Holistic Non-Unique Clustering

ISSN 1751-3030

Author:

Ramesh Chandra Bagadi Data Scientist INSOFE (International School Of Engineering), Hyderabad, India. rameshcbagadi@uwalumni.com +91 9440032711

Technical Note

Abstract

In this research technical Note the author have presented a novel method to find all Possible Clusters given a set of M points in N Space.

Theory

Given *M* number of points $\bar{x}_i \in \mathbb{R}^N$, i = 1 to *M*, each belonging to \mathbb{R}^N , we first find the Proximity Matrix P_{ij} for each (*M* number of) point with each of all (*M* Number of points) points, inclusive of itself. The Proximity can be found using Euclidean distance or using the concept stated in [1]. We now find the *Proximity Full Contrast Ratio* $\delta_{\frac{Min}{Max}} = \frac{Min(P_{ij})}{Max(P_{ij})}$ with only those values of $P_{ij} \neq 0$. Now, we consider any P(i, j) which are $\left(\frac{M^2 - M}{2}\right)$ in number as The Proximity Matrix is Symmetric and also all the diagonal elements are equal to zero, and compute the distance $d\left\{P(i, j), \delta_{\frac{Min}{Max}}\right\} = P(i, j) \pm \left(\delta_{\frac{Min}{Max}}\right)(P(i, j))$. Now, we consider any point $\bar{x}_i \in \mathbb{R}^N$ and find all points (inclusive of \bar{x}_i) that have at least one neighbouring point within the distance $d\left\{P(i, j), \delta_{\frac{Min}{Max}}\right\}$, considered among themselves. We say that all such points form one

Cluster. In this fashion, we can find at most $\left(\frac{M^2 - M}{2}\right)$ number of overlapping Clusters where the membership of a point may not be unique to a given Cluster. We call this type of Clustering as Holistic Non-Unique Clustering. Also, we can consider, all possible Proximity Contrast Ratio's among the $\left(\frac{M^2 - M}{2}\right)$ number of unique elements in the Proximity Matrix and can get at most $2\left(\frac{M^2 - M}{2}\right)$ number of

overlapping Clusters for each of the $\left(\frac{M^2-M}{2}\right)C_2$ number of possible Proximity Contrast Ratio's Possible. Therefore, we can see at most $2\left\{\left(\frac{M^2-M}{2}\right)C_2\right\}\left(\frac{M^2-M}{2}\right)$ number of clusters for the given Set of M Points.

Here, the *Proximity Contrast Ratio* can be defined as *Proximity Contrast Ratio*

$$\begin{split} &\delta_{\frac{i,j}{l,m}} = \frac{P(i,j)}{P(l,m)} \text{ with only those values of } P_{ij} \neq 0 \text{ and } i = 1 \text{ to } M, j = 1 \text{ to } M \text{ with} \\ &(i,j) \neq (l,m), \text{ i.e., } i \neq l \text{ and } j \neq m \text{ simul tan eously. Non simul tan eously, they can } . \end{split}$$

$$be equal.$$

References

1. Bagadi, R. (2017). Using the Appropriate Norm In The K-Nearest Neighbours Analysis. ISSN 1751-3030. PHILICA.COM Observation number 173.

http://www.philica.com/display_observation.php?observation_id=173

- 2. http://www.philica.com/advancedsearch.php?author=12897
- 3. http://www.vixra.org/author/ramesh_chandra_bagadi