Correlation between solar and seismic activity: prognosis of earthquakes and volcanic eruptions based on daily solar indexes

A.M. Eigenson

Ivan Franko Lviv National University, Kiril and Mefodiy str. 8, 79005 Lviv, Ukraine

e-mail: <u>aleksey.eigenson@gmail.com</u>

Large earthquakes and volcanic eruptions are compared with the epochs of minima of 11-year cycles of solar activity. We use the data from 405 earthquakes with magnitude 7 and more and 71 volcanic eruption during 260 years. Close correlation between years of these terrestrial events and years of minima of solar activity is shown. We also use also *daily* solar indexes SSp and compare them with terrestrial events, constituting the main novelty of this work. Here we use the data of earthquakes between December 856 and January 2016, as well as data of volcanic eruptions in the same period. We subsequently compare *daily* indexes SSp during 2016 and 4 months of 2017 with earthquakes and volcanic eruptions. An important results is demonstrated: as soon as solar activity curve begins to go down, on the same day or some days after the earthquakes and volcanic eruptions occur. Evidently, this circumstance could be used for prognosis of these terrestrial events for several days in advance. In all cases considered our prognosis is confirmed. This is the main result of this article.

Key words: earthquakes, volcanic eruptions, solar activity, prognosis.

1 Introduction

Perhaps the first trustworthy evidence of seismic activity is the eruption of volcano Vezuvii (August 24-25, year 79) which led to destruction of Pompei and 2000 fatalities. Then, on December 22 year 856 there was an earthquake in Northerh Iran with 200,000 victims. On September 30, 1139, the earthquake near Gyandza: 250,000 fatalities. On January 23, 1556, there was the "Great Chinese earthquake" with 830,000 victims. Then we know about the earthquake in Calcutta (India): 300,000 fatalities. On August 26-27, 1853, there was the eruption of volcano Krakatau between Sumatra and Java (Indonesia). In our time, December 26, 2004, there was underwater earthquake with magnitude 9.1-9.3 in the Indian

ocean and tsunami with 300,000 victims; economic loss was about 10 milliards dollars. On February 27, 2010 – the earthquake and tsunami in Chile, magnitude 8,8 and economic loss 15-30 billions dollars. On the same year (2010) – tsunami in Haiti with 316,000 fatalities. Then, on March 11, 2011, near island Khonsyu (Japan), there was an underwater earthquake with a magnitude 9.0-9.1. After 10-30 minutes, the giant wave, 40 meters high, reached the beach, resulting in 20,352 victims and economic loss of 225 billion dollars. In the former Soviet Union we remember Ashkhabad earthquake (October 1948), Tashkent (April 26, 1966) and Armenia earthquakes (December 7,1988). Here, is Armenia, the city Spitak and it's environments had been destroyed and number of victims was 25,000. This was followed by an earthquake in Sakhalin (May 28, 1995) with a magnitude 7.2 and buildings destruction; on December 1, 2001 with a magnitude of 7.0 and on August 2, 2007 with magnitude 6.8; an earthquake in the Kuril islands on April 2013 with a magnitude 6.7; an earthquake in Kamchatka on January 30, 2016 and so on.

The list could be continued. It's quite natural that scientists for many years have been trying to predict such events. The special Imperial committee for prediction of earthquakes was formed in 1892 in Japan; the corresponding investigations in USA began on 1960 after the California earthquakes; a special commission for this aim exists in the Knesset of Israel, etc. Some indicators were used as predictors of earthquakes, such as the velocity of seismic waves, level of water in thewells, strange behavior of animals, etc.

Unfortunately the results of all these attempts are negligible. From our point of view, the main reason is that the loocs of these researchers are directed down, to the Earth, and not up to the Sun. Meanwhile in 1857 Rudolf Wolf suggested the idea that earthquakes are connected with solar activity. After this, some attempts have been made to use this idea in practice, but first serious investigation belongs to founder of heliogeophysics M.S. Eigenson and his collaborators [1-3] We can not list all investigations in this area and will mention only fundamental books by B. M. Rubashev [4], V. N. Obridko [5], N. N. Stepanyan [6], Yu. I. Vitinsky [7,8], S.I. Akasofu and S. Chapman [9], I.N. Artroshchenko et al. [10], G.S. Ivanov-Kholodny [11], I. L. Linsky [12], N. L. Grigorov[13], Ch.A. Lundquist and U.U. Vogen [14], A.D. Sytinsky [15], V.I. Kozlov, P.F. Krymsky [16], as well as papers [17-31]. From the "other side" – geology – we can name the books of V.A. Aprodov [32], D.Gir and Kh. Shakh [33], V.B Lyatsky [35], E. Roberts [35], P. Russo [36], J. Khodson [37], V.S. Voropilov [38].

Owing to the courtesy of T.L. Gulyaeva from IZMIRAN (Troitsk, Moscow region) I had the possibility to become acquainted with her very interesting investigation [39] which anticipates some of our results. As far as I know, she was the first who discovered an anticorrelation between solar and seismic activity in cycles 19-23: low values of W correspond to high number of earthquakes.

Recently D. Grishchenko from Mogilev (Belorussia) published the data about earthquakes in California and pointed out that intervals between them were, in average, 22 years [40]. This number was thought-provoking, and was the new impetus for continuation of our own investigations.

1. Data and analysis

We use the most complete catalogue of earthquakes with magnitude 7 and more (http:://earthquake.usds.gov) and all available data (http:://en.wikipedia.org/wiki/lists_of_earthquakes). As for volcanic eruptions, we use: (www.infoniac.ru/news;

https::/ru.wikipedia.org/iria.ru/jprovka/20130826/958101173.html.earthchronicles. ru/news/2013-12-16-56152; photographo. Livejonrnal.com/ 86681.html.) First of all our compilation includes information about 405 earthquakes and 71 volcanic eruptions. Full tables are presented elsewhere. Here we present tables 1 and 2 with data of earthquakes and volcanic eruptions between August, 79 A.D. and 2016 years. The comparison of years of these events with years of solar activity minima is shown in Figs. 1, 2.

We note that plotting the random data in Fig. 1 and 2 is expected to give a certain correlation - independently of any physical connection existing. To account for this circumstance we performed simulation where two time series, the years of solar minima and the random numbers distributed by Poisson law, are compared. This approach is chosen because the distribution of earthquakes on time during cycles 19-23 resembles approximately the Poisson law. We consider 10 realizations and calculate the correlation coefficient for each realization. All these coefficients are in the range 0.11 - 0.42. It's considerably smaller than the actual coefficients implying that the correlations between solar and terrestrial events are highly significant.

In Fig. 3 we present the distribution of earthquakes on the "average" 11-year solar cycle. We use here the well-known method of superposition of epochs. It's seen that earthquakes occur in all parts of 11-year cycle, but the most probable is their occurrence on a minimum or the next year. Indeed, the hypothesis about uniform distribution is rejected by χ^2 – criterion.

It's interesting to compare the number and power of earthquakes and the number of volcanic eruptions with the values of the Wolf number W. This comparison is shown in Fig. 4. We see that the decrease of solar activity leads to the increase of the number and power of earthquakes as well as to the increase the number of the volcanic eruptions.

In Fig. 5 we compare the number of these terrestrial events with the minimal values of W in all cycles and observe the exact coincidence.

Note that from the point of view of mathematics, we deal with some time series. Correspondingly, the usual methods of time series analysis could be used (see, e.g., [41-43]). An interested reader is referred to the book by V. Yu. Terebizh [44].

We note also the recent approach of theanalysis of time series by the author [45]. The main idea is that every curve could be approximated by thestep function, and the heights of these steps are used as parameters in matrix constructed by principle object – property. After this, the usual methods of multidimensional statistical analyses could be used such as the cluster analysis, factor analysis, principal components analysis and pattern recognition (see, e.g., [46-59]).

The value of any prognosis increases if we predict not only the time but also the location of corresponding events. This is shown in table 3 for some seismicactive regions. Note that for the California we include also some earthquakes which were not so strong. Some of these data are illustrated in Fig. 6-9.

We next consider the monthly averaged Wolf numbers and compare them with numbers of earthquakes in the last two years, 2015 and 2016. Perhaps the most impressive is the sharp increase of earthquakes number which corresponds to the decrease of solar activity. On 2016, the minimum of solar activity was in July. Again, this corresponds to the increase of earthquakes number.

Then we compare daily W or SSp for earthquakes and volcanic eruptions at last 260 years and especially for 12 months of 2016 and January-April 2017. The results are shown in Fig (14- 57), and summarized in theTables.

Hence, a sharp decrease of daily W corresponds to the likelihood of earthquakes. The earthquakes are likely occur in a few days time, with the time lag of up to 10 days as follows from an our analysis. For example, the decrease of W was on 28 February, 2016; the corresponding earthquake in Sumatra with magnitude 8.2 was March 2, i.e. 2 days after (Fig. 11). Going back, we see that earthquake in Armenia (December 7, 1988) also could be predicted (Fig.13).

3. Discussion

First of all we remind that the geophysical responses are not necessarily connected with absolute extremum of solar activity but rather with the epoch. Ignoring this could lead to thequite opposite result [60].

Many years ago my teacher V.A. Ambatsumyan [61] said that there are 3 stages of scientific perception: scheme, model and theory. Here I discuss the scheme only.

We recall that the 22-year solar cycle is not the simple sum of two 11-year cycles but has very important feature. Namely, in one 11-year cycle the solar spots have one polarity of magnetic field, but in the next cycle this polarity changes to the opposite. This change occurs in the minimum of 11-year cycle. Therefore, the change of electromagnetic radiation of Sun occurs in a minimum. Moreover, there is an addition radiation in the polar regions of the Sun in millimeter range in a minimum [62]. Both radiations could play the role of "trigger" which provokes the terrestrial processes. Indeed, the lithosphere plates in viscous magma of the Earth's upper mantle have their own magnetic field. The field interaction could give the impetus for earthquakes and volcanic eruptions.

From the continuation of Table 1 we see that the probability of earthquakes for *zero* day (day of curve fall) is 12%, for the first day – 27%, and for the next days correspondingly 19%, 15%, 11%, 6%, 4%, 1%, 2%, 2%, 0,5%.

4. Plans and perspectives

In future it will be interesting to make the following investigations:

1. To find evidences of earthquakes and volcanic eruptions from all possible sources of the ancient times.

2. To make cluster analysis, factor analysis, principal components analysis and pattern recognition of corresponding matrix.

3. To use some other indicators of solar activity, especially the indexes proposed in 1939-1940 by M. S. Eigenson [3]. Although these indexes are known at comparatively short times, some conclusions could be achieved even with limited data (see, e.g. [63]).

4. To include the earthquakes which are not so strong, for example with magnitude about 5 or even smaller.

All this would be the theme of our next article (of course, if the directorate of the Lviv astronomical observatory would not put a spoke in my wheel).

5. Conclusions

We show a very close correlation between solar and seismic phenomena. Solar activity can be predicted for many years ahead, and even for months and days. It means that we can make prognosis of earthquakes and volcanic eruptions for several days in advance. In all cases considered our prognosis is confirmed. This is the main result of this article.

Table 1. Earthquakes	
----------------------	--

		Solar min		
Numbers	Date	Zone	Magnitude	(year, month)
1	856, 12, 22	North Iran		856
2	1139, 9, 30	Guandzha		1139
3	1556, 1, 23	China		1554
4	1737	India		1734
5	1755, 11	Iran		1755, 11
6	1756, 6	Portugal	8,7	1755, 6
7	1783, 2	Italy		1784
8	1812, 3	Venezuela	7,3	1810, 12
9	1821, 7	Peru	8,2	1823, 5
10	1835, 2	Chile	8,2	1833, 11
11	1843, 2	Leeward Island	8,3	1843, 7
12	1855, 1	New Zeland	8,4	1855, 5
13	1868, 8	Peru	9,0	1867, 3

14	1878, 5	Chile	8,3	1878, 12
15	1891, 10	Japan	8,0	1890, 3
16	1902, 4	Guatemala	7,5	1902, 2
17	1903, 4	Turkey	7,0	
18	1906, 12	Italy	7,5	
19	1912, 8	Turkey	7,8	1913, 7
20	1914, 10	Turkey	7,0	
21	1915, 1	Italy	7,0	
22	1920, 12	Kamchatka	8,6	1923, 8
24	1923, 2	China	8,5	
25	1923, 3	China	7,5	1923, 8
26	1923, 9	Japan	7,9	
27	1925, 3	China	7,1	
28	1933, 3	Japan	8,4	1933, 9
29	1933, 8	China	7,4	
30	1934, 1	India	8,1	
31	1935, 4	Taiwan	7,1	
32	1935, 5	Pakistan	7,5	
33	1944, 1	Argentina	7,4	1944, 2
34	1944, 2	Turkey	7,4	
35	1944, 12	Japan	8,0	
36	1945, 1	Japan	7,1	
37	1945, 11	Pakistan	8,0	
38	1953, 3	Turkey	7,3	1954, 5
39	1953, 8	Greece	7,1	

40	1962, 9	Iran	7,1	1964, 10
41	1965, 3	Chile	7,4	
42	1966, 10	Peru	8,1	
43	1975, 2	China	7,0	1976, 6
44	1976, 6	Indonesia	7,1	
45	1976, 2	Guatemala	7,5	
46	1976, 7	China	7,5	
47	1976, 8	Philippines	7,9	
48	1976, 11	Turkey	7,3	
49	1985, 9	Mexico	8,0	1986, 9
50	1987, 3	Columbia	7,0	
51	1995, 5	Sakhalin	7,1	1996, 5
52	1997, 5	Iran	7,3	
53	2003, 12	Iran	6,3	2008,8
54	2004, 12	Indonezia	9,3	
55	2008, 5	China	7,9	
56	2010, 1	Haiti	7,0	
57	2010, 2	Chile	8,8	
58	2011, 3	Japan	9,0	
59	2015, 1	Nepal	7,9	2019, 12 (prognosis)
60	2016, 1, 30	Kamchatka	7,0	
61	2016, 1, 7	Kamchatka	≥7,0	
62	2016, 1, 20			
63	2016, 1	Japan	≥7,0	

64	2016, 1, 19	China	≥7,0	
65	2016, 1, 21	Indonesia	>7,0	
66	2016, 1	USA		
67	2015, 12, 17	Mexico		
68	2016, 1, 19	Peru+Chile		
69	2016, 1, 18	Central America		
70	2016, 1, 6	Mediterranian Sea		2019, 12
		Region		(prognosis)
71	2016, 1, 22	Iran		
72	2015, 4, 25	India + Pakistan		
73	2015, 5, 12	India + Pakistan		
74	2016, 1, 11	Japan		
75	2016, 1, 14	Japan		
76	2016, 1, 2	China		
77	2016, 1, 30	China		
78	2016, 1, 9	Mexico		
79	2016, 1, 5	Mexico		
80	2016, 1, 21	Mexico		2019, 12 (prognosis)
				(prognosis)
81	2016, 1, 13	Peru+Chile		
82	2016, 1, 16	Peru+Chile		
83	2016, 1, 8	Peru+Chile		
84	2016, 1, 7	Peru+Chile		
85	2016, 1, 14	Central America		
86	2016, 1, 17	Central America		

Number	Location	Date	Curve Fall	Lead Time	Magnitude		
Lanuary 2016							
1	West Indian Region	1	29.12.2015	4	63		
1.	India	3	29.12.2015	6	6.7		
3	Pacific-Ant Ridge	5	5	0	6.0		
<u>J.</u>	Indonesia	11	10	1	6.5		
4 . 5	Japan	11	10	1	6.2		
5.	Bolivia	11	10	1	6.1		
0.	Japan	14	10	4	6.7		
/. 8	Indonesia	14	10	6	5.6		
0.	China	20	10	10	5,0		
9.	Mavico	20	10	10	5,9		
10.	Alaska	21	24	0	7.1		
11.	AldSKd	24	24	1	6.2		
12.	Papua Now Guinoa	25	24	2	6.1		
13.	rapua – New Oumea	20	24	2	0,1		
14.	Kamenatka	21	28	2	7,2		
15.	hear Balley Islands	51 	20 more 2016	3	0,1		
16	Now Zolond		ruary 2010	1	6.2		
10.	New Zeland	1	28.01	4	0,2 5,2		
1/.		5	5.02	2	5,2		
18.	Taiwan	0	5		6,4		
19.	Papua – New Guinea	8	5	3	6,4		
20.	Chile	10	5	1	6,3		
21.	Indonesia	12	12	0	6,3		
22.	New Zeland	14	12	2	5,8		
23.	longa	15	12	3	6,0		
24.	East Pasific Rise	16	12	4	6,1		
25.	Indonesia	17	12	5	6,0		
26.	Chile	22	21	1	6,0		
27.	Western Pacific	27	27	0	6,1		
•		Ma	arch 2016				
28.	Indonesia	2	27.02	4	7,8		
29.	Alaska	12	10.03	2	6,3		
30.	Alaska	19	17	2	6,0		
31.	Antigua + Barbados	19	17	2	6,0		
32.	Kamchatka	20	17	3	6,4		
		A	pril 2016				
33.	Papua – New Guinea	1	28.03	4	6,2		
34.	Vanuatu	3	2.04	1	6,2		
35.	Vanuatu	6	5	1	6,7		
36.	Indonesia	6	5	1	6,1		
37.	Vanuatu	7	5	2	6,7		
38.	Nepal	9	9	0	4,1		
39.	Afghanistan	10	9	1	6,6		
40.	Myanmar	13	9	4	6,9		
41.	Philippines	13	9	4	6,0		

42.	Japan	14	14	0	6,2
43.	Japan	14	14	0	6,0
44.	Vanuatu	14	14	0	6,4
45.	Guatemala	15	14	1	6,1
46.	Japan	15	14	1	7,0
47.	Ecuador	16	14	2	7,5
48.	South Georgia and	19	14	5	6,2
	South Sandwich Islands				,
49.	Ecuador	20	14	6	6,2
50.	Ecuador	22	14	8	6,0
51.	Mexico	25	21	4	6,0
52.	Mexico	27	21	6	6,0
53.	Vanuatu	28	21	7	7.0
54.	Clipperton Islands	29	28	1	6,6
		May	2016		,
55.	China, Tibet	11	6	5	5.2
56.	Ecuador	18	15	3	6.7
57.	Ecuador	18	15	3	6.9
58.	Australia	20	20	0	6.0
59.	Fiii	2.7	23	4	6.4
60	Fiii	28	27	1	69
61	South Georgia and	28	27	1	7.2
01.	South Sandwich Islands	20	27	1	,,
62	Algeria	29	29	0	54
63	Taiwan	31	29	2	64
05.	14177411	Iune	2016	2	0,1
64	Indonesia	1	29.05	3	6.6
65	Indonesia	5	2 06	3	63
66	New Zeland	6	2.00	4	6.1
67.	Mexico	7	2	5	6.3
68.	Indonesia	7	2	5	6.3
69.	Indonesia	9	2	7	6.1
70	Nicaragua	10	2	8	6.1
70.	Solomon Islands	10	2	8	6.2
72	Vanuatu	10	12	2	63
72.	Vanuatu	15	12	2 4	63
73.	Vanuatu	20	20	0	6.0
71.	Northern Mid – Atlantic	20	20	1	6.1
75.	Ridge	21	20	1	0,1
76	Papua – New Guinea	24	23	1	63
70.	Kyroyzstan	26	25	1	6.4
78	Vanuatu	30	25	5	6.0
/0.	Valluatu	1 JU Iuly	2016	5	0,0
79	Tonga	10	10	0	60
80	Ecuador	11	10	1	63
81	New Zeland	13	12	1	63
82	Vanuatu	20	12	1	6.1
82.	Chile	25	19	6	6.1
<u>8</u> 1	Denve New Cuines	25	10	6	6.4
04.					_
85	Northern Mariana Islanda	23	25	<u>о</u> 4	77
85.	Northern Mariana Islands	25 29	25 st 2016	4	7,7

86.	Azerbaijan	1	31.07	1	5,0	
87.	Argentina	4	3.08	1	6,2	
88.	Japan	4	3	1	6,3	
89.	New Caledonia	12	11	1	7,2	
90.	Tonga	12	11	1	6,1	
91.	Peru	15	13	2	5,5	
92.	Australia	18	17	1	5.7	
93.	East Pacific Rise	18	17	1	6,0	
94.	South Georgia and	19	17	2	7,4	
	South Sandwich Islands					
95.	Indonesia	23	21	2	6,0	
96.	East Nusa Tenggara	23	21	2	6,2	
97.	Italy	24	21	3	6,2	
98.	Myanmar	24	21	3	6.8	
99.	Ascension Islands	29	29	0	7.1	
100.	Papua – New Guinea	31	29	2	6.8	
1000		Septem	ber 2016	_	0,0	
101	New Zeland	1	29.08	3	7.0	
101.	New Zeland	1	29.08	3	61	
102.	Oklahoma USA	3	2 09	1	5.8	
103.	Ecuador	5	2.05	3	47	
101.	Pakistan	5	2	3	47	
105.	Kamchatka	5	2	3	6.1	
107	Australia	8	8	0	6.1	
107.	Peru	10	8	2	6.1	
100.	Tanzania	10	8	2	59	
110	Macedonia	10	8	3	51	
110.	South Korea	12	8	4	5.4	
111.	Colombia	12	11	3	6.0	
112.	Solomon Islands	14	11	3	6.0	
113.	Indonesia	17	15	2	6.0	
114.	Japan	20	20	0	6.1	
116	Pakistan	20	20	2	49	
110.	Ianan	22	20	1	6.2	
117.	Burundi	23	22	1	4.8	
110.	Romania	23	22	1	5.6	
120	Philippines	23	22	0	63	
120.	Tonga	24	24	0	6.4	
121.	Fiii	24	24	0	6.9	
122.	Nicaragua	24	27	1	5.5	
125.	Mealagua	Octob	27	1	5,5	
UCTODER 2010						
124.	Papua New Guinea	1	15.10	0	5, 1 63	
125.	Greece	15	15.10	0	5.5	
120.	Deru	16	15	1	5.0	
127.	Papua New Guinea	10	15	2	5,0	
120.	China	17	15	2	5.0	
129.	Indonesia	1/	15	<u>∠</u> 	5,7	
120.	Japan	21	13	1	6.2	
131.	Tongo	21	20	1	6.1	
132.	ronga	20	23	1	0,1	

133.	Italy	26	24	2	6,1
134.	Chile	27	25	2	6,0
135.	Italy	30	29	1	6,6
136.	Colombia	31	29	2	5,6
		Novem	ber 2016		•
137.	Papua – New Guinea	1	1	0	6,0
138.	Chile	4	2	2	6,3
139.	Oklahoma, USA	7	4	3	5,0
140.	Chile	8	4	4	6,0
141.	Japan	11	8	3	6,1
142.	New Zeland	13	12	1	7,8
143.	New Zeland	13	12	1	6,5
144.	New Zeland	13	12	1	6,1
145.	New Zeland	13	12	1	6,2
146.	New Zeland	14	12	2	6,5
147.	Argentina	20	19	1	6,5
148.	Japan	22	20	2	6,9
149.	El Salvador	24	21	3	7,0
150.	China	25	21	4	6,6
151.	Nepal	27	21	6	5,4
152.	Poland	29	21	8	4,4
		Decem	ber 2016		
153.	Costa Rica	1	21.11	10	5,2
154.	Peru	1	21.11	10	6,2
155.	Indonesia	5	3.12	2	6,3
156.	Indonesia	6	3	3	6,5
157.	China	8	3	5	6,0
158.	California	8	3	5	6,5
159.	Solomon Islands	8	3	5	7,8
160.	Solomon Islands	8	3	5	6,5
161.	Croatia	9	8	1	4,4
162.	Solomon Islands	9	8	1	6,9
163.	Papua – New Guinea	10	8	2	6,1
164.	Northern Marian Islands, USA	14	10	4	6,0
165.	Papua – New Guinea	17	15	2	7,9
166.	Papua – New Guinea	17	15	2	6,3
167.	Solomon Islands	18	15	3	6.0
168.	Micronesia	18	15	3	6,2
169.	Peru	18	15	3	6,4
170.	Ecuador	19	15	4	5,4
171.	Solomon Islands	20	19	1	6,4
172.	Indonesia	21	19	2	6,7
173.	Chile	25	22	3	7,6
174.	Japan	28	23	5	5,9
175.	Indonesia	29	28	1	6,2

Table 2. Volcanic eruptions

Numbers	Date	Location Name		Solar min
				(year, month)
1	79, 8, 24	Italy	Vezuvii	79
2	1600	Peru	Huaynaputina	1598
3	1687	Mexico	Orisaba	1684
4	1702	China	Changbaishan	1698
5	1728	Ecuador	Sangai	1723
6	1738	Ecuador	Cotopashi	1734
7	1766, 10	Philippines		1766
8	1810, 4	Indonesia	Tambora	1810, 12
9	1854	USA	Reniz	1855, 9
10	1877	Chile	Lulyalyaco	1878, 8
11	1883, 7	Indonesia	Krakatau	
12	1902, 2	Guatemala		1902, 4
13	1902, 5	Guadeloupe		1902, 4
14	1912, 6	Alaska	Novarupta	1912,2
15	1922	Guatemala	StMaria	1923, 8
16	1931, 12	Indonesia	Merani	1933, 8
17	1972	Kamchatka	Klyuchevskaya sopka	1976, 6
18	1974	Kamchatka	Klyuchevskaya sopka	1976, 7

19	1975	Ecuador	Sangai	1976, 7
20	1976	Ecuador	Cotopashi	1976, 7
21	1984	Hawaii, USA	Mauna Loa	1986,6
22	1985, 11	Columbia	Ruis	1985,9
23	1991, 6	Philippines	Pinatubo	1996,10
24	1997, 6	Philippines	Pinatubo	1996,10
25	1999, 2	Guadeloupe	Safries	1996,10
26	1999, 2	Guatemala	StMaria	1996,10
27	2002, 1	Congo	Nyiratongo	1996,10
28	2002, 2	USA	Redault	1996,10
29	2002, 9	Italy	Etna	1996,10
30	2004	Italy	Etna	2008, 8
31	2006, 5	Indonesia	Merani	2008, 8
32	2006, 6	Indonesia	Merani	2008, 8
33	2007	Italy	Etna	2008, 8
34	2008	Italy	Etna	2008, 8
35	2010, 4	Iceland	Gecla	2008, 8
36	2010, 8	Guatemala	Pakaya	2008, 8
37	2010, 10	Indonesia	Merani	2008, 8
38	2010, 10	Ecuador	Tungurauya	2008, 8
39	2010	Kamchatka	Klyuchevskaya sopka	2008, 8
40	2010, 2	Guadeloupe	Sufrier	2008, 8
41	2011	Italy	Etna	2008, 8
42	2011, 5	Iceland	Gecla	2008, 8

43	2011, 6	Chile	Fuegue	2008, 8
44	2013, 9	Indonesia	Rokatenda	2008, 8A
45	2014, 3	Mexico	15 eruptions	2019, 12 (prognosis)
46	2014, 10	Japan	Outake	2019, 12 (prognosis)
47	2015, 12	Kamchatka	Shiveluch	2019, 12 (prognosis)
48	2015, 12	Nicaragua	Momotombo	2019, 12 (prognosis)
49	2015, 12	Italy	Etna	2019, 12 (prognosis)
50	2015, 12	Philippines	Kaulaon	2019, 12 (prognosis)
51	2015, 12	Guatemala	Fuegu	2019, 12 (prognosis)
52	2015, 12	Kamchatka	Shiveluch	2019, 12

Table 2 (continuation). Volcanic eruptions on 2016

Ν	Month	Date	Name	Zone
1.	January	4	Fuego	Guatemala
2.		5	Mount Bromo	Indonesia
3.		5	Mount Soputan	Indonesia
4.		17	Angahuan	Mexico
5.	February	5	Mount Sakurajima	Japan
6.		27	Huambalo	Ecuador
7.		27	Erta Ale	Ethiopia
8.	March	5	Huambalo	Ecuador
9.		27	Pavlov Volcano	Alaska
10.	April	4	Villarrica	Chile
11.		21	Nyiragongo	Congo
12.	May	24	Mount Sinabung	Indonesia
13.	June	15	Kawah Ijen	Indonesia
14.		23	Kilauea	Hawaii

15.		29	Kilauea	Hawaii
16.	July	12	Mount Bromo	Indonesia
17.		23	Kilauea	Hawaii
18.	August	8	Kilauea	Hawaii
19	September	11	Peak of Furnance	La Reunion
20.		24	Cerro Negro	Nicaragua
21		28	Kilauea	Hawaii
22.		30	Kilauea	Hawaii
23.	October	20	Rosario Island	Japan
24.		31	Mount Sinabung	Indonesia
25.	November	21	Nevado del Tolima	Colombia

Table 3

Solar activity and earthquakes

Cycle	Solar min	Kamch at. Sakhal in	Japan	China	Indone sia	Alaska Califor n	Mexico	Peru	Chile	Centra l Ameri ca	Medite r. Sea	Turke y	Iran
		Kuril									region		
1	1755												1755
4	1784												
5	1796									1797			
6	1810									1812			
7	1823							1821					
8	1833				1833				1835				
9	1843												
10	1855					1857							
11	1867							1868					
12	1878					1881			1877	1875			
13	1890		1891									1894	
			1896										
14	1902					1901		1897		1902	1903	1903	
								1908			1905		
											1908		
15	1913		1911	1910		1906	1907		1906	1906	1915	1912	1909
				1917		1914	1911					1914	
16	1923	1923	1923	1918		1922			1922				
			1927	1920									
				1923									
				1925									
				1927									
17	1933		1933	1931	1938	1933	1931		1928				1929
				1932		1934	1932						1930

				1933									
18	1944		1943	1948				1940	1943	1942		1939	1947
			1944					1942		1946		1942	
			1945					1946				1943	
			1946					1947				1944	
			1948					1948					
19	1954	1958	1952	1950		1957,3	1957	1953			1953	1953	1957
						1957		1958			1954	1957	
						1953							
20	1964	1963	1964	1959		1964,3	1962	1960	1960	1969	1965	1964	1962
			1968	1966		,20	1965	1970	1965	1970		1967	1968
						1903	1968		1971				
						1900							
21	1976			1972	1976	1971		1974		1974	1980	1976	1972
				1975						1976			1978
				1976,7 28						1979			
22	1096			,		1092	1095		1095	1097		1092	1001
22	1980					1965	1985		1985	1987		1965	1981
						1987							1990
23	1990	1995		1998	1992	2004,4	1996	1998	1998	1991		1999	1997
		1997		1999	2000	2012	1999	2001	2001	1992			
		2002		2002	2002					1994			
										1997			
										1998			
										2001			
24	2008	2006	2003	2006	2003	2013	2003	2005	2005	2004	2012,5	2016,1	2013
		2009	2004	2008	2004	2014,3	2012,3	2007	2007	2009	,2	2	2016,1
		2016,1	2005	2013	2005	2014,3	,21	2010	2010	2010	2014		,22
		,/	2008	2014	2006	,1	2014	2012	2012	2012	,6		
		2016,1 ,2	2009	2015	2007	2016,1 ,2	2015,1 2,17	2014	2014	2013			
			2011	2016,1	2008		2016,1	2015	2015	2014			
			2013	,19	2009		,8	2016,1	2016,1	2016,1			

	2014	2016,1	2010	2016,1	,19	,19	,1		
	2015	,13	2012 4	,6	20161	20161			
	2015	2016 1	2012,4	2016 1	2016,1	2016,1			
	2016.1	2010,1	,11	2010,1	,20	,20	2016.1		
	,9	.∠	2013	,21	2016,1	2016,1	,3		
	-	2016,1		2016,1	,13	,13	-		
	2016,1	,20	2014	,5					
	,5		2015			2016,1	2016.1		
	2016.1		2015		2016.1	,16	2010,1		
	11		2016,1		8	2016.1	,1		
			,2		,0	.8			
	2016,1					,0			
	,14				20161	2016,1			
			2016.1		2016,1	,16			
			,1		,/	2016.1			
			Í			7			
						,,			
			2016 1						
			1						
			,1						
			2016,1						
			,1						
			2016,1						
			,1						
			2016,1						
			,8						
			20161						
			2016,1						
			,1						
			2016,1						
			,2						
			2016,1						
			,1						
			2016.1						
			,1						
			Í						
			2016 1						
			2016,1						

			,1				
			2016,1 ,2				
25	2019						

Table 4. Solar activity, earthquakes and volcanic eruptions on 2017

Earthquakes

Volcanic eruptions

	SSp	Location	Magni- tude	Depth (km)	Location	Name
			Ja	nuary		
1	12					
2	0	Tonga	6,3	551,6		
3	0	India	5,7	32,0		
		Fiji	6,9	12,0		
4	0	Fiji	6,0	10,0	Costa Rica	Turrialba
5	0				Costa Rica	Turrialba
6	0	Iran	5,0	10,0		
7	0					
8	0	Canada	6,0	31,0		
9	0					
10	0	Philippines	7,3	627,2		
		Solomon	6,3	26,0		
		Islands				
11	0	Madagascar	5,5	7,3		
12	11					
13	27					
14	31					
15	28					
16	24	Indonesia	5,6	6,0		
17	32					
18	36	Italy	5,7	7,0		
		Italy	5,6	10,0		
19	33	Solomon	6,5	36,0		
		Islands				
20	55				Mexico	Colima
21	75				Alaska	Bogoslov
22	71	Papua-New	7,5	185,0		
		Guinea				
23	59					
24	43					

25	46					
26	41					
27	27					
28	29					
29	32					
30	33				Mexico	Colima
31	_					
			F	ebruary		
1	35					
2	42					
3	34	France	5,8	44,0		
4	11					
5	15					
6	12	Turkey	5,2	7,2	Azerbaijan	Otman Bozdag
		Colombia	8,5	38,0		
		India	5,1	16,1		
7	12	Pakistan	6,3	24,1		
8	0	China	4,9	10,0		
9	20				Ethiopia	Erta Ale
10	21	Philippines	6,5	15,0		
		Taiwan	5,3	15,8	Kamchatka	3 volcanoes
11	20					
12	17					
13	16					
14	16				Reunion, France	Piton-de-la- Farnez
15	23	Indonesia	5,4	13,8	Italy	Campi Flegrey
		Indonesia	5,0	38,6		
16	12					
17	13					
18	12	Argentina	6,3	222,0	Australia	Mouson
19	22					
20	33					
21	17	Bolivia	6,5	596,0	Kamchatka	3 volcanoes
22	16					
23	21	Philippines	4,6	15,6		
24	12	Zambia	5,9	30,0		
		Tonga	6,9	414,9		
25	30				Guatemala	Fuego
26	31					
27	45					

28						
			Μ	arch		
1	57					
2	54	Turkey	5,6	10,0		
3	40					
4	0					
5	12	Philippines	5,7	10,2		
		Papua-New Guinea	6,3	31,1		
6	0					
7	0					
8	0					
9	0				Kamchatka	Kluchevskay
10	0					
11	0				Mexico	Popocatepet
12	0				Mexico	Popocatepet
13	0	Myanmar	5,1	10,0		
14	0	India	6,0	10,0		
		Kyrgizstan	5,5			
15	0				Italy	Etna
16	0					
17	0					
18	0					
19	0	Solomon Islands	6,2			
		Myanmar	5,1			
20	0	Solomon Islands	5,1; 6,2		Peru	
		Kamchatka	5,1			
		India	5,9			
		Indonesia	6,0			
21	12					
22	13					
23	14					
24	13				Kamchatka	Kambalnyj
25	16					
26	27					
27	48					
28	55				Italy, Costa Rica	Etna, Turrialba
29	48					
30	47				Costa Rica	Turrialba
31	_				Guatemala	Fuego

Fig 1. Comparison of years of earthquakes with years of solar minimum

Fig 2. Comparison of volcanic eruptions years with years of solar minimum.

Fig 3. Number of earthquakes as a function of the number of years from the minima of solar minima (zero corresponds to the minima of Solar activity). The graf is constructed by superposition of different epochs of solar activity.

2

-4

-6

-2

Ó Average 11-year cycle 4

^{d)} Number of volcanic eruptions as

Fig. 4. Frequency distribution of W (a)Number of earthquakes as function of W (b)Earthquakes magnitude as function of W (c)Number of volcanic eruptions as function of W (d)

Fig. 5 (explanation see in text)

Fig. 6 Comparison of years of earthquakes with years of solar minimum for Indonesia

Fig. 7 The same as in Fig.6 for Alaska and California

Fig. 8 The same as in last Fig's for Mediterranean region

Fig. 9 The same as in Fig.6-8 for Peru and Chile

Fig. 10 Earthquake in Kamchatka, January 30, 2016

Fig. 11. February 2016 – March 2016

Fig. 12. The same as in Fig 10. Earthquake in Japan: March, 11, 2011

Fig. 13 Earthquake in Armenia, December 7, 1988.

In Fig. 14-55 there are daily solar activity indexes SSp on sun days before an earthquake and some days after it. Dates of earthquakes are marked by circles

Fig. 18 Alaska, February 4, 1965

Fig. 22. Mexico, September 19, 1985 2016

Fig. 23. New Zeland, November 13,

Fig. 32 Italy, October 26, 2016

Fig. 33. Armenia, December 7, 1988

Fig. 36. Ecuador, December 12, 1979

Fig. 37. Chile, March 3, 1985

Fig. 43

Fig. 47

30

20

10

0 -

0 2

4 6 8 10 12

Fig. 51

4 16 18 20

September 2016

22 24 26 28 30

(1)(12)

8

40

30

20

10

0 2 4 6

October 2016

14 16 18 20 22 24 26 28

30

Fig. 54

Кореляція між сонячною і сейсмічною активністю. Про прогнозування землетрусів і вивержень вулканів.

О.М. Ейгенсон

Львівський національний університет імені Івана Франка

e-mail: <u>aleksey.eigenson@gmail.com</u>

Великі землетруси і виверження вулканів порівняно з сонячною активністю. Знайдена тісна кореляція між сонячними і земними процесами. А оскільки сонячна активність прогнозована достатньо точно, це дає можливість прогнозувати землетруси і виверження вулканів за декілька днів. Саме це є основним результатом даної статті. В усіх розглянутих випадках наш прогноз вже підтвердився.

Ключові слова: землетруси, виверження вулканів, прогноз.

Корреляция между солнечной и сейсмической активностью.

О прогнозировании землетрясений и извержений вулканов.

А.М. Эйгенсон

Львовский национальный университет им. Ивана Франко, ул. Кирилла и Мефодия, 8, Львов, 79005, Украина

e-mail: aleksey.eigenson@gmail.com

Крупные землетрясения и сильные извержения вулканов сопоставляются с солнечной активностью. Найдена тесная корреляция между солнечными и земными процессами. А поскольку солнечная активность прогнозируема с достаточной точностью, это позволяет прогнозировать землетрясения и извержения вулканов с заблаговременностью в несколько дней. Именно это и является основным результатом данной статьи. Во всех рассматриваемых случаях наш прогноз уже подтвердился.

Ключевые слова: землетрясения, извержения вулканов, прогноз.

Acknowledgments

Critical remarks of astronomers, geologists, physicists and mathematians from Lviv, Kiev, Erevan, Moscow, S.-Peterburg, Simferopol, Troitsk, Obninisk, Rekhovot, Tsfat, Jerusalem, London, Cambridge and Harward were very stimulated. I am grateful to K. A. Trachenko, V. O. Aivazyan, N. Andreasyan (Thomas), Yu. M. Antonenko, S. V. Avakyan, M. K. Babajanyants, M. E. Belinsky, A. M. Bogatchuk, O. V. Burov, N. A. Burmaka, I. S. GurevichV., V. Dmitruk, S. N. Dobrinetsky, S. V. Doskich, B. B. Dzhuman, Ya. I. Eleiko, I. A. Eremenko, V. M. Fedotov, V. V. Furman, V. A. Gagen-Torn, I. D. Gazheva, M. B. Girnyak, R. E. Gladyshevskii, A. R. Gnyp, T. L. Gulyaeva, O.O. Halyatkin, V. V. Ivanov, Yu. I. Izotov, V. A. Ivchenko, D. Karasik, A. V. Kendzera, E. Ye.
Khachikyan, L. M. Khazan, N. N. Khomyak, V. P. Kirilyuk, V. E. Korepanov, M.
M. Kovalchuk, S. A. Kutuzov, V. G. Lozitsky, N. I. Lozitskaya, Yu. I. Lyakov, V.
E. Maksimchuk, D. V. Malinsky, A. A. Martko, B. Ya. Melekh, Kh. Meliksetyan,
A. F. Morozov, Yu. Nagorny, Ya. A. Nagovitsyn, A. V. Nazarevich, L. E.
Nazarevich, A. N. Nikolenko, V. N. Obridko, M. A. Oliskevich, L. P. Osipkov, E.
A. Ostrovsky, E. S. Parsamyan, G. S. Pavlov, N. N. Pavlun, M. P. Petrov, A. M.
Pevtsov, V. N. Pinsky, Ya. A. Plevachuk, I. V. Popadyuk, I. K. Rabinovich, R. E.
Rykalyuk, E. S. Rakhlin, N. N. Samus, O. Sarig, S. I. Semenov, V. S. Semenov,
A. B. Shcherbina, V. N. Sivers, K. A. Skvarko, I. V. Stasyuk, A. M. Sterin, V.G.
Surdin, D. S. Tulchinsky, M. V. Vavrukh, O.V. Velychko, I. S. Veselovsky, B. M.
Vladimirsky, A. S. Voloshinovsky, R. Volynsky, N. Yankiv-Vitkovskaya, Ya. S.

The bibliography

1. M. S. Eigenson, M. N. Gnevyshev, A. I. Ol, B. M. Rubashev. Solnechnaya activnost i ee zemnye proyavleniya (in Russian). English translation: Solar activity and it's terrestrial manifestations (M. L: OGIZ, 1948).

2. M. S. Eigenson. Ocherki fiziko-geograficheskikh proyavlenij solnechnoi aktivnosti (in Russian). English translation: Essays of physical-geographical manifestations of solar activity (Lviv university press, 1957).

3. M. S. Eigenson. Solntse, pogoda i klimat (in Russian). English translation: Sun, whether and climate (L.: Gidrometeoizdat, 1963).

4. B. M. Rubashev. Problemy solnechnoi aktivnosti (in Russian). English translation: Problems of solar activity (M. L. : Nauka, 1964).

5. V. N. Obridko. Solnechnye pyatna i kompleksy aktivnosti (in Russian). English translation: Sunspots and complexes of activity (M. : Nauka, 1985). 6. N. N. Stepanyan, in: Vozniknovenie i evolutsiya aktivnykh oblastei na Solntse (in Russian). English translation: Occurrence and evolution of active regions on Sun (M. : Nauka, 1976).

7. Yu. I. Vitinsky. Tsiklichnost i prognozy solnechnoi aktivnosti (in Russian). English translation: Cyclicity and prognosises of solar activity (M.: Nauka, 1973).

8. Yu. I. Vitinsky, M. Kopecky, G. V. Kuklin. Statistika pyatnoobrazovatelnoi deyatelnosti Solntsa (in Russian). English translation: Statistics of sunspots activity (M.: Nauka, 1986).

9. S. I. Akasofu, S. Chapman. Solnechno-zemnaya fizika (in Russian). English translation: Solar-terrestrial physics (M.: Mir, 1974).

10. I. N. Artroshchenko, A. S. Gladun, S. I. Gopasyuk. Variatsii globalnych kharakteristik Solntsa (in Russian). English translation: Variations of global characteristics of Sun (Kiev: Naukova Dumka, 1962).

11. G. S. Ivanov-Kholodny, in: "Elektromagnitnye i plazmennye protsessu ot Solntsa do yadra Zemli (in Russian). English translation: Electromagnetic and plasma processes from Sun to nuclei of Earth, ed. M. A. Sukharov (M. Nauka,1989).

12. I. L. Linsky, in: Potok energii Soltsa I ego izmeneniya (in Russian). English translation: Solar output and it's variations, ed. O. R. White (M.: Mir, 1980).

13. M. L. Grigorov. Electronu vysokoi energii v okrestnosti Zemli (in Russian). English translation: Electrons of high energy in environment of Earth (M.: Nauka, 1985).

14. Ch. A. Lundquist, U. U. Vogen, in: Solnechno-zemnue zadachi, pogoda i klimat (in Russian). English translation: Solar-terrestrial problems, whether and climate, ed. B. M. Cormac (M.: Mir, 1982).

15. A.D. Sytinsky, Svyaz seismichnosti Zemli s solnechnoi aktivnostyu i atmosfernymi protsesami (in Russian) English translation: Connecticon of Earth seismicity with solar activity and atmospherical processes. Lenigrad, Hidrometioizdat, 1987.

16. V.I. Kozlov, P.F. Krymsky, Fizicheskie osnovaniya prognoza katastroficheskih geofizicheskih yavlenii (in Russian) English translation: Physical basis of prognosis of catastrophical geopfisic events. Yakutsk, 1993.

17. B. L. Lichkov, in: Geographical works (M. L.: Academy of sciences, 1962).

18. G. N. Katterfeld, in: IV Meeting on astrogeological problems (L., 1962).

19. V. A. Zubakov, op. cit.

20. B. E. Khain, op. cit.

21. M. V. Stovas, op. cit.

22. M. Berg. Solar- terrestrishe beziehungen in meteorologie und biologie (Leipzig).

23. Ya. A. Nagovitsin, A. Petrov, A. A. Osipova, in: Solar and solar-terrestrial physics (S. Peterburg, Pulkovo, 2014).

24. T. E. Valchuk, op. cit.

25. D. M. Volobuev, N. G. Makarenko, F. A. Urtel, op. cit.

26. I. S. Kugazaeva, N. G. Makarenko, op. cit.

27. V. N. Ishkov, op. cit.

28. N. V. Zolotova, D. I. Ponyavin, op. cit.

29. N. V. Zolotova, D. I. Ponyavin, op. cit.

30. I. S. Veselovskiy, A. T. Lukashenko, op. cit.

31. E. V. Malitsky, op. cit.

32. E. M. Roshchina, A. P. Saryechev, op. cit.

33. V. A. Aprodov. Dukhanie zemli. Vulkanu I zemletryaseniya (in Russian). English translation: Breathing of Earth. Volcanoes and earthquakes. (M.: Geographic, 1963).

34. D. Gir, Kg. Shakh. Zubkaya tverd (in Russian). English translation: Wrong stronghold (M.: Mir, 1988).

35. V. B. Lyatsky. Zemletryaseniya i geotektonika (in Russian). English translation: Earthquakes and geotechtonics, in: Geography izdat., Issue 2, 1967.

36. E. Roberts. Kogda sodrogaetsya Zemlya (in Russian). English translation: When Earth shakes. (M.: Mir, 1961).

37. P. Russo. Zemletreseniya (in Russian). English translation: Earthquakes (M.: Progress, 1966).

38. I. Khodson. Zemletreseniya i stroenie Zemli (in Russian). English translation: Earthquakes and structure of Earth (M.: Mir, 1966).

39. V. S. Voropilov. Vulcanu I zemletryaseniya (in Russian). English translation: Volcanoes and earthquakes (Irkutsk: 1955).

40. T. L. Gulyaeva. Development in Earth Science, 2, 14-19, 2014.

41. D. Grishchenko. Vselennaya, prostranstvo, vremya (in Russian). English translation: Universe, space, time (Kiev: February 2015, 2).

42. T. W. Anderson. The statistical analysis of time series (W. Y.: J. Willye and sons, 1971).

43. D. R. Brillinger. Time series. Data analysis and theory (California University Press, M. Y., 1975).

44. B. R. Levin. Teoreticheskie osnovy statisticheskoi radiotechniki (in Russian). English translation: Theoretical bases of statistical radiotechnics (M.: Soviet radio, volume.2, 1968).

45. V. Yu. Terebizh. Analiz vremennukh ryadov v astrofizike (in Russian). English translation: Analysis of time series in astrophysics (M.: Nauka, 1992).

46. A. M. Eigenson. Visnyk of Lviv University, ser. Physics, 2017 (in press).

47. S. A. Aivazyan, O. V. Bezhaeva, O. V. Staroverov. Klassifikatsiya mnogomernukh nablyudenii (in Russian). English translation: Classification of multidimensional observations (M.: Statistika, 1974).

48. E. M. Braverman, I. B. Muchnik. Strukturnye metody obrabotki empiricheskich dannykh (in Russian). English translation: Structure methods of analysis of empirical data (M.: Nauka, 1983).

49. K. A. Gorkova, Yu. Sh. Abramov. Factornyi analiz. Metod glavnukh komponent (in Russian). English translation: Factor analysis. Principal components method (L.: LFEI, 1981).

50. A. M. Dubrovnik. Obrabotka statisticheskikh dannukh metodom glavnukh component (in Russian). English translation: Treatment of statistical data processes by principal components method (M.: Statistics, 1978).

51. B. Duran, P. Odell. Klasternui analiz (in Russian). English translation: Cluster analysis (M.: Statistics, 1977).

52. K. Ibernla. Factornui analiz (in Russian). English translation: Factor analysis (M.: Statistika, 1980).

53. J. Kendall, A. Stewart. Statisticheskie vuvodu i svyazi (in Russian). English translation: Statistical conclusions and connections (M.: Nauka, 1973). 54. Ya. Okun. Faktornui analiz (in Russian). English translation: Factor analysis (M.: Statistika, 1974).

55. E. A. Patrik. Osnovu teorii raspoznavaniya obrazov (in Russian). English translation: Basis of pattern recognition theory (M.: Sov. Radio, 1980).

56. C. P. Rao. Lineinue statisticheskie metodu i ikh primeneniya (in Russian). English translation: Linear statistical methods and their use (M.: Nauka, 1968).

57. J. Too, R. Gonzales. Printsipu raspoznavaniya obrasov (in Russian). English translation: Pattern recognition principles (M.: Mir, 1978).

58. K. Fukunaga. Vvedenie v statisticheskyu teoriyu raspoznavaniya obrasov (in Russian). English translation: Introduction for statistical theory of pattern recognition (M.: Nauka, 1979).

59. G. Kharman. Sovremennui factornui analiz (in Russian). English translation: Modern factor analysis (M.: Statistika, 1972).

60. S. L. Sobolev. Nekotorue primeneniya funktsionalnogo analiza v matematicheskoi fizike (in Russian). English translation: Some use of functional analysis in mathematical physics (M.: Nauka, 1988).

61. J. J. Lovel, J. N. Thomas. Geophys. Res. Lett., 40, 1165, 2013.

62. V. A. Ambartsumyan. Scientific works (Erevan: Armenia Academy press, 1960).

63. O. A. Golubchina, in: Solnechnaya i solnechno-zemnaya fizika (S. Peterburg, 2014) (in Russian). English translation: Solar and solar-terrestrial physics.

64. D. V. Gasparov, V. I. Shapovalov. Malaya vuborka (in Russian). English translation: Little sample (M.: Statistika,1978).