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Abstract. The birth of modern continuum mechanics is the Cauchy’s idea for trac-
tion vectors and his achievements of the existence of stress tensor and derivation of
the general equation of motion. He gave a proof of the existence of stress tensor that
is called Cauchy tetrahedron argument. But there are some challenges on the different
versions of tetrahedron argument and the proofs of the existence of stress tensor. We
give a new proof of the existence of stress tensor and derivation of the general equa-
tion of motion. The exact tetrahedron argument gives us, for the first time, a clear
and deep insight into the origins and the nature of these fundamental concepts and
equations of continuum mechanics. This new approach leads to the exact definition
and derivation of these fundamental parameters and relations of continuum mechan-
ics. By the exact tetrahedron argument we derived the relation for the existence of
stress tensor and the general equation of motion, simultaneously. In this new proof,
there is no limited, average, or approximate process and all of the effective parameters
are exact values. Also in this proof, we show that all the challenges on the previous
tetrahedron arguments and the proofs of the existence of stress tensor are removed.

1. Introduction

The existence of stress tensor and the general equation of motion form the main part
of the foundation of continuum mechanics. In 1822 to 1828, Cauchy introduced the
basic idea of traction vector and presented a proof of the existence of stress tensor that
is called Cauchy tetrahedron argument and by using another process he obtained the
general equation of motion that is called Cauchy equation of motion. He also derived
some important properties of the state of stress, e.g. the symmetry of stress tensor [3,4,
7,8]. The basic idea of Cauchy was that the internal forces on the surface in continuum
media in addition to the normal component can have the tangential components. From
Truesdell in (1968, [8]), on pages 336 and 338:

Thus it might seem that CAUCHY’s achievement in formulating and
developing the general theory of stress was an easy one. It was not.
CAUCHY’s concept has the simplicity of genius. Its deep and thorough
originality is fully outlined only against the background of the century
of achievement by the brilliant geometers who preceded, treating special
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kinds and cases of deformable bodies by complicated and sometimes in-
correct ways without ever hitting upon this basic idea, which immediately
became and has remained the foundation of the mechanics of gross bodies.

We already provided a comprehensive review of the different versions of tetrahedron
argument and the proofs of the existence of stress tensor presented in the published
books during about two centuries from the birth of the Cauchy’s idea (1822) to this
time and we considered the important challenges and the improvements of each one
(2017, [1]).

In this article, for the first time, we give the exact tetrahedron argument that removes
all the stated challenges and opens a new and deep insight into the foundation of
continuum mechanics and the nature of the traction vector, the stress tensor, and the
general equation of motion.

In order to present the exact tetrahedron argument, first we give the general forms
of the conservation of linear momentum for a mass element and prove the important
relation that is called Cauchy lemma for the traction vectors that act on the opposite
sides of the same surface. Then, the exact tetrahedron argument will be presented. We
also study some aspects of this new proof and discuss the challenges that hold for the
previous tetrahedron arguments and the proofs of the existence of stress tensor, on this
new proof.

The integral equation of conservation of linear momentum on a mass element in con-
tinuum media is:

d

dt

ż

M
ρv dV “

ż

BM
t dS `

ż

M
ρb dV (1.1)

where ρ “ ρpr, tq is the density, v “ vpr, tq is the velocity vector, and ρv is the
linear momentum per unit volume of the mass element M. On the right hand side,
t “ tpr, t,nq is the surface force per unit area that is called traction vector and acts
on the surface of the mass element, i.e., BM, and b “ bpr, tq is the body force per unit
mass. Here r is the position vector, t is time, and n is the outward unit normal vector
on the surface of mass element. By using the transport theorem and the conservation
of mass [5, 9], the left hand side of the equation becomes:

d

dt

ż

M
ρv dV “

ż

M

!

Bpρvq

Bt
`∇.pρvq

)

dV “

ż

M

!

ρ
Bv

Bt
` ρpv.∇qv

)

dV “

ż

M
ρa dV

(1.2)
where a “ Bv{Bt`pv.∇qv is the acceleration vector. By rearranging the equation (1.1):

ż

M
pρa´ ρbq dV “

ż

BM
t dS (1.3)

for simplicity, we use B “ pρa´ ρbq that is called body term within the proof. So, the
equation (1.3) rewrites as:

ż

M
B dV “

ż

BM
t dS (1.4)

In general, B “ Bpr, tq and t “ tpr, t,nq are continuous functions in their scope in
continuum media.
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Figure 1. The mass elements M1 and M2, where
BM1 “ S1 Y Sm and BM2 “ S2 Y Sm, and the mass
element M such that VM “ VM1 Y VM2 and BM “ S1 Y S2.

2. Cauchy Lemma

Cauchy lemma deals with the traction vectors that act on the opposite sides of the same
surface at a given point and time. There are some approaches to prove this lemma in
the literature. Here we present a proof of the Cauchy lemma that is nearly similar
to the proofs in [2, 6]. Suppose the mass element M splits into M1 and M2 by the
surface Sm in the way that VM “ VM1 Y VM2 , BM1 “ S1 Y Sm, BM2 “ S2 Y Sm, and
BM “ S1YS2, see Figure 1. If the equation (1.4) applies to M1 and M2, then the sum
of these equations is:

ż

M1

B1 dV `

ż

M2

B2 dV “

ż

BM1

t1 dS `

ż

BM2

t2 dS

By VM “ VM1 Y VM2 , the sum of the body term integrals is equal to the integral of the
body term on M. In addition, by BM1 “ S1 Y Sm and BM2 “ S2 Y Sm, the surface
integrals split as:

ż

M
B dV “

ż

S1

t1 dS `

ż

Sm

t1 dS `

ż

S2

t2 dS `

ż

Sm

t2 dS

By BM “ S1Y S2, the sum of the surface integrals on S1 and S2 is equal to the surface
integral of t on BM, so:

ż

M
B dV “

ż

BM
t dS `

ż

Sm

t1 dS `

ż

Sm

t2 dS

Comparing this integral equation with the integral equation (1.4), implies that:
ż

Sm

t1 dS `

ż

Sm

t2 dS “ 0

But t1 on Sm is tpr, t,nq, and t2 on Sm is tpr, t,´nq, so:
ż

Sm

 

tpr, t,nq ` tpr, t,´nq
(

dS “ 0

therefore, we have
tpr, t,nq “ ´tpr, t,´nq (2.1)

This is the Cauchy lemma that is derived by using the integral equation of conservation
of linear momentum (1.4). It states “the traction vectors acting on opposite sides of the
same surface at a given point and time are equal in magnitude but opposite in direction”.
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Figure 2. The geometry of tetrahedron
element and the exact traction vectors on
the faces.

3. Exact Tetrahedron Argument

Today there is a belief that the foundation of mechanics is a dead subject, but this is not
correct. Here, for the first time, we present and prove the exact tetrahedron argument.

Consider a tetrahedron element in continuum media that its vortex is at the point o and
its three orthogonal faces are parallel to the three orthogonal planes of the Cartesian
coordinate system. The fourth surface of the tetrahedron, i.e., its base, has the outward
unit normal vector n4. For simplicity, the vortex point is at the origin of the coordinate
system. The geometrical parameters are shown in Figure 2. The vector r “ xex `

yey ` zez is the position vector from the origin of the coordinate system. Now the
integral equation of conservation of linear momentum (1.4) applies to this tetrahedron
mass element:

ż

∆s4

t4 dS `

ż

∆s1

t1 dS `

ż

∆s2

t2 dS `

ż

∆s3

t3 dS “

ż

M
B dV (3.1)

The key idea of this proof is to write the variables of this equation in terms of the exact
Taylor series about a point in the domain. Here, we derive these series about the vortex
point of tetrahedron (point o), where the three orthogonal faces pass through it. Note
that time (t) is the same in the all terms, so it does not exist in the Taylor series. For
Bpr, tq at any point in the domain of the mass element, we have:

B “ Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z

`
1

2!

´

B2Bo

Bx2
x2
`
B2Bo

By2
y2
`
B2Bo

Bz2
z2
` 2

B2Bo

BxBy
xy ` 2

B2Bo

BxBz
xz ` 2

B2Bo

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqB

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.2)

Here Bo and BBo{Bx are the exact values of B and BB{Bx at the point o, respectively.
Similarly, the other derivatives are the exact values of the corresponding derivatives of
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B at the point o. On the surface ∆s1, x “ 0 and n1 does not change, so:

t1 “ t1o `
Bt1o

By
y `

Bt1o

Bz
z `

1

2!

´

B2t1o

By2
y2
`
B2t1o

Bz2
z2
` 2

B2t1o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt1

BymBzk

ˇ

ˇ

ˇ

o
ymzk

(3.3)

where t1o is the exact value of the traction vector t1 on ∆s1 at the point o. On the
surface ∆s2, y “ 0 and n2 does not change, and on the surface ∆s3, z “ 0 and n3 does
not change, so:

t2 “ t2o `
Bt2o

Bx
x`

Bt2o

Bz
z `

1

2!

´

B2t2o

Bx2
x2
`
B2t2o

Bz2
z2
` 2

B2t2o

BxBz
xz

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt2

BxmBzk

ˇ

ˇ

ˇ

o
xmzk

(3.4)

t3 “ t3o `
Bt3o

Bx
x`

Bt3o

By
y `

1

2!

´

B2t3o

Bx2
x2
`
B2t3o

By2
y2
` 2

B2t3o

BxBy
xy

¯

` . . . “
8
ÿ

m“0

8
ÿ

k“0

1

m!k!

Bpm`kqt3

BxmByk

ˇ

ˇ

ˇ

o
xmyk

(3.5)

Similarly, t2o and t3o are the exact values of t2 and t3 at the point o on ∆s2 and ∆s3,
respectively.

For the traction vector on the surface ∆s4 a more explanation is needed. The traction
vector on ∆s4 expands based on the traction vector on the inclined surface that is
parallel to ∆s4 and passes through the vortex point of tetrahedron (point o). Because
the unit normal vectors of these two surfaces are the same, see Figure 3. Therefore:

Figure 3. Inclined surface that is parallel to
∆s4 and passes through point o.
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t4 “ t4o `
Bt4o

Bx
x`

Bt4o

By
y `

Bt4o

Bz
z

`
1

2!

´

B2t4o

Bx2
x2
`
B2t4o

By2
y2
`
B2t4o

Bz2
z2
` 2

B2t4o

BxBy
xy ` 2

B2t4o

BxBz
xz ` 2

B2t4o

ByBz
yz
¯

` . . . “
8
ÿ

m“0

8
ÿ

n“0

8
ÿ

k“0

1

m!n!k!

Bpm`n`kqt4

BxmBynBzk

ˇ

ˇ

ˇ

o
xmynzk

(3.6)

where t4o is the exact traction vector at the point o on the inclined surface with unit
normal vector n4, that this surface passes exactly through point o, the vertex point of
tetrahedron element. Here x, y, and z are the components of the position vector r on
the surface ∆s4.

Note that t1o , t2o , t3o , and t4o are the exact traction vectors at the point o but on the
different surfaces with unit normal vectors n1, n2, n3, and n4, respectively. The body
term Bo is exactly defined at the point o. So, all the traction vectors and the body
term vector with subscript o and all their derivatives, such as B2t4o{BxBy, are exactly
defined at the point o and are bounded. As a result, for the convergence of the above
Taylor series it is enough that we have |r| ď 1 in the domain of the mass element M.
But the scale of the coordinate system is arbitrary and we can define this scale such
that the greatest distance in the domain of the mass element from the origin, is equal
to one, i.e., |r|max “ 1. By this scale, in the entire of the tetrahedron mass element we
have |r| ď 1, that leads to the convergence condition for the above Taylor series.

Now all of the variables are prepared for integration in the integral equation (3.1). The
integration of B on the volume of M:

ż

M
B dV “

ż c

0

ż bp1´ z
c
q

0

ż ap1´ y
b
´ z

c
q

0

"

Bo `
BBo

Bx
x`

BBo

By
y `

BBo

Bz
z ` . . .

*

dx dy dz

“
1

6
abc

!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

(3.7)

The integration of t4 on ∆s4:
ż

∆s4

t4 dS “

ż b

0

ż ap1´ y
b
q

0

"
c

`

´
c

a

˘2
`
`

´
c

b

˘2
` 1

ˆ

t4o `
Bt4o

Bx
x`

Bt4o

By
y

`
Bt4o

Bz

`

cp1´
x

a
´
y

b
q
˘

`
1

2!

´

B2t4o

Bx2
x2
`
B2t4o

By2
y2
`
B2t4o

Bz2

`

cp1´
x

a
´
y

b
q
˘2

` 2
B2t4o

BxBy
xy ` 2

B2t4o

BxBz
x
`

cp1´
x

a
´
y

b
q
˘

` 2
B2t4o

ByBz
y
`

cp1´
x

a
´
y

b
q
˘

¯

` . . .

˙*

dx dy

“
1

2

?
a2b2 ` a2c2 ` b2c2

!

t4o `
1

3

´

Bt4o

Bx
a`

Bt4o

By
b`

Bt4o

Bz
c
¯

`
1

12

´

B2t4o

Bx2
a2
`
B2t4o

By2
b2
`
B2t4o

Bz2
c2
`
B2t4o

BxBy
ab`

B2t4o

BxBz
ac`

B2t4o

ByBz
bc
¯

` . . .
)

(3.8)
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The integration of t1 on ∆s1:

ż

∆s1

t1 dS “

ż c

0

ż bp1´ z
c
q

0

"

t1o `
Bt1o

By
y `

Bt1o

Bz
z

`
1

2!

´

B2t1o

By2
y2
`
B2t1o

Bz2
z2
` 2

B2t1o

ByBz
yz
¯

` . . .

*

dy dz

“
1

2
bc
!

t1o `
1

3

´

Bt1o

By
b`

Bt1o

Bz
c
¯

`
1

12

´

B2t1o

By2
b2
`
B2t1o

Bz2
c2
`
B2t1o

ByBz
bc
¯

` . . .
)

(3.9)

The integration of t2 on ∆s2:

ż

∆s2

t2 dS “

ż c

0

ż ap1´ z
c
q

0

"

t2o `
Bt2o

Bx
x`

Bt2o

Bz
z

`
1

2!

´

B2t2o

Bx2
x2
`
B2t2o

Bz2
z2
` 2

B2t2o

BxBz
xz

¯

` . . .

*

dx dz

“
1

2
ac
!

t2o `
1

3

´

Bt2o

Bx
a`

Bt2o

Bz
c
¯

`
1

12

´

B2t2o

Bx2
a2
`
B2t2o

Bz2
c2
`
B2t2o

BxBz
ac
¯

` . . .
)

(3.10)

The integration of t3 on ∆s3:

ż

∆s3

t3 dS “

ż b

0

ż ap1´ y
b
q

0

"

t3o `
Bt3o

Bx
x`

Bt3o

By
y

`
1

2!

´

B2t3o

Bx2
x2
`
B2t3o

By2
y2
` 2

B2t3o

BxBy
xy

¯

` . . .

*

dx dy

“
1

2
ab
!

t3o `
1

3

´

Bt3o

Bx
a`

Bt3o

By
b
¯

`
1

12

´

B2t3o

Bx2
a2
`
B2t3o

By2
b2
`
B2t3o

BxBy
ab
¯

` . . .
)

(3.11)

The geometrical relations for the area of faces and the volume of the tetrahedron are:

∆s1 “
1

2
bc, ∆s2 “

1

2
ac, ∆s3 “

1

2
ab

∆s4 “
1

2

?
a2b2 ` a2c2 ` b2c2, ∆V “

1

6
abc

(3.12)
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By substituting the obtained equations for the integrals of the traction vectors and the
body term into the equation (3.1) and using the above geometrical relations, we have:

∆s4

!

t4o `
1

3

´

Bt4o

Bx
a`

Bt4o

By
b`

Bt4o

Bz
c
¯

`
1

12

´

B2t4o

Bx2
a2
`
B2t4o

By2
b2
`
B2t4o

Bz2
c2
`
B2t4o

BxBy
ab`

B2t4o

BxBz
ac`

B2t4o

ByBz
bc
¯

` . . .
)

`∆s1

!

t1o `
1

3

´

Bt1o

By
b`

Bt1o

Bz
c
¯

`
1

12

´

B2t1o

By2
b2
`
B2t1o

Bz2
c2
`
B2t1o

ByBz
bc
¯

` . . .
)

`∆s2

!

t2o `
1

3

´

Bt2o

Bx
a`

Bt2o

Bz
c
¯

`
1

12

´

B2t2o

Bx2
a2
`
B2t2o

Bz2
c2
`
B2t2o

BxBz
ac
¯

` . . .
)

`∆s3

!

t3o `
1

3

´

Bt3o

Bx
a`

Bt3o

By
b
¯

`
1

12

´

B2t3o

Bx2
a2
`
B2t3o

By2
b2
`
B2t3o

BxBy
ab
¯

` . . .
)

´∆V
!

Bo `
1

4

´

BBo

Bx
a`

BBo

By
b`

BBo

Bz
c
¯

` . . .
)

“ 0

(3.13)

In the geometry of tetrahedron, h is the height of the vertex o from the base face,
i.e., ∆s4. So, we have the following geometrical relations for a tetrahedron with n4 “

nxex ` nyey ` nzez, where a, b, and c are greater than zero, see Figure 2.

h “ nxa, h “ nyb, h “ nzc

1

h2
“

1

a2
`

1

b2
`

1

c2
, ∆s4 “

abc

2h
∆s1 “ nx∆s4, ∆s2 “ ny∆s4, ∆s3 “ nz∆s4

∆V “
1

6
abc “

1

3
h∆s4

(3.14)

If we divide the equation (3.13) by ∆s4 and use the relations (3.14) for the faces and
volume of the tetrahedron, then substitute the relations a “ h{nx, b “ h{ny, and
c “ h{nz into the equation, it becomes:

!

t4o `
1

3

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

h

`
1

12

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

h2
` . . .

)

` nx

!

t1o `
1

3

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

h`
1

12

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

h2
` . . .

)

` ny

!

t2o `
1

3

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

h`
1

12

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

h2
` . . .

)

` nz

!

t3o `
1

3

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

h`
1

12

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

h2
` . . .

)

´
1

3
h
!

Bo `
1

4

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

h` . . .
)

“ 0

(3.15)
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Now by rearranging the equation based on the powers of h, we have:
!

t4o ` nxt1o ` nyt2o ` nzt3o

)

`

"

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

` nx

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

` ny

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

` nz

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

´Bo

*

1

3
h

`

"

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

` nx

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

` ny

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

` nz

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

*

1

12
h2

` . . . “ 0
(3.16)

Note that by the coordinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is
exactly zero. So, all of the expressions in the braces tu of the equation (3.16) exist. We
can rename the expressions in the braces and rewrite the equation as:

E0 `E1
1

3
h`E2

1

12
h2
` . . . “ 0 (3.17)

If we continue to integrate the higher order derivatives of all terms based on their Taylor
series that is a long time and complicated process that it does not present here, we have:

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0 (3.18)

or
8
ÿ

m“0

Em
2

pm` 2q!
hm “ 0 (3.19)

This is a great equation in the foundation of continuum mechanics that is derived for
the first time. E0, E1, and E2 are shown in the braces of the equation (3.16) and E3

and other Em’s will be presented. We now discuss some aspects of the equation (3.18):

‚ Em’s are formed by the expressions of traction vectors, body term and their
derivatives, and the components of unit normal vector of the inclined surface.

‚ Each of the Em’s exists, because the surface terms, body term, and their deriva-
tives are defined as continuous functions in continuum media and by the coor-
dinate system here and by ∆V ‰ 0, no one of nx, ny, and nz is exactly zero.

‚ Each of the Em’s depends on the variables at the point o and the components
of unit normal vector of the inclined surface that is parallel to ∆s4 and passes
through point o. Because the surface terms, body term, and their derivatives
are defined at the point o.
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‚ Em’s do not depend on the volume of tetrahedron.

‚ h is a geometrical variable and by the scale of the coordinate system on the
tetrahedron mass element such that |r|max ď 1, the altitude of the tetrahedron
(h) is not greater than one.

‚ Note that h “ 0 is not valid, because the integral equation of conservation of
linear momentum (1.4) is defined for the mass elements with nonzero volume.

By these properties, we return to the equation (3.18).

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0

We must find Em’s. Since Em’s are independent of h, the series on the left hand side
is a power series. A power series is identically equal to zero if and only if all of its
coefficients are equal to zero. Therefore:

Em “ 0, m “ 0, 1, 2, . . . ,8 (3.20)

Note that these results are valid not only for h Ñ 0 but also for all values of h in
the domain. In other words, the results (3.20) are valid not only for an infinitesimal
tetrahedron but also for any tetrahedron in the scaled coordinate system in continuum
media. In addition, we have not done any approximate process during derivation of the
equations (3.18) and (3.20). So, the results (3.20) hold exactly, not approximately.

Furthermore, the subscript o in the expressions of Em’s in the equation (3.16) indicates
the vortex point of the tetrahedron. But any point in the domain in continuum media
can be regarded as the vertex point of a tetrahedron and we could consider that tetra-
hedron. So, the point o can be any point in the continuum domain. We conclude that
Em’s are equal to zero at any point in continuum media. This implies that all their
derivatives are equal to zero, as well. For example, we have for E0:

BE0

Bx
“
BE0

By
“
BE0

Bz
“ 0 (3.21)

and the other higher derivatives of E0 are equal to zero. This trend holds for other
Em’s.

But what are Em’s? In the following we will consider them and see that they lead to
the important results.

For E0 “ 0, from the equation (3.16):

E0 “ t4o ` nxt1o ` nyt2o ` nzt3o “ 0 (3.22)

This relation is similar to the relation of Cauchy tetrahedron argument. The Cauchy’s
relation was [1]:

t4 ` nxt1 ` nyt2 ` nzt3 “ 0 (3.23)

But there are some important conceptual differences between them:
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‚ In the Cauchy’s relation (3.23), the traction vectors are not exactly defined at
the point o. They are the sequence of the limit h Ñ 0 on the tetrahedron vol-
ume. But here in (3.22), the traction vectors are exactly defined at the point o.

‚ In the Cauchy’s relation (3.23), the traction vectors are average values on the
tetrahedron faces. But here in (3.22), the traction vectors are defined at the
point o on the surfaces that pass exactly through point o.

‚ In the Cauchy’s relation (3.23), the traction vector t4 is defined on the surface
∆s4 of the tetrahedron. This surface does not pass through point o even in the
limit h Ñ 0 for an infinitesimal tetrahedron. But here in (3.22), t4o is defined
on the surface that passes through point o and is parallel to ∆s4, see Figure 3.

These differences are very important, because they imply that the relation (3.22) is
exactly point-based but the relation (3.23) is average-based.

Let us return to the relation (3.22) for E0 “ 0, we have:

t4o ` nxt1o ` nyt2o ` nzt3o “ 0

The traction vector t1o is defined on the negative side of the coordinate plane yz,
i.e., n1 “ ´1ex, at the point o. If txo is the traction vector on the positive side of
the coordinate plane yz at the point o, then by the equation (2.1), i.e., tpr, t,nq “
´tpr, t,´nq, we have:

t1o “ ´txo (3.24)

Similarly, for t2o and t3o :

t2o “ ´tyo , t3o “ ´tzo (3.25)

By substituting these relations into (3.22)

t4o ` nxp´txoq ` nyp´tyoq ` nzp´tzoq “ 0

therefore

t4o “ nx4txo ` ny4tyo ` nz4tzo (3.26)

where nx4 “ nx, ny4 “ ny, and nz4 “ nz. So, the traction vector t4o can be obtained by
a linear relation between the traction vectors on the three orthogonal planes and the
components of its unit normal vector. But can we use the equation (3.26) for any unit
normal vector rather than n4o?

By considering the equations (3.13) and (3.16), we find that the equation (3.26) is really
the following equation:

t4o “
∆s1

∆s4

txo `
∆s2

∆s4

tyo `
∆s3

∆s4

tzo (3.27)

and this equation is

t4o “ |nx4|txo ` |ny4|tyo ` |nz4|tzo (3.28)

In Figure 2, by a ą 0, b ą 0, and c ą 0, the components of unit normal vector on the
inclined surface are greater than zero. So, the equation (3.26) is valid for these cases.
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For the surfaces that their unit normal vector components are negative and are not
zero, consider a tetrahedron mass element by the unit normal vector of its inclined
surface (base face), n´4, that all of its components are negative. Therefore, we have
n´4o “ nx´4ex`ny´4ey`nz´4ez “ ´nxex´nyey´nzez, where n´4o is the outward unit
normal vector of the surface that is parallel to the inclined surface and passes through
the vortex point of this tetrahedron (point o), and nx, ny, and nz are positive values.
Applying the process of exact tetrahedron argument to this new tetrahedron, leads to
the following equation similar to the equation (3.22):

E0 “ t´4o ` |nx´4|txo ` |ny´4|tyo ` |nz´4|tzo “ 0 (3.29)

As compared with the equation (3.22), in this equation we have txo , tyo , and tzo rather
than t1o , t2o , and t3o , respectively. Because the outward sides of orthogonal faces of
this new tetrahedron are in the positive directions of the coordinate system. By the
equation (3.29) and the components of n´4o , we have:

t´4o “ ´|nx´4|txo ´ |ny´4|tyo ´ |nz´4|tzo

“ ´| ´ nx|txo ´ | ´ ny|tyo ´ | ´ nz|tzo
“ ´nxtxo ´ nytyo ´ nztzo
“ nx´4txo ` ny´4tyo ` nz´4tzo

(3.30)

So, the traction vector t´4o can be obtained from a linear relation between the traction
vectors on the three orthogonal planes and the components of its unit normal vector.
For the surfaces that one or two components of their unit normal vectors are negative
but the other ones are not zero, the same process can be done.

For the other surfaces that one or two components of their unit normal vectors are equal
to zero, the tetrahedron does not form, but due to the continuous property of the traction
vectors on n and the arbitrary choosing for any orthogonal basis for the coordinate
system, the traction vectors on these surfaces can be described by the equation (3.26),
as well. So, in general, the normal unit vector n4 can be related to any surface that
passes through point o in three-dimensional continuum media. Thus, the subscript 4
removes from the equation (3.26) and we have for every n “ nxex ` nyey ` nzez:

to “ nxtxo ` nytyo ` nztzo (3.31)

The subscript o in this equation indicates the vortex point of the tetrahedron. But any
point in the domain in continuum media can be the vertex point of a tetrahedron and
we could consider this tetrahedron. So, the point o can be any point in continuum
media and the subscript o removes from the equation:

t “ nxtx ` nyty ` nztz (3.32)

or

tpr, t,nq “ nxtpr, t, exq ` nytpr, t, eyq ` nztpr, t, ezq (3.33)

This means that if we have the traction vectors on the three orthogonal surfaces at a
given point and time, then we can get the traction vector on any surface that passes
through that point at that time by using the unit normal vector of the surface and the
linear relation (3.33).



EXACT TETRAHEDRON ARGUMENT, SECOND PAPER 13

So, we must define the traction vectors on the three orthogonal surfaces at any point
and at any time. The traction vector on the surface with unit normal vector ex by its
components is:

tpr, t, exq “ Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez (3.34)

here Txxpr, tq, Txypr, tq, and Txzpr, tq are scalars that depend only on r and t. In
each one, the first subscript indicates the direction of normal unit vector of the surface
that this component acts on it and the second subscript indicates the direction of this
component of traction vector. Similarly, we define the traction vectors on the surfaces
with unit normal vectors ey and ez, respectively, as:

tpr, t, eyq “ Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez (3.35)

and

tpr, t, ezq “ Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez (3.36)

By substituting these equations in (3.33)

tpr, t,nq “ nx

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

` ny

 

Tyxpr, tq ex ` Tyypr, tq ey ` Tyzpr, tq ez

(

` nz

 

Tzxpr, tq ex ` Tzypr, tq ey ` Tzzpr, tq ez

(

by rearranging the equation

tpr, t,nq “
 

nxTxxpr, tq ` nyTyxpr, tq ` nzTzxpr, tq
(

ex

`
 

nxTxypr, tq ` nyTyypr, tq ` nzTzypr, tq
(

ey

`
 

nxTxzpr, tq ` nyTyzpr, tq ` nzTzzpr, tq
(

ez

this can be shown as

tpr, t,nq “

»

–

txpr, t,nq
typr, t,nq
tzpr, t,nq

fi

fl “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx

ny

nz

fi

fl (3.37)

using the vector relations, we have

t “ T T .n (3.38)

where T “ T pr, tq is a second order tensor that is called stress tensor. This tensor
depends only on the position vector and time. This relation means that in order to
describe the state of stress on any surface at a given point and time we need the 9
components of the stress tensor at that point and time. So, E0 “ 0 leads to the
existence of stress tensor.

Note that here the stress tensor T is exactly defined as point-based but in the previous
tetrahedron arguments it was average-based. Because they used the average values of
traction vectors on the surfaces that did not pass through the same point and by an
approximate process the stress tensor was derived.
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Let us see what E1 “ 0 tells.
From the equation (3.16):

E1 “

´

Bt4o

Bx

1

nx

`
Bt4o

By

1

ny

`
Bt4o

Bz

1

nz

¯

` nx

´

Bt1o

By

1

ny

`
Bt1o

Bz

1

nz

¯

` ny

´

Bt2o

Bx

1

nx

`
Bt2o

Bz

1

nz

¯

` nz

´

Bt3o

Bx

1

nx

`
Bt3o

By

1

ny

¯

´Bo

(3.39)

As previously stated, for the tetrahedron element with ∆V ‰ 0, no one of nx, ny, and
nz is exactly zero. Therefore, E1 exists. Furthermore, the unit normal vector n4 does
not change on ∆s4, so:

Bn4

Bx
“
Bn4

By
“
Bn4

Bz
“ 0 (3.40)

Using the relations (3.40) and the equation (3.22), i.e., t4o “ E0´nxt1o ´nyt2o ´nzt3o ,
we have for (3.39):

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
´
Bt1o

Bx
´
Bt2o

By
´
Bt3o

Bz
´Bo

If we define E as:

E “ ´
Bt1o

Bx
´
Bt2o

By
´
Bt3o

Bz
´Bo (3.41)

therefore, we have

E1 “
1

nx

BE0

Bx
`

1

ny

BE0

By
`

1

nz

BE0

Bz
`E (3.42)

But we saw in (3.21) that the derivatives of E0 were equal to zero. So, from (3.42) and
E1 “ 0, we have:

E1 “ E “ 0 (3.43)

By (3.41), E is defined at the vertex point of tetrahedron. But as previously stated,
the vertex point of the tetrahedron can be at any point in continuum media. Therefore,
by (3.43), E “ 0 at any point in continuum media. This implies that all derivatives of
E are equal to zero at any point in continuum media. So:

BE

Bx
“
BE

By
“
BE

Bz
“ 0 (3.44)

By using the relations (3.24) and (3.25), i.e., t1o “ ´txo , t2o “ ´tyo , and t3o “ ´tzo ,
the equation (3.41) becomes:

E “
Btxo

Bx
`
Btyo
By

`
Btzo
Bz

´Bo (3.45)

but E “ 0, so

Bo “
Btxo

Bx
`
Btyo
By

`
Btzo
Bz

(3.46)

As explained earlier, we can remove the subscript o from the equation and tell that this
equation is valid at any point and at any time in the continuum domain. Therefore:

B “
Btx
Bx

`
Bty
By
`
Btz
Bz

(3.47)

or

Bpr, tq “
Btpr, t, exq

Bx
`
Btpr, t, eyq

By
`
Btpr, t, ezq

Bz
(3.48)
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This partial differential equation means that if we have the first derivatives of the
traction vectors on the three orthogonal surfaces at a given point and time, then we can
get the body term at that point and time by using the equation (3.48). By substituting
the definitions of tpr, t, exq, tpr, t, eyq, and tpr, t, ezq from the equations (3.34), (3.35),
and (3.36) into the equation (3.48), it becomes:

Bpr, tq “
B

Bx

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

`
B

By

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

`
B

Bz

 

Txxpr, tq ex ` Txypr, tq ey ` Txzpr, tq ez

(

(3.49)

by rearranging the equation and using B “ ρa ´ ρb from the equation (1.3), we have
at any r and t:

ρa´ ρb “

"

BTxx
Bx

`
BTyx
By

`
BTzx
Bz

*

ex `

"

BTxy
Bx

`
BTyy
By

`
BTzy
Bz

*

ey

`

"

BTxz
Bx

`
BTyz
By

`
BTzz
Bz

*

ez

(3.50)

this can be shown as

ρa´ ρb “

»

—

—

—

—

—

–

BTxx

Bx
`
BTyx

By
` BTzx

Bz

BTxy

Bx
`
BTyy

By
`
BTzy

Bz

BTxz

Bx
`
BTyz

By
` BTzz

Bz

fi

ffi

ffi

ffi

ffi

ffi

fl

“
“

B

Bx
B

By
B

Bx

‰

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl “ ∇.T

so, we have

ρa “ ∇.T ` ρb (3.51)

or

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb (3.52)

So, E1 “ 0 leads to the general equation of motion that is called Cauchy equation of
motion. Cauchy obtained this important equation by applying the conservation of linear
momentum to a “cubic element” and he did not obtain it from the tetrahedron argument.
The tetrahedron arguments that are represented by most of the scientists and authors
in continuum mechanics lead only to the equation (3.23), i.e., t4`nxt1`nyt2`nzt3 “ 0,
for the existence of stress tensor. But here in addition to the exact derivation of the
stress tensor, the other fundamental equation of continuum mechanics, i.e., the Cauchy
equation of motion, is exactly derived from this tetrahedron argument, simultaneously.
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Let us see what E2 “ 0 tells.
From the equation (3.16):

E2 “

´

B2t4o

Bx2

1

n2
x

`
B2t4o

By2

1

n2
y

`
B2t4o

Bz2

1

n2
z

`
B2t4o

BxBy

1

nxny

`
B2t4o

BxBz

1

nxnz

`
B2t4o

ByBz

1

nynz

¯

` nx

´

B2t1o

By2

1

n2
y

`
B2t1o

Bz2

1

n2
z

`
B2t1o

ByBz

1

nynz

¯

` ny

´

B2t2o

Bx2

1

n2
x

`
B2t2o

Bz2

1

n2
z

`
B2t2o

BxBz

1

nxnz

¯

` nz

´

B2t3o

Bx2

1

n2
x

`
B2t3o

By2

1

n2
y

`
B2t3o

BxBy

1

nxny

¯

´

´

BBo

Bx

1

nx

`
BBo

By

1

ny

`
BBo

Bz

1

nz

¯

(3.53)

For E2, similar to the process for E1 “ 0, we have:

E2 “
1

n2
x

B2E0

Bx2
`

1

n2
y

B2E0

By2
`

1

n2
z

B2E0

Bz2
`

1

nxny

B2E0

BxBy
`

1

nxnz

B2E0

BxBz
`

1

nynz

B2E0

ByBz

`
1

nx

BE

Bx
`

1

ny

BE

By
`

1

nz

BE

Bz

(3.54)

By the previous explanations, all derivatives of E0 and E were equal to zero. Therefore,
the equation (3.54) is a correct result of E2 “ 0.

For E3 “ 0 we have:

E3 “

´

B3t4o

Bx3

1

n3
x

`
B3t4o

By3

1

n3
y

`
B3t4o

Bz3

1

n3
z

`
B3t4o

Bx2By

1

n2
xny

`
B3t4o

Bx2Bz

1

n2
xnz

`
B3t4o

By2Bz

1

n2
ynz

`
B3t4o

BxBy2

1

nxn2
y

`
B3t4o

BxBz2

1

nxn2
z

`
B3t4o

ByBz2

1

nyn2
z

`
B3t4o

BxByBz

1

nxnynz

¯

` nx

´

B3t1o

By3

1

n3
y

`
B3t1o

Bz3

1

n3
z

`
B3t1o

By2Bz

1

n2
ynz

`
B3t1o

ByBz2

1

nyn2
z

¯

` ny

´

B3t2o

Bx3

1

n3
x

`
B3t2o

Bz3

1

n3
z

`
B3t2o

Bx2Bz

1

n2
xnz

`
B3t2o

BxBz2

1

nxn2
z

¯

` nz

´

B3t3o

Bx3

1

n3
x

`
B3t3o

By3

1

n3
y

`
B3t3o

Bx2By

1

n2
xny

`
B3t3o

BxBy2

1

nxn2
y

¯

´

´

B2Bo

Bx2

1

n2
x

`
B2Bo

By2

1

n2
y

`
B2Bo

Bz2

1

n2
z

`
B2Bo

BxBy

1

nxny

`
B2Bo

BxBz

1

nxnz

`
B2Bo

ByBz

1

nynz

¯

(3.55)

Similar to the previous processes for E1 and E2, we have for E3:

E3 “
1

n3
x

B3E0

Bx3
`

1

n3
y

B3E0

By3
`

1

n3
z

B3E0

Bz3
`

1

n2
xny

B3E0

Bx2By
`

1

n2
xnz

B3E0

Bx2Bz
`

1

n2
ynz

B3E0

By2Bz

`
1

nxn2
y

B3E0

BxBy2
`

1

nxn2
z

B3E0

BxBz2
`

1

nyn2
z

B3E0

ByBz2
`

1

nxnynz

B3E0

BxByBz

`
1

n2
x

B2E

Bx2
`

1

n2
y

B2E

By2
`

1

n2
z

B2E

Bz2
`

1

nxny

B2E

BxBy
`

1

nxnz

B2E

BxBz
`

1

nynz

B2E

ByBz
(3.56)
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We saw that all derivatives of E0 and E were equal to zero. So, the equation (3.56) is
a correct result of E3 “ 0. This process for other Em’s leads to the expressions that
contain the higher derivatives of E0 and E and the higher powers of the components
of the unit normal vector and the results are equal to zero.

4. Discussion

In this section, we discuss some aspects of this new proof and compare it with the
previous proofs of the existence of stress tensor and derivation of the Cauchy equation
of motion. We gave a comprehensive review of the Cauchy tetrahedron argument and
the proofs of the existence of stress tensor (2017, [1]). In that article [1], we stated some
important and fundamental challenges on the previous proofs. In order to consider the
stated challenges on this new proof, we start with the first challenge in [1].

The challenge 1 told us that applying the conservation of linear momentum to any mass
element with any volume and shape must lead to the equation of motion. But in the
previous proofs, this process on an infinitesimal tetrahedron mass element led to the
equation t4 ` nxt1 ` nyt2 ` nzt3 “ 0 that differs from the equation of motion. In the
previous proofs, the equation of motion is obtained by using the stress tensor relation
and applying the conservation of linear momentum to a cubic element or by using the
divergence theorem in the integral equation of conservation of linear momentum. But in
the present proof, both the relation for the existence of stress tensor and the equation of
motion are obtained, simultaneously. So, the challenge 1 is removed in this new proof.

The challenge 2 told us that the previous proofs of the existence of stress tensor were
based on infinitesimal volumes by the expressions like “∆V Ñ 0”, “hÑ 0”, “when the
tetrahedron shrinks to a point”, or “when the tetrahedron shrinks to zero volume”, while
it must be proved that the existence of stress tensor at a point does not depend on the
size of the mass element. In other words, the stress tensor exists for any size of mass
element in continuum media, where the volume of mass element increases, decreases
or does not change. Therefore, in the previous proofs the result is only valid for the
infinitesimal volumes and they do not show that the result can be applied to the mass
elements with any volume in continuum media. But here we proved that the existence
of stress tensor is independent of the volume of mass element and we did not use an
infinitesimal volume or a limit to zero volume in the present proof. So, this challenge
is removed in this new proof.

The challenge 3 is related to the average values of the traction vectors, body forces,
and inertia terms on the surfaces and the volume of the mass element in the previous
proofs. The average values lead to the approximate process even for the infinitesimal
mass element. But in the present proof, the exact values are used and the results are
exactly held, therefore the challenge 3 is removed.

The challenge 4 is related to the order of magnitude of the surface forces in the limit
∆V Ñ 0 or h Ñ 0. In the previous proofs, it was told that in this limit the order of
magnitude of the surface forces is h2 and the order of magnitude of the body forces and
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inertia is h3. They told that in the limit h Ñ 0 the body forces and inertia go to zero
faster than the surface forces, therefore only the surface forces remain in the equation.
Here based on the present proof, we clearly show that this is not correct, because the
order of magnitude of the surface forces is h3 similar to the order of magnitude of the
body forces and inertia. In order to prove this, we use the equation (3.16) and extract
the integral of the surface force over the control volume M from this equation as:
ż

BM
t dS “

!

t4o ` nxt1o ` nyt2o ` nzt3o
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h2∆s4 ` . . .

(4.1)

but as we showed in the equation (3.22), the expression in the braces of the first line
of the above equation is exactly zero, i.e., t4o ` nxt1o ` nyt2o ` nzt3o “ 0. So, this
expression removes from the equation. When the volume of the tetrahedron goes to
the infinitesimal volume (∆V Ñ 0 or hÑ 0), the order of magnitude of the remaining
expressions on the right hand side of the above equation is:

O
´

ż

BM
t dS

¯

“ O
´1

3
h∆s4

¯

“ h3 (4.2)

therefore, the order of magnitude of the surface forces is h3, not h2.

In the challenges 5 and 6, it was told that to prove the existence of stress tensor as a
point-based function from the equation t4 ` nxt1 ` nyt2 ` nzt3 “ 0, the four surfaces
that the traction vectors are defined on them must pass through the same point. But
according to the previous proofs, in this equation t4 is defined on ∆s4 and this surface,
even for infinitesimal tetrahedron, does not pass through the vertex point of the tetra-
hedron where the other three faces pass through it. But in the present proof, in the
equation t4o `nxt1o `nyt2o `nzt3o “ 0, we defined all the traction vectors at the same
point o, where the four surfaces pass exactly through it. So, the stress tensor is exactly
obtained as a point-based function and these challenges are removed in this new proof.

The challenges 7 and 8 are related to the equation t4`nxt1`nyt2`nzt3 “ 0, where the
traction vectors are the average values on the surfaces of an infinitesimal tetrahedron.
It was told that by multiplying this equation by ∆s4, we have t4∆s4` t1∆s1` t2∆s2`

t3∆s3 “ 0, this means that the sum of the surface forces on the infinitesimal tetrahedron
is zero. This is not correct, because from the conservation of linear momentum (1.4),
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the surface forces on any mass element are equal to the body terms on that element.
But in the present proof, we used the exact traction vectors that this led to the equation
t4o`nxt1o`nyt2o`nzt3o “ 0. In this equation, since all the traction vectors are defined
at the point o, the equation t4o∆s4 ` t1o∆s1 ` t2o∆s2 ` t3o∆s3 “ 0 does not mean the
sum of the traction vectors on the surface of the mass element is equal to zero.

5. Conclusion

We considered the general integral equation of conservation of linear momentum as:
ż

M
ρa dV “

ż

BM
t dS `

ż

M
ρb dV

where t “ tpr, t,nq is the traction vector (surface force per unit area). From the above
integral equation, first, we derived the Cauchy lemma for traction vectors:

tpr, t,nq “ ´tpr, t,´nq

Then by a new exact tetrahedron argument, we showed that applying the general in-
tegral equation of conservation of linear momentum to the tetrahedron mass element
leads to the following fundamental equation:

E0 `E1
1

3
h`E2

1

12
h2
`E3

1

60
h3
` . . .`Em

2

pm` 2q!
hm ` . . . “ 0

where h is the altitude of the tetrahedron. Em’s are expressions that contain the
traction vectors, inertia, body force, the derivatives of these terms, and the powers of
the components of unit normal vector of the tetrahedron’s base face. We showed that
the only solution of this equation is:

Em “ 0, m “ 0, 1, 2, . . . ,8

i.e., Em’s must be equal to zero. Then, we proved that E0 “ 0 leads to the existence
of stress tensor:

tpr, t,nq “

»

–

Txx Txy Txz
Tyx Tyy Tyz
Tzx Tzy Tzz

fi

fl

T »

–

nx

ny

nz

fi

fl “ T T .n

and E1 “ 0 leads to the derivation of the general equation of motion:

ρp
Bv

Bt
` pv.∇qvq “ ∇.T ` ρb

In other equations Em “ 0, for m “ 2, 3, . . . ,8, the results of E0 “ 0 and E1 “ 0 are
repeated. In this new proof, there is no limited, average, or approximate process and all
of the parameters are exact point-based functions. This proof is not limited to h Ñ 0
for an infinitesimal tetrahedron mass element. Also in this proof, we showed that all
of the challenges on the previous tetrahedron arguments and the proofs of existence of
stress tensor are removed.

Historical note: The manuscript of the exact tetrahedron argument was prepared before writing the

review article [1].
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