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ABSTRACT

A unifying principle underlies the organization of physical and biological systems. It relates to a well-known
topological theorem which succinctly states that an activity on a planar circumference projects to two activities with
“matching description” into a sphere. Here we ask: What does “matching description” mean? Has it something to do
with “identity”? Going through different formulations of the principle of identity, we describe diverse possible
meanings of the term “matching description”.  We demonstrate that the concepts of “sameness”, “equality”, “belonging
together” stand for intertwined levels with mutual interactions. By showing that “matching” description is a very
general and malleable concept, we provide a novel testable approach to “identity” that yields helpful insights into
physical and biological matters. Indeed, we illustrate how a novel mathematical approach derived from the Borsuk-
Ulam theorem, termed bio-BUT, might explain the astonishing biological “multiplicity from identity” of evolving living
beings as well as the logic of their intricate biochemical arrangements.

KEYWORDS: systems dynamics; topology; Borsuk-Ulam theorem; computation.

1. INTRODUCTION: SAMENESS AND MATCHING DESCRIPTIONS

The concept of “sameness” is the tenet of approximate reasoning, treatment of imprecision, assessment of physical
systems and biological classification.  Indeed, techniques such as pairwise comparison (Kolkodzaj et al., 2017), rough
sets and Fraenkel-Zermelo group theory are based on the concept of “equality’ among different features. In particular,
recently introduced versions of the Borsuk-Ulam theorem (BUT) state that a feature on a n-manifold projects to two
points with “matching description” onto a n+1 manifold (Peters, 2016; Tozzi and Peters, 2016a). Starting from this
rather simple, abstract claim, a fruitful general framework has been built which is able to elucidate disparate real
physical and biological phenomena, from quantum entanglement (Peters and Tozzi, 2016) to brain activity (Tozzi et al.
2017a), from biological gauge theories (Tozzi et al., 2017b) to pre- big bang scenarios (Tozzi and Peters, 2016b).
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Summarizing the novel topological approach, we may observe that, by taking into account projections on functional or
real dimensions of physical and biological systems onto corresponding feature spaces, a system of mappings is achieved
with “matching description” that fits very well with experimental results, allowing to assess countless issues in far-flung
scientific branches spaces (Angel and Leong, 1994; Benson et al., 2016; Giusti et al., 2016; Kida et al., 2016;
Kleineberg et al, 2016; Simas et al., 2015). Nevertheless, what does “matching description” mean in a topological
context?

Matching descriptions are termed “descriptively near sets”, i.e., two (or more) features that lie on the same manifold,
but that have no points in common. In a semantic framework, a matching description encompasses all information about
two nodes in two structures which semantically correspond to one another. In what follows, we will describe other
possible meanings of matching description in different scientific contexts, providing testable examples, and we will
subsequently introduce a novel version of Borsuk-Ulam theorem (BUT), dubbed bio-BUT, that takes into account the
relatedness and overwhelming evolutionary complexification of living beings. Within the bio-BUT framework, we will
use the concept of “matching description” in comparing mathematical, physical, and biological features of signals such
as amplitude, duration and intensity.

2. THE PROBLEM OF CONNECTION AND UNITY

Some fundamental questions

Here we may ask, paraphrasing the seminal paper by Nagel (1974), what is it like to be a matching description?  In
order to tackle this issue, here we need to ask before: has matching description anything to do with “identity”?  In the
“classical” BUT, the matching features are just points, therefore a point is equal to another and we might easily state
that the two points are “identical” (Borsuk, 1933). On the other hand, in the novel BUT variants, the matching features
stand not just for simple topological points, but also for more intricate features, such as shapes of space (spatial
patterns), shapes of time (temporal patterns), vectors, tensors, functions, signals, thermodynamic parameters,
movements, trajectories, lexical structures (either syntactic or semantic), or most generally, symmetries and symmetry
breaks (Peters et al., 2017; Matousek 2003).

Thereafter,  we  may  ask:  Apart  from  the  two  adimensional  points  of  the  classical  BUT,  are  other  types  of  matching
features identical? When you compare a pair of “equal” features, how do you state that they are equal? Do they have the
same feature, or two different features with something in common? In order to solve the issue, we analyze the “principle
of identity” (Heidegger, 1957), which is one of the three tenets of classical logic.

First answer: sameness

The principle of identity states that A=A.  The formula expresses, in its usual description, an equality of A and A.  One
A is equal to another A.  Therefore, we can state that A is the same as A, because “identical” (from Greek and Latin)
means: “the same”.  We will see how “matching description” standing for “sameness” can be found not just in the
rather abstract disciplines of philosophy, logic and mathematics, but also in the “objective” accounts of physics and
biology, and in the “subjective” realm of single individual’s mental activity.

Second answer: equality

In another version, the formula A=A speaks of “equality”.  A is A.  It does not say that A is the same, but that every A
is itself the same.  Or, in other words, each thing itself is the same for itself and with itself.

Third answer: belonging together

It can also be stated that matching description “belongs to” an identity.  In this case, sameness stands for a “belonging
together”.  In “belonging together”, the world “together” means to be assigned and placed into the order of a together,
to be established in the unity of a manifold, to be combined into the unity of a system. Such assignment and placing
occur thanks to connections and mappings of the one with the other. Belonging together means that two features are put
orderly into a common feature that is outlined against the background.

This means that two interpretations are feasible: a) matching description is determined by an identity as a feature of that
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identity; b) identity is represented as a feature of matching description.

To make an example, night and day belong together: if you say just “day”, you do not yet acquire knowledge, if you not
think the day as lasting until the night’s onset. The night is night just because it stands for the day fading. Therefore,
night and day are not just two interchangeable features; rather they have to be taken together. Two contrasting features
such as night and day stand out in sharp relief just because they are two and meet one with each other.

Fourth answer: coincidentia oppositorum

Another possible interpretation for A=A might be extrapolated from Nicholas de Cusa (1440) and Giordano Bruno
(1582): the so-called coincidentia oppositorum. As usual, the sign = can be understood either in terms of sameness, or
equality, or belonging together. However, the two As stand for opposite, sometimes incompatible, apparently mutually
excluding features or activities. In this case, we start from A different from B, where B= non A, or B= -A. At the end of
the comparison, despite A is different from B, we achieve A=B, and therefore, just in terms of features A:

A = non A, or +A = -A

The As stand either for mathematical, or physical, or biological features. The principle of coincidentia oppositorum is in
touch with the counter-intuitive lack of the principle of identity in quantum dynamics and superimposition of
wave/particles. This formulation is particularly useful in quantum dynamics, where experimental findings have
“wrecked” the classical formulations of the principle of identity. To make an example, think about the Schrodinger cat.
He can be alive or dead in the same instant, so that A = -A.

3. WHAT DOES MATCHING DESCRIPTION MEAN IN BUT TERMS?

Here we draw some conclusion about the BUT counterparts of the above given definitions of the principle of equality.
A BUT system, i.e., a system equipped with two manifolds in lower and higher dimensions and with reciprocal
mappings, can be defined as follows (see Figure):

1) A single feature in lower dimensions specifies equality.
2) Two corresponding matching features in higher dimensions describe the same, the purely identical signal.
3) A BUT-oriented system describes signal values that belong together, that are copies of each other.  In

belonging together, the opposites do not disappear, rather they reach unity, although still existing separately
but  joined  by  a  force,  by  something  that  binds  them  together.   In  the  BUT  case,  such  force  stands  for  the
mappings between manifold of different dimensions.   The whole BUT system may also describe the
coincidentia oppositorum.

Lower dimensions

The equal is the single feature that stands alone in lower dimensions. In lower dimensions, we are assessing a single,
undifferentiated, homogeneous feature; therefore we cannot catch the differences between two activities, the latter being
distinguishable just in higher dimensions. Indeed, the equal is correlated with the indistinguishable unity, because it
encompasses the whole description of the feature, leaving apart the possible differences endowed in the higher-
dimensional systems’ features. To make an example, by the standpoint of an observer located in the feature A and with
an observational horizon limited to A, the BUT account in lower dimensions stands for the unity, for the complete
available description of the feature.

Higher dimensions

In turn, higher dimensions describe the standpoint of the separation. In higher dimensions, the differences between
features become evident, as they can be separately assessed. Two features are the same just in case of the difference, the
not-undifferentiated, the absence of singularity is thought. From the separation, the duality emerges. The same is never
identified with the equal: the same expunges the risk to smooth the different in the always equal. The same may also
stand for the reciprocal belonging together of different features, based on the assembly operated by the differences
imposed by an observer.  While he same joins the different in a primitive union, the equal scatters into the unity of what
is one just for uniformity. In solving the different, the joining core of the same comes into light. In higher-dimensional
levels, the same reaches the multiplicity of the almost incompatible. The BUT higher-dimensional account stands for
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the indeterminate and the unknown.  Indeed, an observer located in one A cannot have knowledge of the antipodal A,
placed at the opposite side of the high-dimensional manifold, and disjointed from the A where the observer stands.
Therefore, our secluded observer in higher dimensions is able to catch neither the whole system, nor the possible
existence of an identity, of a sameness, of a belonging together, of a matching description. The observer cannot
encompass  the  whole  system  in  a  single  sight.  Incidentally,  this  might  explain,  for  example,  why  we  detect  in  our
Universe the matter, but not the antimatter, and why we perceive a baryon asymmetry (a baryon is a composite
subatomic particle that consists of three quarks). BUT might also explain why we detect,  by our standpoint inside the
Universe, the arrow of time, e.g., time asymmetry.

Figure 1. Topology and the principle of identity. The figure illustrates the Borsuk-Ulam theorem’s counterparts of
sameness, identity, belonging together (i.e., the first three answers to our main question). The shapes stand for the
feature termed A.

4. A NOVEL BUT VARIANT IN MACROSCOPIC PHYSICS AND IN BIOLOGY

As stated above, our previous framework, developed through different papers in various scientific disciplines, suggests
that BUT and its variant might explain relevant biological phenomena. To make an example, based on novel topological
considerations, Tozzi et al. (2017b) have proposed a gauge symmetry for living cells. The reference system is the living
cell, equipped with general symmetries standing for the intertwined biochemical, metabolic and signaling pathways that
allow its global homeostasis. Environmental stimuli stand for “forces” able to locally break the symmetry of
metabolic/signaling pathways, while the species-specific DNA is the gauge field that restores the global homeostasis
after external perturbations. The authors applied BUT in order to operationalize a methodology in terms of
topology/gauge fields and subsequently inquire about the evolution from inorganic to organic structures, proposing that,
from prokaryotes to eukaryotes, an increase in complexity (standing in topological terms for an increase of dimensions
on an abstract manifold) gives rise to a progressive increase of matching features (Chaisson 2010).

During evolution, life gives rise to a formidable increase in complexity. The latter is an increase of dimensions in a
manifold where the thn  dimension stands for the level of complexity. To make a few examples, living beings have
descriptively proximal appearance, their inorganic constituents have single description; seeds (as fibres) have single
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descriptions, fruits (projections from sets of fibres) have similar descriptions (for mathematical details, see next
section). Such increase elucidates the countless biochemical functions of the more advanced living beings, such as
mammals and primates. However, if an increase of matching description is correlated with an increase in dimensions (in
the living cells’ case, an increase in complexity), we would achieve a countless number of identical antipodal features,
termed A, that are equal. Therefore, advanced cells might be equipped with a countless number of serial, monotonous,
repeating features, which number increases with complexity, and the astonishing diversity of living beings would be
lost (contrary to what happens in the real world).

Indeed, in terms of the principle of identity, our high complex macroscopic world is made of equal, but of different
objects, achieved through the joining together of different microscopic particles endowed in lower levels of complexity.
In particular, separation is a factor, achieved through oppositions against the undifferentiated, REQUIRED for life
taking place. Two opposites prevail over the power of the singularity, because the order of life overtakes the primeval
unity.  The exit from the singularity gives rise to splits and to disjointed opposites, e.g., the huge variety evolving living
beings. With increase in complexity (and therefore in dimensions) in living cells, the fixed points disappear, while
differences and oppositions are produced in their full vitality.

We propose another version of BUT, the bio-BUT: a single feature in n-dimensions, say A, projects to two matching
points in n+1 -dimensions (for mathematical details, see Section  6). The difference from the classical BUT is that,
instead of achieving the two typical matching descriptions termed A and its opposite A, we achieve the two matching
descriptions termed A and ΔA. In every subsequent mapping in higher dimensions, the diversity among the matching
features increases, allowing a high rate of evolutionary variety.  The identity (in the sense of equality or sameness)
among matching features A gradually disappears, giving rise to more and more various living entities: in other words,
the mapping from lower to higher dimensions gives rise to two features that are slightly different and belong together,
instead of being the equal or the same. Therefore, life can be explained just by taking into account the total BUT
system, and not just one of its manifolds.

5. BIOLOGY AND TOPOLOGY: AN INTIMATE INTERRELATIONSHIP

Every physical and biological structure has a history.   Based on their features, every structure has a description.   The
physical and biological world is a collection of structures with shapes defined by fibre bundles of the form

,fX E Bp¾¾® ¾¾®  where  X  is  a  set  of  particles,  f  maps  X  to  a  set  of  selected  fibers  (generators)  E  in  an  m-
dimensional space, and p is  a  1-1,  continous,  bijective  mapping  that  projects  E  onto  a  space  B  with  a  well-formed

shape such that
dimensional space, n m, or,

( )
dimensional space, n < m,

n
e

n
p
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Îí -î

   for ,  ( ) .e E e BpÎ Î

The collection of particles in X sweep out world canals as they move through space. Hence, the world canals defined by
X resemble a multi-layer ham sandwich (layers of world sheets). For example, metabolic pathways are worldsheets,
while homeostasis is intertwined worldsheets.
The fibres in E are selected segments (slices) of the sandwich in X. The projection p  is a piecewise continuous
mapping on E onto B. During evolution, life is a composition of fibre bundle projection mappings with concomitant
dimensional changes (changes in complexity). Instead of a causality view of the physical structure, the origin of the
species can be defined by projection mappings.  Evolutionary systems are defined by sequences of projections of the
form

11 2
1 2 1 1

i k
i i kE B B B B Bp pp p +

+ +¾¾® ¾¾® ¾¾® ¾¾®L L  (evolved shape).
In other words, the fabric of the physical (and biological) world has an underlying fibre bundle structure, apart from
thermodynamic and information relationships.
Projections among the structures of different dimensions are piecewise continuous. The projection E Bp¾¾®  is

piecewise continuous inasmuch as, for ^^  , , implies ( )  ( ),A B A B E A Bd p d pÌ  i.e., whenever A is close to B in

E, then ( )A Bp Î  is close to ( ) .B Bp Î  The  closeness  of  projects  results  from endowing the  sets  E  and B with  a

proximity relation with all projections defined in a proximity space ( )^^, , ,E B d  where ^^d  is  a  strong  (overlap)

Lodato proximity (Peters, 2016). In sum, world structures with changing shapes are defined by a collection of piecewise
continuous projections.
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6. A BIOLOGICAL VERSION OF THE BORSUK-ULAM THEOREM

Here we propose another development of BUT, termed bio-BUT, that can be useful in the experimental assessment of
both macroscopic physical and biological (linear and nonlinear) systems. Summarizing our approach, the Borsuk-Ulam
theorem (BUT) from algebraic topology introduces a continuous mapping from an n-sphere into itself. A biological
counterpart of BUT dubbed bio-BUT introduces a piecewise continuous mapping from signals in space time R3+1 into

a k-dimensional space Rk, k ≥ 1, containing feature vectors that describe antipodal spacetime signals.   In other words,
antipodal signals in spacetime signal can have matching descriptions in a 1-dimensional space or matching descriptions
in a k-dimensional space R3+1 →Rk, k ≥ 1. Let us briefly clarify the terms we are using in order to establish the bio-
BUT.

n-sphere

An n-sphere nS  is the set of points in Euclidean space Rn+1 with unit distance to the origin (0,0,...,0), a point whose

coordinates are 1n+  zeros.   An n-sphere is an n-dimensional manifold (Ghrist, 2014).   That is, there is a continuous

1-1 map on the set of points on nS  onto Rn.  For example, 1S S= denotes the Euclidean plane R2, an 2S denotes the

Euclidean 3-space R3. At the physical level, 2S is the set of all points with unit distance from (0,0,0). The analogue of
2S is the set of all points in the system (e.g., the brain), which physically is in the 3-space R3.

Antipodes

Let x be a point on .nS The antipode of x is the point –x (Munkres,2000), i.e., the antipode of x is a point opposite x on
an n-sphere.  For  example,  the  antipode  of  a  point  x  on  the  circumference  of  a  circle  is  a  point  –x  on  that  part  of  the
circumference opposite x. Again, for instance, a physical analogue of Munkres antipode is the antipode of cone at
location  x  in  one  eye,  is  a  cone  at  the  same  location  in  the  opposite  eye.  Another  physical  analogue  of  a  Munkres
antipode is an alternative description of a signal x, represented by a feature vector of the form

( ) ( )( )1 , , kx xj jF L with k components, where each ( )i xj  is a feature value that represents an observation about

the variable x.

Continuous Mapping

A continuous mapping :f X Y®  is a correspondence between a point x in X and a point y = f(x) in Y, such that x
and x’ are close, then f(x) is close to f(x’) (Naimpally and Peters, 2013). The physical analogue of a continuous
mapping Φ: R3 → Rk defines a correspondence between a set of signals in R3 and set of descriptions in Rk. See
Table 1 for an example.

Piecewise Continuous Mapping

A piecewise continuous mapping :f A B®  is a correspondence between a subset A in X and a subset B in Y so that
if a and a’ are close in A, then, then f(a) and f(a’) are close in B.   In other words, we only assume that the closeness rule
applies  to  a  subset  of  the  set  X  and  a  subset  in  the  image  space  B  that  is  a  subset  of  the  larger  set  Y  but  does  not
necessarily apply to the larger sets X and Y. The physical analogue of a piecewise continuous mapping is a mapping Φ:
R3+1 → Rk that is a correspondence between a set of signals A in R3+1(spacetime) and a set of descriptions B in Rk

so that if signals a and a’ are close in A, then description ( ) ( )( )1 , , ka aj jF L and

description ( ) ( )( )1 ' , , ' , 1ka a kj jF ³L are close in B.
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Table 1.  Analogues of Mathematical Structures Underlying bio-BUT

Structure(s) Mathematics Physics

2-sphere 2S Euclidean space R3 Biosphere space

Antipodes (left vs. right eye)
x, -x  R3+1

Cone at x in left eye, cone at –x in right eye.

Antipodes (signal x vs. description
of the signal) x, -x  R3 ( ) ( ) ( )( )1 , , , ,i kx x xj j jF L L  is  a  feature

vector F  with n observations that describes signal
x, and ( ) ( ) ( )( )1 , , , ,i kx x xj j jF - - -L L  is

a feature vector that describes signal –x , 1.k ³

From the Borsuk-Ulam Theorem

If x is a point in ,nS  then its antipode is the point –x. A continuous map : n nh S S®  is antipode-preserving,

provided h(x) = h(-x) for all .nx SÎ

A conjecture

There is a biological analogue of the Borsuk-Ulam Theorem. The following theorem proves this conjecture.

Towards the Bio-Borsuk-Ulam Theorem (bio-BUT)

Given a signal a  in R3+1, then its antipode is a signal –a in spacetime.  A piecewise continuous map Φ: R3+1 →Rk, k
≥ 1 is antipode-preserving in spacetime, provided the antipodes have matching description, i.e.,

( ) ( )( ) ( ) ( )( )1 1, , , , , 1k ka a a a kj j j jF = F - - ³L L  for all signals α, -α  R3+1.

Proof:   Let  x  be  a  signal  in  a  set  of  signals    X ⸦ R3+1 and let –x be an antipodal signal in X. Every signal x has a

description  is feature value for x and Rk is a feature space

such that every point in Rk defined by the mapping .F Each antipodal signal –x occupies the same position as x after

translation.  Hence, ( ) ( )( ) ( ) ( )( )1 1, , , ,k kx x x xj j j jF =F - -L L after translation.

In other words, bio-BUT guarantees that the antipodal signals x, -x have matching descriptions in some k-dimensional
spacetime, 1.k ³  In addition, bio-BUT relaxes the requirement that the domain and the range of the mapping F  have

the same dimension. For example, ( )( )1 xjF  is 1-dimensional (i.e., only one perceived feature of signalx is

described), whereas signal x itself is 3+1 dimensional in spacetime.
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The concept of biological closeness

It looks like bio-BUT occurs in spacetime. Each description would reside on a string on a worldsheet. Descriptions
emanate in parallel from systems’ features that are also branes. Antipodal signals would “live” on parallel worldsheets
of different functional dimensions. It is piecewise continuity in spacetime that gives rise to a perception of the closeness
of antipodal signals and their descriptions. Closeness (proximity) of antipodal signals means that one signal A and its
antipodal signal A are within some distance of each other (within kissing distance). Then bio-BUT tells us that the
descriptions of the As will also be within kissing distance, thanks to the piecewise continuity of mappings in spacetime.

The Figure 2 provides an example on the evolution of two dynamical systems, according to bio-BUT.  How does such
decrease in feature homogeneity occur, in topological terms? It might occur through slightly changes in the strength of
the projections. They could stand for slight changes in biological general symmetries that give rise to a not complete
restoration of the locally broken Lagrangian.
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Figure 2. Evolution of two dynamical systems. In BUT terms (left side), every increase in manifold dimensions (in case
of life, complexity), gives rise to redoubling of “the same” matching points, and vice versa. In bio-BUT terms, every
increase in manifold dimensions gives rise to redoubling of matching points that “belong together”, i.e., they display
slight different changes for every duplication. The two dynamics gives rise, through the manifold evolution towards
increases or decreases of dimensions, to different systems’ outputs.

Assessment of brain function in terms of the identity principle

A  further  example  from  neuroscience  shows  how  the  identity  principle  and  BUT  may  pave  the  way  to  novel
approaches. We describe the meaning of “belonging together”. However, as we have seen before, “belonging together”
can also mean: the together is determined by the belonging.  Therefore, the possibilities here are two:

a)   representing belonging in terms of the unit of together;

b)   experiencing this together in terms of belonging.

This point b leads us into the psychological standpoint of the observer. Indeed, “thinking” and matching description can
also  be  thought  as  the  same,  so  that  they  belong  together  in  the  same,  and  by  virtue  of  the  same.  If  we  attempt  to
represent together the thinking and matching description as a coordination, we can establish and explain the latter either
in terms of thinking or in matching description.  If thinking and matching description belong to each other, matching
description belongs with thinking to an identity, whose active essence stems from that “letting belong together” which
we call “mental representation”. Identity becomes, in this version, a functional property of the event of mental
representation.

Identity (including the ego, i.e., the subjective identity of the human individual) can be presupposed as a feature of the
matching description, or as a spring that departs from it. In this account, the principle of identity becomes a spring into
the psychological origin of identity. We can therefore assess matching description and thinking in terms of that which
joins the two, by virtue of the event of mental representation. This allows us to assess brain function in terms of
projections among manifolds with different dimensions.

7. CONCLUSION: ENCOMIUM OF DIVERSITY

We have shown how to generalize and operationalize the concept of BUT’s matching description, correlating it with the
principle of identity from logic and philosophy, and provided some applications in physics, biology, and neuroscience.
We have described BUT’s “descriptively near sets”, a concept that appears to be rather vague (because it may refer not
just to a physical content such as energy or vectors, but also to a semantic content, such as two “felines”) in terms of
identity features. Further, the BUT concept of identity and matching description can be applied also to fields where the
principle of identity is traditionally excluded, such as, for instance, the quantum entanglement.  For more details, see
Peters and Tozzi (2016).

We have also proposed a novel variant of BUT, termed bio-BUT, that elucidates the astonishing variety of living
structures.  Indeed, generation after generation slight changes in DNA occur. The same might occur during the life of
the single individual, for example during the ageing process. This means that, if we are able to find the topological
source of the above-mentioned slight changes in features A in single individuals, we might partially counteract ageing,
or to alleviate diseases due to an accelerated disarrangement of matching points.

One of the main concerns in the BUT topological approach to systems features is that it talks in rather general terms,
leaving apart the peculiar features of individuals and of single physical and biological processes. This paper highlights
that the concept of matching description displays the widest range of possible uses, in particular when the concept of
matching description is well developed. In particular, matching description does not assess just “the same” feature, but
also features that are “different”.

Our framework also provides a lesson or two about our knowledge capabilities: the unity is never given directly, and
knowledge is feasible just when coming back to unity. Therefore, we need to talk of unity BEFORE the separation.
This implementation makes BUT and its variants not just the standpoint for a novel interpretation of a number of
elusive biological and physical phenomena, but also a suitable tool in order to evaluate the slight (objective and
subjective) differences that make our intellectual world an astonishing realm of rich heterogeneity.
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