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Abstract

We investigate relationships between two forms of Hilbert-Schmidt two-re[al]bit and two-qubit
"separability functions”—those recently advanced by Lovas and Andai (arXiv:1610.01410), and
those earlier presented by Slater (J. Phys. A 40 [2007] 14279). In the Lovas-Andai framework,
the independent variable ¢ € [0,1] is the ratio o(V') of the singular values of the 2 x 2 matrix
V= D;/2D1_1/2 formed from the two 2 x 2 diagonal blocks (D1, Ds) of a randomly generated 4 x 4
density matrix D. In the Slater setting, the independent variable p is the diagonal-entry ratio
importantly, u =€ or u = % when both D; and Dy are themselves diagonal. Lovas
and Andai established that their two-rebit function x1(¢) (= €) yields the previously conjectured
Hilbert-Schmidt separability probability of %?1' We are able, in the Slater framework (using cylin-
drical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result.
Further, we similarly obtain its new (much simpler) two-qubit counterpart, x2(c) = %52 (4 — 52).
Verification of the companion conjecture of a Hilbert-Schmidt separability probability of 3% im-
mediately follows in the Lovas-Andai framework. We obtain the formulas for x7(g) and x2(g) by
taking D; and Ds to be diagonal, allowing us to proceed in lower (7 and 11), rather than the full
(9 and 15) dimensions occupied by the convex sets of two-rebit and two-qubit states. The CAD’s
themselves involve 4 and 8 variables, in addition to = €. We also investigate extensions of these

analyses to rebit-retrit and qubit-qutrit (6 x 6) settings.

PACS numbers: Valid PACS 03.67.Mn, 02.50.Cw, 02.40.Ft, 02.10.Yn, 03.65.-w
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To begin our investigations, focusing on recent work of Lovas and Andai [1], we examined

a certain possibility—motivated by a number of previous studies (e.g. [2-5]) and the apparent

strong relevance there of the Dyson-index vantage upon random matrix theory [6].

More

specifically, we ask whether the (not yet constructed by them) Lovas-Andai “separability

function” x(¢) for the standard (complex) two-qubit systems might be simply proportional



(or even equal) to the square of their successfully constructed two-rebit separability function

[1, eq. (9)],
1 O R =) EC
S (i) e () e

Let us note that xi(e) has a closed form,

2 (€2 (4Liz(g) — Lis (¢?)) + * (— tanh™'(¢)) + € — £ + tanh ' (¢))

m2e2

: (2)

where the polylogarithmic function is defined by the infinite sum
_y 2
k
k=1
for arbitrary complex s and for all complex arguments z with |z| < 1. Let us note also that

in the proof of (1), the authors are able to formulate the problem rather concisely in terms

of a “defect function” [1, App. A]

16 [° f+1
= —6/ cosh(t) — sinh(t)%log(6 il )dt. (3)
3 0 et —1

We will be able in sec. IV A 1 to obtain the formula (2) for x;(¢) by alternative (cylindrical
algebraic decomposition [7]) means. Further, in our chief (titular) advance, in sec. IVB1,
we will apply the same basic methodology to obtain (the much simpler) formula (39) for
X2(€)-

As part of their analysis, Lovas and Andai assert [1, p. 13] that

J o (VE/ F) (1= (1 )(z — y)dyde

f (1 —22)(1 - y2)(z — y)dyda
—1

: (4)

sep
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with the denominator evaluting to %. Here, Pge,(R) is the Hilbert-Schmidt separability

probability for the nine-dimensional convex set of two-rebit states [8]. With the indicated

use of Yi(¢) this probability evaluates to 22 (the numerator of (4), they find, equalling

16

29
32 411 = %, with % = 1) a result that had been strongly anticipated by prior analyses
35
]

9-11].



If the (Dyson-index) proportionality relationship

Xa(e) o< Xi(e) ()

held, we would have

Here, Ps.,(C) is-in the Lovas-Andai framework—the Hilbert-Schmidt separability probability
for the fifteen-dimensional convex set of the (standard/complex) two-qubit states [12]. They

expressed hope that they too would be able to demonstrate that Ps.,(C) as has been

_ 8
=3
strongly indicated is, in fact, the case [9-11]. We generalized (from o = %) the denominator

of the ratio (6) to

72601373201 (3a) T (20 + 1)?
I'(a+2)T (a+ ) T(Ba+2)

| x(l —2?)**(1 — y?)**(x — y)**dydz = (7)
/]

—-1-1

Our original Dyson-index-based ansatz, then, was that

I e (VB VR (= o = 9 = gy

(1 - a2 (1 - y2)2e(x — y)edyda

(8)

L
Le—y

would be proportional to the generalized (a-th) Hilbert-Schmidt separability probability.

1

For o = 3, we recover the two-rebit formula (4), while for o = 1, under the ansatz, we

8

would obtain the two-qubit value of 3,

while for a = 2, the two-quater|nionic|bit value of

29 would be gotten, and similarly, for o = 4, the (presumably) two-octo[nionic]bit value

of ;5535 [13]. (The volume forms listed in [1, Table 1] for the self-adjoint matrices M3%,

_ a2
sa lz—y| case, and (= y)2 sin ¢

5c) are 2= in the o = in the o = 1 case, respectively. Our

N | +—=

calculations of the term det(1 — Y2)? appearing in the several Lovas-Andai volume formulas

[1, pp. 10, 12], such as this one for the volume of separable states,

2
. det(D)%~7
VO] ( {4,K}(D)) - —26d

I1-Y
X / det([ — Yz)d X X400 ( H—Y) d)\d+2(Y),

Ea



[the function o(V') = € being the ratio of the two singular values of the 2 x 2 matrix V|
appear to be consistent with the use of the (1 — 2%)?*(1 — 4?)>* terms in the ansatz (8).)
The values a = %, 1,2,4 themselves correspond to the real, complex, quaternionic and

octonionic division algebras. We can, further, look at the other nonnegative (non-division

2999
103385 °

algebra) integral values of a.. So, for a = 3, we have the formal prediction [11, 14] of

In this context, let us first note that for the denominator of (6), corresponding to o = 1,

we obtain 22 (a result we later importantly employ (40)). Using high-precision numeri-

cal integration (http://mathematica.stackexchange.com/questions/133556 /how-might-one-
obtain-a-high-precision-estimate-of-the-integral-over-0-1-of-a-s) for the corresponding nu-
merator of (6), we obtained 0.0358226206958479506059638010848. The resultant ratio (di-
viding by 2%) is 0.220393076546720789860910104330, within 90% of 0.242424. However,
somewhat disappointingly, it was not readily apparent as to what exact values these figures
might correspond.

The analogous numerator-denominator ratio in the v = 2 (two-quaterbit) instance was

0.0534499, while the predicted separablity probability is % ~ 0.0804954. It can then be

seen that the required constant of proportionality (8:8233322 = 0.664013) in the a@ = 2 case

is not particularly close to the square of that in the a = 1 instance (0.9091062 = 0.826473).

Similarly, in the o = 4 case, the numerator-denominator ratio is 0.00319505, while the

predicted value would be 43341134219 = 0.0108722 (with the ratio of these two values being
0.293873). So, our ansatz (8) would not seem to extend to the sequence of constants of
proportionality themselves conforming to the Dyson-index pattern. But the analyses so far

could only address this specific issue concerning constants of proportionality.

II. EXPANDED ANALYSES

We, then, broadened the scope of the inquiry with the use of this particular formula of

Lovas and Andai for the volume of separable states [1, p. 11],

VOI(D?47K}> = / det(Dng)df(Dngl)d)\2d+3(D17 DQ),

Dyi,Dy >0
Tl"(Dl + DQ) =1



where

f(DaDy") = xa o exp <— cosh™ (%1 / 32EE§3TY (D2D11)>) : (10)

Here D; denotes the upper diagonal 2 x 2 block, and Ds, the lower diagonal 2 x 2 block of
the 4 x 4 density matrix [1, p. 3],

D, C
C* Dy

The Lovas-Andai parameter d is defined as 1 in the two-rebit case and 2 in the standard

two-qubit case (that is, in our notation, a = g) Further, the relevant division algebra K
is R, C or Q, according to d = 1,2,4. The exponential term in (10) corresponds to the

“singular value ratio”,

_ IV _ 1 (1 [det(Dy) ~1
(V) =exp (— cosh (W)) = exp (— cosh (51 / det(Dg)Tr (DQD1 ))) ,
(11)

of the matrix V = D;/ Dy 2 where the Hilbert-Schmidt norm is indicated. (In [15, sec.

IV] the ratio of singular values of 2 x 2 “empirical polarization matrices” is investigated.)

A. Generation of random density matrices
1. Two-rebit case

Firstly, taking d = 1, we generated 687 million random (with respect to Hilbert-Schmidt
measure) 4 X 4 density matrices situated in the 9-dimensional convex set of two-rebit states
(16, App. BJ] [8, 17]. Of these, 311.313,185 were separable (giving a sample probability
of 0.453149, close to the value of % ~ 0.453125, now formally established by Lovas and
Andai). Additionally, we binned the two sets (separable and all) of density matrices into
200 subintervals of [0, 1], based on their corresponding values of o(V) (Fig. 1). Fig. 2 is a
plot of the estimated separability probabilities (remarkably close to linear with slope 1-as
previously observed [1, Fig. 1]), while Fig. 3 shows the result of subtracting from this curve
the very well-fitting (as we, of course, expected from the Lovas-Andai proof) function x;(¢),
as given by ((1),(2)). (If one replaces xi(e) by simply its close approximant &, then the
corresponding integrations would yield a “separability probability”, not of g—i ~ 0.453125,



H density matrices

6x106;
5x106;
4x106;
3x106;
2x’|065-

1x10° F

L 1 L L L 1 L L L 1 L L L 1 L L | U(V)
0.2 0.4 0.6 0.8 1.0

FIG. 1: Recorded counts by binned values of the singular value ratio o (V') of 687 million two-rebit
density matrices randomly generated (with respect to Hilbert-Schmidt measure), along with the

accompanying (lesser) counts of separable density matrices
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FIG. 2: Estimated two-rebit separability probabilities (close to linear with slope 1)

but of £ — % ~ 0.428418. If we similarly employ €2 in the two-qubit case, rather than the
[previously undetermined] x5 (¢), the corresponding integrations yield % ~ 0.19697, and not
the presumed correct result of % ~ 0.242424.) Fig. 21 will serve as the two-qubit analogue

of Fig. 3, further validating the formula for ys(¢) to be obtained.
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FIG. 3: Result of subtracting xi(¢) from the estimated two-rebit separability probability curve

(Fig. 2). Fig. 21 will be the two-qubit analogue.
2. Two-qubit case

We, next, to test a Dyson-index ansatz, taking d = 2, generated 6,680 million ran-
dom (with respect to Hilbert-Schmidt measure) 4 x 4 density matrices situated in the 15-
dimensional convex set of (standard) two-qubit states [16, eq. (15)]. Of these, 1,619,325,156
were separable (giving a sample probability of 0.242414, close to the conjectured, well-
supported [but not yet formally proven| value of % ~ 0.242424). We, again, binned the
two sets (separable and all) of density matrices into 200 subintervals of [0,1], based on
their corresponding values of o(V) (Fig. 4). Fig. 5 is a plot (now, clearly non-linear [cf.
Fig. 2]) of the estimated separability probabilities, along with the quite closely fitting, but
mainly slightly subordinate y3(¢) curve. Fig. 6 shows the result /residuals (of relatively small
magnitude) of subtracting y3(¢) from the estimated separability probability curve. So, it
would seem that the square of the explicitly-constructed Lovas-Andai two-rebit separability
function x4 () provides, at least, an interesting approximation to their not then constructed
two-qubit separability function xa(e).

The Dyson-index ansatz—the focus earlier in the paper—appears to hold in some triv-
ial/degenerate sense if we employ rather than the Lovas-Andai or Slater separability func-
tions discussed above, the “Milz-Strunz” ones [18]. Then, rather than the singular-value

ratio € or the ratio of diagonal entries p, one would use as the dependent /predictor variable,
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FIG. 4: Recorded counts by binned values of the singular value ratio o(V) of all 6,680 million
two-qubit density matrices randomly generated (with respect to Hilbert-Schmidt measure), along

with the accompanying (lesser) counts of separable density matrices

the Casimir invariants of the reduced systems [19]. In these cases, the separability functions
become simply constant in nature. In the two-rebit and two-qubit cases, this invariant is the
Bloch radius (r) of one of the two reduced systems. From the arguments of Lovas and Andai
[1, Cor. 2, Thm. 2], it appears that one can assert that the Milz-Strunz form of two-rebit
separability function assumes the constant value % for r € [0,1]. Then, it would seem that

the two-qubit counterpart would be the constant value % for r € [0, 1], with the correspond-

8
ing (Dyson-index ansatz) constant of proportionality being ( %?1913)2 = 22798 ~ 1.1807.

IIT. RELATIONS BETWEEN ¢ =¢(V) AND BLOORE/SLATER VARIABLE 4

Let us now note a quite interesting phenomenon, apparently relating the Lovas-Andai
analyses to previous ones of Slater [2]. If we perform the indicated integration in the de-
nominator of (4), following the integration-by-parts scheme adopted by Lovas and Andai [1,
p. 12], at an intermediate stage we arrive at the univariate integrand

1283 (5 (5t® + 3210 — 32¢2 — 5) — 12 ((¢* +2) (¢* + 14> + 8) t* + 1) log(t))
3(2—1)° '

(12)

10
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FIG. 5: Estimated two-qubit separability probabilities together with the slightly subordinate curve
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FIG. 6: Result of subtracting the (slightly subordinate) y?(¢) curve from the estimated two-qubit

separability probability curve in Fig. 5
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161
3, Where %5t = %.) This, interestingly,

35
bears a very close (almost identical) structural resemblance to the jacobian/volume-element

pt (5 (5p® +32p° — 320> — 5) — 12 (1 +2) (p* + 14p° + 8) p* + 1) log(p1))
1890 (p2 — 1)°

(Its integral over t € [0, 1] equals the noted value o

Hreal (/,l,) = -

(13)

(integrating to o2 over u € [0, 1]) reported by Slater in [2, eq. (15)] and [20, eq. (10)],

3393760
also in the context of two-rebit separability functions. (We change the notation in those
references from Jyeqi () t0 Hyea (1) here, since we have made the transformation v — p?, to
facilitate this comparison, and the analogous one below in the two-qubit context—with the
approach of Lovas and Andai. However, we will still note some results below in the original
[v] framework.) To faciltate the comparison between these two functions, we set t = y = t,
and then divide (12) by (13), obtaining the simple ratio
2

80640 ({1 — %) | (1)

But we note that in in [2] and [20]-motivated by work in a 3 x 3 density matrix context

of Bloore [21]-the variable p was taken to be the ratio 1/3“344 of the square root of the
product of the (1,1) and (4,4) diagonal entries of the density matrix [2, eq. (1)]

dy; z12V/ d11d22 213\/d11d33 214\/d11d44
D— z12V/ d11d2 da2 2’23\/d22d33 224\/d22d44 (15)
213 \/ dy1dss 223 \/ daods3 ds3 2341/ dsgdya

214\/d11d44 224\/d22d44 234V d33d44 dyq

to the product of the (2,2) and (3,3) ones, while in [1], it would be the ratio (V') of the

singular values of the noted 2 x 2 matrix Dl/ °D; Y2 From 2, eq. (91)], we can deduce that

1048576
by ===

one must multiply H,eqi () , so that its integral from 0 to 1 equal the Lovas-Andai

counterpart result of %. (The jacobian of the transformation to the two-rebit density matrix

3/2

parameterization (15) is (d11doadszday)®/?, and for the two-qubit counterpart, (diidaadssdyy)?

[20, p. 4]. These jacobians are also reported in [22].)
In [2, eq. (93)], the two-rebit separability function S, () was taken to be proportional to

the incomplete beta function B, (v, 3,2) = 2(3 —v)y/v—an apparently much simpler function

727

than the Lovas-Andai counterpart (2) above. Given the just indicated scaling by 157 to

achieve the 2% 10 40 separability probability numerator result of Lovas and Andai, we must take

391572 (3—v)\/v

the hypothesized separability function to be, then, RIS

12



A parallel phenomenon is observed in the two-qubit case, where [20, eq. (11)]

Wt )
1801800(;2 — 1)15”

Heomplea (1) = (16)
with
hy = (pu—1)(p+ 1) (363p" 4+ 103104" + 586731° + 1015484° + 586731 + 103104° + 363)
and

ho = —140 (p* + 1) (p'? + 481" + 393® + 8324 + 393u* + 484 + 1) log ().

Setting a = 1 in the denominator formula (7), and again following the integration-by-parts
scheme of Lovas and Andai, while setting t = p = ¢, the simple ratio (proportional to the

square of (14)) is now

210862080 (1 — 2)°

£2
To achieve the % Lovas-Andai two-qubit denominator result, we must multiply Heompies (V)

(16) by 328007630.

(17)

The two-qubit separability function Sgpmpies(v) advanced in [2] was proportional to the

1

square of that-B, (v, 5,2) = %(3 — v)y/v—employed in the two-rebit context. Now, to obtain

2048

21975 ecessary for the % separability probability outcome,

the two-qubit numerator result of
we took the associated separability function to simply be = (3 — v)*v. We refer the reader
to Figure 2 in [2] (and Figs. 13 and 14 below) to see the extraordinarily good fit of this
function. (However, the two-rebit fit displayed there does not appear quite as good.)

Let us now supplement the earlier plots in [2], with some newly generated ones. (Those
2007 plots were based on quasi-Monte Carlo [“low-discrepancy” point [23]] sampling, while

the ones presented here are based on more “state-of-the-art” sampling methods [16], with

many more density matrices [but, of “higher-discrepancy”] generated.) In Figs. 7 and 8 we

show the two-rebit separability probabilities as a function, firstly, of v = j;;—fl‘:; and, secondly,
as a function of = /v = %, together with the curves 39157{;%;2”)*5 and 3915?;%’;2“ oIy

respectively. In Figs. 9 and 10 we show the two-qubit separability probabilities as a

function, firstly, of v and, secondly, as a function of p, together with the curves %(3 — )%
and (3 — p?)?1?, respectively.
In Figs. 11, 12, 13 and 14, rather than showing the estimated separability probabilities

together with the separability functions as in the previous four figures, we show the estimated

13
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FIG. 7: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) sepa-

rability function 131072
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FIG. 8: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) sepa-

rability function 31072

391572 (3—u?)u
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two-qubit sep. prob.
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0.05F

FIG. 9: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 507 million
randomly-generated density matrices, together with the (indiscernibly different) separability func-

tion = (3 — v)?v (cf. Fig. 13 and [2, Fig. 2] for the residuals from the fit)

two-qubit sep. prob.
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FIG. 10: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million
randomly-generated density matrices, together with the (indiscernibly different) separability func-

tion (3 — p?)%p?
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FIG. 11: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

391572 (3—v)\/v
131072

randomly-generated density matrices, minus the separability function
two-rebit sep. prob.-fit
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FIG. 12: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

391572 (3—u?)p

randomly-generated density matrices, minus the separability function 31073

separability probabilities minus the separability functions, that is, the residuals from this
fits.

So, at this stage, the evidence is certainly strong that the Dyson-index ansatz is at least
of some value in approximately fitting the relationships between two-rebit and two-qubit

Hilbert-Schmidt separability functions.

16



two-qubit sep. prob.—fit

0.003 -

0.002

0.001

-0.001

FIG. 13: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million

randomly-generated density matrices, minus the separability function %(3 —-v)v
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FIG. 14: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 randomly-

generated density matrices, minus the separability function %(3 — 12)?
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A. Formulas linking the Lovas-Andai variable ¢ and the Slater/Bloore variable

Using the two-rebit density matrix parameterization (15), then, taking the previously

indicated relationship (10), which has the explicit form in this case of

—p? 42 -1
e=exp | —cosh™! W et : (18)
202y — 123, — 1

and inverting it, we find

M:%(A—m), (19)

1
A= 2212234 — \/2%2 — 1\/2-32)4 —1 (; + 1) E.

For the two-qubit counterpart, we have

—u?+2 —1
e =-exp [ —cosh™ o _; K (312'%4 i 2212234)2 . (20)
26/ Yty + 20 — 1Y + 23, — 1

The z;;’s are as in the two-rebit case (23), and the y;;’s are now the corresponding imaginary

where

parts in the natural extension of the two-rebit density matrix parameterization (15). A

similar inversion yields

/"L:

(X — V- 4) , (21)

N | —

where

>

= - (5% + 1) 5\/y%2 +2fp — 1\/@%4 + 234 — 1+ 2y10y34 + 2212234

It appears to be a challenging problem, using these relations (10), (19) and (21), to
transform the e-parameterized volume forms and separability functions in the Lovas-Andai
framework to the p-parameterized ones in the Slater setting, and vice versa. (The presence
of the z and y variables in the formulas, undermining any immediate one-to-one relationship
between ¢ and p, is a complicating factor.)

The correlation between the € and p variables, estimated on the basis of one mil-
lion randomly-generated (with respect to Hilbert-Schmidt measure) density matrices was
0.631937 in the two-rebit instance, and 0.496949 in the two-qubit one.

Also, in these two sets of one million cases, u was always larger than . This dom-
inance effect (awaiting formal verification) is reflected in Figs. 15 and 16, being plots of
the separability probabilities (again based on samples of size 5,077 and 3,715 million, re-

spectively) as joint functions of & and u, with no results appearing in the regions ¢ > p.

18



1.0

two-rebit sep. prob.o_5

10 00

FIG. 15: Two-rebit separability probabilities as joint function of € and u, based on 5,077 million

randomly-generated density matrices. Note the vacant region € > pu.

It has been noted (http://mathoverflow.net/questions/262943/show-that-a-certain-ratio-of-
diagonal-entries-dominates-a-certain-ratio-of-singu) that for a diagonal 4 x 4 density matrix
D that e = p (inverting ratios, if necessary, so that both are less than or greater than 1).
This equality can also be observed by setting z15 = 294 = 0 (and y12 = yo4 = 0) in the
equations immediate above.

Let us now display three plots that support, but only approximately, the possible rel-
evance of the Dyson-index ansatz for two-rebit and two-qubit separability functions. In
Fig. 17, we show the ratio of the square of the two-rebit separability probabilities to the
two-qubit separability probabilities, in terms of the variable employed by Slater, ;. = %.
In Fig. 18, we show the Lovas-Andai counterpart, that is, in terms of the ratio of singular
values variable, ¢ = ¢(V). Further, in Fig. 19 we display the ratio of the square of the
two-dimensional two-rebit plot (Fig. 15) to the two-dimensional two-qubit plot (Fig. 16).

These three figures all manifest an upward trend in the ratios as € and/or p increase.
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FIG. 16: Two-qubit separability probabilities as joint function of € and u, based on 3,715 million

randomly-generated density matrices. Note the vacant region € > pu.
IV. SCENARIOS FOR WHICH ¢ = 1, OR i
A. Seven-dimensional convex set of two-rebit states

If we set 215 = 234 = 0 in the relation (18), we obtain € = p or l% So, let us try to obtain

the separability function when these null conditions are fulfilled. First, we found that the

volume of the seven-dimensional convex set is equal to lexo . % = 72;0 ~ 0.0013055, with a

jacobian for the transformation to u equal to

w3 (=118 — 27pt +27p + 6 (u® + 9ut + 9u? + 1) log(p) + 11)
210 (u2 — 1)"

. (22)

(% is the normalization constant corresponding to xi(¢) [1, Table 2], appearing in the

“defect function” (3), as well as the volume of the standard unit ball in the normed vector
space of 2 x 2 matrices with real entries, denoted by B;(R?*?).)

We were, further, able to impose the condition that two of the principal 3 x 3 minors of

the partial transpose are positive. The resultant separability function (Fig. 20) was

2(\/ p2=14p2 csc_l(u))

e pw>1

20/ 1= 2 p+2ilog (putin/1=p ) +7 ’

— O<pu<l

(23)
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7,

FIG. 17: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 8) to the
estimated two-qubit separability probabilities (Fig. 10), as a function of u = \/%
with an associated separability probability of % ~ 0.67619.

We, then, sought to impose—as both necessary and sufficient for separability [24, 25]—
the positivity of the partial transpose of the density matrix. First, we found that the
associated separability function assumes the value 1 at 4 = 1. For pu = 2,3, we formu-
lated four-dimensional constrained integration problems. Mathematica reduced them to
two-dimensional integration problems, for which we were able to perform high precision
calculations. Remarkably, the values obtained agreed with those for x1(3) = X1(2) and
X1(3) = x1(3) to more than twenty decimal places. The two-dimensional integrands Math-

ematica yielded for p = 2 were of the form

A2 L2 _ 2 2 so—1 214 A2 L2 - —1 214
3<7T\/ 42ty — 23, +4 — 8\/—2} — 23, + 1sin (—2 2>—|—2\/ 4zi3 — 27, +4sin (\/@))

872

(24)

for

—1<zi3<IAzig+4/1—25>0A214<0
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FIG. 18: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 2) to the
estimated two-qubit separability probabilities (Fig. 5), as a function of the ratio of singular values

variable, ¢ = (V)
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FIG. 19: The ratio of the square of the two-dimensional two-rebit plot (Fig. 15) to the two-

dimensional two-qubit plot (Fig. 16)
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FIG. 20: Two-rebit separability probability function (23) for the seven-dimensional convex set for

which ¢ = u or %, based on the positivity of two principal 3 x 3 minors of the partial transpose

and
3 <7r\/—4z%3 — 2} +4+8y/—2% — 2 + 1sin! (—2 2114 - ) —2y/—4z23, — 2%, + 4sin! ( ?4 _ )>
~13 —Zi3
812
(25)
for

—1<213<1/\Zl4>0/\\/1—2%3—214>0.

So, in light of this evidence, we are confident in concluding that the Lovas-Andai two-rebit
separability function x; () serves as both the Lovas-Andai and Slater separability functions
in this seven-dimensional setting.

To still more formally proceed, we were able to generalize the pair of two-dimensional

integrands for the specific case u = 2 given in (24) and (25) to u = 1,2,3,. .., obtaining

3 <2/L\/—LL2Z%4 — 22, + 1sin™! (ﬁ) —2y/—2} — 23, + 1sin! (\/*;Z—_l;‘;%g> + /=2 — 2 + 1>

272
(26)

for

1<213<1/\Zl4>0/\\/1—Z%3—,U/214>0
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and

3 <—2M\/—M22f4 — 23+ 1sin™! <\/ff_zi;> +2y/—23; — 2% + Lsin™! (J%) + /=2ty — 2+ 1)

272

(27)

for

—1<213<1/\#214‘|‘\/1—Z%3>0/\214<0.

1. Reproduction of Lovas-Andai two-rebit separability function x1(¢)

Making use of these last set of relations, we were able to reproduce the Lovas-Andai
two-rebit separability function y;(g), given in (2). We accomplished this by, first, reducing
the (general for integer > 1) two-dimensional integrands (26) and (27) to two piecewise
one-dimensional ones of the form

4 (,uQ\/l — s2sin~! (i) + /12— s? cosfl(s)>

2

(28)

T2
over s € [0,1] and

2/ 2 — 82 — 4p?/1 — s2sin™! (i) + 44/ p? — s2sin"1(s)

202

(29)

over s € [—1,0].
To obtain these one-dimensional integrands, which we then were able to explicitly evalu-

A/ 1—2%
m

ate, we made the substitution 214 — > 2, then integrated over z13 € [—1,1], with u > 1,
so that ¢ = l% Let us note that in this approach, the dependent variable (u) appears in
the integrands, while in the Lovas-Andai derivation, the dependent variable (¢) appears as
a limit of integration. The counterpart set of two piecewise integrands to (28) and (29) for

the reciprocal case of 0 < u <1 are

4 <;1J2\/1—7s2cos’1 (f;) + /(1 —s)(u+ s) sin_l(s)>

Y (30)
over s € [0,1] with u > s and
212y/1 — 52 (2 sin~! <i> + 7T> —4y/(u— 8)(p + s) sin~ ! (s)
(31)
2

T2
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over s € [—1,0] with p# > —s. The corresponding univariate integrations then directly yield

the Lovas-Andai two-rebit separability function (), given in (2), now with € = p, rather
than e = 1.
m

As an interesting aside, let us note that we can obtain ¢ = p in (18), in a nontrivial

fashion (that is, not just by taking z1o = z34 = 0), by setting
<12 <—2 (1* + p) + p <_\/ 2y — 1) + V2 — 1)
(12 —1)" 22 — (u2 +1)°

leading to an eight-dimensional framework. However, this result did not seem readily

7 (32)

234 =

amenable to further study/analysis.

B. Eleven-dimensional convex set of two-qubit states

Let us repeat for the 15-dimensional convex set of two-qubit states, the successful form
of analysis in the preceding section, again nullifying the (1,2), (2,1), (3,4), (4,3) entries of

D, so that the two diagonal 2 x 2 blocks Dy, Dy are themselves diagonal. This leaves us in

4
— ThaGREanA N~

9979200 6 59875200

1 7'('_4 s

an 11-dimensional setting. The associated volume we computed as
1.62687 - 1075, (Here %4 is the normalization constant corresponding to xa(1) [1, Table 2],
as well as the volume of the standard unit ball in the normed vector space of 2 x 2 matrices
with complex entries, denoted by By (C?*?).) The associated jacobian for the transformation
to the p variable is
o (Al —1)(p+1) — 60 (6p' + 75u® + 2000 4+ 150u* + 30u? + 1) log(u))
83160 (2 — 1)

(33)

with
A =5u" 4+ 647u° 4+ 4397u° + 6397t + 22724 + 142.

The imposition of positivity for one of the 3 x 3 principal minors of the partial transpose

2u’—1
A

yielded a separability function of for p > 1, with an associated bound on the true

separability probability of this set of eleven-dimensional two-qubit density matrices of }8115 ~

0.696133. (This function bears an interesting resemblance to the later reported important
one (38).)
Again—as in the immediately preceding seven-dimensional two-rebit setting—imposing, as

both necessary and sufficient for separability [24, 25], the positivity of the partial transpose
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of the density matrix, we find that the associated separability function assumes the value
1l at g = 1. For p = 2, our best estimate was 0.36848, which in line with the seven-

dimensional analysis, would appear to be an approximation to the previously unknown

value of Xa(3) = ¥2(2).

1. Proof of the %—Two—Qubit Hilbert Schmidt Separability Probability Conjecture

We applied the Mathematica command GenericCylindricalDecomposition to an eight-
dimensional set (plus u) of positivity conditions, enforcing the positive-definite nature of two-
qubit (4 x 4) density matrices (with their (1,2), (2,1), (3,4) and (4,3) entries nullified) and of
their partial transposes, for p > 1. (“GenericCylindricalDecomposition|ineqs,z1, 3, ...] finds
the full-dimensional part of the decomposition of the region represented by the inequalities
ineqgs into cylindrical parts whose directions correspond to the successive x;, together with
any hypersurfaces containing the rest of the region.”)

These density matrices had their two 2 x 2 diagonal blocks, themselves set diagonal in
nature. The parallel two-rebit analysis (sec. IV A) succeeded in reconstructing the Lovas-
Andai function x;(¢), giving us confidence in this strategy. This pair of reduction strategies
rendered the corresponding sets of density matrices as 11-dimensional and 7-dimensional in
nature, rather than the standard full 15- and 9-dimensions, respectively. The cylindrical
algebraic decomposition (CAD)-applied to the two-qubit positivity constraints (expressible
in terms of p and four z; and four y;; variables)-yielded three complementary solutions.
One of these consisted of three further complementary solutions. We analyzed each of the
five irreducible solutions separately, employing them to perform integrations over the same
set of four (223, Yo3, o4 and zy4) of the eight variables. Then, we summed the five results,

remarkably simplifying to the four-dimensional integrand

1272 (— (u* — V) yiy — (0* — 1) 28, + yis + 275 — 1) (0 (Y34 + 234) + yis + 275 — 1)
214 (1 — yis + 213)

, (34)

subject to the constraints

/1 — 1222 /1 — 1222
—uu 14<y14<—uu = (35)

1 1
>IN ——< 214 < =N —
M iz

AN — \/1— y14+z14)<y13<\/1— (yis + 234)

N — \/M (Y3, +24) —yis+1 <213 < \/ﬂ (Y3, + 24)) —yis + 1.
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The transformation to a pair of polar coordinates

{213 — T'13 COS (tlg) , 214 — T'14 COS (t14) , Y13 — T"13 sin (t13> , Y14 — T14 sin <t14)} . (36)

gave us a somewhat simpler integrand

12713714 (7"%4M2 + T%?, —1) (_7"%4 (NQ —1)+ 7"%3 —1)
24 (1 — r%g) '

(37)

(Note four “active” variables in the first integrand, and only two radial and no angular ones
in the second.) The integration constraints (35) now simply reduced to r%; +7%,u* < 1, with

> 1. The integration result
B 4p% —1

flw) =

(38)

immediately followed.
Now, the function that Lovai and Andai expressed hope in employing to verify the con-

jecture that the Hilbert-Schmidt two-qubit separability probability is 3?—3 ~ (0.242424, is

- 1 1
Xa(e) = f(=) =z (4 —¢&%). (39)
€ 3
This can be seen since the denominator of the equation (6) for Ps.,(C) evaluates, as noted
earlier, to
256
40
1575’ (40)
while the use of the newly-constructed ya(e) yields a numerator value of
204
2048 (41)
51975

with the ratio giving the 3% result.

It is somewhat startling to compare the quite simple nature of ya(¢) : [0, 1] — [0, 1] with
its two-rebit (polylogarithmic/inverse hyperbolic tangent) counterpart ((1), (2)). Let us now
present (Fig. 21) the two-qubit version of Fig. 2, showing again a random distribution of
residuals, serving as further validation/support for the newly-constructed Y(e).

Let us interestingly note that it was conjectured in 2007 [2, eqs. (93), (95); sec. 9.2] that
the “two-qubit separability function” (in the Slater framework) had the form

23— e (42)

somewhat similar in nature to (39) (cf. Fig. 10, 14).
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(Fig. 5). Fig. 3 is the two-rebit analogue.
V. REBIT-RETRIT AND QUBIT-QUTRIT ANALYSES

Let us now attempt to extend the two-rebit and two-qubit line of analysis above to rebit-
retrit and qubit-qutrit settings—now, of course, passing from consideration of 4 x 4 density
matrices to 6 X 6 ones. Lovas and Andai, in their quite recent study, had not yet addressed
such issues. In [2], candidate (Slater-type) separability functions had been proposed. Two
dependent variables (cf. the use of p = \/% in the lower-dimensional setting above)
had been employed [2, eq. (44)]. Let us now refer to these two variables as 7 = \/%
and 7 = \/%. But, interestingly, it was argued that only a single dependent variable
T =TTy = \/% sufficed for modeling the corresponding separability functions. The
separability function in the rebit-retrit case was proposed to be simply proportional to 7 [2,
eq.(98)].

In our effort to extend the Lovas-Andai analyses [1] to this setting, we now took D
and Dy to equal the upper and lower diagonal 3 x 3 blocks of the 6 x 6 density matrix in
question. Then, we computed the three singular values (s; > sy > s3) of D;/ Dy Y2 and
took the ratio variables 1 = 2—? and g9 = z—g as the dependent ones in question. (An issue
of possible concern is that, unlike the 4 x 4 case [26], positivity of the determinant of the

partial transpose of a 6 x 6 density matrix is only a necessary, but not sufficient condition
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for separability.) Also, in the case of diagonal D, again the two variables in the p framework
are equal to those in the € setting, or to their reciprocals.

Then, we generated 3,436 million rebit-retrit and 2,379 million qubit-qutrit density ma-
trices, randomly with respect to Hilbert-Schmidt measure. (These sizes are much larger
than those employed in 2007—for similar purposes—in [2].) We appraised the separability
of the density matrices D by testing whether the partial transpose, using the four 3 x 3
blocks, had all its six eigenvalues positive. The separability probability estimates were
0.13180011 4 0.0000113109 and 0.02785302 =+ 6.6124281 - 1075, respectively. (We can re-

ject the qubit-qutrit conjecture of % ~ 0.0266889 advanced in [2, sec. 10.2]. A pos-

sible alternative candidate is % = 521313§7 ~ 0.027853, while in the rebit-retrit case,

we have % = % ~ 0.1318001.) Further, our estimates of the probabilities that
D had two [the most possible [27]] negative eigenvalues, and hence a positive determi-
nant, although being entangled, were 0.0334197 4 0.0000409506 in the rebit-retrit case, and
0.0103211 4 0.000031321 in the qubit-qutrit instance.)

In the two-variable settings, we partition the square [0, 1]* of possible separability prob-
ability results into an 80 x 80 grid, and in the one-variable setting, use a partitioning (as
in the two-rebit and two-qubit analyses above) into 200 subintervals of [0,1]. In Fig. 22 we
show the ratio of the square of the rebit-retrit separability probability to the qubit-qutrit
separability probability as a function of 7, while in Fig. 23, we show a two-dimensional
version. Fig. 24 is the analog of this last plot using the singular-value ratios €; and 5. As
in Figs. 17, 18 and 19, we observe a gradual increase in these Dyson-index-oriented analy-
ses. In Figs. 25 and 26, we show the highly linear (“diagonal”) rebit-retrit and qubit-qutrit
separability probabilities, holding 7 = 7.

VI. CONCLUDING REMARKS

We have found (sec. IV A) that the Lovas-Andai two-rebit separability function x;(¢)
also serves as the Slater separability function in a reduced (from nine to seven-dimensional)
setting where the 2 x 2 diagonal block matrices Dy, Dy are themselves diagonal. Addition-
ally, we know that Lovas-Andai two-qubit separability function X,(e) serves as the Slater
separability functions in a reduced (from fifteen to eleven-dimensional) setting where the

2 x 2 diagonal block matrices Dy, Dy are themselves diagonal. It remains a question of some
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FIG. 25: Rebit-retrit separability probabilities for 71 = 1

interest as to what the Slater two-rebit and two-qubit separability functions themselves are
in the full nine- and fifteen-dimensional settings, in particular, the possibility that the two-
qubit separability function might be &(3 — u?)u? (cf. Figs. 10, 14). (Can the solutions in
the Lovas-Andai setting be “lifted” to those in the Slater one [cf. eqs.(12)-(17)]7) Also, we
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note that Lovas and Andai did not specifically consider D, and D, to be diagonal. So, if
would be interesting to ascertain whether their same conclusions (such as the formula for
X1(g)) could have been reached under such assumptions.

The counterpart rebit-retrit and qubit-qutrit 6 x 6 problems (sec. V) might also be pro-
ductively studied when the 3 x 3 diagonal blocks are themselves diagonal. The problems
under consideration would then be 14 and 23-dimensional in nature, as opposed to 20 and
35-dimensional, with lower-dimensional CAD’s still.

A formidable challenge, to continue this line of research, is now to establish that the
”two-quater[nionic|bit” Hilbert-Schmidt separability probability is %. This would move
us, first, from the original 9-dimensional two-rebit and 15-dimensional two-qubit settings to
a 27-dimensional one. But these dimensions can be reduced to 7-, 11- and 19-, using the
apparently acceptable strategy—that has given us yi(e) and xa(g)-of setting the two 2 x 2
diagonal blocks themselves to diagonal form. In turn, this leads to cylindrical algebraic
decompositions with 4, 8 and 16 variables—with the last, quaternionic one, still seemingly
computationally unfeasible. Noting that the formula (39) for y2(e) is much simpler in form

than that (2) for xj(¢), we might speculate as to the degree of complexity of the (yet

unknown) quaternionic counterpart yy(¢). (Theorem 3 of [22] yields zz57 454007;11260652800000

for the [unnormalized]| x4(¢), being as well as the volume of the standard unit ball in the

normed vector space of 2 X 2 matrices with quaternionic entries, denoted by By(Q**?).) Our
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speculation/conjecture is that this degree will, as in the two-rebit case be relatively high,
with the complex domain being privileged in these regards.

It should be pointed out that the manner of derivation of xX5(¢) here is distinctly different
from that employed by Lovas and Andai [1, App. A] in obtaining the form of x;(¢), though
it has also been able to find this result here using the cylindrical algebraic decomposition
approach (sec. IVAT1).

In their Conclusions, Lovas and Andai write: “The structure of the unit ball in operator
norm of 2 X 2 matrices plays a critical role in separability probability of qubit-qubit and
rebit-rebit quantum systems. It is quite surprising that the space of 2 x 2 real or complex

matrices seems simple, but to compute the volume of the set

S

eb _ 1}

ab ab
{ ‘a,b,c,eGK, <1,
ce e

c e

™10

for a given parameter ¢ € [0, 1], which is the value of the function y,(¢), is a very challenging
problem. The gist of our considerations is that the behavior of the function x4(¢) determines
the separability probabilities with respect to the Hilbert-Schmidt measure.” (The operator
norm ||-|| is the largest singular value or Schatten-co norm.)

It appears that the cylindrical-algebraic-decomposition approach we have applied to 4 x 4
density matrices D with diagonal 2 x 2 diagonal blocks Dy, Dy to obtain both x;(g) and
X2(¢) specifically answers this “very challenging” question, but in a manner quite different

than Lovas and Andai applied in deriving xi(g) [1, App. Al.

VII. ADDENDUM

It certainly appears that the work of Lovas and Andai [1]-inspired by that of Milz and
Strunz [18]—is highly innovative and successful in finding the two-rebit separability function

X1(¢), and verifying the conjecture that the two-rebit Hilbert-Schmidt separability prob-

ability is E—Z. However, in our study of the Lovas-Andai paper, we remain unconvinced
by the chain of arguments on page 13 leading to the result %1, and have posted a stack
exchange question (https://mathematica.stackexchange.com/questions/144277/evaluate-a-

pair-of-integrals-of-the-product-of-two-univariate-functions) in this regard.
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