface.

‚ The forces that apply to a fluid or solid element in continuum media can split
to the surface forces pF sq and the body forces pF bq, (before Cauchy).

F “ F s ` F b (2.1)

‚ The surface force can be formulated as surface force per unit area that is called
pressure and is normal to the surface that it acts, (before Cauchy).

‚ The surface force per unit area in addition to the normal component ptnq can
have tangential components pttq. This general surface force per unit area is called
traction vector, (by Cauchy in 1822).

t “ tnen ` ttet (2.2)

‚ The traction vector depends only on the position vector prq, time ptq, and the
outward unit normal vector pnq of the surface that acts on it in continuum
media, (by Cauchy).

t “ tpr, t,nq (2.3)

‚ The traction vectors acting on opposite sides of the same surface at a given point
and time are equal in magnitude but opposite in direction. This is called Cauchy
lemma, (by Cauchy).

tpr, t,nq “ ´tpr, t,´nq (2.4)

‚ Cauchy tetrahedron argument states that the relation between the traction vector
on a surface and the unit normal vector of that surface is linear, and this leads
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to the existence of a second order tensor that is called stress tensor. The stress
tensor T depends only on the position vector and time, (by Cauchy).

t “ T T .n (2.5)

where

T “ T pr, tq “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl (2.6)

‚ Applying the conservation of linear momentum to a mass element in continuum
media leads to the general differential equation of motion that is called Cauchy
equation of motion, (by Cauchy).

ρa “ ∇.T ` ρb (2.7)

or

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb (2.8)

where ρ, b, a, and v are the density, body force per unit mass, acceleration, and
velocity, respectively.

‚ The conservation of angular momentum shows that the stress tensor is symmet-
ric, (by Cauchy).

Txy “ Tyx, Txz “ Tzx, Tyz “ Tzy (2.9)

or
T “ T T (2.10)

These steps show the location of Cauchy tetrahedron argument for the existence of
stress tensor in the foundation of continuum mechanics.

3. Cauchy tetrahedron argument and the challenges

The following representation of Cauchy tetrahedron argument is based on the two re-
markable reference books on continuum mechanics, i.e., “Truesdell and Toupin, The
Classical Field Theories, pp. 542-543” (1960, [99]) and “Malvern, Introduction to the
Mechanics of a Continuous Medium, pp. 73-77” (1969, [59]). Here we give more details
to show clearly the process.

3.1. Cauchy tetrahedron argument.
Consider a tetrahedron element in continuum media that its vortex is at the point o and
its three orthogonal faces are parallel to the three orthogonal planes of the Cartesian
coordinate system. The fourth surface of the tetrahedron, i.e., its base, has the outward
unit normal vector n4. The geometrical parameters and the average values of the
traction vectors on the faces of tetrahedron are shown in Figure 1. The integral equation
of conservation of linear momentum on a mass element M in continuum media is:

ż

BM
t dS `

ż

M
ρb dV “

ż

M
ρa dV (3.1)
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Figure 1. The geometry of tetrahedron
element and the average traction vectors on
the faces.

Now this law applies to the tetrahedron mass element. By averaging variables on the
volume and faces of the tetrahedron element, the equation (3.1) becomes:

t4∆s4 ` t1∆s1 ` t2∆s2 ` t3∆s3 ` ρb∆V “ ρa∆V (3.2)

where the superscripts indicate the average values of these terms. The following geo-
metrical relations for the faces and volume of tetrahedron hold:

∆s1 “ nx∆s4, ∆s2 “ ny∆s4, ∆s3 “ nz∆s4

∆V “
1

3
h∆s4

(3.3)

where nx, ny, and nz are components of the outward unit normal vector on ∆s4, i.e.,
n4 “ nxex ` nyey ` nzez. Here h is the altitude of the tetrahedron. By substituting
these geometrical relations into the equation (3.2):

t4∆s4 ` t1pnx∆s4q ` t2pny∆s4q ` t3pnz∆s4q ` ρbp
1

3
h∆s4q “ ρap

1

3
h∆s4q

dividing through by ∆s4

t4 ` nxt1 ` nyt2 ` nzt3 ` ρbp
1

3
hq “ ρap

1

3
hq (3.4)

Now decrease the volume of tetrahedron element, ∆V Ñ 0, in the way that n4 and the
position of the vertex point of tetrahedron (point o) do not change. As a result, hÑ 0
and the tetrahedron shrinks to a point. So, in this limit, the body force and inertia
term in the equation (3.4) go to zero and the average traction vectors go to the exact
values. The result is:

t4 ` nxt1 ` nyt2 ` nzt3 “ 0 (3.5)

The traction vector t1 is applied to the surface ∆s1 by the unit normal vector n1 “ ´1ex.
Using the Cauchy lemma, i.e., tpr, t,nq “ ´tpr, t,´nq:

tpn1q “ ´tp´n1q (3.6)

but ´n1 “ `1ex is the unit normal vector on the positive side of coordinate plane yz.
If tx is the traction vector on the positive side of coordinate plane yz, then by using the
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equation (3.6):
t1 “ ´tx (3.7)

This strategy for t2 and t3 leads to:

t2 “ ´ty, t3 “ ´tz (3.8)

By substituting these relations into the equation (3.5):

t4 ` nxp´txq ` nyp´tyq ` nzp´tzq “ 0

so
t4 “ nxtx ` nyty ` nztz (3.9)

The traction vectors tx, ty, and tz can be shown by their components as:

tx “ Txxex ` Txyey ` Txzez

ty “ Tyxex ` Tyyey ` Tyzez

tz “ Tzxex ` Tzyey ` Tzzez

(3.10)

By substituting these definitions into the equation (3.9):

t4 “ nxpTxxex ` Txyey ` Txzezq ` nypTyxex ` Tyyey ` Tyzezq

` nzpTzxex ` Tzyey ` Tzzezq
(3.11)

or

t4 “ pnxTxx ` nyTyx ` nzTzxqex ` pnxTxy ` nyTyy ` nzTzyqey

` pnxTxz ` nyTyz ` nzTzzqez
(3.12)

This can be shown as a relation between a second order tensor and a vector, as:

t4 “

»

–

tx
ty
tz

fi

fl

4

“

»

–

nxTxx ` nyTyx ` nzTzx
nxTxy ` nyTyy ` nzTzy
nxTxz ` nyTyz ` nzTzz

fi

fl “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx
ny
nz

fi

fl

4

(3.13)

therefore
t4 “ T

T .n4 (3.14)

By forming the tetrahedron element, no one of the components of n4 is zero. For the unit
normal vectors that one or two of their components are equal to zero, the tetrahedron
element does not form but due to the continuous property of the traction vectors on
n and the arbitrary choosing for any orthogonal basis for the coordinate system, the
equation (3.14) is valid for these cases, as well. So, the subscript 4 can be removed from
this equation:

t “ T T .n (3.15)

This equation shows that there is a second order tensor that is called stress tensor for
describing the state of stress. This tensor T “ T pr, tq, depends only on the position
vector and time. Also, the relation between the traction vector on a surface and the
unit normal vector of that surface is linear.

Here the tetrahedron argument is finished. This argument and its result have a great
importance and role in the foundation of continuum mechanics.

The following statements are not the elements of the tetrahedron argument and we
state them to show the two other important achievements of Cauchy in the foundation
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of continuum mechanics. Cauchy applied the conservation of linear momentum to a
“cubic element” and using his previous achievements, derived the general equation of
motion that is called Cauchy equation of motion [63].

ρa “ ∇.T ` ρb (3.16)

or

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb (3.17)

Also, by applying the conservation of angular momentum to a “cubic element”, he
showed that the stress tensor is symmetric [63].

T “ T T (3.18)

3.2. The challenges.
During study of the presented tetrahedron argument we found some conceptual chal-
lenges on it. In the following, we present and discuss them.

‚ Challenge 1: Note that applying the conservation of linear momentum to any
mass element with any shape must lead to the general equation of motion that
contains all of the effective terms including inertia, body forces, and surface
forces (Cauchy equation of motion). But in this argument applying the con-
servation of linear momentum to the tetrahedron element leads to the equation
(3.5), i.e., t4 ` nxt1 ` nyt2 ` nzt3 “ 0, that differs from the equation of motion
(3.16), because the inertia and body forces do not exist in it. We saw that after
presenting the tetrahedron argument, Cauchy and most of the authors derived
the equation of motion by applying the conservation of linear momentum to a
cubic element. What is the problem? applying the conservation of linear mo-
mentum to a tetrahedron element leads to the equation t4`nxt1`nyt2`nzt3 “ 0
and the same process on a cubic element leads to the Cauchy equation of motion.

‚ Challenge 2: The tetrahedron argument is based on the limit ∆V Ñ 0, that is
stated by all of the authors who presented this argument by the expressions like
“∆V Ñ 0”, “h Ñ 0”, “when the tetrahedron shrinks to a point”, or “when the
tetrahedron shrinks to zero volume”, while it must be proved that the existence
of stress tensor at a point does not depend on the size of the considered mass
element. In other words, the stress tensor exists for any size of mass element in
continuum media where the volume of element increases, decreases, or does not
change. By these proofs the result is valid only for the infinitesimal volumes and
they did not show that this result can be applied to a mass element with any
volume in continuum media.

‚ Challenge 3: This tetrahedron argument is based on the average values of the
effective terms in the integral equation of conservation of linear momentum and
even for the limit ∆V Ñ 0 this trend remains. While the stress tensor and the
traction vectors relations are point-based and they must be derived from the
exact point values.
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‚ Challenge 4: During the tetrahedron argument we have the equation (3.4):

t4 ` nxt1 ` nyt2 ` nzt3 ` ρbp
1

3
hq “ ρap

1

3
hq

If we rewrite this equation as following, and take the limit:

lim
hÑ0

´t4 ` nxt1 ` nyt2 ` nzt3
1
3
h

¯

“ lim
hÑ0
pρa´ ρbq (3.19)

clearly the right hand side limit exists, because ρa ´ ρb is bounded and is not
generally equal to zero in continuum media. So, the left hand side limit must
be existed and is not generally equal to zero. This implies that the order of
magnitude of the denominator is h, i.e.:

Opt4 ` nxt1 ` nyt2 ` nzt3q “ h (3.20)

so, t4`nxt1`nyt2`nzt3 and ρap1
3
hq´ρbp1

3
hq have the same order of magnitude,

that is, h. This means that by hÑ 0 these two parts decrease by the same rate
to zero and we cannot tell that the inertia and body terms go to zero faster than
the surface terms. Since Op∆s4q “ h2 and Op∆V q “ h3, we have:

Op∆s4pt4 ` nxt1 ` nyt2 ` nzt3qq

“ Opt4∆s4 ` t1∆s1 ` t2∆s2 ` t3∆s3q “ h3 (3.21)

and

Opρa∆V ´ ρb∆V q “ h3 (3.22)

so, we cannot tell that if ∆V Ñ 0 or h Ñ 0 then the surface terms go to zero
by h2 and the inertia and body terms go to zero by h3, because these two parts
have the same order of magnitude, i.e., h3, as shown above in (3.21) and (3.22).

‚ Challenge 5: The purpose of Cauchy tetrahedron argument is to show that the
traction vector at a point on a surface is a linear combination of the traction
vectors on the three orthogonal surfaces that pass through that point. So, the
four surfaces must pass through the same point to prove this relation between
their traction vectors. But in the tetrahedron argument t4 is defined on the
surface ∆s4 that does not pass through the vertex point of tetrahedron where
the three surfaces ∆s1, ∆s2, and ∆s3 pass through it, see Figure 2.

‚ Challenge 6: The stress tensor is a point-based function. This means at any
point in continuum media the stress tensor exists. So, in the equation t4 `
nxt1 ` nyt2 ` nzt3 “ 0 the four traction vectors must belong to a unit point to
conclude from the tetrahedron argument that t4 is related to a tensor that forms
by the components of t1, t2, and t3. While in this proof, the surface that t4 is
defined on it, i.e., ∆s4, does not pass through point o, even for an infinitesimal
tetrahedron element, see Figure 2.

‚ Challenge 7: The result of this argument is the equation (3.5), i.e., t4 ` nxt1 `
nyt2 ` nzt3 “ 0, for an infinitesimal tetrahedron. Here the traction vectors are
the average values on the faces of this infinitesimal tetrahedron. If we multiply
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Figure 2. Inclined surface that is parallel to
∆s4 and passes through point o.

this equation by ∆s4 that is the base area of the tetrahedron, the result is:

∆s4pt4 ` nxt1 ` nyt2 ` nzt3q “ t4∆s4 ` t1∆s1 ` t2∆s2 ` t3∆s3 “ 0 (3.23)

but this is equal to the integral of t over the surface of M, so:

t4∆s4 ` t1∆s1 ` t2∆s2 ` t3∆s3 “

ż

BM
t dS “ 0 (3.24)

where M is the infinitesimal tetrahedron element. This equation states that
for the infinitesimal tetrahedron element the sum of the traction vectors on the
surfaces of this element is zero. This means the surface forces have not any effect
on the motion and acceleration of the element because their sum on the faces of
element is zero. But this is not correct, since for any volume of mass element,
even infinitesimal volume, the equation of conservation of linear momentum
(3.1), the following equation, holds and tells us that this sum is not zero:

ż

BM
t dS `

ż

M
ρb dV “

ż

M
ρa dV

‚ Challenge 8: In the previous challenge the equation (3.23), t4∆s4 ` t1∆s1 `

t2∆s2`t3∆s3 “ 0, states that the sum of surface forces on faces of the infinites-
imal tetrahedron element is zero. So, it tells nothing about the relation between
the traction vectors at a point on four different surfaces that pass through that
point, because clearly t4 is defined on ∆s4 and this surface does not pass through
point o, even for an infinitesimal tetrahedron element, see Figure 2.

More discussions will be given in the next sections.

4. A comprehensive review

The tetrahedron argument for the existence of stress tensor followed by many significant
scientists and authors during about two centuries from 1822 to the present by some
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different versions. These proofs lead to the linear relation between the traction vector
and the unit outward normal vector of the surface. This argument shows that the stress
tensor exists and is independent of the surface characters. In the following, we show the
different processes to prove this argument that exist in many textbooks on continuum
mechanics and the relevant subjects such as fluid dynamics, solid mechanics, elasticity,
plasticity, strength of materials, mathematical physics, etc.

4.1. The first approach.
Stokes in the famous article (1845, [90]), uses the Cauchy tetrahedron argument. On
page 295:

. . . Suppose now the dimensions of the tetrahedron infinitely diminished,
then the resolved parts of the external and of the effective moving forces
will vary ultimately as the cubes, and those of the pressures and tangential
forces as the squares of homologous lines. . . .
The method of determining the pressure on any plane from the pressures
on three planes at right angles to each other, which has just been given,
has already been employed by MM. Cauchy and Poisson.

So, from the part “now the dimensions of the tetrahedron infinitely diminished” we can
tell that Stokes’s proof is based on infinitesimal volume. In this expression the inertia
and body terms “vary ultimately as the cubes” and surface terms vary “as the squares
of homologous lines”. While we showed in the challenge 4 that the surface terms and
the inertia and body term vary by the same order of magnitude, that is, h3.

Let see what is presented in the important book by Love, 1908. On pages 76-78 of the
fourth edition of this book (1944, [57]), during the tetrahedron argument:

¡

ρfx dxdydz “

¡

ρX dxdydz `

ĳ

Xv dS p1q

[where fx, X, and Xv are acceleration, body force, and surface traction,
respectively, all in the x direction.]1

46. Law of equilibrium of surface tractions on small volumes.
From the forms alone of equations (1) . . . we can deduce a result of great
importance. Let the volume of integration be very small in all its di-
mensions, and let l3 denote this volume. If we divide both members of
equation (1) by l2, and then pass to a limit by diminishing l indefinitely,
we find the equation

lim
lÑ0

l´2

ĳ

Xv dS “ 0

. . . The equations of which these are types can be interpreted in the state-
ment:
“The tractions on the elements of area of the surface of any portion of a
body, which is very small in all its dimensions, are ultimately, to a first

1The comments in the brackets [ ] are given by the author of the present article.
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approximation, a system of forces in equilibrium.”
. . . For a first approximation, when all the edges of the tetrahedron are
small, we may take the resultant traction of the face [∆s4]. . .

So, here on these pages of Love’s book, we see clearly the important challenges that
are stated in the previous section. For example, “For a first approximation”, “when
all the edges of the tetrahedron are small”, “Law of equilibrium of surface tractions
on small volumes”, “Let the volume of integration be very small”, and clearly in the
important statement inside the quotation marks that means for a first approximation,
the summation of traction vectors on the surfaces of any portion of a body is zero when
the portion is very small. We find that the Love’s book is very important because
it clearly and correctly represents the classical continuum mechanics in detail. For
example, on these pages he has correctly stated that the results of Cauchy tetrahedron
argument and the relation of traction vectors are approximate, for very small portion of
body, and the relation between traction vectors is for the surfaces of mass element that
do not pass through the same point. If instead of “divide both members of equation (1)
by l2” we divide them by l3, then the limit l Ñ 0 gives:

lim
lÑ0

l´3

ĳ

Xv dS “ lim
lÑ0

l´3

¡

ρpfx ´Xq dxdydz “ ρpfx ´Xq

Similar to the challenge 4, here ρpfx ´Xq is a bounded value and is not generally equal
to zero in continuum media. Therefore, for the existence of the limit on the left hand
side the order of magnitude of the surface integral must be equal to l3, i.e.:

O
´

ĳ

Xv dS
¯

“ l3

that is equal to the order of magnitude of the volume integrals. So, the surface tractions
are not in equilibrium even on small volumes, but are equal to the volume terms includ-
ing inertia and body forces. By dividing “both members of equation p1q by l2” the order
of magnitude of these two parts is l, thus in the “limit by diminishing l indefinitely”,
these two parts go to zero by the same rate. This is the trivial solution of the equation
and cannot be a rigorous base for the existence of stress tensor. The proofs in some
books are similar to the Love’s proof, for example Planck (1932, [71]), Serrin (1959, [79]),
Aris (1989, [3]), Marsden and Hughes (1994, [60]), Ogden (1997, [70]), Leal (2007, [54]),
Gonzalez and Stuart (2008, [33]). As a sample, in the book “Vectors, Tensors, and the
Basic Equations of Fluid Mechanics” (1989, [3]) by Aris, the proof on pages 100-101 is:

The principle of the conservation of linear momentum . . .

d

dt

¡

ρv dV “

¡

ρf dV `

ĳ

tpnq dS p5.11.3q

. . . Suppose V is a volume of given shape with characteristic dimension
d. Then the volume of V will be proportional to d3 and the area of S to
d2, with the proportionality constants depending only on the shape. Now
let V shrink on a point but preserve its shape, then the first two integrals
in Eq. p5.11.3q will decrease as d3 but the last will be as d2. It follows
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that

lim
dÑ0

1

d2

ĳ

tpnq dS “ 0 p5.11.5q

or, the stresses are locally in equilibrium.
To elucidate the nature of the stress system at a point P we consider a
small tetrahedron with three of its faces parallel to the coordinate planes
through P and the fourth with normal n. . . . Then applying the principle
of local equilibrium [Eq. p5.11.5q] to the stress forces when the tetrahedron
is very small we have

tpnq dA´ tp1q dA1 ´ tp2q dA2 ´ tp3q dA3

“ ptpnq ´ tp1qn1 ´ tp2qn2 ´ tp3qn3qdA “ 0.

Now let Tji denote the ith component of tj and tpnqi the ith component of
tpnq so that this equation can be written

tpnqi “ Tjinj.

Let us see what is presented for the existence of stress tensor in the Timoshenko’s
books. In the book “Timoshenko and Goodier, Theory of Elasticity, 1934”, on page 213
according to the 1951 publication [94]:

. . . If these components of stress at any point are known, the stress acting
on any inclined plane through this point can be calculated from the equa-
tions of statics [They considered only the case where acceleration is zero
and the body forces can be neglected, so there is no volume integral]. Let
O be a point of the stressed body and suppose the stresses are known for
the coordinate planes . . . (Fig. 132). To get the stress for any inclined
plane through O, we take a plane BCD parallel to it at a small distance
from O, so that this latter plane together with the coordinate planes cuts
out from the body a very small tetrahedron BCDO. Since the stresses
vary continuously over the volume of the body, the stress acting on the
plane BCD will approach the stress on the parallel plane through O as
the element is made infinitesimal.
In considering the conditions of equilibrium of the elemental tetrahedron
[acceleration is zero] the body forces can be neglected. Also as the element
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is very small we can neglect the variation of the stresses over the sides
and assume that the stresses are uniformly distributed . . .

Timoshenko has repeated almost the same process and comments in another book “His-
tory of Strength of Materials” (1953, [93]). So, in these books we have the average values
of the traction vectors on tetrahedron’s faces and the traction vector on the base surface
of the tetrahedron (surface BCD) is regarded as the traction vector on the inclined sur-
face that is parallel to the surface BCD and passes through point O. Therefore, most of
the challenges hold. Also, this proof is limited to the cases that the mass element is in
equilibrium (acceleration is zero) and the body forces are neglected. Similar process and
assumptions are used for the tetrahedron argument by Prandtl and his coauthors (Eng-
lish translation 2004, [69]). The proofs of the existence of stress tensor in some books
are based on nearly similar process and assumptions to the above process, for example
Sommerfeld (1950, [88]), Biot (1965, [10]), Feynman, Leighton, and Sands (1965, [27])
(using a wedge instead of a tetrahedron), Borg (1966, [12]), Calcote (1968, [15]), Flügge
(1972, [28]), Arfken (1985, [2]), Brekhovskikh and Goncharov (1994, [13]), Salencon
(2001, [75]), Kundu, Cohen, and Dowling (2012, [51]), and Chaves (2013, [20]).

Let us see what is presented by Truesdell and Toupin in the very important book “The
Classical Field Theories, pp. 542-543” (1960, [99]):

. . . Let the altitude of the tetrahedron be h; the area of the inclined face
[∆s4],. . . We may then estimate the volume integrals in p200.1q [the inte-
gral equation of conservation of linear momentum] and apply the theorem
of mean value to the surface integral:

∆s4pn1t
˚
1 ` n2t

˚
2 ` n3t

˚
3 ` t

˚
pnqq ` h∆s4K “ 0, p203.1q

where K is a bound and where t˚
pnq [traction vector on ∆s4] and t˚a [t˚1 ,

t˚2 , and t˚3 ] are the stress vectors at certain points upon the outsides of
the respective faces. We cancel ∆s4 and let h tend to zero, so obtaining

tpnq “ ´pt1n1 ` t2n2 ` t3n3q, p203.2q

where all stress vectors are evaluated at the vertex of the tetrahedron.

So, the expressions “then estimate the volume integrals”, “apply the theorem of mean
value to the surface integral”, and “let h tend to zero” show the presented challenges
in the before section. Here in the last line “where all stress vectors are evaluated at the
vertex of the tetrahedron” is not exactly obtained and is only an approximate result by
this process, because tpnq is defined on the base surface of the tetrahedron (∆s4) and
this surface does not pass exactly through the vertex of the tetrahedron even when h
tends to zero.

In the book “Introduction to the Mechanics of a Continuous Medium” (1969, [59]) by
Malvern, on pages 73-76:

. . . Imagine . . . a tetrahedron or triangular pyramid bound by parts of the
three coordinate planes through O and a fourth plane ABC not passing



14 E. AZADI

through O, . . .
. . . The asterisks indicate average values; thus b˚ is the average value of
the body force per unit mass in the tetrahedron. tpnq˚ is the average value
of the surface traction per unit area on the oblique face; . . .
. . . then the altitude h will be allowed to approach zero so that the vol-
ume and the four surface areas simultaneously approach zero, while the
orientation of ON and the position of O do not change. We postulate
the continuity of all the components of the stress vectors and the body
force and the density as functions of position; it follows that the average
values will approach the local values at the point O, and the result will be
an expression for the traction vector tpnq at the point O in the terms of
the three special surface stress vectors tpkq at O . . .

tpnq˚∆S ` ρ˚b˚∆V ´ tp1q˚∆S1 ´ t
p2q˚∆S2 ´ t

p3q˚∆S3 “ ρ˚∆V
dv˚

dt
.

. . . dividing through by ∆S, and rearranging terms we obtain

tpnq˚ `
1

3
hρ˚b˚ “ tp1q˚n1 ` t

p2q˚n2 ` t
p3q˚n3 `

1

3
hρ˚

dv˚

dt
.

We now let h approach zero. The last term in each member then ap-
proaches zero, while the vectors in the other terms approach the vectors
at the point O as is indicated by dropping the asterisks. The result is in
the limit

tpnq “ tp1qn1 ` t
p2qn2 ` t

p3qn3 “ t
pkqnk. p3.2.7q

This important equation permits us to determine the traction tpnq at a
point, acting on an arbitrary plane through the point, when we know the
tractions on only three mutually perpendicular planes through the point.
Note that this result was obtained without any assumption of equilibrium.
It applies just as well in fluid dynamics as in solid mechanics.

This proof is similar to the presented tetrahedron argument for introducing the Cauchy
tetrahedron argument in the previous section. So, all of the stated challenges hold
in this proof. For example, “plane ABC not passing through O”, “asterisks indicate
average values”, “the average values will approach the local values at the point O”, and
“let h approach zero”. Note that the postulate in the last paragraph is not exact but
as Love has been told [57], is by a first approximation.

Tetrahedron arguments in many books are nearly similar to the presented proofs by
Truesdell and Toupin (1960, [99]) and Malvern (1969, [59]), for example Jaunzemis
(1967, [48]), Ilyushin and Lensky (1967, [46]), Rivlin (1969, [73]), Wang (1979, [100]),
Eringen (1980, [26]), Narasimhan (1993, [66]), Chandrasekharaiah and Debnath (1994,
[19]), Shames and Cozzarelli (1997, [80]), Mase (1999, [62]), Kiselev, Vorozhtsov, and
Fomin (1999, [50]), Batchelor (2000, [7]), Basar and Weichert (2000, [6]), Guyon, Hulin,
Petit, and Mitescu (2001, [40]), Haupt (2002, [43]), Talpaert (2002, [91]), Jog (2002,
[49]), Spencer (2004, [89]), Hutter and Jöhnk (2004, [45]), Han-Chin (2005, [42]), Antman
(2005, [1]), Batra (2006, [8]), Dill (2007, [23]), Graebel (2007, [34]), Irgens (2008, [47]),
Bonet and Wood (2008, [11]), Nair (2009, [65]), Wegner and Haddow (2009, [101]),
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Lai, Rubin, and Krempl (2010, [52]), Epstein (2010, [25]), Slawinski (2010, [85]), Reddy
(2010, [72]), Lautrup (2011, [53]), Dimitrienko (2011, [24]), Capaldi (2012, [16]), Byskov
(2013, [14]), Rudnicki (2015, [74]), and others.

In the book “Introduction to the Mechanics of a Continuous Medium” (1965, [77]) by
Sedov, on pages 130-131:

. . . Consider the volume V as an infinitesimal tetrahedron . . . with faces
MCB, MAB, and MAC perpendicular to the coordinate axes and with
face ABC arbitrarily determined by an externally directed unit normal
vector . . . The stresses on the areas with the normals Q1, Q2, Q3, and n
are denoted by p1, p2, p3, and pn, respectively.
. . . In fact, applying (4.7) [the integral equation of conservation of linear
momentum] to the masses of the volume that are inside the infinitesimal
tetrahedron MABC at the instant in question, we obtain

pρa´ ρF q.
1

3
Sh

“ p´p1S cospzn Q1q ´ p
2S cospzn Q2q ´ p

3S cospzn Q3q ` pn.Sq ` S.Ophq,

where S is the area of the bounding surface ABC [∆s4], and h is the
infinitesimal height of the tetrahedron; Ophq, is a quantity which tends
to zero for hÑ 0. Approaching the limit, as hÑ 0, we obtain

pn “ p
1 cospzn Q1q ` p

2 cospzn Q2q ` p
3 cospzn Q3q p4.10q

In this book, we see “Ophq” that represents the first order approximation. In addition,
the “infinitesimal height of the tetrahedron” and “tends to zero for h Ñ 0” show that
this proof, similar to earlier books, holds only for an infinitesimal tetrahedron. Nearly
the same process is given in the other Sedov’s book (1971, [78]).

In the book “Theoretical Elasticity” (1968, [35]) by Green and Zerna, on page 70:

ż

τ

ρpF i ´ 9ωiq dτ `

ż

A

ti dA “ 0, p2.7.7q

. . . We consider a tetrahedron element bounded by the coordinate planes
at the point yi and a plane whose unit normal is nk measured from inside
to outside of the tetrahedron. If we apply p2.7.7q to this tetrahedron and
take the limit as the tetrahedron tends to zero with nk being unaltered we
have

ti “ nkσki, p2.7.9q

Provided the contributions from the volume integrals may be neglected
compared with the surface integrals, in the limit.

So, the challenges related to the “tetrahedron tends to zero”, “volume integrals may be
neglected compared with the surface integrals, in the limit”, and definition of traction
vectors on the surfaces that do not pass through the same point remain.
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A more general proof is provided by Gurtin and his coauthors [37–39, 61]. Here it is
represented from the book “The Mechanics and Thermodynamics of Continua” (2010,
[38]) by Gurtin, Fried, and Anand. On pages 137-138:

A deep result central to all of continuum mechanics is . . . Cauchy’s the-
orem . . .

tpa,xq “ ´
3
ÿ

i“1

pa.eiqtp´ei,xq p19.24q

PROOF. Let x belong to the interior of Bt. Choose δ ą 0 and consider
the (spatial) tetrahedron Γδ with the following properties: The faces of Γδ
are Sδ, S1δ, S2δ, and S3δ, where a and ´ei are the outward unit normals
on Sδ and Siδ, respectively; the vertex opposite to Sδ is x; the distance
from x to Sδ is δ. Then, Γδ is contained in the interior of Bt for all
sufficiently small δ, say δ ď δ0.
Next, if we assume that b [generalized body term including the inertia
and body force] is continuous, then b is bounded on Γδ. If we apply the
force balance (19.16) to the material region P occupying the region Γδ in
the deformed region at time t, we are then led to the estimate

ˇ

ˇ

ˇ

ż

BΓδ

tpnq da
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ

ż

Γδ

b dv
ˇ

ˇ

ˇ
ď k volpΓδq p19.25q

for all δ ď δ0, where k is independent of δ.
Let Apδq denote the area of Sδ. Since Apδq) is proportional to δ2, while
volpΓδq is proportional to δ3, we may conclude from (19.25) that

1

Apδq

ż

BΓδ

tpnq daÑ 0

as δ Ñ 0. But
ż

BΓδ

tpnq da “

ż

Sδ

tpaq da`
3
ÿ

i“1

ż

Siδ

tp´eq da

and, assuming that tpn,xq is continuous in x for each n, since the area
of Siδ is Apδqpa.eiq,

1

Apδq

ż

BSδ

tpaq daÑ tpa,xq

and
1

Apδq

ż

BSiδ

tp´eiq daÑ pa.eiqtp´ei,xq.

Combining the relations above we conclude that p19.24q is satisfied.

This proof is based on the infinitesimal volume, and in the limit δ Ñ 0 the traction
vector on the base surface of tetrahedron is regarded as the traction vector on the
inclined surface that passes through the vertex point of tetrahedron. The process that
leads to

1

Apδq

ż

BΓδ

tpnq daÑ 0
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is similar to the Love’s proof that was discussed before in detail. Therefore, some of
the challenges remain. The proofs in some books are nearly similar to this process, for
example Ciarlet (1988, [21]), Smith (1993, [86]), Huilgol and Phan-Thien (1997, [44]),
Atkin and Fox (2005, [4]), Oden (2011, [68]), Bechtel and Lowe (2015, [9]).

There is a new proof in the literature that is introduced by this statement: “This proof
was furnished by W. Noll (private communication) in 1967.”, in the chapter “The Linear
Theory of Elasticity” by Gurtin in the book [36]. Then this proof was presented in the
two other books by Truesdell (1997, [98]) and Liu (2002, [56]). This proof is based on
the properties of a linear transformation on vector space [67]. In the book by Leigh
(1968, [55]), it is stated that if a transformation such as T on a vector space has the
following properties then it is usually called a “linear transformation or tensor”. On
page 28 of this book [55]:

. . . linear transformation T . . . is defined by

paq T pu` vq “ T puq ` T pvq

pbq T pαvq “ αT pvq p2.8.1q

Thus in the Noll’s proof, it is tried to prove these properties for the traction vectors.
These properties must be derived using the integral equation of conservation of linear
momentum. This proof is nearly the same in the three books that are presented it
[36,56,98]. Here we represent it from the first book [36]. On pages 48-49:

. . . for any x P B we can extend the function spx, .q to all of V as follows:

spx,vq “ |v|spx,
v

|v|
q x ‰ 0,

spx,0q “ 0. paq

Let α be a scalar. If α ą 0, then

spαvq “ |αv|s
´ αv

|αv|

¯

“ α|v|s
´ v

|v|

¯

“ αspvq, pbq

where we have omitted the argument x. If α ă 0, then pbq and Cauchy’s
reciprocal theorem p2q [spnq “ ´sp´nq] yield

spαvq “ sp|α|p´vqq “ |α|sp´vq “ αspvq.

Thus spx, .q is homogeneous.
To show that spx, .q is additive we first note that

spx,w1 `w2q “ spx,w1q ` spx,w2q

whenever w1 and w2 are linearly dependent. Suppose then that w1 and
w2 are linearly independent. Fix ε ą 0 and consider π1, the plane through
x0 with normal w1; π2, the plane through x0 with normal w2; and π3,
the plane through x0 ` εw3 with normal w3, where

w3 “ ´pw1 `w2q. pcq

Consider the solid A “ Apεq bounded by these three planes and two
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planes parallel to both w1 and w2 and a distance δ from x0 (see Fig. 7).
Let ε and δ be sufficiently small that A is a part of B. Then

BA “
5
ď

i“1

Wi,

where Wi, is contained in πi (i “ 1, 2, 3), and W4 and W5 are parallel
faces. Moreover,

ai “
|wi|

|w3|
a3 pi “ 1, 2q,

a3 “ Opεq as εÑ 0,

υpAq “ ε

2
|w3|a3 “ 2δa4 “ 2δa5,

where ai, is the area of Wi. Thus, by the continuity of sn,

c ”
|w3|

a3

ż

BA
sn da “

3
ÿ

i“1

|wi|

ai

ż

Wi

spx,
wi

|wi|
q dax `Opεq as εÑ 0,

and paq implies

c “
3
ÿ

i“1

spx0,wiq ` op1q as εÑ 0.

On the other hand, we conclude from estimate paq [

|

ż

BP

sn da| ď kυpP q

where υpP q is the volume of P ] in the proof of p2q [spnq “ ´sp´nq] that

c “ Opεq as εÑ 0.

The last two results yield

3
ÿ

i“1

spx0,wiq “ 0;

since spx, .q is homogeneous, this relation and pcq imply that spx0, .q
is additive. Thus spx0, .q is linear, and, since x0 P B was arbitrarily
chosen, Noll’s proof is complete.
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This is a creative proof by Noll that shows a new insight to the mathematical aspects
of traction vectors. But this proof is based on the limited volume and holds for the
infinitesimal mass element. The expression “ε Ñ 0” shows this. Also, the average
values of the traction vectors are used and the traction vector on the surface π3 is
regarded as the traction vector on the surface that is parallel to π3 and passes through
point x0 in the limit. So, some of the challenges remain.

Leigh in the book “Nonlinear Continuum Mechanics” (1968, [55]) uses the properties of
linear transformation to prove the existence of stress tensor by a different construction
that is used in the Noll’s proof. On pages 129-130:

t “ fpx,nq p7.5.5q
ż

Bχ

t da`

ż

χ

bρ dv “

ż

χ

:xρ dv p7.5.6q

Next we prove Cauchy’s fundamental theorem for the stress

t “ fpx,nq “ T pxqn p7.5.7q

that is, the stress vector t at x acting on the surface with direction n

is a linear transformation of n. The linear transformation or tensor T
is called the stress tensor. Consider the elemental tetrahedron of Fig.
7.5.2 . . . The values of the stress vectors on the faces are given by p7.5.5q,
where we use the same x, since we are going to allow the tetrahedron to
shrink to the point x in the limit. Thus we have

t “ fpx,nq ti “ fpx,niq p7.5.8q

Thus applying p7.5.6q to the elemental tetrahedron in the limit as A, Ai Ñ
0, we note that volume integrals are negligible compared with the surface
integrals. The surface integral yields

t “ ´
1

A
pA1t1 ` A2t2 ` A3t3q p7.5.9q
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Now a closed surface S satisfies the condition
ż

S

n da “ 0 p7.5.10q

Applying p7.5.10q to our elemental tetrahedron, we get

n “ ´
1

A
pA1n1 ` A2n2 ` A3n3q p7.5.11q

Combining p7.5.8q, p7.5.9q, and p7.5.11q, we have, suppressing x,

f
´

´
1

A
Aini

¯

“ ´
1

A
Aifpniq p7.5.12q

and we see that fpnq satisfies the definition p2.8.1q of a linear transfor-
mation [two properties for linear transformation that we presented them
before the Noll’s proof], which proves p7.5.7q.

In this proof, Leigh uses three linearly independent traction vectors rather than two
linearly traction vectors as used in the Noll’s proof. As compared with the previous
proofs that use a tetrahedron element with three orthogonal faces, in the Leigh’s proof
it is not needed the faces be orthogonal. But as previous proofs, this proof is based
on the infinitesimal volume and is the sequence of the limit A Ñ 0. Here the “volume
integrals are negligible compared with the surface integrals” shows the challenge 4, so
some of the challenges remain. The proof in the book by Lurie (2005, [58]) is similar to
this proof.

4.2. The second approach.
During the comprehensive review of a large number of books on continuum mechanics
and the relevant subjects, we found that there are two general approaches to the tetrahe-
dron arguments and the proofs of the existence of stress tensor. In the first approach, the
traction vectors and body terms are not defined at the same point. In fact, the traction
vector on the base surface of the infinitesimal tetrahedron (∆s4) is regarded as the trac-
tion vector on the inclined surface that is parallel to ∆s4 and passes through the vortex
point of the tetrahedron. So, the challenges on the equation t4`nxt1`nyt2`nzt3 “ 0
and most of the other stated challenges hold. Almost all the proofs in the previous
subsection can be regarded in the first approach. Most of the tetrahedron arguments
and the proofs of the existence of stress tensor are based on the first approach.

But in the second approach, the traction vectors and body terms are explicitly defined
at the same point, e.g. in the tetrahedron arguments the vortex point (o). Then
by an approximate process for infinitesimal tetrahedron the equation t4o ` nxt1o `
nyt2o ` nzt3o “ 0 is obtained. So, in the second approach all the traction vectors in
this equation are exactly defined at the same point (o) on different surfaces that pass
exactly through this point. Here some of the challenges, for example challenges 6, 7, and
8 that are related to the definition of traction vectors at different points in the equation
t4`nxt1`nyt2`nzt3 “ 0 are removed. But these proofs are based on the approximate
process and are limited to infinitesimal tetrahedron, so the other relevant challenges
remain. A few of scientists and authors in continuum mechanics followed this approach.
They are Muskhelishvili 1933 (English translation 1977, [64]), Sokolnikoff (1946, [87]),
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Fung (1965, [30] and 1969, [31]), Godunov and Romenskii (1998, [32]), and Temam
and Miranvilli (2000, [92]). The proofs that are presented in all these books are nearly
similar. Here, we present Muskhelishvili’s proof and Fung’s proof as two samples of these
books. In the book “Some Basic Problems of the Mathematical Theory of Elasticity,
1933” by Muskhelishvili on pages 8-10 from the English translation, (1977, [64]):

Through the point M draw three planes, parallel to the coordinate planes,
and in addition, another plane having the normal n and lying a distance
h from M . These four planes form a tetrahedron, three faces of which
are parallel to the coordinate planes, while the fourth ABC [∆s4] is the
face to be considered. . . . the transition to the limit hÑ 0 the size of the
tetrahedron will be assumed infinitely small.
[here (Xx, Yx, Zx), (Xy, Yy, Zy), (Xz, Yz, Zz), and (Xn, Yn, Zn) are the
components of traction vectors at the point M on the four surfaces with
unit normal vectors ex, ey, ez, and n, respectively. X, Y , Z are the
components of body terms at the point M .]
. . . The projection of the body force equals pX ` εqdV , where dV is the
volume of the tetrahedron. The value X refers to the point M and ε is
an infinitely small quantity . . . Further, the projection of the tractions,
acting on the face ABC is pXn ` ε1qσ where σ denotes the area of the
triangle ABC [∆s4] and ε1 is again infinitely small; Xn, Yn, Zn, as will be
remembered, are the components of the stress vector acting on the plane
through M with normal n.
Finally the projection of the external forces acting on MBC, normal to
Ox, is p´Xx ` ε1qσ1 where σ1 is the area of MBC. . . . For the sides
MCA and MAB one obtains similarly p´Xy ` ε2qσ2 and p´Xz ` ε3qσ3

respectively. Here ε1, ε2 and ε3 denote again infinitesimal quantities. [So,
the conservation of linear momentum in x direction is:]

pX ` εq
1

3
hσ ` pXn ` ε

1
qσ ` p´Xx ` ε1qσ cospn, xq

` p´Xy ` ε2qσ cospn, yq ` p´Xz ` ε3qσ cospn, zq “ 0.

Dividing by σ and taking the limit h Ñ 0 one obtains the following for-
mulae . . . [similarly in y and z directions]:

Xn “ Xx cospn, xq `Xy cospn, yq `Xz cospn, zq

Yn “ Yx cospn, xq ` Yy cospn, yq ` Yz cospn, zq

Zn “ Zx cospn, xq ` Zy cospn, yq ` Zz cospn, zq

So, the traction vector on the inclined surface that passes exactly through point M is
obtained by an approximate process and by “taking the limit hÑ 0”.

In the book “A First Course in Continuum Mechanics, 1969” by Fung, on pages 69-71
of the third edition, (1994, [31]):

Let us consider an infinitesimal tetrahedron formed by three surfaces par-
allel to the coordinate planes and one normal to the unit vector v. Let
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the area of the surface normal to v be dS. . . .
The forces in the positive direction of x1, acting on the three coordinate
surfaces, can be written as

p´τ11 ` ε1qdS1, p´τ21 ` ε2qdS2, p´τ31 ` ε3qdS3,

where τ11, τ21, τ31 are the stresses at the vertex P opposite to dS. The
negative sign is obtained because the outer normals to the three surfaces
are opposite in sense with respect to the coordinate axes, and the ε’s are
inserted because the tractions act at points slightly different from P . If we
assume that the stress field is continuous, then ε1, ε2, ε3 are infinitesimal
quantities. On the other hand, the force acting on the triangle normal to
v has a component pT1 ` εqdS in the positive x1-axis direction, the body
force has an x1-component equal to pX1 ` ε1qdv, and the rate of change

of linear momentum has a component ρ 9V1dv, where 9V1, is the component
of acceleration in the direction of x1. Here, T1 and X1 refer to the point
P , and ε and ε1 are again infinitesimal. The first equation of motion is
thus

p´τ11 ` ε1qv1dS ` p´τ21 ` ε2qv2dS ` p´τ31 ` ε3qv3dS

` pT1 ` εqdS ` pX1 ` ε
1
q
1

3
hdS “ ρ 9V1

1

3
hdS. p3.3´ 3q

Dividing through by dS, taking the limit as h Ñ 0, and noting that ε1,
ε2, ε3, ε, ε1 vanish with h and dS, one obtains

T1 “ τ11v1 ` τ21v2 ` τ31v3, p3.3´ 4q

Fung has also discussed the error of this approximate process. On page 71, [31]:

Checking Acceptable Errors

. . . We claimed that the sum of the terms

ε1v1 ` ε2v2 ` ε3v3 ` ε`
1

3
pε1 ´ ρ 9V1q p3.3´ 5q

is small, compared with the terms that are retained; i.e.,

T1, τ11v1, τ21v2, τ31v3, p3.3´ 6q

when we take Eq. p3.3 ´ 3q to the limit as h Ñ 0 and ∆S Ñ 0. Now, if
we are not allowed to take the limit as h Ñ 0 and ∆S Ñ 0, but instead
we are restricted to accept h no smaller than a constant h˚ and ∆S no
smaller than a constant multiplied by (h˚q2, then the quantity listed in
line p3.3 ´ 5q must be evaluated for h “ h˚ and ∆S “ const..ph

˚q2 and
must be compared with the quantities listed in line p3.3´ 6q. A standard
of how small is negligible must be defined, and the comparison be made
under that definition. If we find the quantity in line p3.3 ´ 5q negligible
compared with those listed in line p3.3 ´ 6q, then we can say that Eq.
p3.3 ´ 3q or Eq. p3.3 ´ 2q [Ti “ vjτji] is valid. This tedious step should
be done, in principle, to apply the continuum theory to objects of the real
world.
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4.3. Advanced mathematical works.
In recent decades, some proofs of the existence of Cauchy stress tensor or general Cauchy
fluxes are presented in the geometrical language mathematics and advanced analysis.
For example, using variational method [29], considering general Cauchy fluxes under
weaker conditions [81–83], representing by measures [84], considering contact interac-
tions as maps on pairs of subbodies and the possibility of handling singularities due to
shocks and fracture [76], considering contact actions in N-th gradient generalized con-
tinua [22], etc. Each of these articles shows some aspects of the contact interactions in
continuum physics. Here considering these attempts is outside the scope of this article
that is based on the review of the proofs of the existence of stress tensor and their
challenges in continuum mechanics and the relevant subjects.

5. The work of Hamel, its improvements and challenges

Let us see what is presented by Hamel in the famous book “Theoretische Mechanik, pp.
513-514” (1949, [41]). We present this proof completely:

Dann soll (I) nach Division mit dV die genauere Form

%ω “
ÿ

χ` lim
∆VÑ0

1

∆V

¿

σn dF pIAq

bekommen und dieser Grenzwert existieren. Das Integral eistreckt sich
über die Oberfläche des kleinen Volumens um den betrachteten Punkt,
gegen den ∆V konvergiert.
Aus der Existenz des Grenzwertes folgen die Sätze:

1q σn “ σx cospn, xq ` σy cospn, yq ` σz cospn, zq

σx usw. bedeuten die Spannungen an Flächenelementen, deren äußere
Normalen Parallelen zur x, y, z-Achse sind. Setzt man

σx “ Xxi` Yxj ` Zxk,

σy “ Xyi` Yyj ` Zyk,

σz “ Xzi` Yzj ` Zzk

mit i, j, k als Einheitsvektoren in den drei Achsenrichtungen, so er-
scheint hier der Spannimgstensor

$

&

%

Xx Yx Zx
Xy Yy Zy
Xz Yz Zz

,

.

-

,

und man kann 1) auch schreiben:

σn “ σn

wenn

n “ i cospn, xq ` j cospn, yq ` k cospn, zq
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den Einheitsvektor der äußeren Normalen angibt. (An der gedachten
Fläche wird also die Existenz einer solchen im allgemeinen vorausge-
setzt.)
1a) In 1) ist insbesondere enthalten

σ´n “ ´σn,

d. h. das Gegenwirkungsprinzip für die inneren Spannungen, das also
hier beweisbar ist.
2) Die Ausführung des Grenzüberganges in pIAq ergibt

%ω “
ÿ

χ`
Bσx
Bx

`
Bσy
By

`
Bσz
Bz

Hamel’s proof is based on the existence of the limit in the conservation of linear mo-
mentum equation pIAq. This is the best part of this proof and the main improvement
of his work. The original difference of this stage from the other previous similar works
is that they divided the equation by ∆S that leads to the trivial solution. Because as
indicated previously, the two parts (surface and volume integrals) of the equation have
the same order of magnitude, i.e., l3, and by dividing by ∆S they still have the same
order of magnitude, i.e., l. So, they go to zero by the same rate when the element goes
to infinitesimal volume, and this is a trivial result. But Hamel divided the equation by
∆V and this leads to the logical result of the existence the limit in the equation pIAq.
Therefore, some of the important challenges are removed by Hamel’s proof.

But this proof is limited to ∆V Ñ 0 and there is no statement for a mass element
with any volume size in continuum media. Because we must prove that the existence
of stress tensor does not depend on the volume size of the considered mass element.
So, the challenge 2 remains. In addition, there is no process to show how the equation
σn “ σx cospn, xq ` σy cospn, yq ` σz cospn, zq is obtained from the existence of the
limit in equation pIAq. This will be an important step for the existence of stress tensor.

6. The work of Backus, its improvements and challenges

Now let us see the Backus’s proof from the book “Continuum Mechanics” (1997, [5]).
Unfortunately, the Backus’s work seems to have attracted no attention of the scientists
and authors in continuum mechanics, so far. However, this proof removes most of the
challenges. First, we represent some notations according to this book. On page 163:

. . . pP,AP q is oriented real physical space. . . . The open set in P occupied
by the particles at time t will be written Kptq, and the open subset of
Kptq consisting of the particles . . . will be written K 1ptq.

On pages 171-172:

. . . ~Sp~r, t, n̂P q “ ~Sforcep~r, t, n̂P q ` ~Smfpp~r, t, n̂P q is called the stress on the
surface pS, n̂P q. The total force exerted by the material just in front of
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dAP p~rq on the material just behind dAP p~rq is

d ~FSp~rq “ dAP p~rq~Sp~r, t, n̂P q. p13.2.7q

This is called the surface force on dAP p~rq.. . .
. . . Combining the physical law p13.2.1q with the mathematical expressions
p13.2.3q and p13.2.9q gives

ż

K1

dVP p~rqpρ~a´ ~fqEp~r, tq “

ż

BK1

dAP p~rq~Sp~r, t, n̂P p~rqq. p13.2.10q

where K 1 “ K 1ptq and n̂P p~rq is the unit outward normal to BK 1 at ~r P
BK 1.

In the following paragraphs, Backus has discussed some challenges. These are some
aspects of the improvements of this work. On pages 172-173:

To convert p13.2.10q to a local equation, valid for all ~r P Kptq at all times
t, (i.e., to “remove the integral signs”) we would like to invoke the van-
ishing integral theorem, . . . The surface integral in p13.2.10q prevents this.
Even worse, p13.2.10q makes our model look mathematically self-contradictory,
or internally inconsistent. Suppose that K 1 shrinks to a point while pre-
serving its shape. Let λ be a typical linear dimension of K 1. Then the
left side of p13.2.10q seems to go to zero like λ3, while the right side goes
to zero like λ2. How can they be equal for all λ ą 0?
Cauchy resolved the apparent contradiction in 1827. He argued that the
right side of p13.2.10q can be expanded in a power series in λ, and the va-
lidity of p13.2.10q for all λ shows that the first term in this power series,
the λ2 term, must vanish. In modern language, Cauchy showed that this
can happened iff at every instant t, at every ~r P Kptq, there is a unique

tensor
ÐÑ
S
E
p~r, tq . . . such that for each unit vector n̂ . . . ,

~Sp~r, t, n̂q “ n̂.
ÐÑ
S
E
p~r, tq. p13.2.11q

. . . The physical quantity
ÐÑ
S is also called the Cauchy stress tensor.

Then on page 173 the Cauchy’s theorem of the existence of stress tensor is stated:

The argument which led Cauchy from p13.2.10q to p13.2.11q is fundamen-
tal to continuum mechanics, so we examine it in detail.. . .

Theorem 13.2.28 (Cauchy’s Theorem) . . . Suppose that for any open
subset K 1 of K whose boundary BK 1 is piecewise smooth, we have

ż

K1

dVUp~rq~fp~rq “

ż

BK1

dAUp~rq~Sp~r, n̂Up~rqq, p13.2.13q

. . . Then for each ~r P K there is a unique
ÐÑ
S p~rq . . . such that for all n̂

. . . ,
~Sp~r, n̂q “ n̂.

ÐÑ
S p~rq. p13.2.14q
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Backus uses two lemmas to prove the “Cauchy’s Theorem”. The first lemma on pages
174-176:

Two lemmas are required. [The first lemma:]

Lemma 13.2.29 Suppose ~f and ~S satisfy the hypotheses of theorem 13.2.28.
Let ~r0 be any point in K and let K 1 be any open bounded (i.e., there is a
real M such that ~r P K 1 ñ }~r} ďM) subset of U , with piecewise smooth
boundary BK 1. We don’t need K 1 Ď K. Then

ż

BK1

dAUp~rq~Sp~r0, n̂Up~rqq “ ~0V , p13.2.15q

if n̂Up~rq is the unit outward normal to BK 1 at ~r P BK 1 and dAUp~rq is the
element of area on BK 1.

Proof of Lemma 13.2.29: For any real λ in 0 ă λ ă 1, define ~rλ : U Ñ
U by ~rλp~rq “ ~r0 ` λp~r ´ ~r0q for all ~r P U . Since ~rλp~rq ´ ~r0 “ λp~r ´ ~r0q,
~rλ shrinks U uniformly toward ~r0 by the factor λ. The diagram above is
for λ « 1{2. Define K 1

λ “ ~rλpK
1q so BK 1

λ “ ~rλpBK
1q. Choose ~r P BK 1

and let ~rλ “ ~rλp~rq. Let dAp~rq denote a small nearly plane patch of sur-
face in BK 1, with ~r P dAp~rq, and use dAp~rq both as the name of this set
and as the numerical value of its area. Let the set dAλp~rλq be defined
as ~rλpdAp~rqq, and denote its area also by dAλp~rλq. Then by geometric
similarity

dAλp~rλq “ λ2dAp~rq. p13.2.16q

Let n̂p~rq be the unit outward normal to BK 1 at ~r, and let n̂λp~rλq be the
unit outward normal to BK 1

λ at ~rλ. By similarity, n̂p~rq and n̂λp~rλq point
in the same direction. Being unit vectors, they are equal:

n̂λp~rλq “ n̂p~rq. p13.2.17q

Since ~r0 is fixed, it follows that
ż

BK1
λ

dAλp~rλq~Sp~r0, n̂λp~rλqq “ λ2

ż

BK1

dAp~rq~Sp~r0, n̂p~rqq, p13.2.18q
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If λ is small enough, K 1 Ď K. Then, by hypothesis, we have p13.2.13q
with K 1 and BK 1 replaced by K 1

λ and BK 1
λ. Therefore2

ż

K1
λ

dV p~rq~fp~rq “

ż

BK1
λ

dAλp~rλq
!

~Sp~rλ, n̂λp~rλqq ´ ~Sp~r0, n̂λp~rλqq
)

`

ż

BK1
λ

dAλp~rλq~Sp~r0, n̂λp~rλqq.

From p13.2.18q it follows that
ż

BK1

dAp~rq~Sp~r0, n̂p~rqq “
1

λ2

ż

K1
λ

dV p~rq~fp~rq

`
1

λ2

ż

BK1
λ

dAλp~rλq
!

~Sp~rλ, n̂λp~rλqq ´ ~Sp~r0, n̂λp~rλqq
)

. p13.2.19q

Let m~Spλq “ maximum value of }~Sp~r0, n̂q ´ ~Sp~r, n̂q} for all ~r P BK 1
λ and

all n̂ P NU .
Let m~f pλq “ maximum value of |~fp~rq| for all ~r P K 1

λ.

Let |BK 1
λ| “ area of BK 1

λ, |BK 1| “ area of BK 1.
Let |K 1

λ| “ volume of K 1
λ, |K 1| “ volume of K 1.

Then |BK 1
λ| “ λ2|BK 1| and |K 1

λ| “ λ3|K 1|, so p10.2.3q and p13.2.19q imply
›

›

›

ż

BK1

dAp~rq~Sp~r0, n̂p~rqq
›

›

›
ď λ|K 1

|m~f pλq ` |BK
1
|m~Spλq. p13.2.20q

As λ Ñ 0, m~f pλq remains bounded (in fact Ñ }fp~r0q}) and m~Spλq Ñ 0

because ~S : K ˆ NU Ñ V is continuous. Therefore, as λ Ñ 0, the right
side of p13.2.20q Ñ 0. Inequality p13.2.20q is true for all sufficiently small
λ ą 0, and the left side is non-negative and independent of λ. Therefore
the left side must be 0. This proves p13.2.15q and hence proves lemma
13.2.29.

So, the result of this lemma is the fundamental equation p13.2.15q for traction vectors
at the given point ~r0, as the following:

ż

BK1

dAUp~rq~Sp~r0, n̂Up~rqq “ ~0V

If we compare this equation with the presented similar equations in the previous sections,
the lemma 13.2.29 and its proof are the improved achievements by Backus. Because:

‚ This equation is obtained by an exact process, not by an approximate process.
‚ This equation is exactly valid not only for an infinitesimal volume where the

volume of K 1 tends to zero but also for any volume of K 1 in continuum media.
‚ In this integral equation the position vector is fixed at the point ~r0, so the stress

vector changes only by changing the unit normal vector on the surface of the
mass element at a given time. This is the key character that leads to the exact
validation of this equation for any volume of mass element in continuum media.
In the former proofs, stress vector changes by changing both the position vector

2In the first integral on the right hand side, B is missed in the original book.
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~r and the unit normal vector on surface of the mass element at a given time and
this leads to the approximate proofs for only the mass elements with infinitesimal
volumes.

Backus uses a second lemma to prove the existence of stress tensor based on the equation
p13.2.15q. On pages 176-180:

We also need [The second lemma:]

Lemma 13.2.30 Suppose ~S : NU Ñ V . Suppose that for any open set K 1

with piecewise smooth boundary BK 1, ~S satisfies
ż

BK1

dAp~rq~Spn̂p~rqq “ ~0V p13.2.21q

where n̂p~rq is the unit outward normal to BK 1 as ~r P BK 1. Suppose
F : U Ñ V is defined as follows:

F p~0Uq “ ~0V and if ~u ‰ ~0U , F p~uq “ }~u}~Sp
~u

}~u}
q. p13.2.22q

Then F is linear.

Proof of Lemma 13.2.30: a) F p~uq “ F p~uq for all ~u P U . To prove
this, it suffices to prove

~Sp´n̂q “ ´~Spn̂q for all n̂ P NU . p13.2.23q

Let K 1 be the flat rectangular box shown at upper right. For this box,
p13.2.21q gives

L2~Spn̂q ` L2~Sp´n̂q ` εLp~Spn̂1q ` ~Sp´n̂1q ` ~Spn̂2q ` ~Sp´n̂2qq “ ~0V .

Hold L fixed and let εÑ 0. Then divide by L2 and p13.2.23q is the result.
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b) If c P R and ~u P U , F pc~uq “ cF p~uq.

i) If c “ 0 or ~u “ ~0U , this is obvious from F p~0Uq “ ~0V .

ii) If c ą 0 and ~u ‰ ~0U , F pc~uq “ }c~u}~Spc~u{}c~u}q “ c}~u}~Spc~u{c}~u}q “

c}~u}~Sp~u{}~u}q “ cF p~uq.

iii) If c ă 0, F pc~uq “ ´F p´c~uq by a) above. But ´c ą 0 so F p´c~uq “
´cF p~uq by ii). Then F pc~uq “ ´p´cqF p~uq “ cF p~uq.

c) F p~u1 ` ~u2q “ F p~u1q ` F p~u2q for all ~u1, ~u2 P U .

i) If ~u1 “ ~0U , F p~u1 ` ~u2q “ F p~u2q “ ~0V ` F p~u2q “ F p~u1q ` F p~u2q.

ii) If ~u1 ‰ ~0U and ~u2 “ c~u1 then F p~u1 ` ~u2q “ F pp1 ` cq~u1q “

p1` cqF p~u1q “ F p~u1q ` cF p~u1q “ F p~u1q ` F pc~u1q “ F p~u1q ` F p~u2q.

iii) If t~u1, ~u2u is linearly independent, let ~u3 “ ´~u1 ´ ~u2. We want to
prove F p´~u3q “ F p~u1q ` F p~u2q, or ´F p~u3q “ F p~u1q ` F p~u2q, or

F p~u1q ` F p~u2q ` F p~u3q “ ~0V . p13.2.24q

To prove p13.2.24q note that since ~u1, ~u2 are linearly independent, we can
define the unit vector ν̂ “ p~u1ˆ~u2q{}~u1 ˆ ~u2}. We place the plane of this
paper so that it contains ~u1 and ~u2, and ν̂ points out of the paper. The
vectors ~u1, ~u2, ~u3 form the three sides of a nondegenerate triangle in the
plane of the paper. ν̂ˆ~ui is obtained by rotating ~ui 90˝ counterclockwise.
If we rotate the triangle with sides ~u1, ~u2, ~u3 90˝ counterclockwise, we
obtain a triangle with sides ν̂ˆ~u1, ν̂ˆ~u2, ν̂ˆ~u3. The length of side ν̂ˆ~ui
is }ν̂ ˆ ~ui} “ }~ui}, and ~ui is perpendicular to that side and points out of
the triangle. Let K 1 be the right cylinder whose base is the triangle with
sides ν̂ ˆ ~ui, and whose generators perpendicular to the base have length
L. The base and top of the cylinder have area A “ }~u1ˆ ~u2}{2 and their
unit outward normals are ~ν and ´~ν. The three rectangular faces of K 1

have areas L}~ui} and unit outward normals ~upiq{}~upiq} Applying p13.2.21q
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to this K 1 gives

A~Spν̂q ` A~Sp´ν̂q `
3
ÿ

i“1

L}~ui}~Sp~ui{}~ui}q “ ~0V .

But ~Spν̂q “ ´~Sp´ν̂q so dividing by L and using p13.2.22q gives p13.2.23q
[correction p13.2.24q].

Corollary 13.2.44 (to Lemma 13.2.30.) Under the hypotheses of lemma

13.2.30, there is a unique
ÐÑ
S . . . such that for all n̂ P NU

~Spn̂q “ n̂.
ÐÑ
S . p13.2.25q

So, Backus uses two lemmas to prove the Cauchy’s theorem. The first lemma 13.2.29
leads to the fundamental integral equation p13.2.15q for traction vectors at the exact
point ~r0, that has some important enhancements as compared with other works. In the
second lemma 13.2.30, he tries to prove the existence of stress tensor based on equation
p13.2.15q.

In the second lemma there is a process similar to the process in the Noll’s proof in [36]
to prove the properties of the linear transformation for traction vectors that we have
discussed it in the previous sections. But here this proof is on a different base from
the Noll’s proof. We saw that the Noll’s proof was based on the infinitesimal volume
and where the element’s lengths approach zero [36, 56, 98]. But here, Backus applies
the Noll’s equation p13.2.22q to the obtained integral equation p13.2.15q that is exactly
valid for any volume of the mass element. Therefore, all of the relevant challenges to
this step are removed in the Backus proof.

A challenge is related to part (a) in the proof of lemma 13.2.30, where in the equation:

L2~Spn̂q ` L2~Sp´n̂q ` εLp~Spn̂1q ` ~Sp´n̂1q ` ~Spn̂2q ` ~Sp´n̂2qq “ ~0V .

the expression “Hold L fixed and let ε Ñ 0. Then divide by L2 and p13.2.23q is the
result”, may be interpreted as the result is valid only for a thin flat rectangular box
(i.e., infinitesimal volume). But if we replace this expression by:

“Hold L fixed and let ε change, it is not necessary that ε be a small value. Since the
first two terms are independent of ε, we must have ~Spn̂q ` ~Sp´n̂q “ ~0V . So, p13.2.23q is
the result.”

This implies that the important equation ~Sp´n̂q “ ´~Spn̂q is independent of the volume
of mass element. Therefore, the challenges related to the infinitesimal volume are re-
moved. Then, in parts (b) and (c), Backus proves exactly the essential properties of a

linear transformation in vector space for ~Spn̂q. Since a linear transformation in vector
space can be shown by a second order tensor, the Backus’s proof of the existence of stress
tensor is completed. Also, in order to derive the differential equation of conservation of
linear momentum, Backus uses the divergence theorem.
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7. Conclusion

In this article, we studied the tetrahedron arguments and the proofs of the existence
of stress tensor in the literature. First, we showed the birth, importance and location
of the tetrahedron argument and the existence of stress tensor in the foundation of
continuum mechanics. By representation of the formal tetrahedron argument in de-
tail, that is presented in many books, we extracted some fundamental challenges and
discussed their importance. These conceptual challenges are related to the result of
applying the conservation of linear momentum to any mass element in continuum me-
dia, the order of magnitude of the surface and volume terms in the integral equation
of conservation of linear momentum, the definition of traction vectors on the surfaces
that pass through the same point, the limited and approximate processes in the deriva-
tion of stress tensor, and some others. Then, in a comprehensive review of a large
number of the relevant books during about two centuries from 1823 until now, we pre-
sented the different versions of tetrahedron argument and the proofs of the existence
of stress tensor, and in each of them the challenges and the improvements are dis-
cussed. They can be classified in two general approaches. In the first approach, that
is followed in most texts, the traction vectors are not defined on the surfaces that pass
through the same point, but in a limited and approximate process when the volume
of the mass element goes to zero, the traction vectors on the surfaces of the mass ele-
ment are regarded as the traction vectors on the surfaces that pass through the same
point. In the second approach, that is followed in a few books, the traction vectors
are exactly defined at the same point on the different surfaces that pass through that
point. Then in a limited and approximate process when the volume of the mass el-
ement goes to zero, a linear relation that leads to the existence of stress tensor, is
obtained. By this approach some of the challenges are removed. We also presented
and discussed the improved works of Hamel and Backus. Most of the challenges on
the existence of stress tensor are removed in the unknown and original work of Backus.
We presented the main parts of this proof and studied its improvements and challenges.
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