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Abstract
A relativistic rotator is a pair of black-holes moving around their center-of mass (com) on GR-orbits in their
own gravitational field. First we present a GR-solution in the com-frame for non-rotating (Schwarzschild)
black-holes in the usual spherical coordinates (t,r,,ϕ) using a complex transformation of the radius r . with the
condition that for r→∞ the resulting orbit equations must be the Newtonian equations. We analyze the solution
and show examples of orbits. In a second step we generalize it to the case of rotating (Kerr) black-holes

1. The basics: Schwarzschild and Kerr spacetime and the Newtonian and GR energy
equation
We start with exact solutions of Einstein equations in spherical coordinates for the non-rotating (Schwarzschild)
and rotating (Kerr) black-hole.
The Kerr line element reads [3]
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where
2

2

c

GM
rs  is the Schwarzschild radius, and

Mc

J
 is the angular momentum radius (amr) ,  has

the dimension of a distance:  r][ , and J is the angular momentum.

In the limit α→0 the Kerr line element becomes the standard Schwarzschild line element  
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The total energy for a mass m in Newtonian gravitation field of a mass M is:
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where Et is the total energy and εt the relative total energy. We use in the following the terminology of [2] for

the GR energy and radial orbit equation:
2
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F
t , where 122  tF  is the (dimensionless) relativistic

velocity factor.

Because of conservation of angular momentum L is constr
m

L
l  2 , l = reduced angular momentum is a

constant. Using this relation, (3) becomes the Newtonian orbit differential equation for the orbit radius r , with
the parameters l and εt to be determined from the initial condition.
From the first (time t) Schwarzschild orbit equation (see below) we get
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1 [2] , where F is the above relativistic velocity factor .

In the general relativistic Schwarzschild case the Newtonian approximation (3) becomes the exact relativistic
energy equation [2] :
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We consider now the case of the Newtonian gravitational rotator (Ngr): two point masses m1 and m2 with



m1≥ m2 rotating around their center-of mass (com), in the com reference-frame with orbit radii r1 and r2 resp.
Because of the com-condition 1122 rmrm  r1 and r2 can be calculated from the distance r0 between m1 and m2

0

1

0
2

1 r
m

m
r

m

m
r r and 0

2

0
1

2 r
m

m
r

m

m
r r where

21

21

mm

mm
mr


 is the reduced mass , and 21 mmm  is

the total mass .
The Newtonian energy equation for the both orbit radii r1 and r2 read :
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From the energy balance 2
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we reduce (5ab) to the well-known rotator equation with mass mr
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rs  (6)

The basic orbit angular frequency for a circular orbit results from the force equilibrium condition
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We introduce the dimensionless distance
sr

r
r 0

0  , and dimensionless
scr

r
l

2
 , and get from (6)
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We generalize this to the GR Schwarzschild energy equation
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(7) is the Newtonian approximation of (8), valid for the dimensionless distance
sr

r
r 0

0  and with the

parameters l and 0t .

Accordingly result the dimensionless
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We calculate the minimal and maximal radius {rp1, rp2} of the (in general) elliptical Newtonian orbit by setting

r =0
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 , r0 is the harmonic mean of rp1 and rp2 :
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For the circle orbit: 2
021 2lrrr pp 

In the following, we will drop the bar in 0r and work exclusively with dimensionless coordinates r in units rs ,

also we set c=1.

2. The orbit equations in Kerr-spacetime

The Einstein field equations are [2,4,5]:
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where R is the Ricci tensor, R0 the Ricci curvature,
4
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G
  , T is the energy-momentum tensor,  is

the cosmological constant (in the following neglected, i.e. set 0),



with the Christoffel symbols (second kind)








































x

g

x

g

x

g
g

2

1

(10)

and the Ricci tensor
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The orbit equations O1…O4 in vacuum ( 0T ) are:
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with the usual setting λ=τ = proper time
For λ=τ  we get for the line-element ds=c dλ= dλ and therefore trivially:
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This relation yields for the Kerr- and Schwarzschild-spacetimes the GR energy relation, we choose the
denomination E1 for it.
The explicit form of E1 and O1…O4 for Kerr-spacetime as a series in α is given in the appendix.

In the following, we use the expression for the -derivative with dot or with prime:
d

dt
tt  '



3. The ansatz for the GR rotator as complex Kerr spacetime
We introduce now the ansatz for the GR rotator: it should contain both radii (r1, r2) and the mass ratio as a
parameter and it should of course satisfy the Einstein equations. Furthermore, it is clear that it should have
axial, and not spherical, symmetry, as the rotator has its rotation axis as the symmetry axis.
Consequently, we make an ansatz with a Kerr spacetime with complex orbit radius: it has axial symmetry, one
more parameter because of its imaginary part, and it satisfies the Einstein equations. We have to verify, that in
the limit r→∞ in order O(1/r) the correct Newtonian orbit equations emerge.
The Kerr metric is transformed for binary BH (m1, m2) at distance r0, rotating around the center-of-mass (com)
at distance (r1, r2) from com as follows:
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 is the reduced mass , 1
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m
 is the mass ratio.

We generate now a new complex Kerr spacetime from the Kerr spacetime of r2 Kerr(r2) by the

transformation
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r
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  maps r2 into the complex orbit of the binary rotator,

the resulting Kerr metric satisfies the Einstein equations in r~ and

2]~Re[ rr  and 1]~Im[ rr  , i.e. orbit( r~ )= orbit(r2) + i*orbit(r1) , the complex orbit r~ yields the orbits of

the two masses.
We get immediately the following relations:
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 Kerr energy equation (left side) as series in  with

Christoffel symbols 
 and coordinates x =(t , r ,  , ) is then with rr ~ (we drop the tilde for

convenience)
E1d=

and the orbit equations (left side) O1d…O4d are given in the appendix.
How should we interpret the transformed Kerr spacetime in complex rr ~ ?
For the gravitational rotator itself the arising orbit equations O1d…O4d describe through the complex solution

][~ r the orbits of the two masses (m1, m2) via

][]][~Re[ 2  rr  and ][]][~Im[ 1  rr  . We will show in 5 that we recover the Schwarzschild energy equation
(which is the radial orbit equation) for r2[τ] and r1[τ] for α=0 ,

For a remote observer in the transformed Kerr spacetime we take as his orbit ]][~Re[ r , since the orbit must be
real. We will show in section 6 that in lowest order in 1/r-powers the orbit equations of the transformed Kerr
spacetime are identical with the Newtonian acceleration equations calculated directly.



4. The relativistic time-derivative dt/d

Of special importance is the solution of O1 , which gives the derivative
d

dt
t ' .

In the Newtonian approximation, is of course t=τ and 1't .

In the Schwarzschild spacetime , O1 can be solved analytically, and the well-known solution is [2, 5]
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In the Kerr spacetime, the solution cannot be given in analytical form, but it can be expressed as a series in r
and α , it seems that it is derived here for the first time.

First, we bring O1 into a new form using  0' and lr 2' (see 5.), thus eliminating ' and ' :

= 0
This has the general form

0)(')('''' 32  rfrrfrtt and after multiplication with a function f1(r) it can be made a total differential
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And with this condition the formal solution can be derived immediately:
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with an integration constant F .

In the Schwarzschild case with α=0 and f3(r)=0 this results immediately in
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In the Kerr case, f2(r)= , f3(r)=
and after turning the integral in the numerator of t’ into a series in α and 1/r , t’ becomes

t’=  ts(r, α)= ,

which for α=0 results again in
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So the Kerr-correction to t’ is of the order
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from the F-term (total energy) and of the order
3r

l


from

the l-term (rotational energy) .

5. The equations in the “equatorial” form and  α as radiation energy parameter
Without loss of generality we can set  0'  the orbit plane is the equatorial plane, we introduce the

conserved l = reduced angular momentum from conservation of angular momentum lr 2' , eliminating '

Further on, we use the solution of O1 to eliminate
d

dt
t ' :

In Schwarzschild spacetime
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in Kerr spacetime ),
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 (see above, Kerr replacement)



E1 with Schwarzschild-replacement (approximate Kerr)
Left side E1dS=


E1 with Kerr-replacement (fullKerr)
Left side E1dA=

E1dA series in  is as follows:

= 0

For  we get after division by 2)1( i
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And in the original r2-coordinates
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which is the Schwarzschild energy equation for r2[] , and r1[]=μ r2[] , so we have verified the Scharzschild
limit () of the transformed Kerr spacetime.

-term in E1dA is   2
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The Einstein-formula gravitational radiation power [2] is
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or dimensionless and in transformed Kerr coordinates
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and E1 power-correction from the series E1dA in α
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It is remarkable that the E1 power-correction and the gravitational radiation power formula have the same
r-dependence 1/r5 ,
so we interpret the parameter α of the rotator spacetime as the gravitational radiation loss.

Pgr= P if  =  
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Newton radial equation
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The actual radiation energy is real of course, grrad PE  .

gr contains no factor )1( i , the complex factor in the denominator comes from the Kerr t-derivative from

section 4, for the Schwarzschild t-derivative αgr is real.

For 0 that is for a planet orbiting a star, αgr becomes real , also
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becomes purely imaginary.
With Fc=1, r0=2, μ=1  : αgr =−0.00030−0.0024ⅈ, so  the gravitational correction is very small even for close 
orbits. Note that that 0gr for 0 : the transformed Kerr spacetime becomes the Schwarzschild

spacetime of a single point mass, and a single star emits no gravitational radiation.




6. The orbit equations for the remote observer in transformed Kerr and in the Newtonian
limit
First, we calculate the Newtonian gravitational acceleration of the remote free falling observer towards the
rotator (m1,m2) in the com-frame of the rotator.
Second, we calculate the orbit equations of the observer from the transformed Kerr spacetime of the rotator, and
take the real part as the valid observer orbit.
Third, we compare both in the lowest order in 1/r .
The result is that they are identical, which proves that the transformed Kerr spacetime is indeed the correct
physical description of the gravitational rotator.

We define the variables of the remote observer and calculate the acceleration from the Newtonian gravitation
law.

x1phi

x2phi

xo

zo



m1

m2

r01x

r02x

b

or


=vector(observer,com rotator)
distance d(observer,m1), d(observer,m2):
r0x=d(m1,m2), {x1phi,x2phi}=projection(ro,θ=π/2) 
{ro1x,ro2x}={d(observer,m1),d(observer,m2)}

or


={xo,yo,zo}=observer coordinates={ro,θo,φo} 
BH-masses={m1,m2,m=(m1+m2),mr=m1 m2/m}
BH-distance com={r0x,r1x=r0x*mr/m1=m2/m,r2x=r0x*mr/m2}
μ=m2/m1 mass ratio 
φb=φ(binBH,observer x-axis)!= φo 
xo=ro Sin[θo]; 
zo=ro Cos[θo]; 
m1=m-m2;
x1phi=Sqrt[xo^2+(m2/m)^2r0x^2-2 xo(m2/m)r0x Sin[φb]] 
x2phi=Sqrt[xo^2+(m1/m)^2r0x^2+2 xo(m1/m)r0x Sin[φb]] 
ro1x=ro Sqrt[1+(m2/m)^2(r0x/ro)^2-2 (m2/m)(r0x /ro)Sin[φb]Sin[θo]] 
ro2x=ro Sqrt[1+(m1/m)^2(r0x/ro)^2+2 (m1/m)(r0x /ro)Sin[φb]Sin[θo]] 



The dimensionless Newtonian acceleration vector in {x,y,z} of the observer towards the rotator is the vector

sum of the accelerations towards m1 and m2, dimensionless gravitational potential is
r

m
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gr
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dimensionless acceleration=force is r
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m
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 , where r
r

nr

 1
 is the unit vector from the mass attractor

to the observer, and mx is the dimensionless mass (m=m1+m2=1 is the mass of the rotator) .

We calculate the acceleration vector in spherical coordinates (r,θ,ϕ) of the observer, we use the initial
conditions r[0]=ro, θ[0]= θo, φ[0]= φ o =0

aror=

Setting (xo’’, yo’’, zo’’)=aror we get the Newtonian equations of motion in spherical coordinates (the
respective left side, the right side is 0)
deqgN1

deqgN2:  φ’’ equation

deqgN3

We form linear combinations to get pure θ’’ equation and   r’’ equation: 

deqgN13= Cos[θ0]deqgN1−Sin[θ0]deqgN3: θ’’ equation 

deqgN31 Sin[θ0]deqgN1+Cos[θ0]deqgN3 : r’’ equation 



The corresponding transformed-Kerr orbit equations O2dn, O3dn, O4dn are:
O2dnA

O3dnA

O4dnA

Comparing deqgN2 and O4dnA yields in lowest order in 1/ro after cancellation of common factors the
φ’’ equation eqphi=

][''][']['][2  oCot =0 (18)

The comparison of deqgN13 and O3dnA gives the θ’’ equation, where the last term appears only in O3dnA,
eqth=

2]['][][][''
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The comparison of deqgN31 and O2dnA gives the r’’ equation, where the last term appears only in O2dnA,
eqr=
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From the conservation of angular momentum for the observer
2
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l
 , and for the free falling observer we

can assume that initially there is a negligible rotation around the remote rotator, so 0ol , and we can neglect

the terms 2]['  in eqth and eqr .

The three equations eqphi, eqth and eqr follow directly from the Schwarzschild spacetime in lowest order
in 1/r , and it is interesting to solve them explicitly, replacing ][rro  .

From eqphi we get by integration
cphiCotLog o  ][][2]]['[  , and 1]][][2[][' cphiCotExp o   with ][1 cphiExpcphi 

But from eqr we see that φ’ must be of order )
1

(]['
3

2

or
O , which is possible only if φ’=0 .

After having inserted this into eqth , we can integrate it and get
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We insert this into eqr , integrate and get a solution for r :
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r
r  , the cth-term is a GR-modification of the Newtonian force law.

7. Taking into account self-rotation of the participating masses m1 and m2

The Kerr ansatz is valid as long as there is a θ-symmetry , i.e. the system is independent of ϕ . If there is self-
rotation (around z-axis) for the masses m1 and m2 , the θ-symmetry is not disturbed and self-rotation (spin-) 
angular momentums L1 and L2 add up and contribute to the Kerr parameter α according to the formula

21   . For a rotating blackhole
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Schwarzschild radius , κ  the inertia-factor (κ=2/3 for a spherical shell) and x the angular frequency. For the

masses (m1, m2) (dimensionless, i.e. m=1) rotating with angular frequencies (ω1, ω2) we get dimensionless
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For μ→0 the gravitational rotator becomes simply a single rotating Kerr- blackhole with 1  , as it should

be. Also, the contribution αgr from gravitational rotation becomes 0 for μ→0 , and the spacetime becomes the
normal real Kerr spacetime of a rotating blackhole, which emits no gravitational radiation.
So the total α of the gravitational rotator (m1, m2) with spin-contributions (α1 , α2) becomes

grgr 
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where αgr is complex and α1 and α2 are real and 1gr .

8. Numerical examples
In the following, we present gravitational rotator orbits calculated numerically from the transformed Kerr
spacetime.

8.1. Binary blackhole with mass ratio μ=1/2 

We consider an example of a binary blackhole with mass ratio
1

2

m

m
 with mean distance r0=16.80 , basic

angular frequency
3

0

0

2

1

r
 =0.01026 , high spinning frequencies ),( 21  =(0.8,0.8)

(within the limit 1 ) , the velocity factor F=0.987 (εt= −0.0132)  and the reduced angular momentum
l=1.77+2.36i are chosen for the initial condition to ensure a bounded orbit.
The resulting Kerr parameters are α=0.297−0.00099 i, gr =0.00050−0.00099 i .

We calculate the orbits for the Schwarzschild case (α=0 , no radiation), without spins: Kerr( gr ) , and the full

Kerr case with spins and radiation Kerr( spgr   ) .

The Newtonian maximal and minimal basic (circular) r2-radii from section 1 are: rp1=30.91, rp2=6,84, the basic

Newtonian period
0

0

2




T =612.1



The results are as follows.
The r2-orbit for the Kerr( spgr   ) case and the Kerr( gr ) case

The r2-orbit for the Schwarzschild case and the Kerr( gr ) case

and a magnified part of it to show the difference

The r2-orbit for the Schwarzschild and for Newton compared



In the Kerr( spgr   ) case, period T=761.80, r2-radii=(32.0485,6.127) ,

in the Kerr( gr ) case, period T=722.631, r2-radii=(30.577,5.834) ,

in the Schwarzschild case, period T=722.707, r2-radii=(30.580,5.833) ,
in the Newtonian case, period T=721.4, r2-radii=(3.66,6.85),
It is interesting to study the behavior of the orbit period: comparing the Schwarzschild and the Kerr( gr ) case

the (very small) radiation loss through gr decreases the period by 0.076, i.e. 0.010% . On the other hand, the

strong self-rotation in the Kerr( spgr   ) case accelerates the orbit through the “dragging” (Thirring-Lense

effect) , therefore the period becomes longer by 39.17, i.e. by 5.42% .



Appendix A1

Schwarzschild spacetime in matrix form

Kerr spacetime in matrix form

Christoffel symbols 
 (Schwarzschild) have the values


0 =


1 =


2 =


3 =



Christoffel symbols 
 (Kerr) have the values


0 =


1 =


2 =


3 =



General Kerr energy and  orbit equations, series in α 
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The transformed-Kerr energy equation (left side) as series in  with Christoffel symbols 
 and

coordinates x =(t , r ,  , ) is E1d=

An the orbit equations (left side) O1d…O4d
O1d=

O2d=

O3d=



O4d=
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