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Abstract. Due to the efficiency to handle uncertainty information, the single valued neutrosophic set is widely used in multi-
criteria decision-making. In MCDM, it is inevitable to measure the distance between two single valued neutrosophic sets. In
this paper, an evidence distance for neutrosophic sets is proposed. There are two main contributions of this work. One is a new
method to transform the single valued neutrosophic set into basic probability assignment. The other is evidence distance function
between two single valued neutrosophic sets. The application in MCDM is illustrated the efficiency of the proposed distance.
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1. Introduction

Neutrosophy was introduced by F. Smarandache
in 1995, and provides a more flexible way to han-
dle uncertainty information because of its union of
the classic set, fuzzy set[52], interval valued fuzzy
set[15], intuitionistic fuzzy set[2], etc. A single valued
neutrosophic set (SVNS) is composed by three com-
ponents, truth-membership function, indeterminacy-
membership function, and falsity-membership func-
tion [43]. Due to its flexibility, SVNS is widely used
in decision-making problems [7,17,26,27,28,29,48,49,
50,55] , in pattern recognition[1], in clustering[17],
etc[16,51].

To solve multi-criteria decision-making problems, it
is unavoidable to measure similarity or distance be-
tween two single valued neutrosophic sets. J. Ye pro-
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posed a similarity measure was introduced by utiliz-
ing the weighted correlation coefficient or the weight-
ed cosine[48], also, he presented a similarity mea-
sure between interval neutrosophic sets[50]. In [4],
S. Broumi et al. presented distance and similarity
measures for interval neutrosophic sets. In [30], sim-
ilarity measures and entropy of single valued neu-
trosopgic sets were introduced by P. Majumdar and
S.K. Samanta.In addition, R. Sahinet al. introduced
a similarity measure and a entropy of neutrosoph-
ic soft sets applied to multi-criteria decision-making
problems[33]. In [3], the new similarity measures and
entropy of single valued neutrosophic sets were for-
mulated. P. Liuet al. introduced a weighted distance
measure used in neutrosophic multi-attribute group
decision-making[26]. HL. Huang formulated a dis-
tance measure of SVNS to propose clustering method
and multi-criteria decision-making method[17]. ZP.
Tian presented a entropy based on cross-entropy used
in multi-criteria decision-making[40]. Besides, many
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other distances, similarity measures or entropy were
developed[16,18,24,46].

Though many methods are presented, it is still an
open issue to measure the distance between two SVN-
S. In this paper, a new evidential distance between
SVNS is proposed. There are two main contributions
in this paper. On the one hand, a new method to trans-
form SVNS into belief probability assignment(BPA) is
proposed. On the other hand, the distance of SVNSs is
measured from the aspect evidential method.

The rest of this paper is organized as follows. In Sec-
tion 2, some basic concepts on neutrosophic set and
evidence theory are introduced. In Section 3, a new
distance between two single valued neutrosophic sets
is proposed. In Section 4, a numerical example is p-
resented to illustrate the effectiveness of the proposed
method. Section 5 concludes the paper.

2. Preliminaries

2.1. Neutrosophic set

In this subsection, some basic definitions related s-
ingle valued neutrosophic set in [43] are presented as
follows.

Definition (Single valued neutrosophic set(SVNS))
[43]
Let X be a space of points (objects), with a generic
element inX denoted byx. A SVNSA is character-
ized by truth-membership functionTA, indeterminacy-
membership functionIA, and falsity-membership func-
tionFA. For each pointx in X ,TA(x), IA(x), FA(x) ∈
[0, 1].
WhenX is continuous, a SVNSA can be defined as

A =

∫ 〈TA(x), IA(x), FA(x)〉
x

, x ∈ X (1)

WhenX is discrete, a SVNSA can be defined as

A =
∑

i

〈TA(xi), IA(xi), FA(xi)〉
xi

, xi ∈ X (2)

Definition (Complement) [43]
The complement of a SVNSA is denoted byC(A) and
is defined by

TC(A)(x) = FA(x), (3)

IC(A)(x) = 1− IA(x), (4)

FC(A)(x) = TA(x) (5)

Definition (Containment) [43]
A SVNSA is contained in the other SVNSB, denoted
byA ⊆ B, if and only if

TA(x) ≤ TB(x), IA(x) ≤ IB(x), FA(x) ≥ FB(x)

(6)

for all x in X .

Definition (Equality) [43]
Two SVNSsA andB are equal, written asA = B, if
and only ifA ⊆ B andB ⊆ A.

Definition (Union) [43]
The union of two SVNSsA and B is a SVNSC,
written asC = A ∪ B, whose truth-membership,
indeterminacy-membership and falsity-membership
functions are related to those ofA andB by

TC(x) = max{TA(x), TB(x)},
IC(x) = max{IA(x), IB(x)}, (7)

FC(x) = min{TA(x), TB(x)},

for all x in X .

Definition (Intersection) [43]
The intersection of two SVNSsA and B is a SVNS
C, written asC = A ∩ B, whose truth-membership,
indeterminacy-membership and falsity-membership
functions are related to those ofA andB by

TC(x) = min{TA(x), TB(x)},
IC(x) = min{IA(x), IB(x)}, (8)

FC(x) = max{FA(x), FB(x)},

for all x in X .

2.2. Evidence theory and evidence distance

Uncertainty information exists everywhere in the re-
al application. There are many math tools to handle un-
certainty, such as fuzzy numbers [53,54,44,41,56,47],
Z numbers [21], D numbers [31,11,58] and so on. A-
mong these tools, evidence theory is paid more and
more attention recently [22,8,12,10]. In this subsec-
tion, some definitions in [23,34] are presented as fol-
lows.
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Definition (Basic Probability Assignment(BPA)) [34]
LetΘ be a frame of discernment, includingN mutually
exclusive and exhaustive elements. A BPA is a function
fromP (Θ) to [0, 1], defined as follows

m : P (Θ) → [0, 1] (9)

whereP (Θ) is the power set ofΘ. A BPA should sat-
isfy the following conditions[34]

∑

A∈P (Θ)

m(A) = 1, (10)

m(φ) = 0. (11)

Definition (Evidence Distance)[23]
LetΘ be a a frame of discernment includingN mutu-
ally exclusive and exhaustive objects, andm1,m2 be
two BPAs. The evidence distance betweenm1 andm2

is defined as follows

dBPA(m1,m2) =

√

1

2
(m1 −m2)D(m1 −m2)T ,

(12)

wherem is a row vector associated with the BPAm,
defined as

m = (m(A1),m(A2), · · · ,m(A2N )) (13)

where Ai ∈ P (Θ), i = 1, 2, · · · , 2N , when i 6=
j, Ai 6= Aj , andD is a 2N × 2N matrix with entries
(written as enti jD) defined below

enti jD =
|Ai ∩ Aj |
|Ai ∪ Aj |

(14)

For simplicity, vectorm in (13) is also called a BPA in
the remainder of this paper. It should be noted that ev-
idence distance is widely used to measure the conflicts
between BPAs [19,32] and a lots of distance functions
are developed from evidential aspect[25,45].

3. Proposed method

In this section, a new method to measure distance
between SVNSs is proposed. A key step in the pro-
posed method is to transform SVNS into BPAs. Ac-
tually, how to generate the BPA is still an open issue

[9,22,57]. Best to our knowledge, there is no work to
determine BPA with SVNS.

For simplicity, a mapping from three components of
a SVNS to{1, 2, 3} is constructed, namely

f :















T → 1

I → 2

F → 3

(15)

For three components of a SVNS

A1 =
∑ 〈T1(x), I1(x), F1(x)〉

x

and an objectx in X , a mapping from every compo-
nent to a row vector is defined as follows

f1 :















T1(x) → m11(x) = (T1(x), 1 − T1(x))

I1(x) → m12(x) = (I1(x), 1 − I1(x))

F1(x) → m13(x) = (F1(x), 1 − F1(x))

(16)

Then, a SVNSA1 is transformed into three BPAs, pre-
sented as follows

A1 →





m11(x)
m12(x)
m13(x)



 =





T1(x) 1− T1(x)
I1(x) 1− I1(x)
F1(x) 1− F1(x)





Next, for two SVNSsA1 andA2, three distances can
be constructed according to Eq.(12). For simplicity,
some symbols are denoted by

∆1(x) = m11 −m21

= (T1(x) − T2(x), T2(x) − T1(x)) (17)

∆2(x) = m12 −m22

= (I1(x) − I2(x), I2(x) − I1(x)) (18)

∆3(x) = m13 −m23

= (F1(x) − F2(x), F2(x)− F1(x))
(19)
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Then, three distances are constructed as follows

d1 =

√

1

2
∆1D1∆

T
1

d2 =

√

1

2
∆2D2∆

T
2

(20)

d3 =

√

1

2
∆3D3∆

T
3

According to Eq.(14),D1,D2,D3 are defined as fol-
lows

D1 = D2 = D3 =

(

1 1/3
1/3 1

)

(21)

Respectively,d1, d2, d3 is equal to

d1 =

√

2

3
|T1(x) − T2(x)|

d2 =

√

2

3
|I1(x) − I2(x)|

d3 =

√

2

3
|F1(x) − F2(x)|

Consequently, the component of distance between
SVNSs can be defined as follows.

Definition (Component of Distance for SVNS)Let
X be a space constructed byN points (objects), with
a generic element inX denoted byx. Given two
SVNSs, namedA1, A2. For a elementxi in X , theith-
component with respect toxi of the distance between
A1 andA2 is defined as

d(xi) = d1 + d2 + d3

=

√

2

3
(|T1(xi)− T2(xi)|

+ |I1(xi)− I2(xi)|

+ |F1(xi)− F2(xi)|) (22)

Finally, the distance between two SVNSs is defined as
follows.

Definition (Distance for SVNS) The distance between
SVNSs is a weighted distance constructed by its com-
ponents defined above and a weight vectorω. Let

weight vector beω = (ω1, ω2, · · · , ωN )T , andd =
(d(x1), d(x2), · · · , d(xN )), hence the distance can be
defined as follows

d(A1, A2) = dω =

N
∑

i=1

ωid(xi) (23)

Example SetX to {a, b, c}. Given two SVNSsA1 and
A2 as follows

A1 =
〈0.3, 0.3, 0.7〉

a
+

〈0.4, 0.5, 0.6〉
b

+
〈0.7, 0.1, 0.5〉

c

B2 =
〈0.2, 0.2, 0.6〉

a
+

〈0.3, 0.1, 0.7〉
b

+
〈0.5, 0.2, 0.0〉

c

and weight vectorω = (0.3, 0.3, 0.4)T . Then

d12(a) =

√

2

3

∑

C

|CA(a)− CB(a)|

=

√
6

10
≈ 0.24495

d12(b) =

√

2

3

∑

C

|CA(b)− CB(b)|

=

√
6

5
≈ 0.48990

d12(c) =

√

2

3

∑

C

|CA(c)− CB(c)|

=
4
√
6

15
≈ 0.65320

Hence, the distance betweenA1 andA2 is

d(A1, A2) = dω

=

√
6

10
× 0.3 +

√
6

5
× 0.3 +

4
√
6

15
× 0.4

≈ 0.48173

4. Practical Application

In order to demonstrate the application of the pro-
posed approach, a multi-criteria decision making prob-
lem illustrated in [3] is concerned with a manufactur-
ing company which wants to select the best global sup-
plier according to the core competencies of supplier-
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s. Suppose that there is a set containing four supplier-
s S = {S1, S2, S3, S4} whose core competencies are
evaluated by the following four criteria

C1. the level of technology innovation,
C2. the control ability of flow,
C3. the ability of management,
C4. the level of service.

Then, the weight vector for the four criteria isω =
(0.25, 0.30, 0.20, 0.25)T . It is useful to define the ideal
point to identify the best alternative. For this problem,
setX = {C1, C2, C3, C4} to the space of criteria, the
ideal value can be defined as

S0 =

4
∑

i=1

〈1, 0, 0〉
Ci

, Ci ∈ X

When the four possible alternatives with respect to the
above four criteria are evaluated by the similar method
from the expert, the following single valued neutro-
sophic decision matrixE is constructed as follows









{0.4, 0.2, 0.3} {0.5, 0.1, 0.4} {0.7, 0.1, 0.2} {0.3, 0.2, 0.1}
{0.4, 0.2, 0.3} {0.3, 0.2, 0.4} {0.9, 0.0, 0.1} {0.5, 0.3, 0.2}
{0.4, 0.3, 0.1} {0.5, 0.1, 0.3} {0.5, 0.0, 0.4} {0.6, 0.2, 0.2}
{0.6, 0.1, 0.2} {0.2, 0.2, 0.5} {0.4, 0.3, 0.2} {0.7, 0.2, 0.1}









The entries ofE(enti jE) represent the export’s opin-
ion about an alternativeSi with respect to the criterion
Cj . Then, the proposed method is used to decide the
best supplier in four steps. Step 1. Convert SVNSs in-
to BPAs. According to Eq.(16), three matrices can be
written as follows

E1 =









(0.4, 0.6) (0.5, 0.5) (0.7, 0.3) (0.3, 0.7)
(0.4, 0.6) (0.3, 0.7) (0.9, 0.1) (0.5, 0.5)
(0.4, 0.6) (0.5, 0.5) (0.5, 0.5) (0.6, 0.4)
(0.6, 0.4) (0.2, 0.8) (0.4, 0.6) (0.7, 0.3)









E2 =









(0.2, 0.8) (0.1, 0.9) (0.1, 0.9) (0.2, 0.8)
(0.2, 0.8) (0.2, 0.8) (0.0, 1.0) (0.3, 0.7)
(0.3, 0.7) (0.1, 0.9) (0.0, 1.0) (0.2, 0.8)
(0.1, 0.9) (0.2, 0.8) (0.3, 0.7) (0.2, 0.8)









E3 =









(0.3, 0.7) (0.4, 0.6) (0.2, 0.8) (0.1, 0.9)
(0.3, 0.7) (0.4, 0.6) (0.1, 0.9) (0.2, 0.8)
(0.1, 0.9) (0.3, 0.7) (0.4, 0.6) (0.2, 0.8)
(0.2, 0.8) (0.5, 0.5) (0.2, 0.8) (0.1, 0.9)









where enti jE1, enti jE2, enti jE3 are BPAs construct-
ed bySi with respect to criterionCj according to E-

q.(16). ForS0, the matrices can be written as

E1 =









(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)
(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)
(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)
(1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)









E2 =









(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)









E3 =









(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)
(0.0, 1.0) (0.0, 1.0) (0.0, 1.0) (0.0, 1.0)









Step 2. Calculate the components of distanced1, d2, d3

between eachSi andS0. They can be formulated with

the form of matrix. These matrices is calculated and

presented below

D
′

1
=

√

2

3









0.6 0.5 0.3 0.7
0.6 0.7 0.1 0.5
0.6 0.5 0.5 0.4
0.4 0.8 0.6 0.3









D
′

2
=

√

2

3









0.2 0.1 0.1 0.2
0.2 0.2 0.0 0.3
0.3 0.1 0.0 0.2
0.1 0.2 0.3 0.2









D
′

3
=

√

2

3









0.3 0.4 0.2 0.1
0.3 0.4 0.1 0.2
0.1 0.3 0.4 0.2
0.2 0.5 0.2 0.1









Step 3. Calculated0i(x). Similar to Step 2, they can be

formulated as a matrix. The matrix is calculated and

presented below

D
′ = D

′

1
+D

′

2
+D

′

3
=

√

2

3









1.1 1.0 0.6 1.0
1.1 1.3 0.2 1.0
1.0 0.9 0.9 0.8
0.7 1.5 1.1 0.6









Step 4. Calculate the distance betweenSi andS0. Ac-

cording to Eq.(23), the distance betweenSi andS0 can
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be formulated as a column vector as follows

d = D
′
ω

=

√

2

3









1.1 1.0 0.6 1.0
1.1 1.3 0.2 1.0
1.0 0.9 0.9 0.8
0.7 1.5 1.1 0.6

















0.25
0.30
0.20
0.25









=

√

2

3









0.945
0.955
0.860
0.995









≈









0.7716
0.7798
0.7349
0.8124









The best supplier ofSi is defined as the one closest to
theS0. According to the vector, the rank order of four
suppliers isS3 ≻ S1 ≻ S2 ≻ S4. Here, the symbol
“≻” represents the former supplier is better than the
latter one. Hence, the best alternative isS3.

5. Conclusion

Neutrosophic set has been paid great attention re-
cent years due to its flexibility to handle uncertain in-
formation. It’s important to measure the distance be-
tween single valued neutrosophic set in some uncer-
tainty decision making situations. In this paper, an evi-
dence distance between two SVNS is presented. Based
on a new transformation of the SVNS into BPA, the
distance is measured from the aspect of evidence theo-
ry. The application in MCDM shows the efficiency of
the proposed method.
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