Primes obtained concatenating p*q-p with p*q-q then with p*q where p, q primes of the form 6k+1

Marius Coman email: mariuscoman13@gmail.com

Abstract. This paper is inspired by one of my previous papers, namely "Large primes obtained concatenating the numbers P - d(k) where d(k) are the prime factors of the Poulet number P", where I conjectured that there are an infinity of primes which can be obtained concatenating the numbers P - d(1); P - d(2); ...; P - d(k); P, where d(1), ..., d(k) are the prime factors of the Poulet number P. Because some of these Poulet numbers are 2-Poulet numbers of the form (6k + 1)*(6h + 1) I extend in this paper that ideea conjecturing that for any prime p of the form 6k + 1there exist an infinity of primes q of the form 6h + 1 such that the number obtained concatenating p*q - p with p*q - q then with p*q is prime.

Conjecture:

For any prime p of the form 6k + 1 there exist an infinity of primes q of the form 6h + 1 such that the number n obtained concatenating p*q - p with p*q - q then with p*qis prime.

Example: using the sign "//" with the meaning "concatenated to", for p = 7 there exist q = 79 such that the number n = (7*79 - 7)/(7*79 - 79)/(7*79 = 546474553) is prime.

The first three such primes n for p = 7:

(corresponding to q = 31, 37, 79)

: 210186217 = (7*31 - 7)//(7*31 - 31)//7*31; : 25222259 = (7*37 - 7)//(7*37 - 37)//7*37; : 546474553 = (7*79 - 7)//(7*79 - 79)//7*79.

The first three such primes n for p = 13:

(corresponding to q = 31, 37, 67)

: 390372403 = (13*31 - 13)//(13*31 - 31)//13*31; 468444481 = (13*37 - 13)//(13*37 - 37)//13*37; 858804871 = (13*67 - 13)//(13*67 - 67)//13*67. The first such prime n for p = 19: (corresponding to q = 61) : 114010981159 = (19*61 - 19) / (19*61 - 61) / / 19*61.The first such prime n for p = 31: (corresponding to q = 19) 558570589 = (31*19 - 31) / (31*19 - 19) / 31*19.: The first such prime n for p = 37: (corresponding to q = 19) 666684703 = (37*19 - 37) / (37*19 - 19) / (37*19): The first such prime n for p = 43: (corresponding to q = 67) 283828142881 = (43*67 - 43) / (43*67 - 67) / / 43*67.: The first such prime n for p = 61: (corresponding to q = 13) 732780793 = (61*13 - 61) / (61*13 - 13) / (61*13.: The first such prime n for p = 67: (corresponding to q = 31) 201020462077 = (67*31 - 67)//(67*31 - 31)//67*31. : The first such prime n for p = 73: (corresponding to q = 19) 131413681387 = (73*19 - 73) / (73*19 - 19) / / 73*19.: The first such prime n for p = 79: (corresponding to q = 19) : 142214821501 = (79*19 - 79) / (79*19 - 19) / (79*19.