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Abstract: The aim of this paper is to show a new sufficient condition (NSC) by the Euler
function for the Riemann hypothesis and its possibility. We build the NSC for any natural
numbers ≥ 2 from well-known Robin theorem, and prove that the NSC holds for all odd and
some even numbers while, the NSC holds for any even numbers under a certain condition, which
would be called the condition (d).
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I. Introduction
Let N be the set of the natural numbers. The function ϕ(n) = n ·

∏
p|n (1− p−1) is called the

Euler function of n ∈ N ([1]), where ϕ(1) = 1 and p|n denotes p is the prime divisor of n.
The function σ(n) =

∑
d|n d is called divisor function of n ∈ N ([1]), where d|n denotes d is the

divisor of n ([1]). Robin showed in his paper [4] (also see [2]).
Proposition 1. If the Riemann hypothesis (RH) is true, then

σ(n) ≤ eγ · n · log log n (1.1)

holds for any n ≥ 5041, where γ = 0.577 · · · is the Euler constant ([1]).
Proposition 2. If the RH is false, then there exist constants 0 < β < 1/2 and c > 0 such that

σ(n) ≥ eγ ·n · log log n+
c · n · log log n

(log n)β
(1.2)

holds for infinitely many n ∈ N .
From (1.1) and (1.2), one easily see that (1.1) is equivalent to the RH. So (1.1) is called the
Robin criterion for the RH ([7, 8]). It is known that (1.1) holds for any odd numbers ≥ 11
and for many even numbers (see theorem 1.2 and theorem 1.4 of [8], theorem 3.2 and theorem
3.3 of [9]), and for any integers of the form n = a2 + b2 (see the corollary of the theorem 1 of
[10]). Much papers have been attempted to the Robin criterion, but now new idea is required
to prove it in full generality ([7]).
Another one of the sufficient conditions for the RH was given by Nicolas in [3].
Proposition 3. The RH is true iff for any n ≥ 2

n

ϕ(n)
≤ eγ · log log n+

c1√
log n

(1.3)

holds, where c1 = 4.0628 · · · is determined constant ([3]).
It is known that (1.3) holds for any odd numbers ≥ 17 and for many even numbers (see also
theorem 2.1 and theorem 3.1 of [8], theorem 2.2 of [9] and the corollary of theorem 1 of [10]).
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As above seen, the proposition 1 and the proposition 3 are similar, but there is a essential
difference here, that is, (1.1) is related to the divisor function and (1.3) is related to the Euler
function. And (1.3) looks weaker than (1.1).
On the other hand, the formula∑

p≤t

p−1 = log log t+ b+E(t) (1.4)

is called the Mertens’ formula, where t > 1 is a real number, p is the prime number,

b = γ +
∑
p

(log(1− 1/p) + 1/p) = 0.261497212 · · ·

is the Mertens’ constant and γ = 0.577 · · · is the Euler constant ([1, 2]). As usual, we here will
call E(t) the error term of the Mertens’ formula (1.4). By (3.17) and (3.20) of [5], for t > 1

− 1

log2 t
< E(t) <

1

log2 t
. (1.5)

We recall the Chebyshev’s function ϑ(t) =
∑
p≤t log p ([1]). By the prime number theorem ([1]),

ϑ(t) = t · (1 + θ(t)) (1.6)

holds for any real number t > 1, and by (3.15) and (3.16) of [5], for t ≥ 41

− 1

log t
< θ(t) <

1

log t
. (1.7)

The function θ(t) is used as good tool with the function E(t) in the study of the distribution
of the prime numbers by the Euler function.
In this paper we build a new sufficient condition (NSC) by the Euler function for the RH from
the proposition 2, and prove that the NSC holds for all odd and some even numbers while,
the NSC holds for any even numbers under a certain condition (d), which would be called the
condition (d). The validity of such condition (d) would be discussed in other opportunity in
detail.

II. Main result of paper
From the proposition 2 we have
[Theorem 1] If there exists a constant c0 ≥ 1 such that

n

ϕ(n)
≤ eγ · log log(c0 · n · ρ(n)) (2.1)

holds for any natural number n ≥ 2, then the RH is true, where

ρ(n) = exp(
√

log n · (log log n)2).

This (2.1) is a NSC (new sufficient condition) for the RH. This (2.1) is clearly weaker than (1.1)
and (1.3). From the proposition 1 and the proposition 2, we could see that (2.1) is the best
possible one of the sufficient conditions for the RH by the divisor function or the Euler function.
Also from the proposition 3, it is not difficult to see that the NSC is also a necessary condition
for the RH. But our interest is to inquire whether the NSC holds without any condition or with
what condition. In this connection, for n ∈ N(n 6= 1) we define the function

Φ0(n) =
exp(exp(e−γ · n/ϕ(n)))

n · ρ(n)
. (2.2)
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It is obvious that (2.1) is equivalent to that Φ0(n) ≤ c0 holds for any n ≥ 2. Then
[Theorem 2] We have Φ0(n) ≤ 24 for following integer n ≥ 2.

(a) all odd numbers.
(b) all integers of ω(n) ≤ 9×104 (ω(n) is the number of distinct prime factors of n ∈ N [9]).
(c) all integers of the form n = ak (k ≥ 2; k, a is the natural number).

Moreover we provide
[Theorem 3] we have Φ0(n) ≤ 24 for any even number n ≥ 2, if the condition(

B(p) ·E(p) +D(p) · θ(p)
)
·√p ≤ 2 (2.3)

holds for any prime number p ≥ 3, where

B(p) := 1 +
1

2
· log p− 2 · log p

log p+ log(1 + θ(p))
,

D(p) :=
1

2
+

2

log p+ log(1 + θ(p))
.

We will call (2.3) the condition (d) below.

III. Proof of Theorem 1
It is clear that σ(n) ·ϕ(n) ≤ n2 for any n ≥ 2. If (2.1) holds, but the RH is false, then by (1.2),

eγ · log log n+
c · log log n

(log n)β
≤ σ(n)

n
≤ n

ϕ(n)
≤ eγ · log log(c0 · n · ρ(n))

holds for infinitely many n ∈ N . On the other hand, since log(1 + t) ≤ t (t > 0), we have

log log(c0 · n · ρ(n)) = log(log c0 + log n+
√

log n · (log log n)2) =

= log log n+ log

(
1 +

log c0
log n

+
(log log n)2√

log n

)
≤

≤ log log n+
log c0
log n

+
(log log n)2√

log n

and

1 ≤ eγ · c−1 · log c0
(log n)1−β · log log n

+
eγ · c−1 · log log n

(log n)1/2−β
→ 0 (n→∞),

but it is a contradiction.

IV. Reduction to the primorial number
Let p1 = 2, p2 = 3, p3 = 5, · · · be the first consecutive primes. Then pm (m ∈ N) is m-
th prime number. The number (p1 · · · pm) is called the primorial number ([3, 7]). Assume
that n = qλ1

1 · · · qλm
m is the prime factorization of n ∈ N . Here q1, · · · , qm are distinct primes,

λ1, · · · , λm are nonnegative integers ≥ 1 and ω(n) = m. Put =m := p1 · · · pm, then it is clear
that n ≥ =m and

n

ϕ(n)
=

m∏
i=1

(1− q−1i )−1 ≤
m∏
i=1

(1− p−1i )−1 =
=m

ϕ(=m)
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and so Φ0(n) ≤ Φ0(=m). This shows that the boundedness of the function Φ0(n) for n ∈ N (n 6=
1) is reduced to one for the primorial numbers. Now we put

Cm := Φ0(=m) (m ≥ 1).

V. Proof of Theorem 2
Let n 6= 1 be an odd number and ω(n) = m. Then it is clear that n ≥ 3 · 5 · · · pm+1 > =m and

n

ϕ(n)
≤
m+1∏
i=2

(1− p−1i )−1 <

m∏
i=1

(1 + p−1i ).

By the Mertens’ formula (1.4),

m∑
i=1

log(1 + p−1i ) <

m∑
i=1

1

pi
= log log pm + b+ E(pm).

and also by (1.6),
log log log n > log log(ϑ(pm)) =

= log log pm + log

(
1 +

1

log pm
· log(1 + θ(pm))

)
.

Here by (1.5) and (1.7) we see

E(pm)− log

(
1 +

1

log pm
· log(1 + θ(pm))

)
<

5

log2 pm
.

If
5

log2 pm
< γ − b,

then

pm > exp

(√
5

γ − b

)
= 53.4934 · · · .

Therefore if pm ≥ 54, that is, ω(n) = m ≥ 17, then we have

n

ϕ(n)
< eγ · log log n

and so Φ0(n) < 1. In the case of 1 ≤ ω(n) = m ≤ 17, it is confirmed by the proof of (b) that
Φ0(n) ≤ 24. The proof of (b) is accomplished by MATLAB. If 1 ≤ m ≤ 4, we see

C1 =
exp(exp(e−γ · 2))

2 · exp(
√

log 2 · (log log 2)2)
= 9.6680 · · · ,

C2 =
exp(exp(e−γ · 2 · 3/2))

(2 · 3) exp(
√

log(2 · 3) · (log log(2 · 3))2)
= 23.1516 · · · ,

C3 =
exp(exp(e−γ · 2 · (3/2) · (5/4)))

(2 · 3 · 5) exp(
√

log(2 · 3 · 5) · (log log(2 · 3 · 5))2)
= 7.7386 · · · ,

C4 =
exp(exp(e−γ · 2 · (3/2) · (5/4) · (7/6)))

(2 · 3 · 5 · 7) exp(
√

log(2 · 3 · 5 · 7) · (log log(2 · 3 · 5 · 7))2)
= 0.8317 · · · .
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If 5 ≤ m ≤ 93118, then we see Cm < 1 from the table 1 and the table 2 below.
Therefore for any integers n of 1 ≤ ω(n) = m ≤ 9× 104 we have

Φ0(n) ≤ Φ0(=m) = Cm ≤ 24.

On the other hand, by (3.30) of [5] it is known that

e−γ ·
m∏
i=1

(1− p−1i )−1 < log pm +
1

log pm
(pm ≥ 2).

and by the theorem 10 of [5],

ϑ(pm) > 0.84 · pm (pm ≥ 101).

If ω(n) = m ≥ 93118 and n is of the form ak (k ≥ 2) , then ω(n) = ω(a), n ≥ (=m)k and
pm ≥ e14. Thus

n

ϕ(n)
< eγ · log

(
pm · exp

(
1

log pm

))
<

< eγ · log(1.08 · pm) < eγ · log(k · ϑ(pm)) < eγ · log log n.

and so Φ0(n) < 1. Combining it with (b), the proof of (c) is given.
(Remark) (i) The result (a) is similar to one of the Theorem 2.1 of [8, 9], but the method of
the proof is different each other. We here used the well-known estimates for the error terms
E(t) and θ(t) of the Mertens’ formula and the Chebyshev’s function.
(ii) The result (b) is a new one obtained from this paper. In the result (b), the limited value of
ω(n) ≤ 9× 104 for n is not essential. We could improve it to the possible value to calculate by
MATLAB. But it is evident that the state, which explains that ω(n) = m tends to an infinite,
could not give any guarantee by MATLAB. The theoretical assurance for it would be given by
the condition (d) in the Theorem 3.
(iii) The result (c) includes one of the theorem 4.1 of [8] or the theorem 1 of [10]. In addition,
by the method of the proof of (c) we could give the conclusion that Φ0(n) ≤ 24 holds for any
integers n = qλ1

1 · · · qλm
m with

min
1≤i≤m

{λi} ≥ k ≥ 2.

VI. Some estimates
Now we would ready to prove the theorem 3. The boundedness of the function Φ0(=m) for
the general primorial numbers is not easily obtained as in the Theorem 2. It is needed some
estimates and the condition (d) there.
6.1. Some symbols
Put Fm := =m/ϕ(=m), then

log(Fm) = −
m∑
i=1

(log(1− 1/pi) + 1/pi) +

m∑
i=1

1/pi =

= log log pm + γ + E(pm) + ε(pm),

where
ε(pm) =

∑
p>pm

(log(1− 1/p) + 1/p) = O(1/pm).

From this we have

(e−γ · Fm) = log pm · e0, exp(e−γ · Fm) = pm · e′0,
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where
e0 = exp(E(pm) + ε(pm)), e′0 = exp(log pm · (e0 − 1)).

Similarly, we easily have

(e−γ · Fm−1) = (log pm−1) · e1, exp(e−γ · Fm−1) = pm−1 · e′1,

where
e1 = exp(E(pm−1) + ε(pm−1)), e′1 = exp(log pm−1 · (e1 − 1)).

On the other hand, we easily see

log=m = pm · α0, log=m−1 = pm−1 · α,

where
α0 = 1 + θ(pm), α = 1 + θ(pm−1).

Now put

N0 =
√

(pm · α0) · log2(pm · α0), N1 =
√

(pm−1 · α) · log2(pm−1 · α).

6.2. An estimate of e1 and e′1
We put p = pm−1, p0 = pm below. For the theoretical calculation we assume p ≥ e14, because
the case of p ≤ e14 was discussed in the Theorem 2. Since

(e−γ · Fm−1) =

m−1∏
i=1

(1− p−1i )−1 = (log p) · e1 < log p+
1

log p
(p ≥ 2)

by (3.30) of [5], we respectively have

e1 < 1.0052 (p ≥ e14), e′1 < 1.075 (p ≥ e14),

(e1 · e′1) < 1.08 (p ≥ e14).

6.3. An estimate of (e1 · e′1)
Since if e1 ≤ 1 then e′1 ≤ 1, we have (e1 · e′1) ≤ 1. On the other hand, Hence, since ε(p) < 0, if
e1 > 1, then

0 < r := E(p) + ε(p) <
1

log2 p
≤ 0.0052 (p ≥ e14)

and

e1 = 1 + r +

∞∑
n=2

rn

n!
≤ 1 + r +

r2

2 · (1− r)
≤ 1 + r + 0.503 · r2,

e1 · e′1 = exp(r + (log p) · (e1 − 1)) ≤ 1 + h+
h2

2 · (1− h)
,

where
h = (1 + log p) · r + 0.503 · log p · r2 ≤ 0.1125 (p ≥ e14).

Therefore we have
(e1 · e′1 − 1) ≤ (1 + log p) · (E(p) + ε(p))+

+0.6 · (1 + log p)2 · (E(p) + ε(p))2 (e1 > 1, p ≥ e14).
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6.4. An estimate of V0 := p0 · (e′0 − α0)− p · (e′1 − α)
It is clear that p0 · α0 − p · α = log p0 and

E(p0)− E(p) =
1

p0
− log

(
log p0
log p

)
,

ε(p0)− ε(p) = − log

(
1− 1

p0

)
− 1

p0
.

From this
e0
e1

=

(
log p

log p0

)
·
(

1 +
1

p0 − 1

)
,

e′0
e′1

=
p

p0
· exp

(
log p · e1
p0 − 1

)
.

Thus we have

V0 = p · e′1·
(
p0 · e′0
p · e′1

− 1

)
− log p0 = log p0 · (µ · e′1 − 1),

where

µ =
p

log p0
·
(

exp

(
log p · e1
p0 − 1

)
−1

)
.

Since

µ ≤ e1 +
1

2
· log p · e1

p
·
(

1− log p · e1
p

)−1
≤

≤ e1 + 0.503 · log p

p
, (e1 > 1, p ≥ e14)

we have

µ · e′1 − 1 ≤ (e1 · e′1 − 1) + 0.55 · log p

p
(e1 > 1, p ≥ e14).

6.5. An estimate of G0 := (log p0 ·R(=m−1)− (N0 −N1))/N0

Here

R(=m−1) :=
(log log=m−1)2

2 ·
√

log=m−1
·
(

1 +
4

log log=m−1

)
.

It is known that p2k+1 ≤ (p1 · · · pk) for pk ≥ 7 by 246p of [6] and hence

log p0
log=m−1

<
1

2
(p ≥ e14).

Since log(1 + t) ≥ (t− t2/2) (0 < t < 1/2), we have

N0 −N1 = (
√

log=m −
√
=m−1) · (log log=m)2+

+
√

log=m−1 · ((log log=m)2 − (log log=m−1)2) ≥

≥ log p0

2 ·
√

log=m
· (log log=m−1)2+

+2 ·
√

log=m−1 · log log=m−1 · log

(
1 +

log p0
log=m−1

)
≥

≥ log p0

2 ·
√

log=m
· (log log=m−1)2+

+ log p0 ·
2 · log log=m−1√

log=m−1
·
(

1− log p0
2 · log=m−1

)
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and

G0 ·N0 ≤
log p0

2
·
(

1√
log=m−1

− 1√
log=m

)
·(log log=m−1)2+

+
log2 p0

(log=m−1)3/2
· log log=m−1 ≤

≤ log2 p0 ·
(log log=m−1)2

(log=m−1)3/2
·
(

1

4
+

1

log log=m−1

)
.

And it is known that p2k+1 ≤ 2 · p2k for pk ≥ 7 by 247p. of [6] and so

log p0 ≤ (log p)·
(

1 +
log
√

2

log p

)
.

Since p ≥ e14, we have α ≥ (1− 1/14) and the function (log3 t)/t is decreasing on the interval
(e3, +∞). Therefore we get

G0 ≤
log2 p0

(log=m−1)2
·
(

1

4
+

1

log log=m−1

)
≤

≤ log3 p

p · α2
·
(

1 +
log
√

2

log p

)2

·
(

1

4
+

1

log p+ logα

)
· 1

p · log p
≤

≤ 0.01

p · log p
(p ≥ e14).

6.6. An estimate of S(p′) :=
∑
p≥p′ 1/(p · log p)

Put
s(t) :=

∑
p≤t

p−1 = log log t+ b+ E(t).

Then by the Abel’s identity [1], we have

S(p′) =

∫ +∞

p′

1

log t
· ds(t) =

∫ +∞

p′

1

log t
·
(

dt

t · log t
+ dE(t)

)
≤

≤ 1

log p′
− E(p′)

log p′
+

∫ +∞

p′

1

t · log4 t
· dt ≤

≤ 1

log p′
+

1

log3 p′
− 1

3 · log3 t
|+∞p′ =

1

log p′
+

4

3 · log3 p′

and

S(p′) ≥ 1

log p′
− 4

3 · log3 p′
.

If p′ is a first prime ≥ e14, then p′ = 1202609 and it is 93118-th prime. And we have

0.070 ≤ S(p′) ≤ 0.072.

6.7. Lemma
Now we are ready for the proof of the following Lemma.
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[Lemma] For any m ≥ 9× 104 we have Cm < 1 under the condition (d).
Proof. Let

Dm :=
pm · (e′0 − α0)

√
pm · α0 · log2(pm · α0)

(m ≥ 1).

Then Cm < 1 is equivalent to Dm < 1. And for any pm ≥ e14 we here have

Dm ≤ am := 1− 13 · S(pm).

We will prove Dm ≤ am for any pm ≥ e14 by the mathematical induction with respect to m.
If p′ = 1202609 then we have

D93118 = 0.010 · · · ≤ 0.06 ≤ 1− 13 · S(p′) ≤ 0.09 < 1.

Now assume p ≥ e14 and Dm−1 ≤ am−1. Then

Dm =
1

N0
· (p · (e′1 − α) + V0) = Dm−1 ·

N1

N0
+
V0
N0
≤

≤ am−1 ·
N1

N0
+

1

N0
· log p0 · (µ · e′1 − 1) ≤ am−1 + bm−1,

where

bm−1 =
1

N0
· (log p0 · (µ · e′1 − 1)− am−1 · (N0 −N1)).

By the assumption Dm−1 ≤ am−1, we get

e′1 ≤ α+ am−1 ·
√
p · α · log2(p · α)

p
= α·

(
1 + am−1

log2(p α)
√
p α

)
and by taking logarithm of both sides

log e′1 = (log p) · (e1 − 1) ≤ θ(p) + am−1 ·
log2(p · α)
√
p · α

.

From this

e1 ≤ 1 +
1

log p
·
(
θ(p) + am−1 ·

log2(p · α)
√
p · α

)
,

E(p) + ε(p) ≤ 1

log p

(
θ(p) + am−1 ·

log2(p · α)
√
p · α

)
.

Thus

log p · E(p)− θ(p) ≤ am−1 ·
log2(p · α)
√
p · α

− log p · ε(p)

and the both sides multiply by
p

√
p · log2(p · α)

,

then

d(p) :=
p · log p · E(p)− p · θ(p)
√
p · log2(p · α)

≤ am−1√
α
− p · log p · ε(p)
√
p · log2(p · α)

.
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If the condition (d) holds, then by (2.3) we get

(1 + log p) · E(p) ≤ am−1 ·
log2(p · α)

2 · √p · α
·
(

1 +
4

log(p · α)

)
−

−(1 + log p) · ε(p) +
2
√
p
,

because ε(p) < 0 and

log p

2
·
(

1 +
4

log(p · α)

)
≤ (1 + log p) (p ≥ e14, α ≥ 1− 1/14).

Thus we see

(1 + log p) · (E(p) + ε(p)) ≤ am−1 ·
log2(p · α)

2 · √p · α
·
(

1 +
4

log(p · α)

)
+

2
√
p
.

If e1 > 1, then, since 0 < am−1 ≤ 1 and (1− 1/14) ≤ α ≤ (1 + 1/14), we also have

(1 + log p)2 · (E(p) + ε(p))2 ≤

≤ log4(p · α)

p · α
·
(

1

2
+

2

log(p · α)
+

2 ·
√
α

log2(p · α)

)2

≤

≤ 0.4287 · log4(p · α)

p · α
(p ≥ e14)

and
log p0 · (µ · e′1 − 1)− am−1 · (N0 −N1) ≤ log p0 · (1 + log p) · (E(p) + ε(p))−

−am−1 · (N0 −N1) + 0.55 · log2 p0
p

+ 0.6 · log p0 · (1 + log p)2 · (E(p) + ε(p))2 ≤

≤ am−1 ·G0 ·N0 + 0.55 · log2 p0
p

+ 0.2572 · log p0 ·
log4(p · α)

p · α
+

2 · log p0√
p

.

Finally, by the function (log4 t)/
√
t is decreasing on the interval (e8, +∞) we have

bm−1 ≤ am−1 ·G0 + 0.55 · log p
√
p · α
·
(

1 +
log
√

2− logα

log p+ logα

)2

· 1

p · log p
+

+0.2572 · log4 p
√
p
· 1 + log

√
2/ log p

α3/2
· (1 + logα/ log p)2

p · log p
+

+
2√
α
·
(

1 +
log
√

2− logα

log p+ logα

)2

· 1

p · log p
≤

≤ 0.01

p · log p
+

0.01

p · log p
+

10.421

p · log p
+

2.203

p · log p
≤ 13

p · log p
(p ≥ e14).

Next, if e1 ≤ 1 then we have

bm−1 ≤ 0.55 · log2 p0
p ·N1

≤ 0.01

p · log p
(p ≥ e14).
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VII. Proof of Theorem 3
It is obvious from the Theorem 2 and the Lemma. The Theorem 2 shows Φ0(n) ≤ 24 for any
n of 1 ≤ ω(n) = m ≤ e14 and the Lemma gives Φ0(n) ≤ 1 for any n of ω(n) = m ≥ e14 under
the condition (d) respectively.

VIII. Algorithm and Tables for Sequence {Cm} and {Rm}
Here

Rm := log(e−γ · =m/ϕ(=m))− log log(log=m +
√

log=m · (log log=m)2).

Then it is clear that Cm < 1 is equivalent to Rm < 0. The table 1 shows the values of
Cm = Φ0(=m) and Rm to ω(n) = m for n ∈ N. There are only values of Cm and Rm for
1 ≤ m ≤ 10 here. But it is not difficult to verify them for 31 ≤ pm ≤ e14. Note, if more
informations, then it should be taken Rm < 0, not Cm < 1, for 263 ≤ pm ≤ e14, by reason of
the limited values of MATLAB 6.5. The table 2 shows the values Rm for 93109 ≤ m ≤ 93118.
Of course, all the values in the table 1 and the table 2 are approximate.

The algorithm for Rm to ω(n) = m by MATLAB is as follows:
Function NSC-Index, clc, gamma=0.57721566490153286060; format long
P = [2, 3, 5, 7, · · · , 1202609]; M=length(P);
for m = 1 : M ; p = P (1 : m); q = 1− 1./p; F = −gamma+ log(prod(1./q));
N1 = sum(log(p.)); N2 = (N1)1/2;N3 = (log(N1))2;N4 = N2 ∗N3;N5 = N1 +N4;
m, p(m), Cm = exp(exp(exp(F )))/ exp(N1)/ exp(N4), Rm = F − (log(log(N5))), end

Table 1

m pm Cm Rm
1 2 9.66806133818849 −
2 3 23.15168798263150 0.73259862957209
3 5 7.73864609733096 0.14633620860732
4 7 0.83171792006862 −0.00636141995881
5 11 0.01114282713904 −0.09308687002330
6 13 1.102119966548700e− 004 −0.12730939385590
7 17 3.834259945131073e− 007 −0.15077316854133
8 19 1.397561045763582e− 009 −0.15960912308179
9 23 2.821898264763264e− 012 −0.16612788105591

10 29 2.081541289212468e− 015 −0.17415284347098

Table 2

m pm Rm
93109 1202477 −0.01154791933871
93110 1202483 −0.01154786567870
93111 1202497 −0.01154781201949
93112 1202501 −0.01154775835370
93113 1202507 −0.01154770468282
93114 1202549 −0.01154765103339
93115 1202561 −0.01154759738330
93116 1202569 −0.01154754372957
93117 1202603 −0.01154749009141
93118 1202609 −0.01154743644815
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