| think | can safely say that nobody understands quantum mechanics.
Richard Fevnman
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1.- The Classical Physics Reality.

We will start with a quick review of classical physics. An
important concept of the classical description of reality 1s that
of a “particle.”

A “particle” i1s a mathematical abstraction or model that under
certain circumstances can be used to represent real physical
objects (like planets, bullets, cars, etc,) and their motion.

In the classical description, at all times along its motion, a
particle of mass “m” has associated to it a precise position and
velocity vectors

r=r(xyz) v_dr
dt

as shown in the diagram on next slide.
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We also define some useful magnitudes such as linear
momentum P = m v. Kinetic energy K =2 m v-,

L

angular momentum as the cross vector product L =r x P,

Total Energy E=K + U .(x.v.2). etc.
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We also 1dentity the diverse forces F_ (withn=0.1...,) that
may be acting upon the particle.

The effect of all these forces F . 1s to change the momentum
of the particle according to Newton’s law:

SF. _ d

17—

dt

Some of these forces may be described through potential
energy functions U, (x.y.z) as

~ 17 )
9).4 )Y oz
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.- Some of the assumptions of Classical Physics:

1.- All these magnitudes exist and can be measured
simultaneously.

2.- We can achieve any degree of accuracy that any
conceivable measuring device can provide.

3.-The measuring process itself does not alter necessarily the
magnitudes being measured.

4.- All these magnitudes exist regardless whether they are ever
measured or not.
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But surprise...!!! .

All these “common sense” assumptions are not valid in the
quantum world.
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The Quantum Reality

At the atomic level we still describe a quantum physical

system using many of the magnitudes used at the classical
level: total energy E. linear momentum P. angular

momentum L, elc.

However, there are restriction principles that make
impossible the measuring (actually. the very existence!) of
all of them at the same time.
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For example:

At some moment a quantum object may be in certain state,

|S,>. In such state the quantum object may have a definite
value of total energy E, but not of momentum P.

P,
E R v ¥ X
:I( [S]} mE:EEIJI‘E:mEIltz 1S;> P
of P . m
If we want to determine the value of P we have to perform a
suitable measurement experiment on the object, but... ...the

same act of measuring and obtaining a value for P takes the

system to another state |S,>, in which P does have a value,.
but E does not.
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The philosophical impact of this subtle 1dea 1s
tremendous!!!

What we are saying is that while in state [S >, the quantum

object manifests its existence in the universe by its total energy
E (and perhaps some other magnitudes that are compatible

with E in state |S,>) but it does not have a value for P
whatsoever.

&
> | X
measurnmml;g 15,2 P
of P .
e W

If the object’s state is changed to [S,> now its presence in the
universe manifests by a definite momentum P, but in this
state the quantum object has no value for energy. It is not that
its energy is zero: it just does not posses a value (nor the
concept) of energy at all! 0



The most famous restriction in quantum physics is the
Uncertainty Principle of Heisenberg:

“One cannot simultaneously know both the position r = (X.y.z)
and the momentum P = (p_. p.. p,) of a given object to
arbitrary precision.” |

In this context, the word ““uncertainty” must be understood as
meaning “unknowability” or “nonexistence.”

In more mathematical terms, using the symbol A to denote
“unknowability”, Heinsenberg’s principle is stated as:

Ap, AX>27mh Ap. Ay>27mh
Ap Kz>2wh AEAt>2xh
where h, the Planck constant, is a very small number:

h=1.0545 x 103 Joules secs. 10



Example:

Let’s examine Heisenberg’s principle more carefully using
a concrete example: let’s consider a single electron in
space.

In one state, let’s call it [r>, the electron has a definite
position r (Ax, Ay. Az ~ 0.) but in such state, according to
Heisenberg, it does not have a value for momentum because

(Ap,.Ap,,Ap,~0.)

If we measure its momentum, we are forcing the electron to
change to another state, let’s say [P>. i which it has a

definite value for P (A p_. Ap. Ap, ~0,) but now it does
not have a definite position r (Ax, Ay, Az ~0))
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In other words, while in |[P> the electron does exist as a
momentum in the universe, but it has no position.

This 1s. 1t is nowhere!*

The intellectual acceptance of this fact, that an object can
exist without been amywhere, constitutes the golden key fto

the full understanding of quantum mechanics and explain
all its apparent paradoxes.

*See appendix A for further elaboration on this.
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.- Probabilistic nature of the quantum world.

This conception of the electron being “nowhere” leads
logically to the conclusion of the probabilistic nature of the
quantum world. as follows.

By forcing the electron to go from one state to another, we are
actually forcing the electron to adopt a value for a magnitude
that did not exist before... consequently...

the only way that such value can be adopted. that is
consistent with the fact that such magnitude indeed did not
exist before, i1s by adopting its value in a probabilistic way.
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In other words. while in state |P> the electron does not have

position. but it does present a probability distribution
function ®Probability(x,v,z,t) which in general will make

some positions more probable to be adopted than others (if a

measurement of it 1s performed.) (More on this in appendix
B.)

This @robability(x,v,z,t) function is very closely related to

the most central element of the quantum theory, the so-called
State Function. usually denoted as W(x.y.z.t):

Probability(x.y.z.t) = Wi (x,y.z.t) WY(x.v.z.t)

The state function W(x.y.z.t) is a complex function. and it
contains every thing that can be known of a quantum object.
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.- Quantum dynamics: the Schrodinger equation.

The natural law that governs the evolution in time of the state
function W(x.y.z.t) of a single quantum object of mass “m”
(disregarding its inner structure, if any.) is described by the

Schrédinger equation. which involves state function W(x.y.z.t):

ihoW(x.y.zt) - h*V2W(Ry.zt) | URXy.zHW(Ey.z1)

ot 2m

where i= V-1 and the symbol V? stands for the second
partial derivative operator:

-

V_ @82 . . g° il

0x? Ov2 oz

An important quality of this intimidating equation is that it is a

wave equation. In other words. at the microscopy level. physical
systems exhibit wave-like behaviors.

2
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This equation does not describe abrupt changes. like the ones
that occur in most measurements: these are completely
probabilistic unpredictable irreversible processes. Schrodinger’s
equation only describes smooth changes of the state function.

Since it 1s certain that the quantum object described by
W(x.v.z.t) must be found “somewhere” if we measured its

position, then at all times we must have that
[ Probability(x,v,z,t) dxdydz = 1

« all
space

because total probability = 1 means “certainty.” This also means

Y*(x.y.z.t) W(x.y.z,t) dxdy dz = 1
sﬁgLe

This is. W(x.y.z.t) is normalized at all times. i



.- A historical test: The structure of the atom.

Among its many achievements, the Schrodinger equation has

been a resounding success i explaining the structure of the
atom.

Under the attractive potential of the atomic nucleus this

equation predicts that electrons will reach stable states at
definite values of total energy E . forn=1,2,3...

E, . gt 1
2h* o
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In such states, electrons also have precise absolute values

for angular momentum but do not have values of linear
momentum P nor position r(x.y.z) (again. they are

nowhere.)

The probability distribution W*(x.y.z.t)W(x.y.z.t) along
the atomic radius “r”’ is shown in the figure on the next

slide for the two lowest levels of energy (n =1 and n = 2.)
and zero angular momentum (1= 0.)
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The reader may notice that, in principle. these probability
functions spread all the way to infinite. 10



.- Critique to the Concept of *“particle.”

The concept of particle, as an abstract mathematical model.
has been very successtul in classical physics, where we can
define a point, the Center of Mass, to represent the whole
body 1 its translation.

Even in electrostatics, the related concept of “point charge™
has been quite usetul.

The inertia of this success has tricked physicists into carrying
the concept of “particle” into the microscopic world, where it
has become a monumental obstacle to the intuitive
understanding of quantum physics. since the word “particle”
suggests having a position, being somewhere, all the time.
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Even the quintessential mystery of quantum mechanics, the
double slit electron interference experiment:

B B x
E 2 -
- ' =3
=, e __E___._ . e %
bl Tos2 &~y
e 7 i gz §/3
Observed wave- Bullet-lhke behawvior
ke behawnor (not observed.)

presents little problem if we keep in mind that until the electron
is detected on screen B. it never was in a definite position state
(it never was “somewhere.”) Therefore, questions such as “what
slit the electron did go through?” make no sense. since the

electron was nowhere to pass through any slit. -



Notice that the double slit wall A does not constitute a position
measurement operation on the electron.

Due to its importance let’s examine the dynamics of this case
more carefully:

When released from the gun. the electron is in a “particle” state.
meaning it is localized at some small volume in space. Since the
“particle” state i1s unstable, as AE At > 27h, shortly after leaving
the gun the electron is firmly in a definite energy state (AE =2 0
as At = o0 ) A definite energy implies a definite frequency
associated to the wave function.
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[t 1s in such flat wave state that the electron meets screen A.
Such collision changes the electron state again, but not to a
definite position state because A has two slits (a screen with
only one slit would constitute a sort of definite position operator
which would change the electron state to one of definite
position, within the width of the slit.) That’s not the case when
we have two slits.

Shortly after leaving screen A towards screen B the electron is
back to a definite energy state (evolved from the initial state at
leaving screen A as specified by the Schrédinger equation.)
Such definite energy state in this case can be written as the
superposition of two flat waves with the same frequency of the
wave incoming to screen A from the electron gun.
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But back to the concept of “particle” in the quantum world, and to
refer to another example. we saw in the previous section that an
clectron 1s not “somewhere” (at a definite position) even when it 1s
bound to an atomic nucleus in a state of definite energy.

The closest thing to a “particle” that we have in quantum physics 1s a
definite position state. where Ax. Ay, Az = 0 or, using Dirac’s &
functional, W(x,y.z.t ) = 8(x.,y.z).

However, such state function would rapidly spread over space. and
such spreading leads to a state of definite energy. following
Heisenberg’s principle with AE tending to zero as AE ~ 1/At (if such
process occurs under a time imndependent potential U(X.v.z))

The reader may have noticed that in our exposition of the quantum
reality we never used the concept of “particle.”
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.—Closing Comments:

The quantum theory is still a controversial subject, full of philosophical
implications. It has many interpretations, some of them very disparate:

.- From one that postulates the existence of countless parallel universes (H.
Everett, 1957.)

.- To another that claims that “consciousness™ is one of the elements that
must be taken into account to explain quantum processes (J. von Neumann,

1955.)

We reject these as invalid implications of the Quantum Theory. It 1s clear
to us that the realization that a quantum entity can exist without been

anywhere 1s all that 1s needed to intuitively understand all quantum
phenomena and resolve all paradoxes.

1227712001 Guillermo Rios - Glendale College 25



Theretore our much simpler conclusion is that the reality we
perceive (including our own bodies) is just the macroscopic
manifestation of a thermal chaos of quantum collisions and
interactions which are continuously taking quantum entities into
and out of their localized “particle” states and, likewise, putting all
other kind of observable magnitudes into and out of existence. In
some sense they are continuously creating and destroying the
world... same as the deity Shiva does, according to the Hindu
tradition.

It is only because of the huge number of quantum entities involved
that this continuous creation and destruction of the world is always
bound to vield the same most probable result at the macroscopic
level.

And in this process of continuous creation and destruction of the
world, the natural tendency AE ~ 1/At to delocalize quantum

entities into states of definite energy, plays a relevant role.
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[I.- The physics of atom-size bits: Quantum
Computing.

.- Why atom-size bits?

In 1965, Gordon Moore predicted that the computing speed of
a single chip would double every 18 months. This would be a
consequence mainly of the mereasing miniaturization ot
components.

However, due to physical limits this trend cannot continue
forever. At the current rate. by the year 2020 a bit of data
would require only one atom to represent it.
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Reaching these physical limits will have protound
consequences, because the behavior of computer components
will then become dominated by the laws of quantum physics.

As we saw these laws are unimaginably different from those
ruling our familiar macroscopic classical world. which
includes present-day computers.

Current research also seems to indicate that computers that
would function under quantum laws might be more powertul
than any classical computer can be. and ahead we going to
take a glimpse at some of these powers.
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.- The nature of quantum bits (or qubits).

Same as classical bits, qubits can be in a quantum magnetic
state associated to binary value 1 (let’s call it |[1>, ) or in
another, associated to binary value 0 (state |0>.)

However. unlike its classical counter part. a qubit can also
be in many alternative states | > which do not have any
definite “bit” value.

While in any of these states, we can certainly measure the
qubit’s bit value, but that will abruptly change its current
state |W,> into either [0> (with probability p,) or into
|1>, (with probability p,.)
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Effect of measuring the bit value of a qubit
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.- Quantum registers.

A quantum register 1s a set of “n” qubits. Classically, a
register of “n” bits has 2 possible states. For example:

2 classical bits 3 classical bits

I 0001

01 } 2-=4 049 1

1 0 states 0, 1.4

I 1 . 011 } 23 = 8
1 00 states
1 01
119
1.1 1.4

Question:

How many general states are available to a quantum register
of “n” qubits? 2" states? Less than 2*? More than 277 30



A quantum register can also be in many others alternative states
| > which do not have definite bit values.

[f we performed a measurement to find the bit configuration
when in any of these states [ >, then this operation would
collapse (this 1s. abruptly change) this state into any of these
2% bit configuration states, each one with its own probability

Po: Py -+ Py -+~ Py

Now, since it is certain that one of these bit configurations is
going to be found, then these p,’s must meet the condition:

-1
Z =
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Effect of measuring the bit value
of a qu-register of “n” qubits

Py
>
1 1100...00

1000...00>

1010...00>
|110...00>

1001...00>

[111...11>
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.- T'he state function of a qu-register.

If the qubits are free of mutual interaction, then the state
function of a qu-register can be expressed as the product of
the individual state functions of each independent qubit:

[y = |L|JI:}_D} |L|J|:}_1} |th_2;~. |LP|:}_|:n-1} *
Or using a more concise notation:

Y= = |L|JIJ_D Lptu Lpt}_z Lph_(n—']]}

In the particular case when the qu-register 1s in a state with a
definite bit-configuration. all the individual elements |¥, >
are either equal to |0> or [1>.
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.- A vector space for the state function?

Now, let’s call |e > these different bit configuration states
and list them below:

Bit configuration where

Basis state [ > 000...00> € i qubits are “0"
o él} 100...00>
“ & > 010..00>
= ég} 110...00>
= é_ﬁ' 001...00>
. Bl ool
82 > [111..10...00> € where the sty
bt ave all 17
¥ ler > |111...11> € Atnqbitsare 1
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Since measuring the bit configuration of the qu-register will
always collapse any |V > into one of these |e > states. then

we can say that these [€ >’s constitute the “components™ of

any possible [W > (at least from a mathematical point of
View.)

Extending this idea, we are going to assume that these [€ >

states conform a rectangular unit basis (orthonormal) of a 2®
dimensional space in which all | >’s mathematically exist.

In other words, these |€,>’s are going to play a role similar to
the one that T, 7, k& play in ordinary 3-D space.
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As a vector in this space. any state function |V > can be
specified by giving their corresponding components respect to
each one of the unit basis vectors:

(IO & component respect |éﬂ;~_:.

(X4 |& component respect |& >

Y > = 5

G’k & component respect |ék;-;

0{,211_1 & component respect Iéz”q:**
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This column vector can also be conveniently written as a row:
= T
W > 0 T 3 L (RS
where the superscript “T" stands for the “transpose’™ operation.

Mathematically, these o, ‘s can have any value, but in our
physical case we are going to impose the restriction that they
normalize |W>. This is, we are going to scale the o, ‘s so
they always make the absolute value of [W>=1.

As we mentioned. in general the W(x.y.z.t) are complex
functions. Therefore this space where the |V >’s exist must be
complex too. This means that the components o, ‘s in

W B (8, by oo Sy )

are in general complex numbers.



Under these circumstances, the magnitude ofa [V >  must

be obtained as its inner product with its transpose complex
conjugate

(MR g Y e ... 8 an. )

The standard (less cumbersome) notation for (|¥>*)! is
<Y |. so we can express this inner product as:

ﬂtﬂ\

O 4

2°-1
W ¥)=log 0 o oy = X o o=
k=10

0on_f
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Combining this expression with the previous constrain on
probabilities:

¢ ol |
Z F'k =1
k=10
we can write
2"-1 2 -1
W ¥y = Zawak = Zpﬁk = |
k=0 k=0

Thus, we see that the components o, are closely related to the
probability p, of finding a particular bit configuration:

P, = (0 ™) 0ty
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Conclusion:
No one can deny that all this stuff is quite easy!!!

The obvious restriction on the sum of probabilities being = 1 is
nothing more than the norm of an unit vector |¥ > that
represents the quantum state function of the whole qu-register

in a 2* dimensional complex vector space. in which the bit-
value configuration states |€,> conform an orthonormal basis.

Since the norm of [W > must remain equal to 1 at all times
in any state evolution process, such process can be visualized
as an unitary linear transformation (this 1s, a rotation) of vector
| > inits 2" dimensional Hilbert space.

Easy! Isn’t it?
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.- Quantum algorithms.

A quantum algorithm consists of a sequence of operations on a
qu-register aimed to evolve (unitary linearly transform) its
quantum state |V > into one which component(s) o, respect
the bit configuration state(s) |€,> associated to the solution of
a given problem have been substantially increased.

This way, when the bit configuration is measured. with a
higher probability |% > will collapse into one of these |€>’s.
yielding the desired answer.

Of course. there is not certamty that |V > will collapse into a
right |e,>. If it does not. the whole process must be repeated.

By the way...what is the (formidable) equation that describes
the dynamics of the evolution of quantum states?
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i hdW(x.y.zt) - h*V2W(xy.zt) | URy.zH)W(Ey.zt)
ot 2m

In the sections ahead we will quickly review one of the most
important research paper in theoretical Quantum Computing.
[n it, the author presents a sequence of unitary linear
transformations that evolve an initial state function of a qu-
register into a final (problem solving) state.

[f we examine Schrodinger’s (linear) equation, we can see
that in an experimental situation, a specific evolution of
W(x.y.zt) can be implemented in hardware by carefully
controlling the functional form of U(X.y.z.t). in order to
evolve a given initial state W_ into a desired final one V.
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.- A factoring problem to be solved.

A popular form of cryptography is based on the difficulty
associated with factoring a large number into its prime
elements (1.e factors 661 and 887 of number 586.307.)

In 1994 a number of 129 digits was factored using 1600
workstations, and it took them over eight months to do it. At
this rate. factoring a number with 1.000 digits would take 10-°
years. much longer than the age of the universe. ( ~ 1.5 10
years.)

If an efficient method of factoring large numbers were to be
discovered. most of the current encryption schemes would be
easily compromised. In 1994 Peter Shor, a scientist at Bell

Labs, devised a quantum algorithm that did just that. "



.- Shor’s quantum algorithm.

Shor's algorithm hinges on a number theory fact: it “x” 1s an
imteger coprime to “N” (this is. greatest common divisor,
gcd(x.N) =1) then the function F(a)= x*mod[N] 1s periodic:
F(a) = F(a+ br), with “r” the smallest period and b =0,1,2.. ..

For instance, for N =91 (=7.13) and x = 3:
e =B 1 2 3 4 5 6 7
27 81 243 729 2187

¥ =1 3 B
F(a)=3*mod[N] =1 3 9 27 81 61 1 3

We can observe that for this case r= 6.
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Shor's algorithm efficiently finds the smallest period “r”. which
1s then used as follows:

Since x°=1 =2 F(0) =x" mod[N] = 1. But periodicity implies
that also x'°7" mod[N] = 1. This expression can be rearranged
as

(x*— 1) mod[N] =0
which, using the identity (a* —b®) = (a-b)(atb) gives:
[ %2 = 1)(x™ 4 1ymod|N] =0

If “r” 1s even. we can find

ogcd(x<—1.N) and gecd(x*- + 1.N)

where at least one of them is a non-trivial factor of “N™.



Shor’s algorithm in
flowchart form:

12272011

[T
)

Use classical algorithms to

determine whether M is an

even number, a prime or 3
power of a prime.

ls M
evern, prime or
power of a
arime?

Mo

L

Handomly pick integer x
suchthat1 < x <N

:

Compute god(x,N)

!
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Use classical
algorithm to
determine
factors.
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BINGOI
A factor of N was found

god(x,N)

e

Yes 4

(xis coprimeto N)

Call Shor’s quantum sub-routine
to find the smallest period *1”
such that x* mod[N] =1

@ Yes -

Mo
¥

A factor of M is either
ged( 241 N) or ged(¥*4-1 )
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.- Shor’s quantum sub-routine.

The value of “r” is found by using a quantum register, which
will be manipulated as two separated parts, Regl and Reg2.

Let’s represent qubits by the symbol [ in the following

diagram:
Enough qubits to store

N = Number to be factored. number N-1
Reg?
-'-"'"‘—‘
r ~
L il
Regl

“n” qubits, with “n” such that
N? <= 22 < 2N* (“n” qubits can
store up to binary number 27— 1.) 48



Step 1: We start with the qu-register in state |V > = [€ > =
00...00>, or |¥>=(1,00...0)".

Step 2: We transform this |V > into a state where the Regl
component becomes an equally weighted superposition of all
the 2" bit configurations available to Regl. but at the same
time the qubits in Reg2 remain unaltered. After this unitary
linear transformation. the new state [V > is (with q = 2?):

|L|'Ir>: 1 S o
NG m'gh‘m D>

¥,.> = (o, @ ... 0gn_), 0. 0

‘ 1
With ag=a; = ... eign_, , q=21
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Step 3: The second unitary linear transformation to be
applied involves the function x™ mod[N]: for each vector
Im 0> inside the sum in the previous expression. we
compute the associated value x™ mod[N] and store it in
the Reg2 area. The resultaut state 1s:

’qu>— Im xmrnodN>

{am=g

Basically. what we have done is simply a change the basis.
from the set of vectors |[m 0> to the set |m x™mod[N] >

There still are ¢ = 2* terms in the sum. and |¥ > is still an

equally weighted superposition, but now of these different
basis states |m xX™ mod[N]>
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Now we need to make a parenthesis to discuss Entanglement.

This phenomenon is difficult to see because it only happens in

the quantum world. Let’s try an easy example of two qubits, for
which the Hilbert space has only four basis state:

|0 0=

01>

1 1>

| 1 O

Now, let’s consider a state |V > that is a superposition of
00> + |1 1> only. 51



If we measure only one qubit and find it = 1, then consistency
demands that the other qubit immediately also becomes = 1
(without being measured!) Same correlation occurs if we find
the first qubit to be = 0.

This happens because the original superposition can only
collapse to either |0 0> or |1 1>.

Definition:

“When a quantum system is a state such that measuring one
of its sub-systems immediately fixes the other, the system
1s said to be in an entangled state.”

Quantum Teleportation, a new area of scientific research, 1s based
on this phenomenon.
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Step 4: On the [W¥ > obtained in step three:

er>:;,_£§ |l‘ll xmrnodl\]>
14m=p

we measure the bit configuration of the Reg2 part only. Let’s
say we observe (or that Reg2 collapses to) binary value L.

Since the whole qu-register was entangled. this measuring
process has the side effect of keeping in the superposition only
those states whose Regl value is consistent with having the
value L in the Reg2 area.

1227712001 Guillermo Rios - Glendale College 33



Calling A this set of (consistent-with-L) values c. and n, its
number of elements, the state of the whole qu-register after this

measuring operation becomes
o L>

The set A 1s a smaller subset of m= {0, 1, ...q—1}.

‘Lpr>: 4

ﬁl C, € set A
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Step 5: The last unitary linear transformation substitutes each
one of the n, basis vectors |c. L> by a linear combination
of all the basis vectors |m L> available to Regl, involving
complex exponential functions (Fourier Transform.)

-1 271-Ccmf
| d
C, L Z m L;e '
=

After this transformation, the [V > becomes
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q-] I!TLi-C,-m/q
¥r)= L>e 1”
J_?* CEE mzu ’
set

Rearrangcine the order of summations

q-1 AT 1 Cv-fﬂfq
=3 |a (= L
=

I ¢ E set A
The term in parenthesis can be easily identified as the o _

component Of this |[¥ > along basis vector |m L>. In other
words...
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. if we now measure the bit configuration in Regl. the
probability of finding a particular |m L> state is

Eﬂic.m;'q

\(_ \I_?‘C e set A

Conceptually. to sum over a set presents no problem. But in
this case, to evaluate this summation over set A we need to
find a suitable index. That we’ll do in the next section.

Pm=[1mﬁﬂm =
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- “An index! an index! my kingdom for a index!”

The set A of bit values c_ is a subset of the of index values
m={0.1....q-1} for Regl.

Let’s define “£” based on the value “L” measured in Reg?2 as:
a) Xx'mod[N] =L
B0 <=4 < ¢

L

Since x'7°*mod[N] =L, then the set A of bit values c_ is
equal to {£ + b r} with b=0,1,2...b__. Smce m__ =q -1,

max
bmﬂ must be such that bmﬂ r+ f ~< .

Thisis, b __~< (q—1-40)/r.

max

Incorporating all this in the previous expression for p_=

E r
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(q—l—E)

Y 2

Z 27 1(br +8)m/q
e

|1
[ {m b=0

Taking out all common factors, and approximating b__
=(q—-1-t€)/r = gir—1 (assuming q>>land{ ~r)

we get
-
I
Pm=Cm Ol = €
[ Jm b=0
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This 1s -1 2

27T 1
Pm oC Z g i-brm/4

b=10

In this expression we can clearly see that p_ is much larger

4 A

for those values of “m™ that are multiples of q/r.

At this pomt if we measure the bit configuration in Regl.
overwhelming chances are that its quantum state will collapse
mto any of the bit configuration values m, such that m. =1.

q.-"'r (with.= 1.2...:1.}

Having this value “m”™. knowing “q” and that “1” is an integer.,
the determination of “r” is simple. and with it we can find the
factors of N as ged(x™ —1.N) and ged(x* + 1.N).
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.- How much larger are the p,, _;. y?

Let’s illustrate this final result with the simple case of N = 91,
and suppose that we randomly selected x =3 to be used in F(a)
= x2 mod[N]. For these values we already found that r = 6.

Since N© = 912 = 8281 and N? <q< 2 N?% we need 14
qubits in Regl so q = 2 = 16384. For this case. m=0.1.... q—
I.or ti=01...16383:

Using suitable scientific software we can define and plot the p_
function we found above as

q 2
E i

P relativel = Z c q
b=0




6100 | =1

P relativel ™
4100 F =

2100 | =

0 27305 3461 21915 10922 13632.5 16383
Ly q-1= 16383

We can see that the probabilities for some selected values of
“m” are imdeed millions of times higher than for the other
values. These values of “m” correspond to m, =1- q/r.
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A detailed view of how this probability function behaves

around m = 5461 1s

&

610° ——

4100

P relativel 1

2107

/
|

#__Fﬂ__*——
%éﬁ? 5458 5439

12272011

5460

Guillermo Rios -

5461

5462 5463 5464 5465 5466
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.- Epilogue.

At this pomt, some promising experimental success has been
achieved in testing quantum computing with a few qubits.

However, a condition for its full development is to have the
technology to manipulate state functions to a degree of total
control to change and preserve quantum states. Currently we
do not have such technology.

But someday we will, and that will open many doors to whole
new realms of technological possibilities, when we will be
able to fully exploit for practical applications the almost
magical nature of the quantum world.
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~ Appendix A

This 1s quite different to some interpretation that circulates around
about the electron being everywhere. Such interpretation 1s
logically inconsistent because when its location 1s measured. the
electron 1s always found 1n a given single location (x.v.z)

In Quantum Mechanics language. a given position 1s a eigenvalue
of the Position operator and eigenvalues are single values.

This absurd view of the electron being “everywhere” comes from
the inability of some physicists to conceive that a quantum entity
can exist without been anywhere.
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.- Appendix B.

This 1s not as weird as it seems. Actually, there are situations
in our normal life that follow this pattern of behavior.

Suppose we asked the reader “what is the color of your
limousine?” He/She may answer “I do not own a limousine.”
or in other words.

“l amin a |do-not-own-a-limousine> state.”

But in such state the reader certainly presents a probability
distribution for limousine color (reflecting his/hers liking.)

Should the reader change to a |own-a-limousine> state, the
color to be adopted (or chosen) will follow that probability
distribution that he/she presents in the current state.
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Pr #

Example of someone’s probability distribution
function for limousme color while he/she i1s n
the [DO-NOT-OWN-LIMOUSINE> state.

O
| L

black blue brown green pink red yeﬂaw white

This probability distribution would manifest if a
change toa |OWN-LIMOUSINE>  state occurs.
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