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Abstract. Due to the efficiency to handle uncertainty information, the single valued neutrosophic set is widely used in multi-
criteria decision-making. In MCDM, it is inevitable to measure the distance between two single valued neutrosophic sets. In
this paper, an evidence distance for neutrosophic sets is proposed. There are two main contributions of this work. One is a new
method to transform the single valued neutrosophic set into basic probability assignment. The other is evidence distance function
between two single valued neutrosophic sets. The application in MCDM is illustrated the efficiency of the proposed distance.
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1. Introduction posed a similarity measure was introduced by utiliz-
ing the weighted correlation coefficient or the weight-
Neutrosophy was introduced by F. Smarandache ed cosine[48], also, he presented a similarity mea-
in 1995, and provides a more flexible way to han- sure between interval neutrosophic sets[50]. In [4],
dle uncertainty information because of its union of S. Broumiet al. presented distance and similarity
the classic set, fuzzy set[52], interval valued fuzzy Measures for interval neutrosophic sets. In [30], sim-
set[15], intuitionistic fuzzy set[2], etc. A single valued  ilarity measures and entropy of single valued neu-
neutrosophic set (SVNS) is composed by three com- rosopgic sets were introduced by P. Majumdar and
ponents, truth-membership function, indeterminacy- S-K. Samanta.In addition, R. Sahé al. introduced
membership function, and falsity-membership func- @ Similarity measure and a entropy of neutrosoph-
tion [43]. Due to its flexibility, SVNS is widely used € soft sets applied to multi-criteria decision-making

in decision-making problems [7,17,26,27,28,29,48,49, problems[33_]. In [3], the new similarity measures and
50,55] , in pattern recognition[1], in clustering[17], entropy of single valued neutrosophic sets were for-
etc[16,51] mulated. P. Liuet al. introduced a weighted distance

measure used in neutrosophic multi-attribute group
decision-making[26]. HL. Huang formulated a dis-
tance measure of SVNS to propose clustering method
and multi-criteria decision-making method[17]. ZP.
Tian presented a entropy based on cross-entropy used
" Corresponding author. E-mail: prof.deng@hotmail.com. in multi-criteria decision-making[40]. Besides, many

To solve multi-criteria decision-making problems, it
is unavoidable to measure similarity or distance be-
tween two single valued neutrosophic sets. J. Ye pro-
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other distances, similarity measures or entropy were
developed[16,18,24,46].
Though many methods are presented, it is still an

open issue to measure the distance between two SVN-

S. In this paper, a new evidential distance between
SVNS is proposed. There are two main contributions
in this paper. On the one hand, a new method to trans-
form SVNS into belief probability assignment(BPA) is

Definition (Containment) [43]
A SVN&A is contained in the other SVNB, denoted
by A C B, if and only if

Ta(z) <Tp(x),Ia(x) < Ip(x),Fa(z) > Fp(x)
(6)

proposed. On the other hand, the distance of SVNSs is ¢, g1 + in X.

measured from the aspect evidential method.

The rest of this paper is organized as follows. In Sec- pefinition (Equality) [43]
tion 2, some basic concepts on neutrosophic set and Ty SYNSs! and B are equal, written asA = B, if

evidence theory are introduced. In Section 3, a new

distance between two single valued neutrosophic sets

and onlyifA C BandB C A.

is proposed. In Section 4, a numerical example is p- pefinition (Union) [43]
resented to illustrate the effectiveness of the proposed The ynion of two SVNS4 and B is a SVNSC,

method. Section 5 concludes the paper.

2. Preliminaries
2.1. Neutrosophic set

In this subsection, some basic definitions related s-
ingle valued neutrosophic set in [43] are presented as
follows.

Definition (Single valued neutrosophic set(SVNS))
[43]

Let X be a space of points (objects), with a generic
element inX denoted byr. A SVNSA is character-
ized by truth-membership functi@ry, indeterminacy-
membership functiofy, and falsity-membership func-
tion F4. Foreach pointz in X, T4 (z), [a(x), Fa(x) €
[0,1].

WhenX is continuous, a SVNS can be defined as

A:/<TA($)JA(I),FA(I)>

T

,r€eX (1)

WhenX is discrete, a SVN4 can be defined as

A=y Talrd TG Falw)) o)

K3 I,L
Definition (Complement) [43]
The complement of a SVNSs denoted by’'(A4) and
is defined by

Te(ay(x) = Fa(z), 3)
Iy (r) =1 = La(z), (4)
Foay(z) = Ta(z) (5)

written asC = A U B, whose truth-membership,
indeterminacy-membership and falsity-membership
functions are related to those dfand B by

Te(z) = max{Ta(z), Tp(x)},

Io(x) = max{I4(x), Ip(x)}, @)
Fe(z) = min{Ta(z), Tp(z)},
forall z in X.

Definition (Intersection) [43]

The intersection of two SVNSt and B is a SVNS

C, written asC = A N B, whose truth-membership,
indeterminacy-membership and falsity-membership
functions are related to those dfand B by

Te(x) = min{Ta(x), Tp(z)},

Io(x) =min{lx(x), Ip(x)},
Fe(z) = max{Fa(z), Fp(z)},

(8)

forall z in X.
2.2. Evidence theory and evidence distance

Uncertainty information exists everywhere in the re-
al application. There are many math tools to handle un-
certainty, such as fuzzy numbers [53,54,44,41,56,47],
Z numbers [21], D numbers [31,11,58] and so on. A-
mong these tools, evidence theory is paid more and
more attention recently [22,8,12,10]. In this subsec-
tion, some definitions in [23,34] are presented as fol-
lows.
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Definition (Basic Probability Assignment(BPA)) [34]
Let© be a frame of discernment, includingmutually

exclusive and exhaustive elements. A BPA is a function

from P(©) to [0, 1], defined as follows
P(©) = [0,1] (9)

whereP(©) is the power set 0®. A BPA should sat-
isfy the following conditions[34]

m:

> om(4) =1, (10)
A€P(O)
m(¢) = 0. (11)

Definition (Evidence Distance)[23]

Let© be a a frame of discernment includifg mutu-
ally exclusive and exhaustive objects, ang, m, be
two BPAs. The evidence distance betwegarandm
is defined as follows

1
dppa(mi,ma) = \/E(ml —mz)D(m1 — m2)7T,

(12)

wherem is a row vector associated with the BPA
defined as

m = (m(A1), m(Az), - ,m(Azw)) (13)

where A; € P(©),i = 1,2,---,2Y, wheni #

J,Ai # A;, and D is a2V x 2V matrix with entries
(written as ent; D) defined below

|4 N A

D=
ent” |AiUAj|

(14)

For simplicity, vectorn in (13) is also called a BPA in

the remainder of this paper. It should be noted that ev-
idence distance is widely used to measure the conflicts
between BPAs [19,32] and a lots of distance functions

are developed from evidential aspect[25,45].

3. Proposed method

In this section, a new method to measure distance
between SVNSs is proposed. A key step in the pro-

posed method is to transform SVNS into BPAs. Ac-
tually, how to generate the BPA is still an open issue

[9,22,57]. Best to our knowledge, there is no work to
determine BPA with SVNS.

For simplicity, a mapping from three components of
a SVNS to{1, 2, 3} is constructed, namely

T —1
f:I —2
F —3

(15)

For three components of a SVNS

4= (Th(z), I (x), F1 ()

T

and an object: in X, a mapping from every compo-
nent to a row vector is defined as follows

—mayy(z) = (T1(2),1 - Ti(x))

= maz(z) = (I1(z),1 — I(z))

= maz(z) = (Fi(z),1 — Fi(z))
(16)

Then, a SVN#, is transformed into three BPAs, pre-
sented as follows

mll(a:) Tl (I) 1— Tl(ZC)
Al — mlg(I) = Il (I) 1-— Il (.CC)
m13(:v) F1 (:v) 1-— Fl (:v)
Next, for two SVNSsA; and A,, three distances can

be constructed according to Eq.(12). For simplicity,
some symbols are denoted by

Al(x) =Mi1 —M21
= (T (z) — Ta(x), To(z) — T1(x)) (17)

Az (x) = Mz — Ma2

= (Ii(2) — I2(z), I2(7) — Ii(x))  (18)
A3($) = M13 — M2g
= (Fi(z) — F2(), Fa(z) — Fi(x))
(19)
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Then, three distances are constructed as follows weight vector bev = (wy,ws, - ,wy)T, andd =
(d(x1),d(z2),--- ,d(zn)), hence the distance can be

1 defined as follows
dy = \/=A1D; AT ! W
2

N
dy = / % AsDyAT (20) (A1, Ap) = dw = > wid(z;) (23)
=1

ds = 1A3D3A§ Example SetX to {a, b, c}. Given two SVNS4, and
2 As as follows

According to Eq.(14)D1, D>, D3 are defined as fol-

0.3,0.3,0.7 0.4,0.5,0.6 0.7,0.1,0.5
< ), ¢ ), ¢ )

lows A =
a b c
0.2,0.2,0.6 0.3,0.1,0.7 0.5,0.2,0.0
Dy Dy Dy (113 e B, = ), | ), | )
1/3 1 a b c
Respectivelyd, , da, ds is equal to and weight vectow = (0.3,0.3,0.4)”. Then
2 2
di =/ 2ITa(2) - Ta(o)] dia(a) = 4/5 > _1Ca(@) = Cp(a)
c
2
dy = \/j|~’1 (2) — Lx(z)| _ V6 0.24495
3 10
2 2
ds = \/;m(:c) ~ Fa) dia(b) = \/; $1Cab) - O]
C
Consequently, the component of distance between V6
SVNSs can be defined as follows. =5 = 0.48990
Definition (Component of Distance for SVNS)Let 2
X be a space constructed By points (objects), with diz(c) = 3 > 1Cale) = Cr(e)|
a generic element inX denoted byxz. Given two c
SVNSs, named;, A,. For a element; in X, theith- NG
component with respect tg; of the distance between =715 = 0.65320

A; and A is defined as

Hence, the distance betwedn and A, is
d(ZCZ) = dl + dQ + dg

d(Ai, As) = dw
2
= \/;(|T1(1'i) — To(z;)] /6 /6 B
=2 %03+ x03+—— x04
X 034 22 X 0.3+ == X 0
+ (i) = T (i) ~ 0.48173

+ [Fi(zi) — Fa(:)]) (22) _ -
4. Practical Application

Finally, the distance between two SVNSs is defined as

In order to demonstrate the application of the pro-
follows.

posed approach, a multi-criteria decision making prob-
Definition (Distance for SVNS) The distance between lem illustrated in [3] is concerned with a manufactur-
SVNSs is a weighted distance constructed by its com- ing company which wants to select the best global sup-
ponents defined above and a weight veatorLet plier according to the core competencies of supplier-
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S. Suppose that there is a set containing four supplier- g.(16). ForSy, the matrices can be written as

sS = {51, 59,53,54} whose core competencies are
evaluated by the following four criteria

C1. the level of technology innovation,
Cs. the control ability of flow,

(. the ability of management,

C,. the level of service.

Then, the weight vector for the four criteriads =
(0.25,0.30,0.20,0.25)7. Itis useful to define the ideal
point to identify the best alternative. For this problem,
setX = {C4,Cs, Cs,C4} to the space of criteria, the
ideal value can be defined as

4

1,0,0
SOZZ< 70’ >,Ci€X
i=1 g

When the four possible alternatives with respect to the | oiveen each’ ands,
i :

above four criteria are evaluated by the similar method
from the expert, the following single valued neutro-
sophic decision matri¥ is constructed as follows

{0.4,0.2,0.3} {0.5,0.1,0.4} {0.7,0.1,0.2} {0.3,0.2,0.1}
{0.4,0.2,0.3} {0.3,0.2,0.4} {0.9,0.0,0.1} {0.5,0.3,0.2}
{0.4,0.3,0.1} {0.5,0.1,0.3} {0.5,0.0,0.4} {0.6,0.2,0.2}
{0.6,0.1,0.2} {0.2,0.2,0.5} {0.4,0.3,0.2} {0.7,0.2,0.1}

The entries o (ent; ; E) represent the export’s opin-
ion about an alternativg; with respect to the criterion
C;. Then, the proposed method is used to decide the
best supplier in four steps. Step 1. Convert SVNSs in-
to BPAs. According to Eq.(16), three matrices can be
written as follows

(1.0,0.0) (1.0,0.0) (1.0, 0.0) (1.0,0.0)

g, — | (1.0,0.0)(1.0,0.0) (1.0,0.0) (1.0,0.0)
17| (1.0,0.0) (1.0,0.0) (1.0,0.0) (1.0, 0.0)
(1.0,0.0) (1.0,0.0) (1.0, 0.0) (1.0,0.0)
(0.0,1.0) (0.0,1.0) (0.0, 1.0) (0.0,1.0)

B (0.0,1.0) (0.0,1.0) (0.0, 1.0) (0.0,1.0)
271 (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0, 1.0)
(0.0,1.0) (0.0,1.0) (0.0, 1.0) (0.0,1.0)
(0.0,1.0) (0.0,1.0) (0.0, 1.0) (0.0,1.0)

5. — | (0.0,1.0)(0.0,1.0) (0.0,1.0) (0.0, 1.0)
37 (0.0,1.0) (0.0,1.0) (0.0,1.0) (0.0,1.0)
(0.0,1.0) (0.0,1.0) (0.0, 1.0) (0.0,1.0)

Step 2. Calculate the components of distadicels, ds
They can be formulated with
the form of matrix. These matrices is calculated and
presented below

2
pi- 2
1 3
2
D/:[
2 3
2
b2
3 3

0.60.50.30.7
0.60.70.10.5
0.60.50.50.4
0.40.80.60.3

0.20.10.10.2
0.20.20.00.3
0.30.10.00.2
0.10.20.30.2

0.30.40.20.1
0.30.40.10.2
0.10.30.40.2
0.20.50.20.1

(0.4,0.6) (0.5,0.5) (0.7,0.3) (0.3,0.7)

g _ | (0:4,0.6)(0.3,0.7) (0.9,0.1) (0.5,0.5)
1= 1 (0.4,0.6) (0.5,0.5) (0.5,0.5) (0.6,0.4)
(0.6,0.4) (0.2,0.8) (0.4, 0.6) (0.7,0.3)
(0.2,0.8) (0.1,0.9) (0.1,0.9) (0.2,0.8)

g, — | (02,0.8)(0.2,0.8) (0.0,1.0) (0.3,0.7)
271 (0.3,0.7) (0.1,0.9) (0.0,1.0) (0.2,0.8)
(0.1,0.9) (0.2,0.8) (0.3,0.7) (0.2,0.8)
(0.3,0.7) (0.4,0.6) (0.2,0.8) (0.1,0.9)

B — | (03,0.7)(0.4,0.6) (0.1,0.9) (0.2,0.8)
371 (0.1,0.9) (0.3,0.7) (0.4,0.6) (0.2,0.8)
(0.2,0.8) (0.5,0.5) (0.2,0.8) (0.1,0.9)

where ent; Eq, ent; ; E5, ent; ; E5 are BPAs construct-
ed by S; with respect to criterior’; according to E-

Step 3. Calculaté; (z). Similar to Step 2, they can be
formulated as a matrix. The matrix is calculated and
presented below

1.11.00.6 1.0
2111130210
3110090908

0.71.51.10.6

D' =Dj+ D3+ D5 =

Step 4. Calculate the distance betweégmandS,. Ac-
cording to Eq.(23), the distance betwetrand.S, can



be formulated as a column vector as follows

d=D'w
1.11.00.6 1.0 0.25
_/2[1113021.0 0.30
“ V3110090908 0.20
0.71.51.10.6 0.25
0.945 0.7716
/2010955 | _|0.7798
“V3lo0s60| ™ |0.7349
0.995 0.8124

The best supplier of; is defined as the one closest to
the Sy. According to the vector, the rank order of four
suppliers isS3 = S1 > Sy = S4. Here, the symbol
“>" represents the former supplier is better than the
latter one. Hence, the best alternativeSis

5. Conclusion

Neutrosophic set has been paid great attention re-
cent years due to its flexibility to handle uncertain in-
formation. It's important to measure the distance be-
tween single valued neutrosophic set in some uncer-
tainty decision making situations. In this paper, an evi-
dence distance between two SVNS is presented. Based
on a new transformation of the SVNS into BPA, the
distance is measured from the aspect of evidence theo-
ry. The application in MCDM shows the efficiency of
the proposed method.
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