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Abstract: In recent years, neutrosophic sets (NSs) have attracted widespread attentions and been
widely applied to multiple attribute decision-making (MADM). The interval neutrosophic set (INS) is
an extension of NS, in which the truth-membership, indeterminacy-membership and
falsity-membership degree are expressed by interval values, respectively. Obviously, INS can
conveniently describe complex information. At the same time, Muirhead mean (MM) can capture the
interrelationships among the multi-input arguments, which is a generalization of some existing
aggregation operators. In this paper, we extend MM to INS, and develop some interval neutrosophic
Muirhead mean (INMM) operators, and then we prove their some properties and discuss some special
cases with respect to the parameter vector P. Moreover, we propose two new methods to deal with
MADM problems based on the proposed operators. Finally, we verify the validity of our methods by an
illustrative example, and analyze the advantages of our methods by comparing with other existing
methods.
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1. Introduction

In real decision makings, because of complexity and fuzziness of decision making problems, it is
difficult for decision-makers to express a preference precisely by crisp numbers for multiple attribute
decision-making (MADM) and multiple attribute group decision-making (MAGDM) problems with
incomplete, indeterminate and inconsistent information. Under these circumstances, Zadeh [35]
proposed the fuzzy set (FS) theory, which is an effective tool to describe fuzzy information and then is
used to solve MADM and MAGDM problems [5, 30]. Since FS only has one membership, and it
cannot handle some complicated fuzzy information. Then, Atanassov [1,2] proposed the intuitionistic
fuzzy set (IFS) by adding the non-membership on the basis of Zadeh’s FS, so it is composed of
truth-membership T,(x) and falsity-membership F,(x) . In the IFS, membership degree and
non-membership degree are expressed by real numbers, sometimes, it is insufficient or inadequate to
express more complex qualitative information, then Chen and Liu [7] proposed a concept called
linguistic intuitionistic fuzzy numbers (LIFNSs) in which the membership degree and non-membership
degree are expressed by linguistic terms. However, these concepts aforementioned can only process
incomplete information but not the indeterminate information and inconsistent information.

Therefore, based on the neutrosophy, Smarandache proposed the concept of the neutrosophic set
(NS) [25, 26] in 1999, which added an independent indeterminacy-membership on the basis of
intuitionistic fuzzy set. Obviously, NS is composed of truth-membership, indeterminacy-membership
and falsity-membership, respectively, and it is a generalization of fuzzy set, paraconsistent set,
intuitionistic fuzzy set, paradoxist set etc. Nowadays, many great achievements about NS have been



made. For example, Wang et al. [28, 29] proposed a single valued neutrosophic set (SVNS) with
extension of NS. Majumdar and Samant [19] proposed a measure of entropy of SVNSs. And that, Ye
[32] proposed simplified neutrosophic sets (SNSs). Wang and Li [27] proposed multi-valued
neutrosophic sets (MVNSs). In fact, sometimes it may be difficult to express the degrees of
truth-membership, falsity-membership, and indeterminacy-membership by real values, similar to
interval valued intuitionistic fuzzy set (IVIFS) introduced by Atanassov [3], Wang et al. [28] proposed
the concept of interval neutrosophic set (INS) which is more convenient to deal with complex
information.

In recent years, information aggregation operators [12, 14, 15, 17] have attracted wide attentions
of researchers and have become an important research topic in MADM or MAGDM fields. Because
they have more advantages than some traditional approaches such as TOPSIS [10], VIKOR [13],
ELECTRE [16] and so on. For instance, aggregation operators can provide the comprehensive values
of the alternatives and then do ranking on the basis of them while traditional approaches can only give
the ranking results. Now many different operators were developed for some special functions, such as
power average (PA) operator [31] which can aggregate the input data by assigning the weighted vector
based on the support degree between the input arguments; Heronian mean [4] and Bonferroni mean [6]
can consider the interrelationship of the input arguments. Yu and Wu [34] explained the advantages of
HM over BM are that HM can consider the correlation between an attribute and itself, and can relieve
the calculation redundancy. However, in real decision making, because of the complexity of decision
making problems, there exist the interrelationships among more than two attributes, and BM or HM
can only consider the interrelationship between any two input arguments. Obviously, they are difficult
to deal with this situation. Muirhead mean (MM) [21] is a well-known aggregation operator which can
consider interrelationships among any number of arguments assigned by a variable vector P, and some
existing operators, such as arithmetic and geometric operators (not considering the interrelationships),
BM operator and Maclaurin symmetric mean [22], are its special cases. Therefore, the MM can offer a
flexible and robust mechanism to process the information fusion problem and make it more adequate to
solve MADM problems. However, the original MM can only deal with the numeric arguments, in order
to make the MM operator to process the fuzzy information, Qin and Liu [23] extended the MM
operator to process the 2-tuple linguistic information, and proposed some 2-tuple linguistic MM
operators, then applied them to solve the MAGDM problems.

Due to the increasing complexity of the decision-making environment, it is usually difficult for
decision makers to give the evaluation information by crisp numbers. Because INSs can better deal
with fuzzy, incomplete, indeterminate and inconsistent information, and the MM operator can consider
interrelationships among any number of arguments, it is meaningful to extend the MM operator to
process interval neutrosophic information. So, the aims of this paper are (1) to propose some new
interval neutrosophic MM operators by combining MM operator and INS; (2) to explore some
desirable properties and special cases of the proposed operators; (3) to propose a multiple-attribute
group decision making (MAGDM) methods based on the proposed operators; (4) to show the
effectiveness and advantages of the proposed methods.

So the rest of this paper is organized as follows. In the next Section, we briefly review some basic
concepts, and operational rules, comparison method and distance of INNs, Muirhead mean (MM)
operator. In Section 3, we propose the some interval neutrosophic MM operators, and study some
properties and some special cases of these operators. In Section 4, we develop two MADM methods for
INSs based on the proposed interval neutrosophic MM operators. In Section 5, an illustrative example



is given to verify the validity of the proposed methods and to show their advantages. In Section 6, we
give some conclusions of this study.

2. Preliminaries

2.1 The interval neutrosophic set
Definition 1 [25]. Let X be a space of points (objects), with a generic element in X denoted by x . A
neutrosophic set A in X is denoted by:

A= (T (0, 1200, Fa ()] e X }
where T,(x), I,(x)and F,(x) denotes the truth-membership function, the indeterminacy-membership
function and the falsity-membership function of the element x € X to the set A respectively. For each

point xin X , we have T, (X), I ,(x), F,(X) € ]O',l*[ ,and 0™ <T, (X)) +1,(x)+F,(x)<3".

The neutrosophic set was mainly proposed from the philosophical point of view, it is difficult to
apply to the real application. To solve this problem, Wang et al. [28] further proposed a single-valued
neutrosophic set from a scientific or engineering perspective, which is an extension of fuzzy set,
intuitionistic fuzzy set, paraconsistent set, paradoxist set etc. The definition of a single-valued set is
given as follows.

Definition 2 [29]. Let X be a space of points (objects), with a generic element in X denoted by x . A

single valued neutrosophic set (SVNS) Ain X is denoted by: A= {X(TA(X), I 5(%), FA(x))|x e X } where

Ta(X), 1 4(x)and F,(x) denotes the truth-membership function, the indeterminacy-membership function

and the falsity-membership function of the element x e X to the set A respectively. For each point x in
X, we have Ta(X), I a(X), Fa(x) € [0,1], and 0 < T (X) + 1 4 (X) + Fa(x) < 3.

For simplicity, we can use x=(T,I,F)to represent an element x in SVNS, and the element x is
called a single valued neutrosophic number (SVNN).

In order to describe more complex information, Wang et al. [27] further define the concept of
interval valued neutrosophic set shown as follows.
Definition 3 [28]. Let X be a space of points (objects), with a generic element in X denoted by x . A

interval neutrosophic set (INS) Ain X is denoted byA={x(TA(x), |A(X),FA(X))|XE X}, whereT,(x),

I ,(x) and F,(x) denotes the truth-membership function, the indeterminacy-membership function and
the falsity-membership function of the element x e X to the set A respectively. For each pointxin X,

meets T, (x), |, (x), F,(x) =[0,1], and 0 < sup(T,(x))+sup(1,(x))+sup(F,(x))<3.

For simplicity, we can use x = ([TL,T”],[I SIVLIFS, FU])to represent an element x in INS, and it
is called interval neutrosophic number (INN). where [TL,T“]Q[O,l] , [I i ] c[01] ,
[FFY]<c[o1]andT +1Y +FY <3.

Definition 4 [33]. Let x=([T,7" |.[15, 1) [.[RS R J)and y =([70,7, ] [1505 J.[Fr R ]) be

two INNs and k > 0.The operations of INNs can be defined as follows:



L) x@y =([T1L + T =TT T =TT L 0 [ RR RUR ]) 1)
(2)x®y = ([T 70T [+ 1 =10 1) =121 | [ R+ R R R R +FY -RUFY ) (2)
(3) kx = ([1—(1—T1L)k A-(1-TY )k][(lf)K (12 )KM(FlL)K (R )K}) (3)
@ =1 () ][ e [ 2R Q

Example 1. Let A=([0.7,0.8].[0.0,0.1],[0.1.0.2]) and B = ([0.4,05],[0.2.0.3],[0.3.0.4]) be two INNSs, andk =2,

then we can get the following operational results.

(1)2- A=(][0.91,0.96],[0,0.01],[0.01,0.04])
(2) A’ =([0.49,0.64],[0,0.19],[0.19,0.36])
(3) A® B =([0.82,0.90],[0,0.05],[0.03,0.08] )
(4) A-B =([0.28,0.40],[0.20,0.37],[0.37,0.52])
Theorem 1. Let A =([T"T 1512 ] [RORY]) . A= ][00 L[FF ) and

A:([TL,TU ][I ol ],[FL, FY ])be three INNSs, then operational rules of INNs have the following

properties.

DASA=ABA; ()
QA®A =ABA; (6)
B)AADA)=IABIA,1>0; 7)
@(A®A) =A QA ,1>0; ®)
(B) LA® L,A= (4 +4,)A >0, 1,>0; 9)
(6) A" ® A = AMY2, 2 50,1,>0; (10)

According to the score function and accuracy function of IFSs [8,9,24], the score function and
accuracy function of an INN can be defined as follows.

Definition 5. Letx:([TL,TU],[IL,IU],[FL,F” ])be an INN, and then score function s(x) and

accuracy function a(x) of an INN can be defined as follows:

T +TY R F“+FY
(1) s(x) = +1-— +1— ; (11)
() 2 2 2
T-+TY I“+1Y F-+FY
@a(x)=——+1- + : (12)
9 2 2 2

Then according to score function s(x)and accuracy function a(x) of INNs, we can give the



comparison method for INNs as follows.
Definition 6. Let x=([T,"T |.[1, 1) [[F5 R J)and y=([T,517 | [15.1) [ R R ]) be two

INNSs, then we have
(1) 1fs(x) > s(y), then X is superior to ¥ , denoted by X > Y ;
(2) If s(x) = s(y) and a(x) - a(y) , thenx =y ;
(3) If s(x) =s(y) and a(x)=a(y) , then denoted by X=Y .
2.2 The Muirhead mean (MM) operator
The MM was firstly introduced by Muirhead [21] in 1902, which was defined as follows:

Definition 7 [21]. Letq, (i=12,..,n)be a collection of nonnegative real numbers, and P =(p,,p,,-- p,)

eR" be a vector of parameters. If

1

1 n > b,
MMP(al,az,...,an)=(—ZH“;(JJ-)JMPJ (13)

n'is ja

Then we call MM ” the Muirhead mean (MM), where 3(j)(j =12,---,n)is any a permutation of

(L2,---,n),and S is the collection of all permutations of (1,2,---,n).

In addition, From Eg. (13), we can know that

(1) When P=(10,--,0) , the MM reduces to MM ¢ (al,az,___,an)zlzaj which is the
n j=1

arithmetic averaging operator.

(2) WhenP=(%.%, %), the MM reduces to MM " %) (a, a,, ..., ) = [ [ &2 which is the
j=1

geometric averaging operator.

(3) WhenP=(1,1,0,0,---,0), the MM reduces to MM(l’l*o*""“'O)(al,az,_,_,an)z Zn:a_a.

which is the BM operator [6].
k n—k

——t— ———
(4) WhenP=(11,--,1,0,0,--,0), the MM reduces to

k k

_k ko ® Q¢
(11--100,--0) _ | asi<ei<n j=1
MM (o, 0y, 00) = | =

CF which is the Maclaurin symmetric mean
n

(MSM) operator [18].
From the definition 7 and the special cases of MM operator mentioned-above, we can know that
the advantage of the MM operator is that it can capture the overall interrelationships among the
multiple input arguments and it is a generalization of some existing aggregation operators.

3.Interval neutrosophic Muirheadmean(INMM) operators

Because the traditional MM can only process the crisp number, and INNs can easily deal



indeterminate and inconsistent information, it is necessary to extend MM to process INNSs. In this
section, we will propose some INMM operators for the interval neutrosophic information, and discuss
some properties of the new operators.

3.1lInterval neutrosophic Muirhead mean (INMM) operator

Definition 8. Letg, :([TiL,Ti } [I IU} [F = })(i:l,Z,...,n)be a collection of INNs, and P =(p,, p,,-+, p, )

e R" be a vector of parameters. If

INMM® (a1, @5, ( ZH MJ%PJ (14)

nlis o

Then we call INMM * the interval neutrosophic MM (INMM) operator, where 9(j)(j =1,2,---,n) is any
a permutation of (1, 2, n) , and S, is the collection of all permutations of (1, 2,-~-,n) .

Theorem 2. Let ai:([TiL,T.U

],[IiL,Ii”J [F, ,FY ])( =12,..,n) be a collection of the INNs, then the
aggregation result from Definition 8 is still an INN, and has

n

) o)

9eS,

INMM " (24,22, ) = 1—(1_[

©

m

»
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L=
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" 1- [H[ H(l |“J))“'Hn'l , (15)

9es,

1 1

1

ol o o)

&Eﬂ’

9es, 9e§

Proof.

We need to prove (1) Eq. (15) is right; (2) Eqg.(15) is an INN.
(1) Firstly, we prove the Eq. (15) is kept.
According to the operational laws of INNs, we get

afty =([(T5)" (1) -1k - @) e Rl a- - R ).

and

Hag(J) HH( .9(1))ij _ ( 9(1)) i} { l_[(:l.—ng'(J )p',l—lj_!(l—w(j))pi,

j=1 j=1

{“ﬁﬂ P -T]a- F)D

then
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(o) oo o
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i.e., (15) is kept.
(2) Then we will prove that (15) is an INN.

ot e JT‘F“*




Then we need prove the following two conditions.

G [T1]<foa]. (1510 ] c[oa] [F- FY ] <[oa];
@ii) 0<TY +1Y +FY <3.

(i) Since T, ;, €[0,1], we can get

( ;(J,) €[0,1] andH( 9(”) Ceo].

1

then 1- H( 9(1)) “efod], H[l_ll[(T9L<1>)ije[o’1] and [H(l_ﬁ(mn)p] Dn! €[0,1],

9eS, j=1 9eS,
further,

1

1

1
nt n nt Pj
1—[]‘[(1 H(T;m) D e[0,1], and 1—(1‘[[1 T1() D % e[01],
9es, j=1 9es, j=1

ie,0<TH<1.

Similarly, wecanget 0<TY <1,0<1"<1,0<1Y <1,0<F'<1,0<FY<1.

So, condition (i) is met.
(i) Since0<TY <1, 0<1Y <1, 0<FY <l thenwecanget 0<TY +IY +F"Y <3.
According to (i) and (ii), we can know the aggregation result from (15) is still an INN.
Then according to (1) and (2), Theorem 2 is kept.

Example 2. Let x = ([0.3,0.4],[0.1,0.3],[0.4,0.5]), y=([0.5.0.6],[0.1,0.4],[0.1.0.3]) and

=([0.4,0.5],[0.1,0.3],[0.3,0.4]) be three INNs, and P = (1.0,0.5,0.4) , then according to (15), we have

: N e
INMM €99509) (x y, 7) = 1—[9];[[1 H(T;D)JD ,1_[91;[{1_13(15”)1]] sl
‘ % zn:p, | % Z":pj
1-1 (H(l H(]- (1))91]] L, (H( H(]_ |L‘;(J) J]] CE
i! ipj 1! Zn‘,pj
- [H[l ITa- F,»"']] " (H[l [Ta-F)) B

1
1- ((1— 0.3'%0.5°° x 0.4%) x (1-0.3"° x 0.4°° x 0.5%*) x (1 - 0.4"% x 0.5%° x 0.3%*) x |L0+05+04
1 ’
(1-0.4"°%0.3"° x0.5*) x (1 0.5"° x 0.3%° x 0.4°*) x (1 - 0.5"° x 0.4°° x 0.30-“))5

1

1-((L-0.4"°x0.6°° x0.5™) x (1-0.4"°x 0.5°° x 0.6“) x (1 - 0.5" x 0.4°° x 0.6°) x]“’““

1
(1-0.5"x0.6"° x0.4°*) x (1 - 0.6 x 0.4°° x 0.5°*) x (1 - 0.6*° x 0.5°° x 0.40-4))5



1

1- (1_ ((1_ (1- 0.1)1-0 x(1— 0.1)0_5 x(1- 0.1)0_4) A 6)% ]1-0+0.5+0,4 |

1
1 \1.0+05+04 |

. (1-(1-0.3)"" x (1-0.4)°° x (1-0.3)") A 2x (1= (1-0.3)"" x (1~ 0.3)°° x (1- 0.4)**) " 2 |*
(1- - 040 x1-03° x @ -03)4) 2

1
1 \1.0+05+0.4

(1-(@-04)" x (1-0.2)°° x (1-0.3)"*) (1= (1= 0.4)"* x (1= 0.3)** x (1- 0.)**) x |*
1-1-| (1= (- 0.1)" x (1= 0.4)° x (1= 0.3)*) x (1- (1-0.1)"* x (1~ 0.3)° x (1-0.4)"* ) x
(1-(1-0.3)""x (1-0.1)°* x (1- 0.4)** ) x (1~ (1~ 0.3)*" x (1-0.4)°* x (1- 0.1)**)

1
1 \1.0+05+04

(1-(1-05)"" x(1-0.3)°° x (1- 0.4)*) x (1~ (1~ 0.5)"" x (1 0.4)°° x (1- 0.3)"*) x |*
1= 1-] (1= (1-0.3)"" x (1= 0.4)° x (1-0.5)**) (1~ (1~ 0.3)"" x (1~ 0.5)° x (1 0.4)* ) x
(1-(1-0.4)° x (1-0.5)** x (1-0.3)*) x (1- (1~ 0.4)"* x (1- 0.3)° x (1-0.5)**)

=([0.393,0.495],[0.181,0.335],[0.273,0.404])

Next, we will discuss some properties of INMM operator.

Property 1 (Idempotency). If all &, (i =1,2,...,n) are equal, i.e.,a, =a = ([TL,T“ HI LY MFL, = }) , then

Proof.

Since g, =a=([TL,TUMIL, I“MFL,FU}), based on Theorem 2, we get

o |11 ,1<TL>“D"1'FI“ v(l(g(lfymﬂ”l'}g“ '

n % Zn:PJ n % ZHZDJ
1- 1—(1‘[(1—]__[(1—#)”1}} J 1—{1—[1_[[1‘1_[(1—'“)”’]] J ,
n % Zn:pl n % ipj
1- 1—(1‘[[1—]_‘[(1—#)"’}} J ,1—{1—[H[1—H(1—FU)PJD J
N "i ipl il nl >p;
- 1_[ (1—(TL)§”'D J {1[ (k(T”)?’JH J
1-|1-| [T|1-@-1)~ -1 [T|1-@a-1v)=




fiv L
Zn:pl "\n! JZ;PJ zn:pJ \nt ;P;
1-[1-|[1-@a-19" A-[1-[|1-@—1Y)" ,
1
n nt\nt Zi‘,p,
1- 1—[{1 @a-F* ), - 1— 1 @a-rY )' J }

1 1

= H(TL);DJFPJ ,[(T“)?‘J%"l, 1—[(1-”)le ];p ,1—[(14“)”p F" .
1—[(1— FL);p'Jgp' ,1—{(1_ FU)ED’F"J

(7T -0 19a- a1 10 P P - ([T 1 R )

Property 2 (Monotonicity). Lete, :([TiL,Ti“J,[IiL, Ii“MFiL, F })and ai’:([Ti’L,Ti’“][li’L, Ii’UJ [F’L F ])

:‘._.

(i=12,..,n)be two sets of INNs. If " >T/-, TV =T, 1- <1/ 17 <1V, F* <F'*,F’ <F" foralli,

then
INMM? (a, @5, ..., ) = INMM (o], @, ) ) -
Proof.
] INMM* (2, @t ) = (T4, T [151° J[F R ),
et )
IFMM* (o, @} ay) = (T T L1500 T [FHFY )
where
1 : 1 :
L L i ﬁ épj L L i m ;pj
T =1- H(l H(Tsm) J T =1- H{l H(Tsm) j '
9eS, j=1 9e§, j=1
1 : 1 !
U U i " JE:pJ V] L V] j " ;pj
=1 91:[[1 H(Ts(n) ] 7 =1- 91:[{1 H(Tsm) J '
de§, ] €S, =!

10



(g <o |- e

and I =1- { (L[[ H(l AL ngp‘,wl[l[

v 1[1( 1 H(l Loiiy)” HnJ
% zpj % zn:P,
1[1[ 1 H(l Fs(J))pJB }1 ,F'Ll[l(l_[( H(l FS(J)) ]J le

Ful[l[sl;[[l H(l Fo)” D:J%pjf’“l{l @‘S[( H(l F;(U]))Plnnl']l

Since T >T'",TY >TY we can get

(Ton)™ 2 (Tstn)" o (Ton)” 2 (7)™

then 1- 1(T9(1))pj <1- (TsII(LJ))pJ 1- H( 9(1))pj <1 (T,U
j= i=

) i
9(1) !

2p
N 1—[]‘[
JeS§,

1

4 T1(i)" = T T1()" = T10%)°

JiN

j=

j=1

1

o )

Je§,

1

Jip'

1
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1

1
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T >TH TV >TV.

9eS, j=1

1
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Similarly, we also have I* <1, 1Y <1V ,F-*<F"“,FY <F".
In the following, we will discuss three situations as follows.

O T 2T TY >T7Y Jand 1S <15 1Y <1V FE<F™ FY <FY | then
INMM (e, a,,....,, ) > INMM? (&, @3,..., 2} ) ;
@If TH=T"TY=T" and 1" <I™,1Y <1V F' <F",FY <F", then

INMM (a3, @,,....,,) > INMM P (&, ;... a1y )

@If T-=THTU=TVand I'=1",1V=1" F'=F"“,FU=F" then

INMM? (e, @,,....a,) = INMMF (o], a;,....,a} ) .

So, Property 2 is right.

Property 3 (Boundedness). Leta, :([TiL,TiU],[IL I.UMFL FU]) (i=12,...,n)be a collections of INNs,

and o™ = (min(T;), max(l,),max(F,)), " =(max(T;),min(l,),min(F,)) , then

a <INMM® (e, ..., )<t

Proof.
Based on Properties 1 and 2, we have

INMM® (4, @, .., ) 2 INMM® (a7, ) ="

and INMM® (ay,@,,....a,) < INMM® (o, a",...a" ) ="

So,wea” <INMM®(ay,a,,....a,)<a".

In the following, we will explore some special cases of INMM operator with respect to the
parameter vector P.

(1)When P =(1,0,---,0) , the INMM reduces to the interval neutrosophic arithmetic averaging operator.

INMM -0-) (aly%---’“n):%Za‘
i-1

=1

o e e

j=1 j=1

_ (|:1_ﬁ(1_TiL)1/n 'l_ﬁ (1_TiU )1/n :| ,|:

j-1

(2)When P =(4,0,---,0) , the INMM reduces to the interval neutrosophic generalized arithmetic

averaging operator.

12



i= j=1 j=1
N n\Y4 . Un \Y4
1-[1-TTa-a-15") A-|1-T](1-a-17)) ,
j=1 j=1
N Y \H4 N U \H4
{1—(1— (1-@a-F"Y) j ,1—(1—1‘[(1—(1—5“)*) } } 17
j=1 j=1
enP =(110,0,---,0), the reduces to the interval neu rosop ic operator.
3)When P =(1,1,0,0,---,0), the INMM reduces to the interval neut hic BM t
2 1 1/2 1 1/2
INMM (1090 B STt | f- T aeTore )™
()= o S | || [T ey |
L= i j=L i j=L
i#] i#] 1#]
N L \2 L \2
ETE u (TSNS TSTALEN NPT R o (IO T TR (18)
___._1(i+i_ii) ’__11(i+j_ij) ’
I 5 i
M L \2 L \2
: L L LeL n(n-1) . U U u U\
1-|1-T](F"+FF -F'F) A-|1-T(F* +F -FFY)
I i b
k n-k

— - - - -
(4When P=(11---,1,0,0,---,0), the INMM reduces to the interval neutrosophic Maclaurin symmetric

mean (MSM) operator.

k| @D éai
INMM (1.1,+-,1,0,0,---,0) (al,az ’ ...,Ofn) — l£|1<m<|k£: j=1
Cn
) vk 1/k ) ek 1/k
= [1_ 11 [1-1‘[]}%} J ,[1— 11 [1—HTH9] } ,
1<y <..<ig<n j=1 1<ip <..<i <n j=1 (19)

1- 1—1Silﬂikgn[1—f[(1—|¢)TC:J ,1—[1— 1 [1—]_&[(1—I;’)jmnkj/k,

1<ip <..<i <n j=1

e [1-1%1(1*?))%:}1”’1_[1_ I (1‘1%1(1—53)]1/0;?

1<iy <..<ig <n j=1

(5)When P =(1,1,---,1), the INMM reduces to the interval neutrosophic geometric averaging operator.

n n n 1/n n 1/n N 1/n n 1/n (20)
- {H(TJL)UH,H(TJ.“ )“”}, 1—[]‘[(14;)] ,1—[ (1—|J.“)] ,1—[ (1—FjL)j ,1—[ (1—Fj“)]

j=1 j=1 j=1 j=1 j=1 j=1
(6)When P =(%,%,-,%), the INMM reduces to the interval neutrosophic geometric averaging

13



operator.

n
INMM V55 (g 1. Ha““

J
j=1

1/n 1/n 1/n 1/n (21)
:HH(T#)M'H(W)”"Hl—[ﬂ(l—lb] 1[ (1—I,-“)] ”1—[_H(1—Ff)] 1[ (1—F,»“>] D

Further, in order to discuss the monotonic of INMM operator about the parameter vector P e R", we
firstly cited a lemma.
Lemma 1. [20] LetP =(p,, p,,---, p,) and Q =(q,,q,,---,q,) be two the parameter vectors, if

k k
P <20 (i=12--,n-1)
j=1 j=1
ij :Zqi (22)
j=1

j=1

E}

where ([1],[2],---,[n]) is a permutation of (i=1,2,...,n)and meets p; > p;,;. 0 2 Gy forall (i=12...n).
Then we can call that P is controlled by vector Q, expressed by P <Q.
Theorem 3.Letq, = ([TI ,T,“] [IIL,IIUJ [F, FY ])( =12,..,n) be a collections of INNs, and P =(p,, p,.-, p,) .,
Q=(q,,0,,--,q,) be two the parameter vectors, if P <Q, then
INMM* (e, @,,...;,) < INMM® (e, ..., @, ) (23)
The proof this theorem is omitted, please refer to [23].

3.2. The interval neutrosophic weighted MM operator

In actual decision making, the weights of attributes will directly influence the decision-making
results. However, INMM operator cannot consider the attribute weights, so it is very important to take
into account the weights of attributes for information aggregation. In this subsection, we will propose a
weighted INMM operator as follows.

Definition 9. Let ai:([TiL,Ti ][IIL,I,“][F, JFY ])(i:l,Z,...,n) be a collection of INNs,

w=(w,w,,...,w,)" be the weight vector of ¢, (i =1,2,...,n), which satisfies w, e[0,1]and Y w, =1, and
i=1

letP =(p,,p,. -, p,)eR"be avector of parameters. If

INWMM ® (4, @y, .., ( ZH(nwgmaw) JZ“ (24)

nlis 5o

Then we call INWMM ” the interval neutrosophic weighted MM (INWMM), where 3(j)(j =1,2,---,n) is

any a permutation of (1, 2, n) ,and S, is the collection of all permutations of (1, 2, n) .

Theorem 4. Let ¢, :([TiL,Ti“MIiL, IIU} [F = })( =12,..,n) be a collection of INNSs, then, the result from

Definition 9 is an INN, even

14



INWMM P (a0, 0t,) =

1 _t
L nw, P % Zﬂ:pj n nw, i n! ij
1y O AR o 65 (R N
9eSs, j=1 9eS, j=1
i 1 1
nws() % ipj nt() % ipJ (25)
el T re-nmr )
- 1 1
1\zm 1\z
Wy j) pJ " ;pj . U\t by " ;pl
-1 H H(l ( sm) 1-11- H 1- (1_(':9(1')) )
9eS, 9eS, j=1
Proof.
Because

nWB(])ag ([1 (1 Ts(J))nWS 1= (1 T(J))nwg(J } [( ‘9“))nw'9(” ,(IS(J))”W‘? } |:(F9|_(]))an (F;,(J))nw,y(,)])'

we can replace Ty, in Eq. (15) with1—(1—T; )™, Iy, with1—@1—-15,)"" and F,; with

3(1)
1-(@1—-F,;,)™", then we can get Eq.(25).

Because ajis an INN, nw,  a,, is also an INN. By Eq.(15), we know INWMM” (&, @, .., @, ) i

an INN.
In the following, we shall explore some desirable properties of INWMM operator.

Property 4 (Monotonicity). Let ¢, :([TiL,Ti } [I, I,“} [F, FY }) and ai’:([Ti’L,Ti’“] [I,’L,I,'“] [F,'L,F,’“D

(i=12,..,n)be two sets of INNs. If T >T/-, TV =TV, IF <I/",1” <1V F-<F" F’ <F" foralli,
then

INWMM* (e, @,,...,a, ) = INWMM ? (o, ;... 1)) -
The Proof is similar to that of INMM operator, it is omitted here.

Property 5 (Boundedness). Let ¢, :([TiL,Ti NI, IIU} [F, FY })(i:l,z ..... n)be a collections of INNSs,

and o™ = (min(T;), max(l,),max(F,)), " =(max(T,),min(l,),min(F,)) , then

([T T2 L1 LR FY ) < INWMM® (a0, ) < ([ TS, T2 LIS 00 [ FEL RS ),

where,

% ilpj ) % ilpj
T [H[l H( (L-min(T, )nw““) D R 1—{1_[[1 H(l (L-min(T" ))”wg(,) D =

15



1 nl 1 nl
n nl ZPJ n nt p;
I =1-| 1= T 1-]J@-max(ip)™ )™ || 1= 17 =1~ 1-| ] l—H(l—max(liU)nwg“’)ij "
“ 9es, j=1 “ 95, j=1
1 1
1\n 1 \n
n n! ij n n! ij
Fo=1-|1- H[l—H(l—max(Ff)"W““)”l] TR S H[1—H(1—max(ﬁ“)"w““)“] 2
9, j=1 9¢S, j=1

1\
n

n o ) b o ) )

98, j=1 e, j=1

1\ 1\

n n! Zj n nt
15 =1- 1—[1_[[1—H(1—min(liL)nw“”)p’ ]] o 1Y =1- 1—(]_[(1—1_[(1—min(li”)"w“”)”' ]]

JeS, 9es§,

1\ 1

n oo n nl
Fl=1- 1—[1_[[1—H(1—min(FiL)"W“”)”’ j] o Fr=1- 1—(H[1—H(1—min(ﬁ“)”W“”)”' D

s, j=1 e, j=1

Proof.
According to Property 4, we have

INWMM® (o™, & ,....a” ) < INWMM® (..., ) < INWMM (" &" ..o )

- i Lyym Pi % i’lpj : H U\ W, Pj % 2[)]
1- H[l—l_[(l—(l—mm(ﬂ N™) ] - ]‘[[1—1‘[(1—(1—mm(Ti ") ] "
Jes, j=1 9es, j=1
n % ipj n # ipj
1- 1—[ (1— (1—max(|iL)”W9“>)pfj] R 1—{ [I—H(l_max(liu)nwa(j))pi]] i
9es, j=1 9eS, j=1
n % ipl n % Zn:P,
1- 1—[ (1— (L—max(F")"™ )" D L= 1—[ [1—1_[(1—max(FiU)"W'””)p’ D "
Jes, j=1 ges, j=1
and
INWMM* (a*,@",....a" ) =

1

N

E]

[1[ [1_ L (l_(]'_maX(TiL))H%(j))pj ]jn'}%p’ ,{1[ [1— '” (1—(1— max(TiU ))”Wsm)pj ]Jn!]%p, '
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1 1

n % g n % Z":P,
1- 1—[1_[[1—H(1—min(liL)nW9“’)p' n J ,1—[1—[H{1—H(1—min(li“)"W“”)“ D } :

n % g n % ipj
1- 1—(1—[[1—1—[(1—min(FiL)nW‘“”’)pJ D J ,1_[1—[H[1—H(1—min(ﬁ”)”W“”)""B J

So, INWMM® (&, ,...a” ) < INWMM® (4, ..., ) < INWMM* ("™ ... ).

Theorem 5.The INMM operator is a special case of the INWMM operator.

Proof.
When W:(E'll...llj
nn n
1 "1 1 "1
n P nt ZP; n P n ZPI
INWMM ® (e, 5., ) = | | 1— (1—H(1—(1—T;m)”%) J N (1— (1-@-T)™) J )
e, j=1 Jes, j=1
1 n1 1 "1
. Wa(j) n! prJ u Wy j) o ZIPJ
1- 1—[ (1— (1—(|K9L<j>) ")p'J] J' ,1—[1—{ [1—H(1—(I§’(j)) )p'D J'
Jes, j=1 e, j=1
i 1 ! 1 !
n w, o2 p n o nto|2 P
1- 1—[ [1— a-(Fi) )D J ,1—{1—[ [1— @-(Fsy) ))] J
9es§, j=1 9es, j=1
N 1 N 1
n Y Eém n Y ﬁ;p.
= 1—[ [1— [1 a-Typ) j D ,1—[ [1— [1 @-Ty,) } D
9es, j=1 9es, j=1
1 1
1 n 1
n no|2op n nt p;
1- 1—[ [1— @-(15) )D J ,1_[1_[ [1—H(1 (150) )D j
9es j=1 9eS, j=
- 1 1
n N n! ) p; n n nt |20
1- 1—[ [1— a-(F) ")“D 1 1—[ (1— a-(F,) ")"‘D "
9eS, j=1 Jes, j=1
n % Z":PJ n ni ZPJ
- 1_[ [l_ (TBL(J))pID J'] , l—( {1— (TsL:j))p'D }
ges, j=1 Jes, j=1
[ 1 nl 1 nl
n n! Z]pl n nt Z;PJ
1- 1_( {1— (1_(|;(,-)))”‘]J - 1_[H[1—H(1_(|3“)))“‘D St
eS8, j=1 9es, j=1
n % z”:‘p‘ n % ipl
1- 1-[ (1— (1—(F;(,)))"'JJ R 1—[ (1—1‘[(1—(59”(,-)))"')} -
9es, j=1 9es, j=1
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3.3. The interval neutrosophic weighted dual MM operator

In the theory of aggregation operator, there exist two types, i.e., original operator and its dual
operator, for example, arithmetic average operator and geometric average operator. In this section, we
will propose the dual MM operator for interval neutrosophic numbers based on the INMM operator as
follows.

Definition 10. Let ¢ =([T57° ] [1117][F"F* ])(i=L2...n) be a collection of INNs, and P=(p,,p,.p,)

e R" be a vector of parameters. If

INDMM ® (¢, ..oty ) = — (HZ(pjalgm)] : (26)

Then we call INDMM * the interval neutrosophic dual MM (INDMM), where 9(j)(j =1,2,---,n) is any a

permutation of (1,2,---,n), and S is the collection of all permutations of (1,2,---,n).

Theorem 6. Let o =([T5T | [11.1 ] [F"F* ])(i=L2..n) be a collection of INNs, then, the result from

Definition 10 is an INN, too, even
INDMMP(al,aZ,,,,,an):

- % g % ipj
1- 1—[H[1—H(1_T;,->)p,n T [H[ H(l TS )P D i
n ij%éipj nupjég 27
1—[91:[[1— H(ly(i)) D ,1—[31:[{1—H(I3m) D ,
1—[&[1—13(':90)) D ,l—(gl:s[[l H(FS(J) D

Proof.

We need to prove (1) Eq. (27) is kept; (2) Eq. (27) is an INN.
(1) Firstly, we prove the Eq. (27) is kept.
According to the operational laws of INNs, we get

P :([1_(1—1-9 )= (@=Tg)" J [( 15 )pj ’<I§(“> J [(F“’L(”) (F‘gu(”) ‘})and

j=1 =t

i(p,—%m%ﬂ Tle-tir aTle-ts,)” Hr"[( ;(,))p',ﬁ(lzm)ﬂ,
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then

Zn:(p dyi) =

j=1

n PJ
{1 [1 9(” j,l—
Jes j= 5

©
w
s
[EEN
|
T Bl
N
—_
T
*'c
N
=
—

2=

further, 1_(g[1_ j;(lb(j))p, Dl ,1_[g[1—ﬁ(|g(j))p, Dll

S0,
1 n ﬁ
n [ ) (p1“90))J
ij 9es, j=1
n _ % i 3 j
1{1 (1— (1—T9L(J))pJJ } {1 [1 H(l Toep)” j J
n b, % ilpj n U b, nt szj
g | P (i) |
n b, % 20 n U o\P nt szl
1_(95[1_11(':;(1)) JJ ]J {1(95(1 ,-:1(':9“)) D J

i.e., (27) is kept.
(2) Then we will prove that (27) is an INN.
Let

[I: (1 H(l T&(J))pjj [1_1j(1 9(1))p’ H l:l— (1— Ii (|LI9'(J-))pj ],1— (1—_ (I;J(j))pj
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Ft— 1—{]‘[[1 H(FSL(”),D; i”l,FU _ 1‘(1_[(1 ﬁ(%))]jji! zp

9eS, j=1 9eS, j=1

Then we need prove the following two conditions.

G [T1]<foa]. (1510 | c[oa] [F- FY ] <[oa];
@ii) 0<TY +1Y +FY <3.

(i) SinceT,;;, €[0,1], we can get

9(1)

(1-Tgp ) el0], @-Tg;)" €[0.4] and f_[(l—T;“.,)pj e[0,1],

then

1

[l_ﬁ(l_TsL(n)ij (0.1, { H(l Ts(n)p’] €[0,1], and H[ H(l Tt 'j €[0,1],

j=1 9eS,
further,
1 1 0
A\ n 2P
H(l H(l Ti) ] .. |1-]|1 H(l Tp)™ | [T elo,
Je§ JeS,)
_1
1
n n zpj
and 1- 1—H[1—H(1—T;m)p’j = e[01].
9eSs, j=1
e, 0<T'<1.

Similarly, wecanget 0<TY <1,0<1"<1,0<1Y <1,0<F"<1,0<FY<1.

So, condition (i) is met.
(i) Since0<TY <1, 0<1Y <1, 0<FY <l thenwecanget 0<TY +IY +F"Y <3.
According to (i) and (ii), we can know the aggregation result from (27) is still an INN.
Then According to (1) and (2), theorem 6 is kept.

Example 3.Let x = ([0.3,0.4],[0.1,0.3],[0.4,0.5]) , y = ([0.5.0.6].[0.1,0.4],[0.1.0.3]) and

=([0.4,0.5],[0.1,0.3],[0.3,0.4]) be three INNs, and P = (1.0,0.5,0.4) , then according to (27), we have

INDMM :0.05.0.4) (X, Y, Z):

1 n 1 n

n|2p; 5,
- 1_(1_[[ H(l T9(J))pjj] ool 1—[1_[(1 H(l Tg(]))mn "

9e$§ 9e§
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L L Pj % g L u \Pi % g
1_(361:[{1_11—!(':90)) B B '1_[91;[[1_111(':90)) B "

1
1.0+0.5+0.4

(1-(@-0.3)" x (1-0.5)>° x (1- 0.4)* )x (1- (1-0.3)"° x (1-0.4)°° x (1-0.5)** ) x |*
=[|1-|1-| (1-(1-0.5)"" x (1~ 0.4)*° x (1-0.3)"* ) x (1~ (1~ 0.5)"° x (1- 0.3)*° x (1- 0.4)** ) x ,
(1-(1-0.4)"" x (1-0.3)*° x (1-0.5)* ) x (1- (1- 0.4)*" x (1~ 0.5)°° x (1- 0.3)**)

1
1 \1.0+05+04

(1-(1-0.4)"" x (1-0.6)°* x (1-0.5)** ) x (1~ (1~ 0.4)*° x (1-0.5)** x (1-0.6)** ) x |?
1-|1-| (1-(1-0.6)"" x (1-0.4)°* x (1-0.5)** ) (1~ (1~ 0.6)*° x (1-0.5)*° x (1-0.4)** ) x
(1-(1-0.5)"° x (1-0.4)°° x (1-0.6)** ) x (1~ (1~ 0.5)*" x (1-0.6)** x (1-0.4)*)

1

1.0 05 044\ A % 1.0+0.5+04
1-((@-0.1"°x0.1°° x0.1**) " 6) ,

1

(1—((1— 0.3"x0.4°% % 0.3°4) A 2 (1~ 0.3 x 0.3°° x 0.4°4) A 2 (1~ 0.4 x 0.3°° x 0.3°* ) A 2)% JLMMA ,

B 1
1 \1.0+0.5+0.4

L (1—0.41-° x0.1°° ><O.30'4)><(1—0.41'° x0.3%° ><O.1°'4)><(1—0.11'° x0.3%° ><O.40'4)x 3!
| (1-0.10 0,495 0.3 ) (1- 0.3  0.4°% x 0.1°¢ ) x (1— 0.3 x 0.1°° x 0.4°% )

1
1 \1.0+0.5+0.4

L (1—0.51-0 % 0.4°%5 x o.3°~4)x(1—o.51-° x0.3%° x0.4°-4)x(1—0.41-° x0.3%° ><O.50'4)>< 3!
| (1-0.45° % 0.5°% % 0.3%% ) x (1- 0.3 x 0.4%5 0.5 ) x (1— 0.3 x 0.5° x 0.4°¢)

=([0.404,0.505],[0.1,0.343],[0.236,0.393])
Next, we will discuss some properties of INDMM operator.

Property 7 (Idempotency). If all (i =1,2,...,n)are equal, i.e., e, = =(T,1,F), then
INDMM ? (a0, =ax.
Property 8 (Monotonicity). Let ¢, :([TiL,Ti“MIiL,I}’MEL,E“}) and ai’:([Ti’L,Ti’“],[li'L,I{“],[E'HF{“})

(i=12,..,n)be two sets of INNs. If T >T/-, TV =TV, IF <I/",1” <1V F-<F" F’ <F" foralli,
then

INDMM” (e, a,,...,a, ) = INDMMF (&}, @5, ) ) .

n
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Property 9 (Boundedness). Let «, :([TiL,Ti”],[IiL,Ii“} [F, FY }) (i=12,..,n)be a collections of INNs,
and o™ = (min(T,), max(l,),max(F,)), " =(max(T,),min(l,),min(F,)) , then

a < INDMMF (a, @y, ..., ) <.

In the following, we will explore some special cases of INDMM operator with respect to the

parameter vector.

(1)When P=(1,0,---,0) , the INDMM reduces to the interval neutrosophic geometric averaging

operator.
INDMM **) (@, @, ..., ) =

n 1/n n 1Un n n n (28)
[\:H(TIL) I ( ) :| |: H(l lln’l_H(l_liU )lln:|'|:1_H(1_TiL)1/nvl_H(l_TiU )1/n:D

(2)When P =(4,0,---,0), the INDMM reduces to the interval neutrosophic generalized geometric

averaging operator.

e (a1 (S AN R O

N

j=1 i=

(et o] g0 g o]

(3)When P =(1,1,0,0,---,0) , the INDMM reduces to the interval neutrosophic geometric BM operator.

(29)

INDMM &+ (g . e, ) =

1 1/2 1 1/2
R [T T T e T T (LT T T e
e e
1 Y2 1 1/27] (30)
. L\ . Lyyne-d)
1-TT(a-1'15) J1-TT(a=1015) :
1=t -t
L i#] i) |
M 1 \2 RN
- n (1_ FiLFjL)n(n—l) , l—ﬁ(l F|L|F]L) (n-1)
ij=1 ij=1
i#] i]

—— - - -
(4When P=(11---,1,0,0,---,0), the INDMM reduces to the interval neutrosophic geometric

Maclaurin symmetric mean (MSM) operator.

INDMM 44000 (o g e, ) =

‘ wck 1k ‘ 1ck 1k
1—{1— 1 {1—]‘[(1—1})} } ,1—[1— 1 [1 [1(z-7 )J J ,
1< X.. =i <n j=1 1< ... <i <n j=1
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) wck 1k ‘ 1ck 1/k
- J] [1—]‘[“5) } ,[1— 11 [1—Hlifj } :
1<iy <..<ig <n j=1 1<iy <..<ig <n j=1

- (31)
" 1ck 1/k ‘ 1ck 1/k
- 11 (118 J ,[1— [ J
1<iy <. <ig <n j=1 ! 1<ip <. =i <n j=1 !

(5)When P =(1,1,---,1), the IFDMM reduces to the interval neutrosophic arithmetic averaging operator.

INDMM Y (o, a1y, ..o 2, ) =

et e o fion | e e ]2

(6)When P =(%.%.--, %), the IFMM reduces to the interval neutrosophic the arithmetic averaging

operator.

INDMM 4 (g ..y, ) =
[{1_(1§(1_TJL)JM'1_{1j(1_T"U)Tm}’Ln (',»L)“n,]_l[(lf)Un]{ﬂ(Ff)ﬂ”, -" (R )MD (33)

Theorem 7. Let g =([TiL,Ti } [I,L,I,U} [F, JF })( =12,..,n)be a collections of INNs, and P = (p,, p,,=, p,) ,
Q=(q,,0,,-+,q,) be two the parameter vectors, if P < Q, then

INDMM® (e, @,,...,,) 2 INDMM ® (e, @, ..., @, ) (34)

3.4. The interval neutrosophic dual weighted MM operator

Similar to INWMM operator, we will propose interval neutrosophic dual weighted MM
(INDWMM) operator so as to consider the attribute weights, which is defined as follows.

Definition 11. Letg, :([TiL,Ti”MIiL,IH [FI F })(i:l,Z,...,n)be a collection of INNs, w=(w,,w,,...,w,)"

be the weight vector of ¢ (i=12,..,n), which satisfies w, €[0,1] and D w, =1, and let
i=1

=(p., p,,+, P, ) € R" be a vector of parameters. If

1
1 n w n!
INDWMMP(al,az,...,an)zzn: [S]_S[Z;,(p i )j (35)
pj €on J=

=1

Then we call INDWMM?F the interval neutrosophic dual weighted MM (INDWMM), where

9(J)(j=12,---,n)is any a permutation of (12,---,n), and S is the collection of all permutations of
(L2,-,n).
Theorem 8. Let ¢, :([TiL,Ti“MIiL,IiU} [F, ,FY })( =12,..,n) be a collection of INNSs, then, the result from
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Definition 11 is an INN, too, even

INDWMM " (a,, ty, ..., ) =

! 1
W ”i Zﬂ; Wy jy % Z:PJ
91_5[[ H(l ( ) } ) gl_s[[ H(l ( 9(1) ] r
- i Zn:1 X £ (36)
n _ n! Pj n o D,
1_[1_[ [l (1 a- 9(1))nW‘q“) )pl jJ " ) 1—[1_[ [l H(l - 9(] )"W.v(n )p' j] =1 ,
9eS, j=1 9eS, j=1
n Loy™ Pi " Z’;pj nw P; I g
1- H[l_H(l_(l— Fg(j)) 9(”) J 1= H[l H(l 1- 9(])) -‘?(J)) J IE
€S, j=1 9es, j=1
Proof.
Because

a;:vf)” :([(TSL(J))nt (TSU(J))nW.q(I):|,|:l_ (1 (l))nwsu 1- (1 g(J )nwg J):| |:1 (1 S(J )nwg i) 1 (1 S(J )nt(J):|)

)”‘”ﬂ(n (Tu

MWy (j) L u :
) 1519 with

L U
we can replace T, T sy Vi

(i) " 93i)

in Eq. (27) with (T

50i)
I-(@—1g;))™ P 1= (@=15;,))"™ P, and Fy), Farjy With 1— (- Fy ;) )™@,1- (01— Fy;,))™@ , then we
can get Eq. (36).

Because a,;is an INN, ay'” is also an INN. By Eq. (27), we know INDWMMF (o, @,,...,a,)is

an INN.
In the following, we shall explore some desirable properties of INDWMM operator.

Property 10 (Monotonicity). Lete, :([TiL,TiU][IiL, Ilu] [FI JFY })anda ([T’L T’ } [|I'L,|I'U] [F,’L,F,'U ])

(i=12,..,n)be two sets of INNs. If T," >T/5 T° =TV, IF <1/" 17 <1V R" <F'* Y <F" foralli,
then

INDWMM* (&, @,,.... @, ) = INDWMM ? (&, @, .., ) ) -
Property 11 (Boundedness). Lete, =([TiL,Ti } [I, I,U} [F, F }) (i=1,2,...,n) be a collections of INNs,
and ¢« =(min(T;), max(l;),max(F)),a" =(max(T;),min(l;),min(F)), Then

([re e L Y L [FEFY ) < INDWMM P (a0, ) < ([T TS L[ 15 0% T FE R T)

where,
nt Zn‘,n, i- _Zn:p,
oo e e oo e e o ) B
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Theorem 9.The INDMM operator is a special case of the INDWMM operator.

Proof.

When w= (1 1

INDWMM® (e, ...,

1-—

©

1- [1_
JeS, j=1

[1

1-11

9e§,)

n'n’

1
n oY
nwj &
1- (1 a-(Ty) w)mj J
9§, j=1
)
n A\ \nt! pj
[1— (1—(1—I;;(]_))”Wm>)plj S [1_
= = 98,

(1—<1—F;,»)>“W““)'H J [1[(1 [(1-a-F, >)D

n

[Ta-(i,)"™)

n

1

,1—{1— [1—11[(1 (1Y,

1

1\Z
)nwgm o Jn! ]JZ;, P
W |
n! Pj
o
j-1

B




" P % ;Pj " 1V % Z;p,
1—[1‘[[1 [1 @-FL) j H : ,1—[1‘[[1 [1 @-F) j H :

20
HP
=
|
N\
VR
H
—
—_
=1
\_/
Ne—
|
S
T
=z

i CI NG

JeS, j=1

=INDMM* (a;, @,,.... 2, ).

4. The decision making approach based on the proposed operators

In this section, based on the proposed INWMM or INDWMM operators, we will develop a novel
MADM method, which is described as follows.

Suppose we need evaluate m alternatives { A, A,,---, A } with respect to n attributes {C,,C,,---,C, }
in a MADM problem, where, the weight vector of the attributes is w = (@, @,, -, ®,) satisfying
; 20(] :1,2,--~,n),2a;j =1. R=[x;],., is the given decision matrix of this decision problem,

j=1

where r; =(Tij i By ) is an INN given by the decision maker with respect to alternative A for
attribute C; . Then the goal is to rank the alternatives.

In the following, we will use the proposed INWMM or INDWMM operators to solve this MADM
problem and the detailed decision steps are shown as follows:
Step 1: Normalizing the attribute values. In real decision, there exist two types of the attributes which
are cost type and benefit type. It is necessary to convert them to the same type so as to give the right
decision making. Usually we convert cost type to benefit one by the following formula (Note: The

converted attribute value is still expressed by r;, ):

y = (R A L= LT ) 37

Step 2: Aggregating all attribute valuesr, (j =1,2,---,n)to the comprehensive value Z; by INWMM or

INDWMM operators shown as follows:

INWMM(ll’ 217" " |m) (38)

orz; = INDWMM (r,,r,,-++,T,,) - (39)
Step 3: Ranking z, (i =1,2,---,m) based on the score function and accuracy function by Definition 6.
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Step 4: Ranking all the alternatives. The bigger the INN z is, the better the alternative A is.
5. An illustrative example

In this section, an example for the multicriteria decision making is used to demonstrate of the
application of the proposed decision making method, as well as the effectiveness of the proposed
method.

Let us consider the decision making problem adapted from [32]. There is an investment company,
which wants to invest a sum of money in the best option. There are four possible alternatives: (1) A is
a car company; (2) A, is a food company; (3) A, is a computer company; (4) A, is an arms company.
The investment company must make a decision according to the following three criteria: (1) C,is the
risk analysis; (2) C, is the growth analysis; (3) C, is the environmental impact analysis, where C, and
C, are benefit criteria and C, is a cost criterion. The weight vector of the criteria is
w=(0.35,0.40,o.25)T . The four possible alternatives are evaluated with respect to the above three
criteria by the form of INNSs, and interval neutrosophic decision matrix D is listed in table 1. The goal

is to rank alternatives.
Table 1 interval neutrosophic decision matrix D

C, G, G

([0.4,05],[0.2,0.3],[0.3,0.4])

A
A, ([0.6,0.7],[0.1,0.2],[0.2,03])
A
A

([0.4,0.6],[0.1,0.3],[0.2,0.4]
([
([0.3,06],[0.2,0.3],[0.3,0.4])  ([0.5,0.6],[0.2,0.3],[0.3,0.4]
([

[0.7,09],[0.2,0.3],[0.4,0.5])
)

([0.4,0.5],[0.2,0.4],[0.7,0.9])
(

)
0.6,0.7],[0.1,0.2],[0.2,0.3])  ([0.3,0.6],[0.3,0.5],[0.8,0.9]

)
. ([0.7,0.8],[0.0,0.1],[0.1,0.2]) )

0.6,0.7],[0.1,0.2],[0.1,0.3])  ([0.6,0.7],[0.3,0.4],[0.8,0.9])

5.1 The decision making steps

To get the best alternative(s), the steps are shown as follows:
Step 1: Normalizing the attribute values.
Since C, and C, are benefit attributes, and C; is a cost criterion, we use the formulas (37) to get the
standardized decision matrix, which is shown in Table 2.
Table 2 standardized decision matrix D

Cl CZ C3

([0.4,05],[0.2,0.3],[0.3,0.4]) [0.4,0.6],[0.1,0.3],[0.2,0.4] [0.4,05],[0.8,0.7],[0.7,0.9]

(
(

A ( )
A, ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.2,0.3])
A, (I ) ([0.7,0.9],[0.8,0.6],[0.4,0.5]

)
[0.8,0.9],[0.7,0.5],[0.3,0.6])
([0.3,06],[0.2,0.3],[0.3,0.4]) 0.5,0.6],[0.2,0.3],[0.3,0.4] )

A, ([0.7,08].[0.0,0.1],[0.10.2])  ([0.6,0.7],[0.1,0.2],[0.1,0.3])  ([0.8,0.9].[0.7,0.6].[0.6,0.7])

Step 2: Aggregating all attribute valuesr; (j =1,2,---,n) to the comprehensive value Z; by INWMM or

INDWMM operators shown as follows (suppose P = (1,1,1))
(1) For the INWMM operator, we have
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z, =([0.393,0.526],{0.450,0.470],[0.441,0.668] ), z, =([0.640,0.737],[0.361,0.314],[0.241,0.420]),
z, = ([0.459,0.660],[0.488,0.420],[0.342,0.442]), z, =([0.673,0.769],[0.341,0.336],[0.230,0.447])
(2) For the INDWMM operator, we have

7, =([0.411,0.547],[0.239,0.383],[0.333,0.498]), z, =([0.686,0.794],[0.183,0.263],[0.224,0.366]),
z, =([0.534,0.750],[0.302,0.366],[0.323,0.421]) , z, =([0.714,0.820],[0.002,0.221],[0.174,0.335]),

Step 3: Calculate the score function S(z,)(i =1,2,3,4) of the collective overall values z,(i =1,2,3,4) .
(1) For the INWMM operator, we have
S(z,)=1.439, S(z,)=2.009, S(z;)=1.714, S(z,)=2.021
(2) For the INDWMM operator, we have
S(z,)=1.753, S(z,)=2.223, S(z,)=1.936, S(z,)=2.402.
Step 4: Ranking all the alternatives.
According to the score functions S(z,)(i=1,2,3,4), we can rank the alternatives {A, A,, A,, A, }
shown as follows
A=A - A A

So, the best alternative is A, .

5.2 The influence of the parameter vector P on decision making result of this example

In order to illustrate the influence of the parameter vector P on decision making of this example,
we set different parameters vector P to show the ranking results of this example. The results are shown
in Table 3 and Table 4.

Table 3 Ranking by utilizing the different parameter vector P of the INWMM operator

Parameter vector P The score function S(z;) Ranking

P = (L0,0) S(z,) =1.640,5(z,) = 2.183 AvASASA
Y S(z,) =1.897,5(z,) = 2.372 !

P (LL0) S(z,) =1.542,5(z,) = 2.078 AvASASA
" S(z,) =1.773,5(z,) = 2.121 !

P (LD S(z,) =1.439,5(z,) = 2.009 AvASASA
" S(z,) =1.714,S(z,) = 2.021 !

P = (05,05,05) S(z,) =1.439,5(z,) = 2.009 AsAASA
T S(z,) =1.714,S(z,) = 2.021 !

P (2,0.0) S(z,) =1.680,5(z,) = 2.205 AAA»A
Y S(z,) =1.932,S(z,) = 2.395 !

P = (3,0,0) S(z,) =1.713,S(z,) = 2.225 AAASA

S(z,) =1.964,5(z,) = 2.420
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Table 4 Ranking by utilizing the different parameter vector P of the INDWMM operator

Parameter vector P The score function S(z;) Ranking
P = (L0,0) S(z,) =1.352,5(z,) = 2.004 AsA>ASA
Y S(z,) =1.710,S(z,) =1.964 !
P-(10) S(z,) =1.668,5(z,) = 2.205 AsA>A>A
" S(z,) =1.932,5(z,) = 2.395 !
P - @LL) S(z,) =1.753,S(z,) = 2.223 AsA>A>A
T S(z,) =1.936,S(z,) = 2.402 !
P (0.5.05,05) S(z,) =1.753,S(z,) = 2.223 AsA>A>A
T S(z,) =1.936,S(z,) = 2.402 !
P = (2,0,0) S(z,)=1.247,5(z,) =1.913 AA-ASA
Y S(z,) =1.634,S(z,) =1.811 !
P = (3.0,0) S(z,) =1.164,5(z,) =1.839 AsA>ASA
Y S(z,) =1.569,S(z,) =1.705 !

As we can see from Table 3, the score functions using the different parameter vector P are
different, but the ranking results are the same. From Table 4, we can know the ranking results may be
different for the different parameters vector P, when the parameter vector P has only one real number
and the rest are 0, that is, when the INDWMM operator reduce to the interval neutrosophic generalized
geometric averaging operator, its ranking order is A, > A, > A, = A ; whereas in other case, the
ranking results are the same as Table 3. In other words, we consider the interrelationship of attributes,
the best alternative is A,, otherwise is A, . In general, for the INWMM operator, we can find that the
more interrelationships of attributes we consider, that is to say, there are fewer 0 in the parameter vector
P, the smaller value of score functions will become. The parameter vector P have greater control
ability, the values of score function will become greater. However, for the INDWMM operator, the
result is just the opposite, the more interrelationships of attributes we consider, the greater value of
score functions will become. The parameter vector P have greater control ability, the values of score
function will become small. So, different decision makers can set different parameter vector P
according to different risk preference.

5.3 Comparing with the other methods

To further prove the effectiveness of the developed methods in this paper, we solve the same
illustrative example by two existing MADM methods including the similarity measure proposed by Ye
[32], the interval neutrosophic weighted Bonferroni mean (INWBM) operator extended from the
normal neutrosophic weighted Bonferroni mean (NNWBM) operator [11]. The ranking results by these
methods are shown in Table 5 (for the INDWMM operator, there are the same results as the INWMM
operator, and they are omitted) .

From Table 5, we can see that these methods produced the same ranking results. This shows that
the new methods proposed in this paper are effective and feasible. Then, we give further analysis, when
P =(1,0,0), the INWMM reduces to the interval neutrosophic arithmetic weighted averaging operator.
In other words, when P =(1,0,0), we can think that the input arguments are independent and the
interrelationship among input arguments is not considered, just as the method in [32] is based on a
similarity measure. When P =(1,1,0)or P =(2,2,0) ,the INWMM operator reduces to the interval
neutrosophic weighted Bonferroni mean operator, which can captures interrelationship of two
arguments. So we can get that the proposed methods in this paper are generalization of some existing
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methods.
Table 5 Ranking results compared with similarity measure method

Aggregation operator Parameter value Ranking
similarity measure [32] No A-A-A-A
INWBM [11] p=q=1 A-A - A - A
INWMM in this paper P=(10,0) A=A - A~ A
INWMM in this paper P=(110) A-A-A-A
INWMM in this paper P=(22,0) A=A -A-A
INWMM in this paper P=@111) A-A-A-A
INWMM in this paper P=(222) A=A - A~ A

However, there usually exist the interrelationships among more than two attributes in real decision
making, BM operator can only consider the interrelationship between any two input arguments. In
order to compare the performance and advantage of the new proposed method with the above existing
methods, we revise the truth-membership values of the alternative A, which are listed in Table 6 and the
final ranking results of the alternatives are shown in Table 7.

Table 6 modified decision matrix D

C, C, c,

A ([0.4,05],]0.2,03],[0.3,04])  ([0.4,0.6],[0.1,0.3],[0.2,04])  ([0.4,0.5],[0.8,0.7],[0.7,0.9])
A, ([0.6,0.7],[0.1,0.2],[0.2,0.3]) ([0.6,0.7],[0.1,0.2],[0.2,0.3])  ([0.8,0.9],[0.7,0.5],[0.3,0.6])
A, ([0.3,0.6],[0.2,0.3],[0.3,0.4]) (0.5,0.6],[0.2,03 ,[0.3,0.4])  ([0.7,0.9],[0.8,0.6],[0.4,0.5])
A, ([04,08][0.0,0.1],[0.1,02])  ([0.5,0.7].[0.1,0.2],[0.1,0.3])  ([0.8,0.9].[0.7,0.6],[0.6,0.7])
Table 7 Ranking results by different methods
Aggregation operator Parameter value Ranking
INWBM [11] p=qg=1 A=A -A-A
INWMM in this paper P=@11D) A-A-A-A
INWDMM in this paper P=(12) A-A-A-A

From table 7, we can know when we consider interrelationship of three arguments, the ranking
results are different with that produced by considering interrelationship of two arguments. In a realistic
decision making environment, we need consider the interrelationship for two arguments or multiple
arguments according to the actual decision need, and the proposed methods in this paper can capture
interrelationship of any multiple arguments, even don’t consider the interrelationship by parameter
vector P

In a word, according to the comparisons and analysis above, the proposed methods based on
INWMM operator and the INDWMM operator in this paper is better and more convenient than the
existing other methods in considering interrelationship of attributes.

6. Conclusion

NS is a generalization of fuzzy set, paraconsistent set, intuitionistic fuzzy set, paradoxist set etc.
and the MM operator has a prominent characteristic that it can consider the interaction relationships
among any multiple attributes by a parameter vector P . In this paper, we proposed some new MM
aggregation operators to deal with MADM problems under the interval neutrosophic environment,
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include the interval neutrosophic MM (INMM) operator, the interval neutrosophic weighted MM
(INWMM) operator, the interval neutrosophic dual MM (INWMM) operator and the interval
neutrosophic dual weighted MM (INDWMM) operator. Then, the desirable properties and some special
cases were discussed in detail. Moreover, we presented two new methods based on the proposed
aggregation operators. Finally, we used an example to illustrate the feasibility and validity of the new
methods by comparing with the other existing methods. In the future, we will research some
applications of proposed methods in real decision making.
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