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Abstract: In this paper, it is obtained a new estimate for the error term FE(t) of Mertens’
formula Zpgtp_l = loglogt + b+ E(t), where t > 1 is a real number, p is the prime number
and b is the well-known Mertens’ constant. We, first, provide an upper bound, not a lower
bound, of E(p) for any prime number p > 3 and, next, give one in the form as E(t) < logt//t
for any real number ¢ > 3. This is an essential improvement of already known results. Such
estimate is very effective in the study of the distribution of the prime numbers.
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I. Introduction
The formula

> p! =loglogt +b+ E(t) (1.1)

p<t

is called the Mertens’ formula, where ¢t > 1 is a real number, p is the prime number,

b=v+ Z (log(1 —1/p) + 1/p) = 0.261497212 - - -

p

is the Mertens’ constant and v = 0.577- - - is the Euler constant ([1, 2]). As usual, we here will
call E(t) the error term of the Mertens’ formula (1.1). Much papers have been contributed in
estimating the orders of the magnitude of E(t) in the various approximations.

It is already well-known that

E(t) = O(lolgt) (1.2)

This (1.2) could be found in many books (for instance, see [1. 2]). A classic and epochal result
appeared as the Theorem 23 on p. 65 of Ingham [3] (see also on p. 66 of [4]) in the form

7(t) = Z 1= /2 1jﬁ—&—O(t-exp(—w V0ogt)) (a > 0), (1.3)

where ¢ is a positive absolute constant. And the improvement form of the Ingham’s result was
given in Vinogradov [6] (see also on p. 229 of [5]) as

w(t) = /2 l(jlguu +O(t-exp(—a- (logt)3/?)). (1.4)



From (1.3) and (1.4) by the Abel’s identity ([1]), it is easily given

E(t) = O(exp(—a - y/logt)) (1.5)
and more
E(t) = O(exp(—a - (logt)®/?)). (1.6)

It is obvious that the inverse process is also possible. Of course, these are not the best possible
results. It is well-known that the Riemann Hypothesis (RH)([2]) is equivalent to that

b du
t) = O(V't-logt). 1.7
m(t) = [ o+ O logt) (17)
holds (see the Equivalence 5.5 on p. 47 of [2]). Therefore the best one for E(t) is as the form
logt
Et)=0(—|. 1.8
0 =o("%) (18)

In deed, the (1.8) is another one of the forms equivalent to the RH.
Unlike above such estimates, Rosser and Schoenfeld showed, practically it is very useful, the
widely applicable approximations in (3.17) and (3.20) of [4],

L <
1og2 t

E(t)

< —5 (t>1). 1.9
o () (19)
We recall the Chebyshev’s function 9(t) = > -, logp ([1]). In the work to obtain the estimate
for E(t), the function 9(¢) is used as good tool. By the prime number theorem ([1]),

D) =t-(1+6(t)) (1.10)
and by (3.15) and (3.16) of [4]

1
logt

o(t) < (t > 41). (1.11)

logt
In this paper we show a new estimate for E(p) including 6(p) for any prime number p > 3. And
using it, we give an upper bound, not a lower bound, for E(#) in the form as E(t) < logt/+/t for
any real number ¢ > 3. This is an essential improvement of already known results. Such esti-
mate is very effective in the study of the RH and the distribution of the prime numbers by E(t).

II. Main result of paper
We give the following theorem.
[Theorem 1] For any prime number p > 3 we have

(MP) -E(p) +2(p)- 9(p))~\/ﬁ <2, (2.1)
where » ._1+1.1 B 2-logp
p) = 5 o8P logp + log(1 + 6(p))’

1 2
D(p) == .
() 2 + log p + log(1 + 0(p))



We will call (2.1) the condition (d) below.
It is not difficult to see that the condition (d) is equivalent to that

(14logp)-E(p) < d<p)_log2 .(1\?/']304).(1+ log(;i : a))+5ﬁ (2.2)

holds for any prime number p > 3, where

a:=1+10(p),

dp) = 2 logp- E(p) —p-0(p)
' VP log*(pra)

For the convenient in the work, we take any prime p > 3 and introduce following functions.
ft)=t-logt- E(t) —t-0(t),

g(t) =Vt -log’(t - a),

d<t>=§§g (telp, p+1)),

where a = 1+ 6(p) is a positive constant such that
(1-1/logp) < a < (1+1/logp).
Then both f(t) and ¢(t) are continuously differentiable function on the interval (p, p+ 1).

In fact, since the functions
dopt=b, 9(t) =) logp

p<t p<t

are constants on (p, p+ 1), we have

-1 1 6(t)
Et)y=——, 0@t)=—-—-——= 2.3
0= rogr PO=—7- "¢ (23)
where E'(t) is the derivative of F(t) and so on. Hence we obtain
()= (1+logt) - E(t). (2.4)

Thus the function d(¢) is also continuously differentiable on (p, p + 1). Moreover, d(t) has the
right hand derivative at the point t = p. Put
/ T /
d'(p) = t—l)lg-od (t).

Then we could rewrite Theorem 1 as
[Theorem 1°’] For any prime number p > 3 we have

d'(p)-9(p)- VP < 2. (2.5)
Also it is clear that (2.5) is equivalent to (2.2).
From the Theorem 1 we obtain following important theorem.
[Theorem 2] For any real number ¢ > 3 we have

logt
prl < loglogt+b+ o8 (2.6)

p<t \/i



Rewriting (2.6), then for any real number ¢ > 3,
logt
NG

holds. This (2.7) is a new estimate for FE(t). Unsatisfactorily, this (2.7) is to give only the
upper bound of E(t), however it also gives a possibility to get a lower bound for one. Here we
accentuate that it is very useful not only (2.7) but also (2.2).

E(t) < (2.7)

III. Some Preparations for Theorem 1
From the section III to the section VI we would handle the Theorem 1.
First, we make ready for the proof of the Theorem 1.

3.1. A Condition (d’)
If the Theorem 1 does not hold, then there exists a prime number p > 3 such that

d(p)- 9p)-Vp>2.

We fix such prime p. Then from the table 1 and the table 2 we see p > e'4, because H,, < 0
for any 3 < p,,, < e!* (see (6.1) below). Here (2.2) is equivalent to H,, < 0 for p,, there.
Now we define the function

G(t):==d'(t)-g(t)-Vt, tep, p+1].

Then ity \}Z(ao(t)—l—b;ﬁ(lJrlc)g:(ia))'Dl(t))’
where o(t) = B(t) + g (1 _ 10g2(8t'a)> —
and

Dy(t) :=d'(t) - g(t) = f'(t) — d(t) - g'(2).
Hence G'(t) < 0 is equivalent to

2
log(t - @)

ao(t)+(1 + gt

>~D1(t) <1+
Since t > e!* and o > (1 — 1/14) by (1.11), we get

log(t - o) = logt + logaw > 13.925 > 0

and so
2 1 1

P LSNP T OV S R S
log(t-a)/ \logt = log*t log(t-a)) logt

2 1 1 4 1
1 . 1 : 46 (t > e'?). 1
+< +log(t~a)> <10gt+log2t+< +10g(t-a)> 10gt><0 6 (t2e7) 3-1)




This shows that the function G(t) is decreasing on the interval [p, p + 1]. Thus there exists a
point ¢; such that p <t; <p-+1 and

Glp+1)=G(p)+Gp+1)-G(p) =

:G(p)+G’(t1)~(p+1—p)>2—}/']63.

For the convenient discussion, we put 1 = p, o2 = p+ 1. Then, since G(t) > G(p+ 1), for any
t € (x1, x2) we have

dt)- g(t)-Vt>2-(1-1/V1). (3.2)

We will call (3.2) the condition (d'). For the proof of the Theorem 1, we must obtain a contra-
diction from the condition (d’).

3.2. Proof of d"’(t) <0
For any ¢ € (z1, z2) we here have d”(t) < 0. In fact, since

"o 1 1
d'(t) = t_’m'<80(t) —-1- logt)’

we easily see that d’(t) < 0 is equivalent to dyp(t) < 1+ 1/logt, and

100(t)] <0.2577 <1 (t >e').

3.3. Function F(t) and F'(t)
Put

F(t) := (dy —d(t)) - g'(t) = (9(t) —g1) - d'(t), L€ (x1, w2).

Then it is clear

/ " Pt =o, (3.3)

1

where

t—x14+0 t—x2—0

Hence there exists a point &y such that z; < & < o and
T2
/ F(t)dt:F(fo) . (CL’Q —.’El) =0
Z1

and so

(d2 —d(%)) - 9" (&0) = (9(0) — g1) - d' (&) (3.4)

We here have F'(t) < 0 for any t € (21, 22) under the condition (d’). In fact, since d'(¢) > 0
from the condition (d’), for F’(t) < 0 it is sufficient to show

(9(t) —g1) - (=d"(t)) <2-d'(t) - g'(%).

And there exists a point £; such that xz; < t; <t and

g(t) —g(z1) = g'(t1) - (t —21) < g'(t1) <



<¢m(1—§gj)<ungw>a>&ﬂ

g'(t) .(1 n OL - ao(t)) <

Hence
(9(t) = g1) - (=d"(t)) < 101~ s g7
2'(1_1/\/;5)‘9/(1%) / ’
Trae SO0 ke,

Moreover, we note that F”(¢) > 0 holds for any ¢ € (21, x2).

3.4. An estimate of the point ¢

From
T2 &o Z2
/ Fiyat = [ Fydt + / F(t)dt =0,
T 1 o
there exist A1, Ao such that z1 < A\ < &y < Ay < 22 and
(3.5)

F()\l) ’ (50 - 55'1) +F(>\2) : (332 —fo) =0.

Then, since F'(t) <0 (¢t € (x1, z2)), we have
F(\) > F(&) =0> F(\a).

Put zo := z1 + 2 — &. Then from (3.5) we have
This (3.6) shows that the line passing the points (z1, F'(A1)) and (z2, F(A2)) passes the point

(2o, 0). On the other hand, by the mean value theorem, there exist the points 1, and 79 such

that z1 <1 <& < M2 < x2 and
d(z2) — d(&o) = d'(n2) - (w2 — &),
9(&) — g(z1) = g'(m) - (§o — 1)
Since the function ¢'(t) is decreasing on (x1, z2) and from the condition (d'), we have
g' (&) <g'(m), dt)>0 (t€ (1, x2))
Here if xg < &, then zo — &y < & — 1 and by (3.4) we get

d'(§o) = d'(n2) - ZOQ__E? : z’((f;?; < d'(n2),

but it is a contradiction to d”(¢) < 0. Thus we have zg — & > 0 under the condition (d’).

3.5. An estimate of ¢¢ := ¢y — &

Since F'(&y) = 0, we have
F(z1) = (d2 — d1) - g'(z1) = F(21) = F(&%) = —F'(Bo) - (§ — z1),

where z1 < By < &y. Also since & — z1 = (1 — 9)/2 and
F'(t) = (d2—d(t)-g"(t) = (9(t) —g1)-d"(t) = 2-d'(t) - g'(t), (3.7)



we have
d'(Bo) - 9'(Bo) - €0 = T1 + T,

where

Ty =d' (Bo) g (Bo) — (d2 — d1) - ¢’ (x1),
- - (<d2 — d(Bo)) - ¢" (o) — (9(Bo) — g1) 'd//(ﬂo)) (6o — 1),

By the condition (d'), we get

d'(Bo) - 9'(Bo) - €0 > 2. ;(15{);/_3\0/)5;09%%) 0= - 63/@

Y

and
Ty =d'(Bo) - g'(Bo) — (d2 —dy) - g’ (21) =
=d'(Bo) - ¢'(Bo) —d'(B1) - g' (1) =
=d"(81)-g'(Bo) - (Bo — B1) +d'(B1) - 9" (By) - (Bo — x1) <
0.9005

<ay+by < —5— (z1>e"),
7

where x1 < B1 < xa, Bo < B < f1, x1 < By < Py and
ag = |d'(t1) - g"(t2)|, ba:=|d"(t1)- g (t2)| (see section 4.4 below).

We also have

7y = (o = d(6)) - 30 = (al60) ~ 1) - () )60~ 1) =

= —(dl(52) 9" (Bo) - (x2 — Bo) — g (By) - d"(Bo) - (Bo — $1)>'(§0 —21) <

0.4503
<(as+by)/2 < = (z2 > ')
2

where By < B2 < x2, 21 < 85 < Bo. Thus we have

)

1.3508

—- < 0.0015 (zg > e'4). (3.8)
2

0<60S

3.6. An estimate of dg := \g — 29
Here a point A¢ is determined as follows. If the line passing the points (A1, F'(\1) and (Mg, F'(A2)
intersects the line y = 0 at the point g, then we obtain

F(A1) - (A2 = Xo) + F(A2) - (Ao — A1) = 0. (3.9)

Since the function F(¢) is decreasing and convex on (1, x2) under the condition (d'), it is clear
& < Ao. And the equation of the line passing (§o, F/(A1)) and (Ao, 0) is

FA)-z+ (Ao —&) y—F(A1)- Ao =0 (3.10)
and one passing (£y, —F'(A2)) and (xq, 0) is



We put
Do = F(A1) - (zo — &) + F(A2) - (Ao — &) # 0,
Al = F()\l) . F()\Q) . (So.
Then y-coordinate of the cross point of above two lines (3.10) and (3.11) is Ay/Aq. Here if

do > 0 then Ay/Ap <0 and Ay <0, if 69 < 0 then A;/Ay > 0 and Ay > 0. Hence we always
have Ag > 0 and

F(A) (o —&0) +F(X\2)- (Ao —&) > 0. (3.12)
From this
—F(X2) - 60 < (F(A1) + F(A2)) - (ko — o).
And since
_1—¢g
T2 —To = T
_1+e
To —T1 = 9
by (3.6) we have
F(A) +F(A2)  wo—m1 _ 2-gg
—F(\y)  xa—xm = 1—¢gg

and so
do < 2-5%/(1 —&p)-

Similarly, for the lines passing the points (£o, F'(A\1)), (zo, 0) and the points (o, —F (A2)), (Mo, 0),
we have

F(A1) - (Ao = &) + F(X2) - (w0 — &) >0
and from this
So > (=1)-2-¢3/(1+ o).
Therefore we have
2. ¢2 2. ¢2

. . 3.13
1+€0 0 1 —£&o ( )

3.7. An estimate of §; := \; — \]
Here \| := x1 4+ & — A1. By the same method as in dy, for the lines passing (z1, F(A\1)), (A1, 0)
and (1, —F(\2)), (A}, 0) we have

Fq) - (N —21) + F(2) - (A — 1) > 0.
From this, since

F()\1)+F()\2) _ 2-¢9
F()\l) 1+€0,

1 1
/\1—331:1'(1—80)4-5'51,

we have §; < g¢/2. Also for the lines passing the points (z1, F'(A1)), (A],0) and (1, —F(A2)), (A1,0)
we have

F()\l) . ()\1 — .’1?1) + F(/\Q) . ()\/1 — 56'1) > 0.



and so §; > (—¢&g)/2. Therefore we get

€0 €0
(-1)- 5 < 01 < 5 (3.14)

3.8. An estimate of wg := (A1 + X2) —2- &
Let Aj := A1 + A2 — Ag. Then from (3.5) and (3.9) we get

FM) _2a—-&% _ do—M _ X=X
F(h2)  &-—21 A—Xo  ANg—M\

and
Ao =A1- (& —x1) + Ao - (w2 — o),

Ao = A1 (22— &o) + A2 - (G0 — ).

Hence
)\0—>\6:()\2—)\1)'50

Put wy := (A + A2) — (21 + x2). Then, since
M A =X+ =22 — (Ao — Ap),

ry+ 22 =20+ & =2 20 — (0 — &),

we have
w1 :2~60+(1—(/\2—)\1))'50.

Thus

wo:wl+€0:2~50+2'€07(/\27/\1)‘€0. (315)

3.9. An estimate of Ay := (Ay — A1)

Since
fo— M= (1—cg)— 58
0 174 €0 B 1,
we have
A2 =A1)=2-(No— A1) — (Mo —Xp) =
1
:2'50+2'€o+§‘(1*50)*51*(>\2*/\1)'507
and 1 5 2.5
€0 1 + 00
Ao — ) == —
(A2 = A) 2t e 14 142
and hence
1 1
5 < ()\2 — )\1) < 5 + 2 €. (316)

3.10. An estimate of §, := A\ — 1y
By the same method as above, for the lines passing the points (z1, F(A1)), (A1, 0) and
(x1, —F(A2)), (11, 0) we have

F\)-(m—z1) + F(A2) - (A — 1) > 0.



From this
F(\)+ F(X2)

5 SO — ) =
2 < FOu) (A1 — 1)
2.5 (1 1 1 &
= (. 1- i - _
1+ (4 (1=20) + 3 1)<2 1+

Similarly, for the lines passing the points (z1, F(A1)), (71, 0) and (21, —F(A2)), (A1, 0) we have
F()\l) (A1 — $1) + F()\Q) . (’171 — 331) > 0.

From this

F(A\) 4+ F(X\2) 1 €0
b > F()\Q) ()\1 33‘1) > 2 1-2
Consequently, we have
[511) 50
1) ————— << ————. 3.17
(=1) 2-(1—2g9) 27 2-(1+¢20) (8:17)

3.11. An estimate of Qo := (2 +m —2-&) - (§o — x1)
First, we will find the lower bound of Q.
If the line passing (01, F(n1)), (2, F(n2)) intersects y = 0 at 1o, then

F(m)-(n2—mno) +F(m2)-(mo—m)=0
and from this
F(A1) - (m2—mno) + F(X2) - (no —m) + Wo =0,
where
Wo = (F'(m) — F(A1)) - (12 = m0) + (F(n2) — F(X2)) - (no —m).
From (4.10) we have
no=m+ (n2—m) - (x2 — &) + Wr,

where
r2 — &0
F(\r)

Since F(t) is convex on (x1, x2) and 171 < &y < 12, we have 19 > &, and

Wi = 0-

m+ (2 —m) - (z2 — &o) + W1 > &.

From this
Qo > —(m2 — &) -e0 — Wh.
Here if W7 < 0 then
Qo > —¢eo

and if W3 > 0 then we put 1} :=n1 + 12 — 19. Then
F(A\) - (g —m) + F(X2) - (n2 — 1) + Wo =0
and by same way as above

no=m+ (n2—m) - (§o — 1) — Wh.

10



Thus we have
no — 1o = (n2 —m)-€0+2- Wy

and so (no — ny) > 0. Similarly, for the lines passing the points (A1, F(\1)), (no, 0) and
(A1, —F(X2)), (5, 0) we have

F(A) - (nh— M)+ F(A2) - (o — A1) > 0.

On the other hand, since 72 > 719 and

(§o— A1) < i,
we have
(=) < PRI gy ) <
(0~ &)+ (60— M) <
<2'€0'(772—§o)+%0~
Hence

2-Wy = (no—1my) — (n2—m) -0 <

<2'50'(772—50)-5-%0—(U2—§0)'€0—(€0—771)'€0§

€
§60'(772—fo)+50—(§0—)\1)'50—52'60:

€ 1 1
=50'(772—§0)+20—Eo-(4-(1—80)—2'51>—52'80<

€0

1 +2-f

<eo-(n2— &)+
and, since xo > 12 and x9 — § = (1 +£9)/2,

Qo > —(n2 —&o) €0 — W1 >

e £
>—(772—50)'60—?0'(772—50)—%—&2)>
3 €
>—*'€0'($2—§0)—*0—53:

2 8

3
2—1'60'(1+60)—6§0—63>—60.

Therefore, generally, we have
Qo = (n2+m —2-%) - (§o —z1) > —o. (3.18)
Next, we will find the upper bound of Qq. It is easy to see that
(2 +m —2-%) = (12— &) — (§o —m) <
< (z2—&) — (bo—m) =

1 1 1
:2~(1+80)—(4'(1—60)—2'51+52><

11



<1+2
p— .E
4 0

and
2-&%—m—m)= (& —m)—(n2—%&) <
<(§0—771)<i+2'€0~

Therefore, since
[(n2 +m —2-&)| - [& — 21| <

< 1+2 ! (1 )<1+
1 )5 €0) < g+ <o,

we have

1
|Qol < g + <o (3.19)

3.12. An estimate of Hy:= (§y —n1) - ({0 — =1)

Since 1 1
(So—m) = Z-(l—ﬁo)—i-él—f—&g,
1
(§o—21) = 3" (1 —e0),
we easily have
1 1
é -0 < H() < g + €o. (320)

IV. New equality and inequality
In this section we make a new equality from (3.5) and (3.6), and derive a new inequality from
the estimates for the various points discussed in the section III.

4.1. A new equality
Now we add (3.5) and (3.6), then we have

FM) + F(%) = (F(\) = F() - 20
and both sides multiply by d'(n2) - ¢'(£o), then
(F(A1) + F(A2)) - d'(m2) - ¢’ (o) =

= (F(\) = F(X\2))-d'(n2) - ¢' (&) - €0- (4.1)

On the other hand, since F(&) = 0, we get
F(A) + F(A2) = (F(A2) = F(&)) — (F() — F(M)) =
= F'(a2) - (A2 — &) — F'(a1) - (6o — \1) =
= (F'(az2) = F'(e1)) - (§o — A1) + F'(a2) - (A2 — &) — (b0 — M1)) =
=F"(10) - (a2 — 1) - (§o — M) + F'(a2) - (M + A2 — 2 &)

12



and

F(A1) = F(A2) = (F(M) = F(&)) = (F(A2) — F(&)) =
=—F'(a1) - (§o— M) = F'(a2) - (A2 = &) =
= (F'(az) — F'(e1)) - (§o — A1) — F'(a2) - (A2 — &o) + (S0 — M1)) =
= F"(10) - (a2 — a1) - (§o — A1) — F'(a2) - (A2 — A1),

where \; < a1 <& < az < A and a1 < 19 < Qs.
From (3.4), there exist the points 71 and 72 such that z1 < n; < & < 172 < z2 and

(d2 — d(&0)) - 9'(0) — (9(&0) — 1) - d' (&) =
=d'(n2) - ¢'(&0) - (x2 — &) — ¢'(m) - d'(&0) - (b0 — 21) =
—(d’(nz) -9 (&) —g'(m) - d’(fo)) (& —x1)+

+d'(12) - ¢'(€0) - (x0 — &) = 0. (4.2)
Here also there exist pq, po such that 1 < p; < &y < po < 12 and

d'(n2) - g'(&0) — g'(m) - d'(&) =

= (d'(n2) — d'(&0)) - 9'(60) + (9'(0) — ¢’ (m)) - d' (&) =
=d"(u2) - 9'(&0)) - (N2 — &) + 9" (1) - d' (o) - (S0 —m) =

:(d”um (&) + 9" (1) d’(&») (o —m)+

+d"(u2) - g'(&0) - (12 +m — 2+ &o). (4.3)
We put
Ag :=d'(n2) - 9'(%0),
Ay = (=d"(p2)) - g'(€0) + (—9" (1)) - d' (&),
Ay = (=d"(p2)) - 9'(%0),
By :=d'(a2) - ¢'(a2),
By = (d2 — d(az2)) - ¢"(a2) — (g(a2) — g1) - d"(e2),
Uo :=d"(70) - g'(70) + d'(70) - 9" (0),
Uy = (d2 — d(m0)) - ¢ (10) — (9(70) — g1) - A" (70).
Then since

F(t) = (dy — d(t)) - g"'(t) = (9(t) — g1) - 4" (1)~
=3-(d"(t)- g'(t) + d'(t) - " (1)), (4.4)

from (3.7) we have
F/(CVQ) = Bl - 2. Bo,

FH(TQ) = U1 — 3 . U()7
and from (4.2) and (4.3) we get

My = Ag-e0=A1- (&0 —m) - (o — 21)+
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+Az- (2 +m —2-&) - (b —21) = O(1/t%).
Thus the left side of (4.1) is

Lo := (F(\) + F(\2)) - d'(n2) - ¢'(§0) = L1 + Lo,

where
Ly =F"(10) -d'(n2) - ¢’ (&) - (a2 — 1) - (§0 — M) = L11 — Lao,
Ly = F'(ag) - d'(n2) - ¢'(&0) - (M1 + A2 — 2+ &) = Loy — Lao.
and
Ly =Uy-Ag - (a2 — ) - (b0 — M) = O(1/tY),
Liz=3-Uy- Ao (az —a1) - (& — M) = O(1/t%).
and

Loy =2-Ayg-By-6g—4-Ag- By -dp+
+By - (2= (A2 — A1) - Mo = O(1/t),
Laa=2-(2— (M2 — 1))~ Bo- M, = O(1/%).
Similarly, the right side of (4.1) is

RO = (F()\l) - F()\Q)) . Dﬁo = R1 - RQ,

where
Ry =F"(10) - Mo - (a2 — 1) - (b0 — M) =
= (U1 =3-Up) Mo - (a2 — 1) - (&0 — A1) = O(1/th).
And
Ry := F'(a2) - Mo - (A2 — A1) = Ro1 — Raa,
where

Ro1 = By - My - (A2 — A1) = O(1/t4),
Ros =2+ By-My- (Ao — A1) = O(1/t3).

Thus (4.1) is equivalent to Ly = Ry, that is, we have a new equality

(L11+ Lo1) — (L12 + Lo2) = Ry — (Ro1 — Ra2).

4.2. A new inequality
Put
K := (L12 + L22) + Ra2,

Ky = (L11 + L21) — R1 + Rau,
then, from the equality (4.6), we have K7 = K5. And by 9, of (4.5) we have
Ky =2 + K11 + K2,

where
A, = Ay - By - (S0 —m) - (§o — 21),

K1123'U0'A0'(012_011)'(50_>\1)+
+3- A1 Bo - (§o —m) - (§o — 71),

14
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Kig=4-Ay-Bo-(m2+m —2-&)- (o — 1)
By the condition (d') we have
d'(az) - g'(o2)

d'(n2) - 9'(%o) STHmVE (a4 b) <

0.0005 o oy

<1+

V1
d'(a2) - g'(2)
' (n2) - g'(%o)
And also we see Ay >0, M, > 0. Thus from (3.18) we get

and

Sﬁl = Bo'€0= -Smo:O(l/tQ).

Kip > Kiy = —4- Ay -9, = O(1/t%).

It is clear that d’'(t) > 0 by the condition (d') and ¢'(t) > 0, ¢"”(¢) < 0, d’(t) < 0 for any
t € (1, x2), so we have Ag >0, A1 >0, By > 0, Uy < 0. On the other hand,

(a2 —a1) - (§o— A1) < (A2 = A1) - (S0 — M) <
1 1
Ap- = < =
< Ay 1 < 3 + €0
and hence by (3.20),
K > K, + K7},

where 3
3 (Uo - Ag + Ay - By) = O(1/t*) (see below),

K/ =3-g0-(Uy-Ag — Ay - By) = O(1/t%).
We also have from (3.20)

[
Kll_

Ao = Qo — Ay,

where

1
90:§-A1-Bo,

A, = Ay - MM, = O(1/th).
From this we have a new inequality

Qo < Q= (Li1+Lo1)+ (Ro1 — R1) — (Ko + K11 + K1) +2,. (4.7)

Now we intend to obtain the estimates for the lower bound of €y and the upper bound of 2,
respectively.

4.3. Lower bound of Qg := (A4 - By)/8
Using the condition (d'), we get

! . !/ 1
By = d'(a2) - g'(2) 2 o,
and 0.4789
(9" (1)) - d'(&0) > — (22 > e')

x3 - /T3

15



and

(—d"(12) - (60) = g“)(l + ﬁ _ ao<u2>)2

p2 - g(p2)
! 0.3711
> 9@ a5y >  (z2 > €M),
Z2 '9(302) 5

Thus we have

1 /04 3711 0462
9028(0 789 0.37 >> 0.0162 o

+ =
x5 x5 /T2 ) T X3 a1
Put
0.0462
Q)= —F5—— (z1>e").
T7 /21

4.4. Some estimates
For any ¢ € (z1, 2) it is easy to see that

, _logQ(t-a). 4

70="5 7 (1 o))
o log2(t a) 8
SO=""3 " (l log%-a))’

4-1-
" 1og (t- a) 3 3
g (t I’y 2
8 2. logt a) log“(t - a)

and
d'(t)-g(t) = f'(t) —d(t) - g'(t),
d'(t)-g(t) = f"(t) —d(t) - g"(t) = 2-d'(t) - '(1),
d"(t)-g(t) = f"(t) —d(t) - " (t)-

3 (d”(t) )+ () g”<t>) |

And it is also clear that

(1) = (1-+10g1) - (),
o =1(B0-1- o),
ua 1 1
70 = g (14 oy~ E0)

From (1.9) and (1.11), we respectively have

Do(t) = [logt- B(t) — 0(t)] < —— (£ > e,

logt
dw] 1 1of0ewT
Gl = o ‘_ 21 ‘1+log(t S T @zt
D (t) = |d'(t) - g(t)] < |(1+1logt) - E(t)| +t- Do(t) - Gi(t) <

<0.1685 (t >e'),
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w18 026
Galt) = g(t) ‘_ 4.2 ! log?(t-a) |~ i (212 ™),
Do(t) := [d"(t) - g()] < |f" ()| +t - Do(t) - G2(t) +2- Di(t) - G1(t) <
1.3307 ”
< o (xy >€7),
B g/”(t) B l §7 1 B 3

60 S = 3 - s e

< 0.?;;51 (21 > 614)
Ds(t) = |d"(t) - g(t)] < |f" ()| +t- Do(t) - Ga(t)+

Ty

From this for any ¢, t; € (21, x2) we have

!
t
Sl-l-g(O)

< 1.000001 (t <ty <t),
g(t) ( )

0.1085
z1
ag := |d'(t) - g"(tr)| =10 - D1(t) - Ga(ta) < O'Zi?’g (z1 > €',
1
0.(3)233 o > et
ba = "(0) -/ (0)] = o~ Da(t)- Gr (1) < 20 (2 > o),
1
2.4236

2 (g >614
J?? (1_ )7

0.3460 ”
T‘% (.Tl Z (& )

ar:=1d'(t) - ¢'(t)] =0 - Da(t) - Ga(tr) <

as = |d'(t) - 4" (t0)| = ro - Da(t) - Gi(tr) <

by :=1|d"(t)-g'(t1)| =ro- D3(t) - G1(t1) <

by i=d"(t) - g"(t1)] =10 - Da(t) - Ga(t1) <

By (4.5), we get
M| < (JA1] + [Az2]) - [Qo| < (a2 +2-b2) - |Qo] <
0.2223

< > eld
> I’% (:EI Z € )a

0.9005) _ 0.2225 (2, > &)
N 2 e

Ty

0| < |zmo|-(1 +

4.5. Upper bound of ;
The upper bound of €2y is obtained as follows. First we will show the upper bound of

Kh:%

8'(U0'A0+A1‘Bo)~

Since

Up-Aog+ Ay -By = (Up+ Ay) - Ag — (Ao — By) - Ay,

17



we have

and

and more

Thus we have

Up + A, =(d"<ro> g 70) — " () ~9’(£o)) n
+(d’<m> g"(r0) — g (i) - d'<§o>)=
=<d"(70) (o) — g/ (€0)) + (" (r0) — " (1)) - g’<§o>>+

+(<d’<m> @) ¢ (o) + (" (7o) — 9" () - d/(§0)> <

< (by +b3) + (b1 + a3)

Ag — By =d'(n2) - g'(0) — d'(a2) - ¢’ (a2) =

() = ' 02)) ' 0) )+
+((06) - gaa)) - den) ) < a4 1y

Ao =d'(m2) - ¢'(&0) < a1,
Ay = (=g" (1)) - d'(0) + (=d"(p2)) - g'(€0) < ag + b.

3
|K7,] < 8'((“2 +b2)® + a1 (as +b3) +2-ay 'b1)§

L0433y

1‘411 (Il =

Next, we would show the upper bound of

Since

and

and

we have

And since

L21:2'A0'31'50—4'A0'Bo~50+

+B1- (2= (A2 — A1) - M, = O(1/th).
Ag-g9 =My, Bo-eo =M,

By = (dy — d(az)) - g"(a2) = (9(a2) — g1) - d" () < ag + by

1 1
5<A()=()\2—)\1)<§—|'2-z’:‘()<0.50347

4-¢ 8
|Lo1| < T 0 '(a2+b2)'|fmo|+1_750'|fmo|'|£m1‘+

3 0.6978
+3- (ag +b2) - [M,] < I (1 > e'?).
1

1
Vo = (a2 — 1) - (6 — A1) < 5 +e0 < 0.1267

18



and
U173~U0S(a3+bg)+3~(a2+62),

we also have
R, g((ag T by)+ 3+ (as +b2>)~|zmo Ve <

0.1462

> elh).
33411 (131_6 )

Similarly, we have respectively

1.2017
(KT ] <3 (a2 +b) - (1Mo + [MM]) < ——— (21 =€),

1

0.0342
|L11] < (ag +b3) -a1- Vo < oo (z1 =€)

|Ra1| < (a2 +b2) - M| - (A2 — A1) < '? (z1 > e'),

0.2004
2| < (ag +b2) - M, ] < o (1 > e'?)

1

762
K! §4~b2~9ﬁ1§70765 x1 > e'h).
12 4

X

1
Consequently we obtain

Q1 < |Kqy| + [Loa| 4 [Ra| + KTy + [Laa | 4 [Raa | 4 [RAu] + [K7o| <
0.4334 0.6978 0.1462 1.2017
< + + + +

- z$ z$ zi
+0.0342 0.1008 0.2004 0.7625 <
i i i o
3.5770
< T (z1 > e'?). (4.9)

V. Proof of Theorem 1
We take arbitrarily the prime number p > 3. If 3 < p < e', then we could confirm that the
condition (d) holds from the table 1 and the table 2. Hence if the Theorem 1 does not hold,
then there exists a prime number p > e!* such that the condition (d’) holds. For such prime p,
we have Q) < ; and, finally, from (4.8) and (4.9) we get

3.5770 "
< — < 0. >
< Goa62- gy = 008 (=),

but it is a contradiction. This shows that the condition (d’) is not valid. Consequently, the
Theorem 1 holds for any prime number p > 3.

VI. Algorithm and Tables for Sequence {H,,}
Here

2 .
_d<pm),10g2 '(Z\)/";? )'(Hlog(pi - a)>_\/127m’ (©-
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where
a:=1+ e(pm)a

Pm (1ngm ' E(pm) - 9(pm))
\/pm : 10g2 (pm : O()
The table 1 and 2 show the values of H,, for 2 < p,, < 29 and 93109 < p,,, < 93118. Note that

(1.11) holds for any p,, (3 < pm < 41), and the condition (d) holds if and only if H,, <0 for
any m > 2. It is easy to verify that H,, <0 for any 29 < p,,, < 93109.

d(pm) =

The algorithm for H,,, by MATLAB is as follows:
Function EMF-Index, cle, b=0.261497212847643; format long,
P =12,3,57,-,1202609); M=length(P);
form=1:M; p=P(l:m); E=sum(l./p)—b—log(log(p(m))); E1 = (1+log(p(m)))*E;
V1=sum(log(p.)); Q= (V1/p(m))—1; R=(p(m))"/? V =log(V1); g=Rx*V?
f=p(m)* (log(p(m)) * E = Q); d= f/g; B=(V?)*(1+4/V)/2/R;
m, p(m), Hy, =FEl—dxB—2/R, end.

Table 1 Table 2
m | Pm Hy, m Pm Hp,
1 2 4.92781518770647 93109 | 1202477 | —0.00169503567169
2 3 | —3.79708871931795 93110 | 1202483 | —0.00168790073361
3 5 | —1.82084025624172 93111 | 1202497 | —0.00168788503420
4 7 | —1.24240415973621 93112 | 1202501 | —0.00167897043350
5| 11 | —1.05892911097784 93113 | 1202507 | —0.00167183566691
6 | 13 | —0.82377421885520 93114 | 1202549 | —0.00169673633799
7 17 | —0.75298886049588 93115 | 1202561 | —0.00169494084824
8 | 19 | —0.60562813217931 93116 | 1202569 | —0.00168958602998
9| 23 | —0.56797602737022 93117 | 1202603 | —0.00170736660136
10 | 29 | —0.59342397038654 93118 | 1202609 | —0.00170023228562

VII. Some Preparations for Theorem 2
From the section VII to the section IX we would handle the Theorem 2.
As in the section III, we make ready for the proof of the Theorem 2.

7.1. Some symbols
Let py =2, po = 3, p3 = 5, -+ be the first consecutive primes. Then p,, (m € N) is m-th prime

number. We arbitrary choose the prime number p,, > 3 and fix it. We put pg = pm, P = Pm—1

below. For the theoretical calculation we assume p > el4. The discussion for p < el is

supported by MATLAB. Put
co 1= exp(E(po));  ch i= exp(log po - (eo — 1)),

er = exp(E(p)), ¢ = exp(logp- (e1 1)),
ap =1+ 9(}?0), a:=1+ e(p)v
No = v/po 00 log*(po - @), Ni = \/p-a-log*(p- o).
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7.2. An estimate of ¢; , ¢} and (e; - €})
From (1.9) we respectively have

e1 < exp(1/log®p) < 1.0052 (p > '),

e <1.075 (p>e'?),
(e1-€)) < 1.08 (p>e').
Since if e; < 1 then e} <1, we have (e - €}) < 1. If e; > 1, then
and

0<r:=E@p <— <

< 0.0052
log” p

(p>e')
0o P
61:1—|—T‘+Z2§S1+7"+ -
n=

,,,2

<1 0.503 - 12
(1 — r) <l+r+ re,
2
e1 ey =exp(r+ (logp)-(e1 — 1)) <1+h+
where
Therefore we have

2-(1—n)’
h=(1+logp)-r+0.503 logp-r2 <0.1125 (p>e'?).

By (1.10) it is clear that

(e1-€y —1) < (1+logp) - E(p) +0.6- (1 +logp)? - E(p)*
7.3. An estimate of Vj :=pg - (e[, — ) —p- (¢] — @)

(61 > 17 p 2 614)'
and, since

po- g —p-a=19(py) — I (p) = logpo

E(t) = Zpil —loglogt — b,
p<t
we have ) )
0g Po
E — E(p) = — —lo .
(po) — E(p) " g( Tog p )
From this
o (D) o
€1 log po 07
er p _
e—? = — ~exp(logp . 61~<exp(p0 h— 1>>
1
Thus we have ,
Vo:p-ei.(po'eo
where

'61

Since

- 1)—10gpo =logpo - (n-€y —1),

~ logpo

2

-(exp(logp-el-(exp(pol) — 1))—1).

1
exp(t) <14+t+—-

2 1-—t

0<t<l),
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we have

I
[LS61+0.505'% (e1 >1, p>e'h)

and hence

1
u-e'l—lg(el-e’l—l)+0.55-ﬂ (1 >1, p>e't).
p

7.4. An estimate of Gy := (logpo - R(p- «) — (Ng — N1))/No

Here | 2( )
log(p-a 4

It is known that pf,, < (p1---pk) for pr > 7 on p. 246 of [6] and hence

log po 1 14
o < (p> )
log(p-a) 2 e

Since log(1 +t) > (t —t2/2) for any t (0 <t < 1/2), we have
No— N1 = (v/po - ag — /P~ a) - log®(po - arg)+

+p-a- (log(po - ap) — log?(p - ) >
log po

P
T 2-y/po- o

It
+2-\/p-a-1og(p~a)~log<1+ngo)Z
P«

log?(p - o)+

S log po

~2-\/po- o

2-10g(p-04).<1 ~logpo )
N 2-(p-a)

log?(p - a)+

+logpo -

and

1 1 1
Go- Ny < ng0.< _
2 VPra  \/Po-ag

10g2 Po
(- )"

log?(p-a) (1 1
<logipy -2 B (- - ),
=08 P T ey 1 - log(p - a)

And it is known that pi_ﬂ < 2-p? for pi, > 7 on p. 247 of [6] and so

log\/i)_

logp

>~log2(p -a)+

+ +log(p- @) <

log py < (logp)-(l +

Since p > e, we have a > (1 — 1/14) and the function (log®t)/t is decreasing on the interval
(€3, +00). Therefore we get

logZpy (1 1
< = = - <
Co = (p-a)? \4 * log(p-a))~
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3 2
Slogp_ 1+1og\/§ -1+ 1 1 -

p-a? logp 4 logp+loga /) p-logp

0.01

<
p-logp
7.5. An estimate of S(p') :=3_ ., 1/(p-logp)
Put B

(p=>e').

s(t) = Zp’l =loglogt+ b+ E(t).

p<t

Then by the Abel’s identity [1], we have

S /m LI /M ! ( dt +dE(t))<
p)= — - ds — - . <
»  logt » logt \t-logt

1 E®) oo at
< toar s T, T S
log p log p p  t-log™t
1 1 1 oo
< ; + 3, 3 ‘;»r’ =
logp’  log”p’ 3-log’t
1 4

= +
log p/ 3. 10g3 p/

and
1 4

2 - 3 .
logp’  3-log’p’/
If p is a first prime > ', then p’ = 1202609 and it is 93118-th prime. And we have

S(p')

0.070 < S(p') < 0.072.

7.6. Lemma
For any m > 1 we put
- (eh— )
VP g - log?(py, - o)
Then we are ready for the proof of the following lemma.
[Lemma] For any m > 5 we have D,, < 1.
Proof. First, for any 11 < p,,, < e!* we see D,, < 1 by MATLAB (see the table 5 and the table

6 below). Next, we will prove that

D,, :

Dy <t :=1—13- S(pm)

holds for any p,, > e'* by the mathematical induction with respect to m.
If p’ = 1202609 then we have

Dg3118 = 0.0103--- <1 —-13- S(p') <0.1<1.

Now assume p > e'* and D,,—1 < a@ym—1. Then

1 N1 W
D=~ (p-(¢)—a) + Vo) = Dy - 2 4 10 <

Ny (p-(e1 —a)+ Vo) 1 N0+No_

Ny 1
Sam—l'ﬁo‘i’ﬁo‘long'(ﬂ'e,l*l)§a7n—l+bm—1a
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where 1
bm—1 = N (logpo - (- €} —1) = am—1 - (No — N1)).

By the assumption D, 1 < a1, We get

o - log?(p - log?
¢ <ata,  YPalos (p- ) :a.<1+am_1 og (pa))
p D
and by taking logarithm of both sides
log?(p -
toge} = (g (e = 1) < 0p) + aps - 5 L2,
From this 2( )
1 log“(p - «
<1 10 m-1 ",
“ +10gp((p)+a Yopa )
1 log”(p - @)
E 0 m—1°"— ——
(p) < 10gp< (P) + am—1 N
Thus )
log”(p - @)
logp - E(p) — 0(p) < am—1 \/;.7

and the both sides multiply by

VP log’(p- )’
then
_p-logp-E(p) —p-0(p) _ am-1

d(p) : /5 T2 ) SN

From the Theorem 1 we get

(1+1logp) - E(p) < am-1

log?(p - ) 4 2
e ()

If e; > 1, then, since 0 < a,,—1 < 1 and
(1-1/14) <a<(1+41/14),

we also have

, _log'(p-a) (1 2 2. va \’
;< <2+log(p~a)+log2(p~a)) =

141 2. E
(1+logp)”- E(p)” < o

10g4(p'a) (p> 614)
p-a N

< 0.4287 -

and
logpo - (p- €} —1) = am—1 - (No — N1) <logpo - (1 +logp) - E(p)—

log” po

—m_1 - (Ng — Ny) 4+ 0.55 -
p

+0.6-logpo - (1 +logp)? - E(p)* <
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log? log?(p - 2.1
<y Go- No+0.55- 98P0 (o570 Jogp, - 108 (P@) | 2-1ogpo.
p pra /P

Finally, by the function (log®¢)/+v/t is decreasing on the interval (e8, +oc) we have

] logv2 — 1 S|
ogp(Hogf oga>

bm—1 < @m-1-Go+0.55- .
LS Gmo1 s Got VD« logp + log o p~logp+
log*p 1+logv2/1 1+1 log p)?
402572, l8 P L+ 0gV2/logp (1+loga/logp) N
VP a?/? p-logp
2
+l. 1+10g\/§floga ’ 1 <
Va logp + log p-logp
0.01 0.01 10.421 2.203
< - - - <
p-logp  p-logp p-logp p-logp
< 13 (p> ).
p-logp
Next, if e; < 1 then we have
log? 0.01
b1 < 0.55- —8 20 < (p > e').

p-N1 ~ p-logp

VIII. Proof of Theorem 2
First, we would show that (2.6) holds for any prime number p > 3.
Since exp(t) > 1+t (=1 <t < 1), for any prime number p > 3 we have

p-logp- E(p) —p-0(p) =

=p-(I+logp-E(p)) —p-(1+0(p)) <
<p-éef—p-a

From this, by the Lemma, we have d(p,,) < D,, for any m > 6. Hence d(p) < 1 for any p > 11
and by (2.1) of the Theorem 1

70 iy (s () o5)

Here if p > 71 then

1 . <log2(p @)

2 - log(p - 2)<0.935 (p>11),
Togp (L 1oap) 5 +2-log(p-a) + ) (p=>T71)

and if 3 < p < 71 then we get (2.6) (see the Table 3 and the Table 4 below). Thus

B(p) < k\’fﬁp. (h>3).

holds for any prime number p > 3. Next, for any real number ¢t > 3, there exists a prime
number p > 3 such that p <t < pg. Put

logt

Z(t) = E(t) i (t € [p, po)),
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then Z’(t) <0 (t € (p, po)) and so Z(t) < Z(p) < 0. This shows that (2.6) holds for any real
number ¢ > 3.

IX. Algorithm and Tables for Sequence {Z,,} and {D,,}
The table 3 and the table 4 show the values of

log pm

VPm

for 1 < m < 20 to m. Note that (2.6) holds for m > 1 if and only if Z,, < 0. And the table 5
shows the values of D,,,. There are only values of D,,, for 1 < m < 10 here. But it is not difficult
to verify them for 31 < p,,, < e'%. The table 6 shows the values D,, for 93109 < m < 93118.
Of course, all the values in the tables are approximate.

Zm, = E(pm) -

The algorithm for Z,, and D,, to m by matlab is as follows:
Function EMF-Index, cle, b=0.261497212847643; format long
P=12,3,5/"7,---,1202609]; M=length(P);
form=1:M; p=P(1: m) E(p(m)) = sum(1./p) — b —log(log(p(m)));
A(p(m)) = log(p(m))/\/p(m); I(p(m)) = sum(log(p.)); a0 =V (p(m))/p(m); R= (p(m))"/?;
V =log(d(p(m))); g = R* V eo = eXp(log( (m)) * (exp(E(p(m))) — 1)),
m, Pm, Zm = E(p(m)) — A(p ( ), Dm =p(m) * (€5 — a0)/g, end

Table 3 Table 4
m | Pm Zm, m | Pm Zm
1 2 0.11488663599975 11 | 31 | —0.54628472181999
2 3 | —0.15649580772857 12 | 37 | —0.54636660696827
3 5 | —0.42381139039502 13 | 41 | —0.53633985985008
4 7 | —0.48652145124644 14 | 43 | —0.51944301813516
51 11 | —0.59198165652987 15 | 47 | —0.50956392869224
6 | 13 | —0.57080225951896 16 | 53 | —0.50518392944789
7| 17 | —0.58721773344997 17 | 59 | —0.50037701659240
8| 19 | —0.56143838923050 18 | 61 | —0.48761926443285
9| 23 | —0.55912374510489 19 | 67 | —0.48260095592014
10 | 29 | —0.56745957678030 20 | 71 | —0.47441536685574
Table 5 Table 6
m | Pm Dy, m Pm D,
1 2 | 25.62071141247196 93109 | 1202477 | 0.01038794622881
2 3 8.97923715714347 93110 | 1202483 | 0.01038795465981
3 5 1.91868003953127 93111 | 1202497 | 0.01038796309106
4 7 1.04417674546040 93112 | 1202501 | 0.01038797210397
51 11 0.65533994162650 93113 | 1202507 | 0.01038798158228
6| 13 0.50557929260089 93114 | 1202549 | 0.01038798943309
71 17 | 0.40546150815241 93115 | 1202561 | 0.01038799740043
8| 19 0.35633549506425 93116 | 1202569 | 0.01038800571686
91| 23 0.31785034607111 93117 | 1202603 | 0.01038801287098
10 | 29 0.27811621292050 93118 | 1202609 | 0.01038802049040
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