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Abstract

Division by 0 is not defined in mathematics. Mathematics suggests solutions by work

around methods. However they give only approximate, not the actual or exact, results.

Through this paper we propose methods to solve those problems. One characteristic of our

solution methods is that they produce actual or exact results. They are also in conformity

with, and supported by, physical or empirical facts. Other characteristic is their simplicity.

We can do computations easily based on basic arithmetic or algebra or other computation

methods we already familiar with.

1 Introduction

Our solutions to division by zero problems include the involvement of number A (IPA ∧ ,
pronounced like in cup, luck) with it’s value of 1

0 . For the purpose of discussions in this
paper, let’s call that number Ada (with IPA ∧ pronunciation for it’s vocal A or a) or it’s
abbreviation A . Ada is a word in Indonesian language that means exist.

We also propose an expanded number system, let’s call it cyclic number system, in
which it’s members includes real numbers, with the addition of A and it’s outcomes of
operations with itself and other numbers. Let’s call those members cyclic numbers. Along
with cyclic number system and cyclic numbers, we also introduce their 2-dimensional
coordinate system, let’s call it cyclic coordinate system.

Cyclic number system, cyclic numbers, and cyclic coordinate system, all accept the
factual and mathematical validity and definability of A .
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2 One, Zero, Ada, and Cyclic Number System

1.1 Some works related to solutions to the problems of division by 0.

Some works by researchers related to solutions to the problems of division by 0 are avail-
able, such as by Setzer [5] and Carlstrom [6]; with two extra numbers, ∞ = 1

0 and ⊥ = 0
0 ,

be adjoined to the set of real numbers, Miller [7], that works on 0
0 based on the presence

of the so called subspace directions; Barukcic [8], that works on 0
0 through Einstein’s

theory of special relativity; Abubakr [9], and Bhaskaracarya [10]. All those works support
some form of definability of division by 0 or at least definability of 0

0 .

Abubakr’s work [9] and Bhaskaracarya’s work [10] interestingly have some statements
that have similarities with some of our work’s statements. Abubakr [9] statements that
we are in conformity with:

• addition of cyclic numbers is not necessarily associative, we also in conformity with
Abubakr [9] on following a convention to perform addition from left to right,

• addition of cyclic numbers is not necessarily commutative,

• multiplication of cyclic numbers is not necessarily commutative,

• for every number a, a - a = a(0),

• -1 + 1 = -0,

• acceptance to the validity of 1
0 , in Abubakr’s [9] 1

0 = devanagari “ka”, in our work
1
0 =A ,

• for every number a, a(0) = a(0).

Abubakr [9] states, “An observer or a machine performing mathematical calculations
must not create or destroy information using zero,” or about something related to
“conservation of information”.

Bhaskaracarya [10] states “The product of cipher is nought : but it must be retained
as a multiple of cipher, if any further operation impend. Cipher having become a
multiplier, should nought afterwards become a divisor, the definite quantity must be
understood to be unchanged.”

And we state in this paper “The product of 0 or A must be kept as multiple of 0 or
A , or in the raw, original, or pristine form, except that, that is the last operation.”

Considering as well those works, we continue to propose our solution methods to solve
problems posed by division by 0 in general.

1.2 Definitions of words and notations.

For the purpose of discussions in this paper, let’s define words and notations:
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• cyclically, means with computation(s) that accept validity of cyclic number system,

• cyclic calculation or cyclic operation, means calculation, computation, or operation
that accept validity of cyclic number system,

• for space efficiency especially in graphs and figures, let the notations of n indicate
the value of A + n , so that 2 = A + 2 , +5 = A+5 , -3 = A− 3 , and so on,

• let’s define infinity (∞) , as an infinitely large number, as a result of operation(s)
that don’t include division by 0,

• Expression within brackets “[]”, means that it is the last operation, therefore it
must not be in the raw form. For example, [2(0) = 0] , [A = −A] . Note: we got
inspiration to use this bracketing technique from Abubakr [9],

• “Plain” expression or expression without brackets, means that it is not the last op-
eration, therefore it must be in the raw form. For example, 4(0) − 0 = 3(0) ,
−1(0) = −0 . Explicit “non cyclically”, “non cyclic calculation” or “non cyclic op-
eration” statement related to the expression overrides this definition.

2 Cyclic number system

This paper proposes a new number system called cyclic number system.

Definition 2.1. Cyclic number system is an extension of real number system to include as
it’s members, A and it’s outcomes of operations with itself and other numbers. Members
of cyclic number system are called cyclic numbers.

The cyclic nature of that number system is caused by the properties of 0 and A . In
cyclic number system, 0 and A both act as turning points. Addition of positive or
negative number to 0 will result in a number that closer to A , and addition of positive
or negative number to A will result in a number that is closer to 0 .

2.1 Rules of cyclic number system.

If no additional information to the rules, that means those rules are axioms. Other rules
come from lemmas, corollaries, examples, propositions, and theorems.

Vital numbers that form cyclic number system are 1, 0, and A . We need to know
their intrinsic and operational characteristics before we do calculations on cyclic number
system. Those characteristics are also shown by the following rules.

Rule 1. 1 is the self, the owner, or the intrinsic divisor.
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Rule 2. A number is actually a fraction with that number as nominator and 1 as denom-
inator. So for example,

a =
a

1
, 0.5 =

0.5

1
, and so on.

Rule 3. For the question, ”what is the quotient of any number divided by any number?”,
it means that for a fraction with numerator and denominator of any number, what
is the quotient if the denominator is 1 ?

Statement 4
2 =? means that for a fraction with numerator of 4 and denominator

of 2 , what is the quotient if the denominator is 1 ? In this case the answer is 2
1

or 2 .

Rule 4. 0 is emptiness, or nothingness. 0 is not small nor large.

Before we can say something is small or large we must be able to sense it, at least
by sight or touch. Because of emptiness or nothingness, we can’t see or touch a
thing therefore we can’t say it is small or it’s large.

Rule 5. 0 is not positive nor negative number, it’s unsigned.
+0 = +1(0) , and −0 = −1(0) .

Rule 6. 0 is an even number.

Rule 7. 0 6= 1
∞ , and 0 6= ± 1

∞ .

Rule 8. The product of 0 must be kept as multiple of 0 , except if that is the last opera-
tion.

Lemma 2.2. Rule 8 exist because for any numbers a and b, if a 6= b then
a(0) 6= b(0) .

Proof.

For a 6= b then, a(1) 6= b(1),

applying rules 11, therefore, a(0)(A) 6= b(0)(A),

multiplying both side by 0 we get, a(0) 6= b(0).

Corollary 2.3. For every number a, a(0) = 0 , if and only if a = 1 .

Proof. a(0) = 0 , multiplying both side by A , we get, a = 1 .

Example 2.4. 3(0) = 3(0), but 6= 0 .
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Corollary 2.5. Proofs of lemma 2.2. and corollary 2.3. also apply to the rule
expounded by Bhaskaracarya in his work Lilavati (translated by Colebrooke, with
notes by H.C. Banerji) [10] in part of verses 44-45 that say “The product of cipher
is nought : but it must be retained as a multiple of cipher, if any further operation
impend. Cipher having become a multiplier, should nought afterwards become a
divisor, the definite quantity must be understood to be unchanged.”

Example:
a× 0

0
= a.

Please note that Bhaskaracarya’s words of “multiple of cipher” and “if any further
operation impend.” give ideas of the wording of some of our rules.

Remark 2.6. But interestingly, the note provided by H.C. Banerji seems to
counter the rule expounded by Bhaskaracarya, as part of the note says “The rule,
viz., “cipher having become a multiplier, &c,” is not accurate. For a×0

0 = 0
0 =

indeterminate, and, not = a, as the rule says.”

Corollary 2.7. Proofs of lemma 2.2. and corollary 2.3. also apply to the rule
expounded by Bhaskaracarya [10] in part of verse 46 that says “and what number
it is, which multiplied by chiper, and added to half itself, and multiplied by three,
and divided by chiper, amounts to a given number sixty-three.” The notation from
that statement as provided by the note of H.C. Banerji is:

0× (x + 1
2x)× 3

0
= 63. x=14 is the solution given by the note.

Rule 9. [+0 = −0] .

If further operation impend, then +0 6= −0 .
+0 is unsigned 0 with a potential to confirm the sign of the result of future
operation. −0 is unsigned 0 with a potential to inverse the sign of the result of
future operation.

0 is unsigned 0 with no potential to confirm nor inverse the sign of the result of
future operation. For practicality however, it is considered that 0 = +0 .

Rule 10. A is fullness, or allness. A is not large nor small.

Before we can say something is large or small we must be able to sense it, at least
by sight or touch. Because of fullness or allness, we can’t see or touch a thing,
because no space and no material for witness, since allness engulfs all. Without
witness, we can’t see or touch a thing, therefore we can’t say it is large or small.

Another supporting proof that A is not large nor small is, 0 is not small nor
large, A = 1

0 , therefore A is not large nor small.

Rule 11. A = 1
0 , therefore A(0) = 1, and 1

A = 0 .
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Remark 2.8. Theorem 3.1 in section 3 also gives proof to this rule.

Rule 12. A is not positive nor negative number, it’s unsigned.
+A = +1(A) , and −A = −1(A) .

Rule 13. A is an even number.

Rule 14. A 6=∞ , and A 6= ±∞ .

Rule 15. A and 0 are number poles.

Remark 2.9. A and 0 characteristics includes:

a). in balance (related to rule 4 and 10),

• not big nor small, unsigned,

b). as a turning point,

• addition of positive or negative number to 0 will result in a number that
is closer to A ,

• addition of positive or negative number to A will result in a number that
is closer to 0 ,

c). in opposition,

• two opposites or contrasted qualities.

Rule 16. The product of A should be kept as multiple of A , except if that is the last
operation.

Lemma 2.10. For any numbers a and b, If a 6= b then a(A) 6= b(A) .

Proof.

For a 6= b then, a(1) 6= b(1),

a(0)(A) 6= b(0)(A),

multiplying both side by A we get, a(A) 6= b(A).

Corollary 2.11. For every number a , a(A) = A , if and only if a = 1 .

Proof. a(A) = A , multiplying both side by 0 we get, a = 1 .

Example 2.12. 3(A) = 3(A), but 6= A .
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Rule 17. [+A = −A] .

If further operation impend, then +A 6= −A .
+A is unsigned A with a potential to confirm the sign of the result of future
operation. −A is unsigned A with a potential to inverse the sign of the result
of future operation.

A is unsigned A with no potential to confirm nor inverse the sign of the result
of future operation. For practicality however, it is considered that A = +A .

Rule 18. For every number a, a− a = a(0) .

Lemma 2.13. For every number a , a− a = a(0) .

Proof. a− a = a(1− 1) = a(0) .

Example 2.14. Examples:

a) 1-1 = 1(1-1) = 1(0) = 0,

b) -1+1 = (-1)-(-1) = -1(1-1) = -0,

c) 2-2 = 2(0),

d) -2+2 = -2(0),

e) A-A = 1,

f) -A+A = -1,

g) (1-1)+1 = 0+1,

h) 1+(-1+1) = 1-0.

Rule 19. Commutative property of addition is not totally extendable to cyclic numbers.

Remark 2.15. Addition of cyclic numbers is not necessarily commutative. This
is especially true for addition involving additive inverse numbers, as shown by
example 2.14, points a) through f).

Rule 20. Associative property of addition is not totally extendable to cyclic numbers.

Remark 2.16. Addition of cyclic numbers is not necessarily associative. This
is especially true for addition involving additive inverse numbers, as shown by
example 2.14, points g) and h).

Rule 21. Commutative property of multiplication is not totally extendable to cyclic num-
bers.

Remark 2.17. Multiplication of cyclic numbers is not necessarily commutative,
as shown by equation (9) and (10) in sub-subsection 5.2.2.

Rule 22. 0
0 = 1 .



8 One, Zero, Ada, and Cyclic Number System

Lemma 2.18. This is related to rule 2 and 3.

The equation 0
0 =? , has a meaning that in a fraction, if the numerator is 0 and

the denominator is also 0 , what is the value of the numerator if the denominator
is 1 ? In this particular case, since the numerator equal the denominator, the
answer is 1 . So that

0

0
=

1

1
= 1.

But, let say that the answer of 0
0 is n . Is it correct to say that n can be any

number since any number multiplied by 0 equal to 0 ? The answer is no.

Proof.

Let’s say
0

0
= n, therefore 0 = 0(n),

multiplying both side byA, A(0) = A(0)n, 1 = n.

Therefore,
0

0
= n if and only if n = 1.

Rule 23. A
A = 1 .

Lemma 2.19. This is related to rule 2 and 3.

The expression A
A =? , has a meaning that if the numerator is A and the denom-

inator is also A , what is the value of the numerator if the denominator is 1 ?
Since the numerator equal the denominator, the answer is 1 .

Proof.

A

A
=

1
0
1
0

=
1

0

(
0

1

)
=

0

0
,

applying rule 22,
A

A
= 1.

3 An empirical and mathematical validity of A

Now let’s discuss an empirical and mathematical case, in which it’s solution supports the
factual and mathematical validity and definability of A . That case is related to one of
Zeno’s problems called Achilles and the tortoise paradox.
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The problem says that in a race, the pursuer with higher speed will never reach and
overtake the pursued with lower speed because each time the pursuer reach the previous
position of the pursued, the pursued has move ahead although with smaller distance than
that of the pursuer. This situation repeats indefinitely, therefore the pursuer will never
reach and overtake the pursued.

The problem can be rephrased as, the pursuer with higher speed will never reach and
overtake the pursued with lower speed, since the magnitude of their last distance to each
other is never = 0 .

In factual reality however, that assertion is not true since the pursuer with higher
speed will reach and overtake the pursued with lower speed. This is a valid empirical and
mathematical problem.

Theorem 3.1. In a race, the pursuer with higher speed will reach and overtake the pursued
with lower speed.

Let’s examine mathematically a situation related to that Achilles and the tortoise prob-
lem.

Suppose that the speeds of object 1 and object 2 respectively is 1 meter (m) per second
and 1

2 m per second. And the head start distance given to object 2 is 1 m.

3.1 Non cyclically.

The approximate distance from starting point of object 1 to the point of the place object
1 will reach object 2 is shown by (1). Let’s define step as a beginning of race for each
term, with step number = term number - 1. Each term value of (1) represents the distance
between the 2 objects at each step, so that the distance between the two objects at step
0 is = magnitude of term 1,= 1 m.

∞∑
k=0

1

2k
=

1

20
+

1

21
+

1

22
+

1

23
+ · · ·+ 1

2∞
m,(1)

≈ 2 m (approximately).

Let’s see in (1) the problem faced related to the above Achilles and the tortoise paradox
situation. If the quotient of the last term of it (i.e. 1

2∞ ) is not 0 then how is it possible
for object 1 to reach object 2? In order for object 1 to reach object 2, this last term’s
fraction’s magnitude must be 0 .

With ∞ as exponent of base 2 as part of the denominator, the fraction’s magnitude of
the last term of (1) which is 1

2∞ is approaching 0 , but not= 0 .
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3.2 Cyclically.

There is solution to that problem, so that the pursuer with higher speed will reach and
overtake the pursued with lower speed.

Proof. To conform to factual reality, mathematically for the pursuer with higher speed to
reach and overtake the pursued with lower speed, their magnitude of last distance or the
magnitude of last term of the series must be 0 .

Replacing ∞ with log2 A in (1), we get,

log2 A∑
k=0

1

2k
=

1

20
+

1

21
+

1

22
+

1

23
+ · · ·+ 1

2log2 A
m,(2)

= 1 +
1

2
+

1

4
+ · · ·+ 1

A
4

+
1
A
2

+
1

A
m,

= 1 +
1

2
+

1

4
+ · · ·+ 4(0) + 2(0) + 0 m,

Last term of (2) is term log2 A + 1, it’s value is
1

2log2 A
=

1

A
= 0 m.

Object 1 reaches object 2 at step log2 A , and at the next step, it overtakes object 2.

Together with the empirical fact, this calculation proves, that the last distance of 0 is
achievable, and proves as well theorem 3.1. This proves factual as well as mathematical
validity and definability of a fraction with 0 denominator and non 0 nominator, this also
proves factual as well as mathematical validity and definability of A , with it’s value of
1
0 .

Corollary 3.2. Position of object 1 and object 2 when object 1 reaches object 2, and after.
From (2),

log2 A∑
k=0

1

2k
= p =

1

20
+

1

21
+

1

22
+ · · ·+ 1

2log2
A
4

+
1

2log2
A
2

+
1

2log2 A
m,(3)

p = 1 +
1

2
+

1

4
+ · · ·+ 1

A
4

+
1
A
2

+
1

A
m,(4)
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p

2
=

1

2
+

1

4
+

1

8
+ · · ·+ 1

A
2

+
1

A
+

1

2A
m,

(
p− p

2

)
= 1− 1

2A
m,⇒ p

2
= 1− 0

2
m,

p = 2− 0 m.

The position of object 1 when it reaches object 2 is 2 − 0 m from object 1’s starting
point.

When object 1 start leaving point 2− 0 , we apply (5) which is the horizontal flip of (4)
to calculate it’s positions.

q = 0 + 2(0) + 4(0) + · · ·+ 1

4
+

1

2
+ 1 m.(5)

In the next step or with addition of term 1 of (5) after overtaking object 2, object 1
reaches the point of 2 m, and object 2 reaches the point of 2− 0

2 m. In the next step or
with addition of term 2 of (5) object 1 reaches 2 + 2(0) m and object 2 reaches 2 + 0

2 m.

Theorem 3.3. There is a first distance to move.

Now let’s see another mathematical problem. The situation is similar to another Zeno’s
problem called Dichotomy paradox.

Suppose there is an object to move from first to second point. Before it reaches second
point, the object must reach the half distance, before that it must reach a quarter, before
that it must reach one eight, and so on indefinitely to the 1

∞ . According to this problem
an object cannot move to even cover it’s first distance, since the magnitude of supposed
first distance is unknown because the distance can always be divided by 2.

For a question, is there a first distance for an object to move, and what is it’s magnitude?
The answer is yes, and 0.

Proof. Cyclically, we can continue to divide the distance of the object to move by 2 to the
magnitude of

1

2log2 A
=

1

A
= 0.

Just as 0 is the magnitude of the last distance as shown by theorem 3.1, 0 is the magnitude
of the first distance as well, for an object to move. This is also indicated by corollary 3.2.

The distance of 0 multiplied by multiple of A steps becomes an observable distance,
such as 1

∞ , 1
1000 , 1

2 , 1 , 2 , and so on.
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4 Cyclic coordinate system

Proposition 4.1. Cyclic coordinate system.

Definition 4.2. Cyclic coordinate system can be visualized as 2 Euclidean 2-dimensional
Cartesian coordinate systems, one that has 0,0 as it’s origin and the other that has A,A
as it’s origin, wrapped to a spherical form opposite to each other, it’s not to scale.

In this paper, darker colored lines indicate that they are in the nearer side of the sphere,
the lighter colored lines indicate that they are in the farther side of the sphere.

For simplicity, cyclic coordinate system can also be in the form of 2 separate Euclidean
2-dimensional Cartesian coordinate system planes, one that has 0, 0 as it’s origin (let’s
call it 0 plane), and the other that has A,A as it’s origin (let’s call it A plane). These
plane forms are also not to scale.

Cyclic coordinate system is a supporting tool to visually represent cyclic number system.
It shows some properties of relations between cyclic numbers.

Here’s the representation of cyclic coordinate system,

Figure 1: Cyclic coordinate system.

In cyclic coordinate system we can observe that:

• 0 and A are respectively placed between odd numbers in number lines. 0 is even
number, and so also A .

• 0 and A are respectively placed between positive and negative numbers in number
lines. 0 is unsigned number, and so also A .
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• 0 and A can be understood as poles, their properties include unsigned and as a
turning points. A can be seen as the opposite pole of 0 and vice versa.

Proposition 4.3. Graphs of functions in cyclic number system. Some examples;

Figure 2: Graph of y = 1 and y = A + 1 . Figure 3: Graph of y = −x .

Figure 4: Graph of y = 1
x , in 0 plane. Figure 5: Graph of y = 1

x , in A plane.

Please also note that cyclically, as also shown in Figure 4 and 5, y = 1
x is definable at

x = 0 , with y = A , therefore function y = 1
x is also continuous.
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5 More examples of cyclic calculations

5.1 The case of Grandi’s series.

Series S =

∞∑
n=0

(−1)n = 1− 1 + 1− 1 + 1− 1 + · · ·(6)

is also known as Grandi’s series. Let’s find sum of that series, if it exists.

5.1.1 Non cyclically.

With (6),

S =

∞∑
n=0

(−1)n = 1− 1 + 1− 1 + 1− 1 + · · ·

1st method, S = (1− 1) + (1− 1) + (1− 1) + · · · = 0 + 0 + 0 + · · · = 0,

2nd method, S = 1 + (−1 + 1) + (−1 + 1) + · · · = 1 + 0 + 0 + · · · = 1,(7)

3rd method, 1− S = 1− (1− 1 + 1− 1 + · · · ) = 1− 1 + 1− 1 + · · · = S

1 = 2S, therefore S =
1

2
.

There are more answers with certain ways of efforts to find it’s sum. In mathematics,
this series is considered has no sum.

5.1.2 Cyclically.

Lemma 5.1. In cyclic number system we can work that series out, to find it’s sum.

Proof. Grandi’s series in cyclic number system,

S =
A−1∑
n=0

(−1)n = 1− 1 + 1− 1 + · · · − 1← term A.(8)
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Series (8) has A number of terms, that means an even number of terms.

1st method: S = (1− 1) + (1− 1) + · · ·+ (1− 1)← term

(
1

2
A

)
S = 0

(
1

2
A

)
=

1

2
,

2nd method: S = 1 + 1 + 1 + · · ·+ 1← term

(
1

2
A

)
+−1− 1− 1− · · · − 1← term

(
1

2
A

)
applying rule 18, S =

(
1

2
A

)
−
(

1

2
A

)
=

(
1

2
A

)
0 =

1

2
,

3rd method: 1− S = 1− (1− 1 + 1− 1 + · · · − 1← term A) = 1− 1

2

S =
1

2
.

These calculations show that the series has a sum, with value of 1
2 .

Corollary 5.2. Considering rule 19 and 20, meanwhile, the bracketing technique applied
to (7) changes the original series S to a different new series T , which is actually the
additive inverse of the original.

T = 1 + (−1 + 1) + (−1 + 1) + · · ·+ term

(
1

2
A− 1

)
→ (−1 + 1) + (−1),

T = (−1 + 1) + (−1 + 1) + · · ·+ (−1 + 1)← term

(
1

2
A

)
= −1

2
.

Corollary 5.3. Calculating sum of an example series S with certain odd number of terms.

S =

A−2∑
n=0

(−1)n = 1− 1 + 1− 1 + · · ·+ 1← term (A-1) = 1
1

2
.

5.2 Working with and without limit.

5.2.1 Limit case 1.

Non cyclically.
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As x approaches ∞ the limit approaches the value of 2 .

lim
x→∞

2x− 1

x
≈ 2.

Cyclically.

Let x = A⇒ 2A− 1

A
=

A(2− 0)

A
= 2− 0.

5.2.2 Limit case 2.

f(x) =
x2 − 1

x− 1
.

Non cyclically, that function has no definition on x = 1 (because of the division by 0),
instead, on x approaching 1 we use limit,

lim
x→1

x2 − 1

x− 1
≈ 2, when x approaches 1, the outcome approaches 2.

Cyclically,

(x + 1)(x− 1) = x2 + x− x− 1 = (x2 − 1) + 0x,

(x2 − 1) = (x + 1)(x− 1)− 0x,(9)

(x− 1)(x + 1) = x2 − x + x− 1 = (x2 − 1)− 0x,

(x2 − 1) = (x− 1)(x + 1) + 0x,(10)

from (9),
x2 − 1

x− 1
= (x + 1)− 0x

x− 1
,(11)

from (10),
x2 − 1

x− 1
= (x + 1) +

0x

x− 1
,(12)

(x + 1)− 0x

x− 1
= (x + 1) +

0x

x− 1
, so that − 0x

x− 1
= +

0x

x− 1
.
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From rule 9 and 17, since 0 and A share a unique quality to have properties of being
equal to their respective additive inverses i.e [0 = −0] and [A = −A] , therefore

0x

x− 1
= 0, and A,

from (11) and (12),
x2 − 1

x− 1
= (x + 1)± 0 and ±A,

for x=1 ⇒ x2 − 1

x− 1
= 2, and A + 2.

Those calculations show that function

f(x) =
x2 − 1

x− 1

is definable at x=1, and it is a continuous function.

5.2.3 Limit case 3.

Calculating Euler’s number e.

Non cyclically.

e = lim
n→∞

(
1 +

1

n

)n

≈ 2.718281828 . . . .(13)

Cyclically.

With n=A on (13)⇒ e = (1 + 0)A .

Let’s look at the Pascal’s triangle in Figure 6, with n denotes row number and k denotes
diagonal column number.

With terms of row A of the Pascal’s triangle as binomial coefficients,

e = 1
(
1A
) (

00
)

+ A
(
1A−1

) (
01
)

+
A(A− 1)

2

(
1A−2

) (
02
)

+

(
A(A− 1)

2

)(
A− 2

3

)(
1A−3

) (
03
)

+

(
A(A− 1)

2

)(
A− 2

3

)(
A− 3

4

)(
1A−4

) (
04
)
· · ·

= 1 + 1 +
A2 −A

2
02 +

A3 − 3A2 + 2A

6
03 +

A4 − 6A3 + 11A2 − 6A

24
04 · · · and continuing the pattern,

= 1 + 1 +
1

2
+

1

6
+

1

24
+

1

120
+ · · ·+ 1

3628800
+

1

39916800
· · · = 2.718281826 . . . .
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n k → 0 1 2 3 4 5 · · · ∞ · · ·A
↓ ↙
0 → 1
1 → 1 1
2 → 1 2 1
3 → 1 3 3 1
4 → 1 4 6 4 1
5 → 1 5 10 10 5 1
...

...
...

...
...

∞ → · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

A → 1 A A(A−1)
2

(
A(A−1)

2

) (
A−2
3

)
· · ·

Figure 6: Pascal’s triangle in cyclic number system.

5.3 Thompson Lamp Problem.

The problem is similar to the following situation. At the start of term 1 the lamp is
switched on, after 1 second at the start of term 2 it is switched off, after 11

2 seconds at
the start of term 3 it is switched on, after 13

4 seconds at the start of term 4 it is switched
off, and so on. The question is at the total time of 2 seconds, is the lamp on or off? Non
cyclically, no answer for the problem.

5.3.1 Cyclically.

The problem relates to (3), this time the unit is second (s),

log2 A∑
k=0

1

2k
= t =

1

20
+

1

21
+

1

22
+ · · ·+ 1

2log2
A
4

+
1

2log2
A
2

+
1

2log2 A
s,

t = 1 +
1

2
+

1

4
+ · · ·+ 1

A
4

+
1
A
2

+
1

A
s.(14)

Let’s see (14), the lamp is on at the start of odd terms, and off at the start of even
terms which is right after odd terms. The value of last term of (14) is 1

A or 0 , at the
term number of log2A− 1 , log2A− 1 is an odd number.

From (3) we get the sum of the series is 2− 0 . Therefore at the time of 2− 0 second,
the lamp is off, and at the time of 2 second, the lamp is on.
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5.4 Real numbers in cyclic number system.

5.4.1 Countability of real numbers.

Theorem 5.4. Real numbers are countable.

Proof. Let define face value, value of the place, and place value as follows;
for the number 234.567,
it’s face value of 2 is 2
it’s face value of 5 is 5
it’s value of the place of 2 is 100
it’s value of the place of 5 is 1

10
it’s place value of 2 is 200.
it’s place value of 5 is 5

10 .

In cyclic number system we can construct fractional parts of real numbers up to value
of the place of 0.

With n denotes row number and k denotes column number or term, let’s examine the
list of fractional parts of real numbers as follows:

n, k→ 1 2 3 4 5 . . . (log A
102

) (log A
101

) (logA)

↓
1 0 0 0 0 0 . . . 0 0 0 0 0
2 0 0 0 0 0 . . . 0 0 0 0 1
3 0 0 0 0 0 . . . 0 0 0 0 2
4 0 0 0 0 0 . . . 0 0 0 0 3
5 0 0 0 0 0 . . . 0 0 0 0 4
...

...
...

...
...

...
...

...
...

...
...

-4 9 9 9 9 9 . . . 9 9 9 9 5
-3 9 9 9 9 9 . . . 9 9 9 9 6
-2 9 9 9 9 9 . . . 9 9 9 9 7
-1 9 9 9 9 9 . . . 9 9 9 9 8
A 9 9 9 9 9 . . . 9 9 9 9 9

Figure 7. Fractional parts of real numbers in cyclic number system.

Figure 7 represents the fractional parts of real numbers in decimals. We choose term
logA as the last term to cover variations of fractional parts of real numbers, because that
last term’s value of the place is 0 . So that, series formed by value of the places of row
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n=1, k = 1 to logA ;

logA∑
k=1

1

10k
=

1

101
+

1

102
+

1

103
+ · · ·+ 1

10log
A
102

+
1

10log
A
10

+
1

10logA

=
1

10
+

1

100
+

1

1000
+ · · ·+ 100

A
+

10

A
+

1

A
.

Series formed by place values of row n=1, k = 1 to logA ;

= 0

(
1

10

)
+ 0

(
1

100

)
+ 0

(
1

1000

)
+ · · ·+ 0

(
100

A

)
+ 0

(
10

A

)
+ 0

(
1

A

)
.

and, series formed by place values of row n=A , k = 1 to logA ;

= 9

(
1

10

)
+ 9

(
1

100

)
+ 9

(
1

1000

)
+ · · ·+ 9

(
100

A

)
+ 9

(
10

A

)
+ 9

(
1

A

)
.

Table in Figure 7 and the above series also show that all unique variations of fractional
parts of real numbers up to value of the place of 0, are there in the list. Therefore we
can’t create combination of numbers to form fractional part of real number, including by
the method of Georg Cantor’s diagonal argument, so that it will not listed in that list.

We can calculate quantity of unique variations of fractional parts of real numbers as
A . The non negative integer parts of real numbers can be formed by duplicating the
fractional parts of them. Quantity of real numbers including both non negative integer
and fractional parts is A2 .

This proves the countability of real numbers, since they can be mapped one to one to
natural numbers.

Corollary 5.5. 0.999..., 1.000..., 1 .

0.999... = n =
9

101
+

9

102
+

9

103
+ · · ·+ 9

10log
A
102

+
9

10log
A
10

+
9

10logA
,

n =
9

10
+

9

102
+

9

103
+ . . . +

9
A
102

+
9
A
10

+
9

A
,

n

10
=

9

102
+

9

103
+

9

104
+ . . . +

9
A
10

+
9

A
+

9

10A
,

n− n

10
=

9

10
− 9

10A
⇒ 9n

10
=

9

10
− 9

10A
,

So n = 0.999... = 1− 0.
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0.000... = m =
0

101
+

0

102
+

0

103
+ · · ·+ 0

10log
A
102

+
0

10log
A
10

+
0

10logA
,

m =
0

10
+

0

102
+

0

103
+ . . . +

0
A
102

+
0
A
10

+
0

A
,

m

10
=

0

102
+

0

103
+

0

104
+ . . . +

0
A
10

+
0

A
+

0

10A
,

m− m

10
=

0

10
− 0

10A
⇒ 9m

10
=

0

10
− 0

10A
⇒ m =

0

9
− 02

9
,

So 1 + m = 1.000... = 1 +
0

9
− 02

9
.

And, 1 = 1.

So non cyclically, they all are the same numbers, cyclically, however, they all are different
numbers.

Also we know that cyclically, 1.000... to 1 is closer then 0.999... to 1 .

Only 1 is equal to 1 .

6 Conclusion

We conclude that division by 0, that includes implementation of A , is factually and
mathematically valid and definable. As shown by some examples of cyclic calculations in
this paper, computation methods that involve A and/or cyclic number system are useful
to mathematics, from solving the previously unsolvable problems, simplifying the solution
methods and processes, as well as uncovering new mathematical facts and information.
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