The Recursive Future And Past Equation Based On The Ananda-Damayanthi Normalized Similarity Measure Considered To Exhaustion

ISSN 1751-3030

Author: **Ramesh Chandra Bagadi**

Affiliation 1:

Affiliation 2:

Founder & Owner

Affiliation 3:

Founder & Owner

Ramesh Bagadi Consulting LLC (R420752),

Madison, Wisconsin-53715, United States Of America.

Data Scientist

International School Of Engineering (INSOFE)

2nd Floor, Jyothi Imperial, Vamsiram Builders, Janardana Hills, Above South India Shopping Mall,, Old Mumbai Highway, Gachibowli,, Hyderabad, TelanganaState, 500032, India.

tex*N* **Consulting Private Limited**, Gayatrinagar, Jilleleguda, Hyderabad, Telengana State, 500097, India.

Email:

Email:

Email: ramesh.bagadi@insofe.edu.in rameshcbagadi@ uwalumni.com rameshcbagadi@ uwalumni.com

Abstract

In this research investigation, the author has presented a Recursive Past Equation and a Recursive Future Equation based on the Ananda-Damayanthi Normalized Similarity Measure considered to Exhaustion [1].

The Recursive Future Equation

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$

we can find y_{n+1} using the following Recursive Future Equation

$$
y_{n+1} = \text{Limit} \frac{\left\{ \sum_{k=1}^{n} y_k \left\{ \left\{ \frac{S_k}{L_k} \right\} + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\} + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\} + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\} \right\} \right\}}{\sqrt{\sum_{k=1}^{n} \left\{ \left\{ \frac{S_k}{L_k} \right\}^2 + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\}^2 + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\}^2 + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\}^2 + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\}^2 \right\}} \right\}}
$$

where

$$
S_{k} = \text{Smaller of } (y_{n+1}, y_{k}) \text{ and } L_{k} = \text{Larger of } (y_{n+1}, y_{k})
$$
\n
$$
S_{k+1} = \text{Smaller of } ((L_{k} - S_{k}), y_{k}) \text{ and } L_{k+1} = \text{Larger of } ((L_{k} - S_{k}), y_{k})
$$
\n
$$
S_{k+2} = \text{Smaller of } ((L_{k+1} - S_{k+1}), y_{k}) \text{ and } L_{k+2} = \text{Larger of } ((L_{k+1} - S_{k+1}), y_{k})
$$
\n
$$
S_{k+p-1} = \text{Smaller of } ((L_{k+p-2} - S_{k+p-2}), y_{k}) \text{ and } L_{k+p-1} = \text{Larger of } ((L_{k+p-2} - S_{k+p-2}), y_{k})
$$
\n
$$
S_{k+p} = \text{Smaller of } ((L_{k+p-1} - S_{k+p-1}), y_{k}) \text{ and } L_{k+p} = \text{Larger of } ((L_{k+p-1} - S_{k+p-1}), y_{k})
$$

where *p* is a Number which makes the aforementioned Difference Residual $\left(L_{k+p-1}-S_{k+p-1}\right)$ tend to Zero.

From the above Recursive Equation, we can solve for y_{n+1} . **Proof:**

We consider y_1 and find the Ananda-Damayanthi Similarity [1] between y_1 and y_{n+1} which turns out to be J ⊱ \mathcal{L} l ∤ ſ 1 1 *L* $\left\{\frac{S_1}{S_1}\right\}$. We now consider the lack of similarity part, i.e., $(L_1 - S_1)$ and again find the Similarity between y_1 and $(L_1 - S_1)$ which turns out to be J $\left\{ \right\}$ \mathbf{I} $\overline{\mathcal{L}}$ ⇃ $=\bigg\{$ J $\left\{ \right.$ \mathbf{I} $\overline{\mathcal{L}}$ ╬ $\left\lceil$ $^{+}$ $^{+}$ 2 2 $1 + 1$ $1 + 1$ *L S L* $\left\{\frac{S_{1+1}}{S_2}\right\}$ And similarly, we find J ⊱ \mathcal{L} l ∤ $\left\} = \left\{$ ≻ Ì l ∤ ſ ┿ $\overline{+}$ 3 3 1+2 $1 + 2$ *L S L* $S_{1+2}\left\{\right\} = \left\{\frac{S_3}{S_2}\right\},$ J ⊱ \mathcal{L} l ∤ $\left\} = \left\{$ ⊱ \mathcal{L} l ∤ ſ ٠ ٠ 4 4 1+3 1+3 *L S L* $\left\{\frac{S_{1+3}}{S_{1+3}}\right\} = \left\{\frac{S_4}{S_{1+3}}\right\}, \dots \dots \dots \dots$ \int $\overline{}$ ⊱ $\overline{}$ l $\overline{}$ ∤ $\begin{cases} = \begin{cases} 1 \\ 0 \end{cases} \end{cases}$ I ∤ \mathcal{L} l I ∤ ſ $+n +n$ *p p p p L S L S* $1 + p - 1$ $\frac{1+p-1}{r}$ = $\left\{\frac{p}{r}\right\}$, \int I ∤ \mathcal{L} l $\mathsf I$ ∤ ſ $\,{}^{+}\,$ $\,{}^{+}\,$ *p p L S* 1 $\left\{ \mathbf{w}_{1},\mathbf{w}_{2},\mathbf{w}_{3},\ldots\right\}$ we consider $\mathbf{y}_{2},\mathbf{y}_{3},\ldots\mathbf{w}_{n}$ upto y_{n-1} and y_n and compute such aforementioned quantities and add them all. We now Normalize, i.e., divide each of this value by the quantity $\sum_{k=1} \left\{ \left\{ \frac{B_k}{L_k} \right\} + \left\{ \frac{B_{k+1}}{L_{k+1}} \right\} + \left\{ \frac{B_{k+2}}{L_{k+2}} \right\} + \dots + \left\{ \frac{B_{k+p-1}}{L_{k+p-1}} \right\} + \left\{ \frac{B_{k+p-1}}{L_{k+p-1}} \right\}$ \pm $+ p +n ^+$ $^{+}$ $^+$ $^{+}$ \int $\mathsf I$ ⊱ \mathcal{L} l $\overline{}$ ∤ ſ \int $\mathsf I$ ⊱ \mathcal{L} l $\overline{}$ ∤ ſ $\Big\}$ + $\overline{}$ ⊱ \mathcal{L} l I ∤ ſ } ++
) ⊱ \mathcal{L} l ∤ $\begin{cases} 2 \\ + \end{cases}$ ⊱ \mathcal{L} l ∤ $\begin{cases} 2 \\ + \end{cases}$ ⊱ \mathcal{L} l ∤ *n* | [$k=1$ $\begin{bmatrix} L_k \end{bmatrix}$ $\begin{bmatrix} L_{k+1} \end{bmatrix}$ $\begin{bmatrix} L_{k+2} \end{bmatrix}$ $\begin{bmatrix} L_{k+p-1} \end{bmatrix}$ $\begin{bmatrix} L_{k+p-1} \end{bmatrix}$ *k p k p k p k k k k k k L S L S L S L S L S* 1 2 $($ 1 1 2 2 2 2 1 1 2 \ldots $\left\{\frac{S_{k+p-1}}{S_{k+p-1}}\right\}$ + $\left\{\frac{S_{k+p-1}}{S_{k+p-1}}\right\}$. We equate this value to y_{n+1}

as the RHS is the Total Normalized Similarity contribution from each element of the Time Series Set $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ with respect to y_{n+1} .

General Form

We can note that the above equation
\n
$$
y_{n+1} = \lim_{p \to \infty} \frac{\left\{ \sum_{k=1}^{n} y_k \left\{ \left(\frac{S_k}{L_k} \right) + \left(\frac{S_{k+1}}{L_{k+1}} \right) + \left(\frac{S_{k+2}}{L_{k+2}} \right) + \dots + \left(\frac{S_{k+p-1}}{L_{k+p-1}} \right) + \left(\frac{S_{k+p}}{L_{k+p}} \right) \right] \right\}}{\sqrt{\sum_{k=1}^{n} \left\{ \left(\frac{S_k}{L_k} \right)^2 + \left(\frac{S_{k+1}}{L_{k+1}} \right)^2 + \left(\frac{S_{k+2}}{L_{k+2}} \right)^2 + \dots + \left(\frac{S_{k+p-1}}{L_{k+p-1}} \right)^2 + \left(\frac{S_{k+p}}{L_{k+p}} \right)^2 \right\}}}
$$

is in general of the form

$$
y_{n+1} = \text{Limit} \frac{\left\{ a_1 y_{n+1} + \frac{a_2}{y_{n+1}} \right\}}{\sqrt{\left\{ (a_3 y_{n+1})^2 + \left(\frac{a_4}{y_{n+1}} \right)^2 \right\}}}
$$

where, a_1 , a_2 , a_3 and a_4 are some positive integers.

We can further write the above equation as

$$
(y_{n+1})^2 \left\{ (a_3 y_{n+1})^2 + \left(\frac{a_4}{y_{n+1}} \right)^2 \right\} = \left\{ a_1 y_{n+1} + \frac{a_2}{y_{n+1}} \right\}^2
$$

$$
(a_3)^2 (y_{n+1})^6 - (a_1)^2 (y_{n+1})^4 + \left\{ a_4 \right\}^2 - (2a_1 a_2) \left\{ y_{n+1} \right\}^2 - (a_2)^2 = 0
$$
 Equation A

Defining Error

We define Error in the following fashion:

For the Recursive Future Equation:

Method 1

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ we consider only $Y = \{y_1, y_2, y_3, \dots, y_{n-1}\}$ and use the aforementioned Recursive Future Equation to find the n^{th} term. Say this is $^p y_n$ where the p stands for the 'predicted' or 'forecasted' value. Then, the Error is defined by

$$
\varepsilon_F = \left(\frac{y_n - \nu_n}{y_n}\right)
$$

Method 2

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ we consider it and use the aforementioned Recursive Future Equation to find the $(n+1)^{th}$ term. Say this is $^{p}y_{n+1}$ where the p stands for the 'predicted' or 'forecasted' value. We now consider the Time Series Set $Y = \{y_2, y_3, \ldots, y_{n-1}, y_n, y_{n+1}\}\$ and use the aforementioned Recursive Past Equation to generate the term previous to y_2 , i.e., y_1 . Then, the Error is defined by

$$
\varepsilon_F = \left(\frac{y_1 - \nu y_1}{y_1}\right)
$$

Therefore, simple Error can be given by

 $(y_1 - y_1) = (y_1 - \text{Desired Root Of})(c_3)^2 (y_{n+1})^6 - (c_1)^2 (y_{n+1})^4 + (c_4)^2 - (2c_1c_2)(y_{n+1})^2 - (c_2)^2 = 0$ 2 2 $1^{\circ}2^{\prime}$ \mathcal{N} \mathcal{N} $n+1$ 2 4 4 1 2 1 6 1 $\varepsilon_F = (y_1 - y_1) = (y_1 - \text{Desired Root Of})(c_3)^2(y_{n+1})^6 - (c_1)^2(y_{n+1})^4 + (c_4)^2 - (2c_1c_2)(y_{n+1})^2 - (c_2)^2 = 0$ where the Equation $(c_3)^2(y_{n+1})^6 - (c_1)^2(y_{n+1})^4 + (c_4)^2 - (2c_1c_2)(y_{n+1})^2 - (b_2)^2 = 0$ 2 2 $1^{\circ}2 J N J n+1$ 2 4 4 1 2 1 6 1 $(c_3)^2(y_{n+1})^6 - (c_1)^2(y_{n+1})^4 + (c_4)^2 - (2c_1c_2)(y_{n+1})^2 - (b_2)^2 = 0$ is analogously developed as equation B using the Time Series Set $Y = \{y_2, y_3, \dots, y_{n-1}, y_n, y_{n+1}\}\)$ to find y_1 , where where, c_1 , c_2 , c_3 and c_4 are some positive integers.

The Functional Form Equation For Making Future Forecast

We consider the equation shown below

$$
\varepsilon_F = (y_1 - {}^p y_1) = \left\{ y_1 - \text{Desired Root Of} \left\{ (c_3)^2 (y_{n+1})^6 - (c_1)^2 (y_{n+1})^4 + \left\{ (c_4)^2 - (2c_1 c_2) \right\} (y_{n+1})^2 - (c_2)^2 \right\} = 0 \right\}
$$

and minimize the Error w.r.t y_{n+1} , i.e.,

0 1 $=$ *n F dy* $\frac{d\varepsilon_F}{dt} = 0$ with $\frac{d^2\varepsilon_F}{dt^2} > 0$ 1 2 > *n F dy* $\frac{d^2 \mathcal{E}_F}{d \mu} > 0$ at the value of $y_{n+1}|_{\mathcal{E}_F \text{min}}$ where is \mathcal{E}_F minimum. The Equation at which this error is Minimum i.e., $n+1$ ε_r *Min F* dy_{n+1} $\Big|_{\varepsilon_F}$ *d* ε $\frac{{\cal E}_F}{\cal E}=0$ 1 Ξ \pm can be used to re-calculate the a_1 , a_2 , a_3 and a_4 and say these are a_{1new} , a_{2new} , a_{3new} and a_{4new} , The Functional Form Equation

For Making Future Forecast becomes

$$
(a_{3new})^{2}(y_{n+1})^{6} - (a_{1new})^{2}(y_{n+1})^{4} + (a_{4new})^{2} - (2a_{1new}a_{2new})^{2}(y_{n+1})^{2} - (a_{2new})^{2} = 0
$$

The Recursive Past Equation

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$

we can find y_0 using the following Recursive Past Equation

$$
y_{n} = \n\lim_{p \to \infty} \frac{\left\{ \sum_{k=0}^{n-1} y_{k} \left\{ \left\{ \frac{S_{k}}{L_{k}} \right\} + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\} + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\} + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\} \right\}}{\sqrt{\sum_{k=0}^{n-1} \left\{ \left\{ \frac{S_{k}}{L_{k}} \right\}^{2} + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\}^{2} + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\}^{2} + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\}^{2} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\}^{2} \right\}}}
$$

where

$$
S_{k} = \text{Smaller of } (y_{n}, y_{k}) \text{ and } L_{k} = \text{Large } \text{er of } (y_{n}, y_{k})
$$
\n
$$
S_{k+1} = \text{Smaller of } ((L_{k} - S_{k}), y_{k}) \text{ and } L_{k+1} = \text{Large } \text{er of } ((L_{k} - S_{k}), y_{k})
$$
\n
$$
S_{k+2} = \text{Smaller of } ((L_{k+1} - S_{k+1}), y_{k}) \text{ and } L_{k+2} = \text{Large } \text{er of } ((L_{k+1} - S_{k+1}), y_{k})
$$
\n
$$
S_{k+p-1} = \text{Smaller of } ((L_{k+p-2} - S_{k+p-2}), y_{k}) \text{ and } L_{k+p-1} = \text{Large } \text{er of } ((L_{k+p-2} - S_{k+p-2}), y_{k})
$$
\n
$$
S_{k+p} = \text{Smaller of } ((L_{k+p-1} - S_{k+p-1}), y_{k}) \text{ and } L_{k+p} = \text{Large } \text{er of } ((L_{k+p-1} - S_{k+p-1}), y_{k})
$$

where *p* is a Number which makes the aforementioned Difference Residual $\left(L_{k+p-1}-S_{k+p-1}\right)$ tend to Zero.

From the above Recursive Equation, we can solve for y_0 .

Proof:

We consider y_0 and slate the Ananda-Damayanthi Similarity [1] between y_0 and y_n which turns out to be J ⊱ \mathcal{L} l ∤ ſ *L* $\frac{S_0}{S}$. We now consider the lack of similarity part, i.e., $(L_0 - S_0)$ and again find the Similarity between y_0 and $(L_0 - S_0)$ which turns out to be J $\left\{ \right\}$ \mathcal{L} $\overline{\mathcal{L}}$ ╎ $=\bigg\{$ J $\left\{ \right\}$ \mathbf{I} $\overline{\mathcal{L}}$ ╬ $\left\lceil$ $^{+}$ $^{+}$ 1 1 $_{0+1}$ $0 + 1$ *L S L* $\left\{\frac{S_{0+1}}{S}\right\} = \left\{\frac{S_1}{S}\right\}$. And similarly, we find J ⊱ \mathcal{L} l ∤ $\bigg\} = \bigg\{$ ⊱ \mathcal{L} l ∤ ſ $\,$ $\,$ 2 2 $_{0+2}$ 0+2 *L S L* $\left\{\frac{S_{0+2}}{S}\right\} = \left\{\frac{S_2}{S}\right\},\$ J ⊱ \mathcal{L} l ∤ $\begin{cases} = \begin{cases} \end{cases} \end{cases}$ ⊱ \mathcal{L} l ∤ ſ $^{+}$ $^{+}$ 3 3 0+3 0+3 *L S L* $\left\{\frac{S_{0+3}}{S_{0+3}}\right\} = \left\{\frac{S_3}{S_{0+3}}\right\}, \dots \dots \dots \dots$ \int $\mathsf I$ ⊱ $\overline{}$ l I ∤ $\begin{cases} = \begin{cases} 1 \\ 0 \end{cases} \end{cases}$ I ∤ \mathcal{L} l I ∤ ſ т, $+ p + p -$ 1 1 $0 + p - 1$ $0 + p - 1$ *p p p p L S L S* , \int $\overline{}$ ∤ $\overline{}$ l $\overline{}$ ∤ $\begin{cases} = \begin{cases} 1 \\ 1 \end{cases} \end{cases}$ I ∤ $\overline{}$ l $\overline{}$ ∤ \int $\,{}^{+}\,$ $^+$ *p p p p L S L S* 0 $\left\{\frac{\partial^2 p}{\partial t}\right\}$. We now add them all. Similarly, we consider y_2 , y_3

,....., upto y_{n-1} and compute such aforementioned quantities and add them all. We now

Normalize, i.e., divide each of this value by the quantity \sum^{n-1} $= 0$ | ($\frac{N}{k}$ | $\frac{N}{k+1}$ | $\frac{N+2}{k+2}$ | $\frac{N}{k+2}$ | $\frac{N}{k+1}$ | $\frac{N}{k+2}$ | $\frac{N}{k+1}$ | $\frac{N}{k+1}$ + $+n + p ^{+}$ $^+$ $^{+}$ $^+$ \int $\mathsf I$ ⊱ \mathcal{L} l I ∤ ſ \int $\overline{}$ ⊱ \mathcal{L} l $\overline{}$ ∤ ſ $\Big\}$ + I ⊱ \mathcal{L} l I ₹ ſ } +………+
) ⊱ \mathcal{L} l ∤ $\begin{cases} 1 \end{cases} + \begin{cases} 1 \end{cases}$ ⊱ \mathcal{L} l ∤ $\begin{cases} 1 \end{cases} + \begin{cases} 1 \end{cases}$ ⊱ \mathcal{L} l ∤ $\frac{1}{2}$ | $\left($ 0 2 ($\sqrt{2}$ 1 1 2 2 2 2 1 1 2 *n* $k=0$ $\lfloor L_k \rfloor$ $\lfloor L_{k+1} \rfloor$ $\lfloor L_{k+2} \rfloor$ $\lfloor L_{k+p-1} \rfloor$ $\lfloor L_{k+p-1} \rfloor$ *k p k p k p k k k k k k L S L S L S L S L* $\frac{S_k}{S}$ + $\frac{S_{k+1}}{S}$ + $\frac{S_{k+2}}{S}$ ++ $\frac{S_{k+p-1}}{S}$ + $\frac{S_{k+p}}{S}$ + $\$

the RHS is the Total Normalized Similarity contribution from each element of the Time Series Set $Y = \{y_0, y_1, y_2, y_3, \dots, y_{n-1}\}$ with respect to y_n .

General Form

We can note that the above equation
\n
$$
y_{n} = \text{Limit} \frac{\left\{ \sum_{k=0}^{n-1} y_{k} \left\{ \left\{ \frac{S_{k}}{L_{k}} \right\} + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\} + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\} + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\} \right\}}{\sqrt{\sum_{k=0}^{n-1} \left\{ \left\{ \frac{S_{k}}{L_{k}} \right\}^{2} + \left\{ \frac{S_{k+1}}{L_{k+1}} \right\}^{2} + \left\{ \frac{S_{k+2}}{L_{k+2}} \right\}^{2} + \dots + \left\{ \frac{S_{k+p-1}}{L_{k+p-1}} \right\}^{2} + \left\{ \frac{S_{k+p}}{L_{k+p}} \right\}^{2} \right\}}}
$$

is in general of the form

$$
y_{n} = \frac{\left\{b_{1}y_{n} + \frac{b_{2}}{y_{n}}\right\}}{\sqrt{\left\{(b_{3}y_{n})^{2} + \left(\frac{b_{4}}{y_{n}}\right)^{2}\right\}}}
$$

where, b_1 , b_2 , b_3 and b_4 are some positive integers.

We can further write the above equation as

$$
(y_n)^2 \left\{ (b_3 y_n)^2 + \left(\frac{b_4}{y_n} \right)^2 \right\} = \left\{ b_1 y_n + \frac{b_2}{y_n} \right\}^2
$$

\n
$$
(b_3)^2 (y_n)^6 - (b_1)^2 (y_n)^4 + \left\{ (b_4)^2 - (2b_1 b_2) \right\} (y_n)^2 - (b_2)^2 = 0
$$
 Equation B

where, b_1 , b_2 , b_3 and b_4 are some positive integers.

Defining Error

We define Error in the following fashion:

For the Recursive Past Equation:

Method 1

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ we consider only $Y = \{y_2, y_3, \dots, y_{n-1}, y_n\}$ and use the aforementioned Recursive Future Past to find the 1st term. Say this is ${}^p\mathcal{Y}_1$ where the p stands for the 'predicted' or 'forecasted' value. Then, the Error is defined by

$$
\varepsilon_P = \left(\frac{y_1 - \frac{p}{y_1}}{y_1}\right)
$$

Method 2

Given a Time Series $Y = \{y_1, y_2, y_3, \dots, y_{n-1}, y_n\}$ we consider it and use the aforementioned Recursive Future Equation to find the term previous to y_1 . Say this is y_0 where the *p* stands for the 'predicted' or 'forecasted' value. We now consider the Time Series Set $Y = \{y_0, y_1, y_2, y_3, \dots, y_{n-1}\}\$ and use the aforementioned Recursive Future Equation to generate the term next to y_{n-1} , i.e., y_n . Then, the Error is defined by

$$
\varepsilon_F = \left(\frac{y_n - \nu_p}{y_n}\right)
$$

Functional Form Equation For Making Past Forecast

A Seasoned reader of author Literature, especially the section on '*Functional Form Equation For Making Future Forecast'* can infer the procedure for the Past Forecast which is very much similar to the Future Forecast.

References

1.Bagadi, R. (2016). Proof Of As To Why The Euclidean Inner Product Is A Good Measure Of Similarity Of Two Vectors. *PHILICA.COM Article number 626*. See the Addendum as well.

http://philica.com/display_article.php?article_id=626

2.http://www.vixra.org/author/ramesh_chandra_bagadi 3.http://philica.com/advancedsearch.php?author=12897