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Abstract

We investigate relationships between two forms of Hilbert-Schmidt two-re[al]bit and two-qubit

”separability functions”–those recently advanced by Lovas and Andai (arXiv:1610.01410), and

those earlier presented by Slater (J. Phys. A 40 [2007] 14279). In the Lovas-Andai framework,

the independent variable ε ∈ [0, 1] is the ratio σ(V ) of the singular values of the 2 × 2 matrix

V = D
1/2
2 D

−1/2
1 formed from the two 2× 2 diagonal blocks (D1, D2) of a randomly generated 4× 4

density matrix D. In the Slater setting, the independent variable µ is the diagonal-entry ratio√
d11d44
d22d33

–with, importantly, µ = ε or µ = 1
ε when both D1 and D2 are themselves diagonal. Lovas

and Andai established that their two-rebit function χ̃1(ε) (≈ ε) yields the previously conjectured

Hilbert-Schmidt separability probability of 29
64 . We are able, in the Slater framework (using cylin-

drical algebraic decompositions [CAD] to enforce positivity constraints), to reproduce this result.

Further, we similarly obtain its new (much simpler) two-qubit counterpart, χ̃2(ε) = 1
3ε

2
(
4− ε2

)
.

Verification of the companion conjecture of a Hilbert-Schmidt separability probability of 8
33 im-

mediately follows in the Lovas-Andai framework. We obtain the formulas for χ̃1(ε) and χ̃2(ε) by

taking D1 and D2 to be diagonal, allowing us to proceed in lower (7 and 11), rather than the full

(9 and 15) dimensions occupied by the convex sets of two-rebit and two-qubit states. The CAD’s

themselves involve 4 and 8 variables, in addition to µ = ε. We also investigate extensions of these

analyses to rebit-retrit and qubit-qutrit (6× 6) settings.

PACS numbers: Valid PACS 03.67.Mn, 02.50.Cw, 02.40.Ft, 02.10.Yn, 03.65.-w
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I. INTRODUCTION AND INITIAL ANALYSES

To begin our investigations, focusing on recent work of Lovas and Andai [1], we examined

a certain possibility–motivated by a number of previous studies (e.g. [2–5]) and the apparent

strong relevance there of the Dyson-index vantage upon random matrix theory [6]. More

specifically, we ask whether the (not yet constructed by them) Lovas-Andai “separability

function” χ̃2(ε) for the standard (complex) two-qubit systems might be simply proportional

3



(or even equal) to the square of their successfully constructed two-rebit separability function

[1, eq. (9)],

χ̃1(ε) = 1− 4

π2

1∫
ε

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds (1)

=
4

π2

ε∫
0

(
s+

1

s
− 1

2

(
s− 1

s

)2

log

(
1 + s

1− s

))
1

s
ds.

Let us note that χ̃1(ε) has a closed form,

2
(
ε2 (4Li2(ε)− Li2 (ε2)) + ε4

(
− tanh−1(ε)

)
+ ε3 − ε+ tanh−1(ε)

)
π2ε2

, (2)

where the polylogarithmic function is defined by the infinite sum

Lis(z) =
∞∑
k=1

zk

ks
,

for arbitrary complex s and for all complex arguments z with |z| < 1. Let us note also that

in the proof of (1), the authors are able to formulate the problem rather concisely in terms

of a “defect function” [1, App. A]

∆(δ) =
2π2

3
− χ̃1(e

−δ) =
16

3

∫ δ

0

cosh(t)− sinh(t)2t log(
et + 1

et − 1
)dt. (3)

We will be able in sec. IV A 1 to obtain the formula (2) for χ̃1(ε) by alternative (cylindrical

algebraic decomposition [7]) means. Further, in our chief (titular) advance, in sec. IV B 1,

we will apply the same basic methodology to obtain (the much simpler) formula (39) for

χ̃2(ε).

As part of their analysis, Lovas and Andai assert [1, p. 13] that

Psep(R) =

1∫
−1

x∫
−1
χ̃1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)(1− y2)(x− y)dydx

1∫
−1

x∫
−1

(1− x2)(1− y2)(x− y)dydx

, (4)

with the denominator evaluting to 16
35

. Here, Psep(R) is the Hilbert-Schmidt separability

probability for the nine-dimensional convex set of two-rebit states [8]. With the indicated

use of χ̃1(ε) this probability evaluates to 29
64

(the numerator of (4), they find, equalling

16
35
− 1

4
= 29

140
, with 29

64
=

29
140
16
35

), a result that had been strongly anticipated by prior analyses

[9–11].
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If the (Dyson-index) proportionality relationship

χ̃2(ε) ∝ χ̃2
1(ε) (5)

held, we would have

Psep(C) ∝

1∫
−1

x∫
−1
χ̃2
1

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)2(1− y2)2(x− y)2dydx

1∫
−1

x∫
−1

(1− x2)2(1− y2)2(x− y)2dydx

. (6)

Here, Psep(C) is–in the Lovas-Andai framework–the Hilbert-Schmidt separability probability

for the fifteen-dimensional convex set of the (standard/complex) two-qubit states [12]. They

expressed hope that they too would be able to demonstrate that Psep(C) = 8
33

, as has been

strongly indicated is, in fact, the case [9–11]. We generalized (from α = 1
2
) the denominator

of the ratio (6) to

1∫
−1

x∫
−1

(1− x2)2α(1− y2)2α(x− y)2αdydx =
π26α+13−3ααΓ(3α)Γ(2α + 1)2

Γ
(
α + 5

6

)
Γ
(
α + 7

6

)
Γ(5α + 2)

. (7)

Our original Dyson-index-based ansatz, then, was that

1∫
−1

x∫
−1
χ̃2α

(√
1−x
1+x

/√
1−y
1+y

)
(1− x2)2α(1− y2)2α(x− y)2αdydx

1∫
−1

x∫
−1

(1− x2)2α(1− y2)2α(x− y)2αdydx

(8)

would be proportional to the generalized (α-th) Hilbert-Schmidt separability probability.

For α = 1
2
, we recover the two-rebit formula (4), while for α = 1, under the ansatz, we

would obtain the two-qubit value of 8
33

, while for α = 2, the two-quater[nionic]bit value of

26
323

would be gotten, and similarly, for α = 4, the (presumably) two-octo[nionic]bit value

of 44482
4091349

[13]. (The volume forms listed in [1, Table 1] for the self-adjoint matrices Msa
2,R,

Msa
2,C, are |x−y|√

2
in the α = 1

2
case, and (x−y)2 sinφ

2
in the α = 1 case, respectively. Our

calculations of the term det(1−Y 2)d appearing in the several Lovas-Andai volume formulas

[1, pp. 10, 12], such as this one for the volume of separable states,

Vol
(
Ds{4,K}(D)

)
=

det(D)4d−
d2

2

26d

×
∫
E2,K

det(I − Y 2)d × χd ◦ σ

(√
I − Y
I + Y

)
dλd+2(Y ),

(9)
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[the function σ(V ) = ε being the ratio of the two singular values of the 2 × 2 matrix V ]

appear to be consistent with the use of the (1− x2)2α(1− y2)2α terms in the ansatz (8).)

The values α = 1
2
, 1, 2, 4 themselves correspond to the real, complex, quaternionic and

octonionic division algebras. We can, further, look at the other nonnegative (non-division

algebra) integral values of α. So, for α = 3, we have the formal prediction [11, 14] of 2999
103385

.

In this context, let us first note that for the denominator of (6), corresponding to α = 1,

we obtain 256
1575

(a result we later importantly employ (40)). Using high-precision numeri-

cal integration (http://mathematica.stackexchange.com/questions/133556/how-might-one-

obtain-a-high-precision-estimate-of-the-integral-over-0-1-of-a-s) for the corresponding nu-

merator of (6), we obtained 0.0358226206958479506059638010848. The resultant ratio (di-

viding by 256
1575

) is 0.220393076546720789860910104330, within 90% of 0.242424. However,

somewhat disappointingly, it was not readily apparent as to what exact values these figures

might correspond.

The analogous numerator-denominator ratio in the α = 2 (two-quaterbit) instance was

0.0534499, while the predicted separablity probability is 26
323
≈ 0.0804954. It can then be

seen that the required constant of proportionality (0.0534499
0.0804954

= 0.664013) in the α = 2 case

is not particularly close to the square of that in the α = 1 instance (0.9091062 = 0.826473).

Similarly, in the α = 4 case, the numerator-denominator ratio is 0.00319505, while the

predicted value would be 44482
4091349

= 0.0108722 (with the ratio of these two values being

0.293873). So, our ansatz (8) would not seem to extend to the sequence of constants of

proportionality themselves conforming to the Dyson-index pattern. But the analyses so far

could only address this specific issue concerning constants of proportionality.

II. EXPANDED ANALYSES

We, then, broadened the scope of the inquiry with the use of this particular formula of

Lovas and Andai for the volume of separable states [1, p. 11],

Vol(Ds{4,K}) =

∫
D1, D2 > 0

Tr(D1 +D2) = 1

det(D1D2)
df(D2D

−1
1 )dλ2d+3(D1, D2),
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where

f(D2D
−1
1 ) = χd ◦ exp

(
− cosh−1

(
1

2

√
det(D1)

det(D2)
Tr
(
D2D

−1
1

)))
. (10)

Here D1 denotes the upper diagonal 2× 2 block, and D2, the lower diagonal 2× 2 block of

the 4× 4 density matrix [1, p. 3],

D =

 D1 C

C∗ D2

 .

The Lovas-Andai parameter d is defined as 1 in the two-rebit case and 2 in the standard

two-qubit case (that is, in our notation, α = d
2
). Further, the relevant division algebra K

is R, C or Q, according to d = 1, 2, 4. The exponential term in (10) corresponds to the

“singular value ratio”,

σ(V ) = exp

(
− cosh−1

(
||V ||2HS
2 det(V )

))
= exp

(
− cosh−1

(
1

2

√
det(D1)

det(D2)
Tr
(
D2D

−1
1

)))
,

(11)

of the matrix V = D
1/2
2 D

−1/2
1 , where the Hilbert-Schmidt norm is indicated. (In [15, sec.

IV] the ratio of singular values of 2× 2 “empirical polarization matrices” is investigated.)

A. Generation of random density matrices

1. Two-rebit case

Firstly, taking d = 1, we generated 687 million random (with respect to Hilbert-Schmidt

measure) 4× 4 density matrices situated in the 9-dimensional convex set of two-rebit states

[16, App. B] [8, 17]. Of these, 311.313,185 were separable (giving a sample probability

of 0.453149, close to the value of 29
64
≈ 0.453125, now formally established by Lovas and

Andai). Additionally, we binned the two sets (separable and all) of density matrices into

200 subintervals of [0, 1], based on their corresponding values of σ(V ) (Fig. 1). Fig. 2 is a

plot of the estimated separability probabilities (remarkably close to linear with slope 1–as

previously observed [1, Fig. 1]), while Fig. 3 shows the result of subtracting from this curve

the very well-fitting (as we, of course, expected from the Lovas-Andai proof) function χ̃1(ε),

as given by ((1),(2)). (If one replaces χ̃1(ε) by simply its close approximant ε, then the

corresponding integrations would yield a “separability probability”, not of 29
64
≈ 0.453125,

7



0.2 0.4 0.6 0.8 1.0
σ(V)

1×106

2×106

3×106

4×106

5×106

6×106

# density matrices

FIG. 1: Recorded counts by binned values of the singular value ratio σ(V ) of 687 million two-rebit

density matrices randomly generated (with respect to Hilbert-Schmidt measure), along with the

accompanying (lesser) counts of separable density matrices

0.2 0.4 0.6 0.8 1.0
σ(V)

0.2

0.4

0.6

0.8

1.0

sep. prob.

FIG. 2: Estimated two-rebit separability probabilities (close to linear with slope 1)

but of 16
9
− 35π2

256
≈ 0.428418. If we similarly employ ε2 in the two-qubit case, rather than the

[previously undetermined] χ̃2(ε), the corresponding integrations yield 13
66
≈ 0.19697, and not

the presumed correct result of 8
33
≈ 0.242424.) Fig. 21 will serve as the two-qubit analogue

of Fig. 3, further validating the formula for χ̃2(ε) to be obtained.
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0.2 0.4 0.6 0.8 1.0
σ(V)

-0.0005

0.0005

sep. prob.-χ˜1(ϵ)

FIG. 3: Result of subtracting χ̃1(ε) from the estimated two-rebit separability probability curve

(Fig. 2). Fig. 21 will be the two-qubit analogue.

2. Two-qubit case

We, next, to test a Dyson-index ansatz, taking d = 2, generated 6,680 million ran-

dom (with respect to Hilbert-Schmidt measure) 4 × 4 density matrices situated in the 15-

dimensional convex set of (standard) two-qubit states [16, eq. (15)]. Of these, 1,619,325,156

were separable (giving a sample probability of 0.242414, close to the conjectured, well-

supported [but not yet formally proven] value of 8
33
≈ 0.242424). We, again, binned the

two sets (separable and all) of density matrices into 200 subintervals of [0, 1], based on

their corresponding values of σ(V ) (Fig. 4). Fig. 5 is a plot (now, clearly non-linear [cf.

Fig. 2]) of the estimated separability probabilities, along with the quite closely fitting, but

mainly slightly subordinate χ̃2
1(ε) curve. Fig. 6 shows the result/residuals (of relatively small

magnitude) of subtracting χ̃2
1(ε) from the estimated separability probability curve. So, it

would seem that the square of the explicitly-constructed Lovas-Andai two-rebit separability

function χ̃1(ε) provides, at least, an interesting approximation to their not then constructed

two-qubit separability function χ̃2(ε).

The Dyson-index ansatz–the focus earlier in the paper–appears to hold in some triv-

ial/degenerate sense if we employ rather than the Lovas-Andai or Slater separability func-

tions discussed above, the “Milz-Strunz” ones [18]. Then, rather than the singular-value

ratio ε or the ratio of diagonal entries µ, one would use as the dependent/predictor variable,

9



0.2 0.4 0.6 0.8 1.0
σ(V)

2×107

4×107

6×107

8×107

# density matrices

FIG. 4: Recorded counts by binned values of the singular value ratio σ(V ) of all 6,680 million

two-qubit density matrices randomly generated (with respect to Hilbert-Schmidt measure), along

with the accompanying (lesser) counts of separable density matrices

the Casimir invariants of the reduced systems [19]. In these cases, the separability functions

become simply constant in nature. In the two-rebit and two-qubit cases, this invariant is the

Bloch radius (r) of one of the two reduced systems. From the arguments of Lovas and Andai

[1, Cor. 2, Thm. 2], it appears that one can assert that the Milz-Strunz form of two-rebit

separability function assumes the constant value 29
64

for r ∈ [0, 1]. Then, it would seem that

the two-qubit counterpart would be the constant value 8
33

for r ∈ [0, 1], with the correspond-

ing (Dyson-index ansatz) constant of proportionality being
8
33

( 29
64

)2
= 32768

27753
≈ 1.1807.

III. RELATIONS BETWEEN ε = σ(V ) AND BLOORE/SLATER VARIABLE µ

Let us now note a quite interesting phenomenon, apparently relating the Lovas-Andai

analyses to previous ones of Slater [2]. If we perform the indicated integration in the de-

nominator of (4), following the integration-by-parts scheme adopted by Lovas and Andai [1,

p. 12], at an intermediate stage we arrive at the univariate integrand

128t3 (5 (5t8 + 32t6 − 32t2 − 5)− 12 ((t2 + 2) (t4 + 14t2 + 8) t2 + 1) log(t))

3 (t2 − 1)8
. (12)
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0.2 0.4 0.6 0.8 1.0
σ(V)

0.2

0.4

0.6

0.8

1.0

sep. prob.

FIG. 5: Estimated two-qubit separability probabilities together with the slightly subordinate curve

χ̃2
1(ε)

0.2 0.4 0.6 0.8 1.0
σ(V)

0.005

0.010

0.015

0.020

0.025

0.030

sep. prob.

FIG. 6: Result of subtracting the (slightly subordinate) χ̃2
1(ε) curve from the estimated two-qubit

separability probability curve in Fig. 5
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(Its integral over t ∈ [0, 1] equals the noted value of 16
35

, where
16
35
− 1

4
16
35

= 29
64

.) This, interestingly,

bears a very close (almost identical) structural resemblance to the jacobian/volume-element

Hreal(µ) = −µ
4 (5 (5µ8 + 32µ6 − 32µ2 − 5)− 12 ((µ2 + 2) (µ4 + 14µ2 + 8)µ2 + 1) log(µ))

1890 (µ2 − 1)9

(13)

(integrating to π2

2293760
over µ ∈ [0, 1]) reported by Slater in [2, eq. (15)] and [20, eq. (10)],

also in the context of two-rebit separability functions. (We change the notation in those

references from Jreal(ν) to Hreal(µ) here, since we have made the transformation ν → µ2, to

facilitate this comparison, and the analogous one below in the two-qubit context–with the

approach of Lovas and Andai. However, we will still note some results below in the original

[ν] framework.) To faciltate the comparison between these two functions, we set t = µ = t̃,

and then divide (12) by (13), obtaining the simple ratio

80640
(
1− t̃2

)
t̃

. (14)

But we note that in in [2] and [20]–motivated by work in a 3 × 3 density matrix context

of Bloore [21]–the variable µ was taken to be the ratio
√

d11d44
d22d33

of the square root of the

product of the (1,1) and (4,4) diagonal entries of the density matrix [2, eq. (1)]

D =


d11 z12

√
d11d22 z13

√
d11d33 z14

√
d11d44

z12
√
d11d22 d22 z23

√
d22d33 z24

√
d22d44

z13
√
d11d33 z23

√
d22d33 d33 z34

√
d33d44

z14
√
d11d44 z24

√
d22d44 z34

√
d33d44 d44

 (15)

to the product of the (2,2) and (3,3) ones, while in [1], it would be the ratio σ(V ) of the

singular values of the noted 2× 2 matrix D
1/2
2 D

−1/2
1 . From [2, eq. (91)], we can deduce that

one must multiply Hreal(µ) by 1048576
π2 , so that its integral from 0 to 1 equal the Lovas-Andai

counterpart result of 16
35

. (The jacobian of the transformation to the two-rebit density matrix

parameterization (15) is (d11d22d33d44)
3/2, and for the two-qubit counterpart, (d11d22d33d44)

3

[20, p. 4]. These jacobians are also reported in [22].)

In [2, eq. (93)], the two-rebit separability function Sreal(ν) was taken to be proportional to

the incomplete beta function Bν(ν,
1
2
, 2) = 2

3
(3−ν)

√
ν–an apparently much simpler function

than the Lovas-Andai counterpart (2) above. Given the just indicated scaling by 1048576
π2 , to

achieve the 29
140

separability probability numerator result of Lovas and Andai, we must take

the hypothesized separability function to be, then, 3915π2(3−ν)
√
ν

131072
.
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A parallel phenomenon is observed in the two-qubit case, where [20, eq. (11)]

Hcomplex(µ) = − µ7(h1 + h2)

1801800(µ2 − 1)15
, (16)

with

h1 = (µ− 1)(µ+ 1)
(
363µ12 + 10310µ10 + 58673µ8 + 101548µ6 + 58673µ4 + 10310µ2 + 363

)
and

h2 = −140
(
µ2 + 1

) (
µ12 + 48µ10 + 393µ8 + 832µ6 + 393µ4 + 48µ2 + 1

)
log(µ).

Setting α = 1 in the denominator formula (7), and again following the integration-by-parts

scheme of Lovas and Andai, while setting t = µ = t̃, the simple ratio (proportional to the

square of (14)) is now

210862080
(
1− t̃2

)2
t̃2

. (17)

To achieve the 256
1575

Lovas-Andai two-qubit denominator result, we must multiplyHcomplex(ν)

(16) by 328007680.

The two-qubit separability function Scomplex(ν) advanced in [2] was proportional to the

square of that–Bν(ν,
1
2
, 2) = 2

3
(3− ν)

√
ν–employed in the two-rebit context. Now, to obtain

the two-qubit numerator result of 2048
51975

necessary for the 8
33

separability probability outcome,

we took the associated separability function to simply be 6
71

(3 − ν)2ν. We refer the reader

to Figure 2 in [2] (and Figs. 13 and 14 below) to see the extraordinarily good fit of this

function. (However, the two-rebit fit displayed there does not appear quite as good.)

Let us now supplement the earlier plots in [2], with some newly generated ones. (Those

2007 plots were based on quasi-Monte Carlo [“low-discrepancy” point [23]] sampling, while

the ones presented here are based on more “state-of-the-art” sampling methods [16], with

many more density matrices [but, of “higher-discrepancy”] generated.) In Figs. 7 and 8 we

show the two-rebit separability probabilities as a function, firstly, of ν = d11d44
d22d33

and, secondly,

as a function of µ =
√
ν =

√
d11d44
d22d33

, together with the curves 3915π2(3−ν)
√
ν

131072
and 3915π2(3−µ2)µ

131072
,

respectively. In Figs. 9 and 10 we show the two-qubit separability probabilities as a

function, firstly, of ν and, secondly, as a function of µ, together with the curves 6
71

(3− ν)2ν

and 6
71

(3− µ2)2µ2, respectively.

In Figs. 11, 12, 13 and 14, rather than showing the estimated separability probabilities

together with the separability functions as in the previous four figures, we show the estimated

13
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two-rebit sep. prob.

FIG. 7: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) sepa-

rability function 3915π2(3−ν)
√
ν

131072

0.2 0.4 0.6 0.8 1.0
μ

0.1

0.2

0.3

0.4

0.5

0.6

two-rebit sep. prob.

FIG. 8: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

randomly-generated density matrices, together with the hypothesized (slightly subordinate) sepa-

rability function 3915π2(3−µ2)µ
131072
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two-qubit sep. prob.

FIG. 9: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 507 million

randomly-generated density matrices, together with the (indiscernibly different) separability func-

tion 6
71(3− ν)2ν (cf. Fig. 13 and [2, Fig. 2] for the residuals from the fit)
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μ
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FIG. 10: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million

randomly-generated density matrices, together with the (indiscernibly different) separability func-

tion 6
71(3− µ2)2µ2
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FIG. 11: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 687 million

randomly-generated density matrices, minus the separability function 3915π2(3−ν)
√
ν

131072
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FIG. 12: Estimated two-rebit Hilbert-Schmidt separability probabilities, based on 5,077 million

randomly-generated density matrices, minus the separability function 3915π2(3−µ2)µ
131072

separability probabilities minus the separability functions, that is, the residuals from this

fits.

So, at this stage, the evidence is certainly strong that the Dyson-index ansatz is at least

of some value in approximately fitting the relationships between two-rebit and two-qubit

Hilbert-Schmidt separability functions.
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FIG. 13: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 million

randomly-generated density matrices, minus the separability function 6
71(3− ν)2ν
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FIG. 14: Estimated two-qubit Hilbert-Schmidt separability probabilities, based on 3,715 randomly-

generated density matrices, minus the separability function 6
71(3− µ2)2µ2
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A. Formulas linking the Lovas-Andai variable ε and the Slater/Bloore variable µ

Using the two-rebit density matrix parameterization (15), then, taking the previously

indicated relationship (10), which has the explicit form in this case of

ε = exp

(
− cosh−1

(
−µ2 + 2µz12z34 − 1

2µ
√
z212 − 1

√
z234 − 1

))
, (18)

and inverting it, we find

µ =
1

2

(
λ−
√
λ2 − 4

)
, (19)

where

λ = 2z12z34 −
√
z212 − 1

√
z234 − 1

(
1

ε2
+ 1

)
ε.

For the two-qubit counterpart, we have

ε = exp

(
− cosh−1

(
−µ2 + 2µ (y12y34 + z12z34)− 1

2µ
√
y212 + z212 − 1

√
y234 + z234 − 1

))
. (20)

The zij’s are as in the two-rebit case (23), and the yij’s are now the corresponding imaginary

parts in the natural extension of the two-rebit density matrix parameterization (15). A

similar inversion yields

µ =
1

2

(
λ̃−

√
λ̃2 − 4

)
, (21)

where

λ̃ = −
(

1

ε2
+ 1

)
ε
√
y212 + z212 − 1

√
y234 + z234 − 1 + 2y12y34 + 2z12z34.

It appears to be a challenging problem, using these relations (10), (19) and (21), to

transform the ε-parameterized volume forms and separability functions in the Lovas-Andai

framework to the µ-parameterized ones in the Slater setting, and vice versa. (The presence

of the z and y variables in the formulas, undermining any immediate one-to-one relationship

between ε and µ, is a complicating factor.)

The correlation between the ε and µ variables, estimated on the basis of one mil-

lion randomly-generated (with respect to Hilbert-Schmidt measure) density matrices was

0.631937 in the two-rebit instance, and 0.496949 in the two-qubit one.

Also, in these two sets of one million cases, µ was always larger than ε. This dom-

inance effect (awaiting formal verification) is reflected in Figs. 15 and 16, being plots of

the separability probabilities (again based on samples of size 5,077 and 3,715 million, re-

spectively) as joint functions of ε and µ, with no results appearing in the regions ε > µ.
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FIG. 15: Two-rebit separability probabilities as joint function of ε and µ, based on 5,077 million

randomly-generated density matrices. Note the vacant region ε > µ.

It has been noted (http://mathoverflow.net/questions/262943/show-that-a-certain-ratio-of-

diagonal-entries-dominates-a-certain-ratio-of-singu) that for a diagonal 4× 4 density matrix

D that ε = µ (inverting ratios, if necessary, so that both are less than or greater than 1).

This equality can also be observed by setting z12 = z24 = 0 (and y12 = y24 = 0) in the

equations immediate above.

Let us now display three plots that support, but only approximately, the possible rel-

evance of the Dyson-index ansatz for two-rebit and two-qubit separability functions. In

Fig. 17, we show the ratio of the square of the two-rebit separability probabilities to the

two-qubit separability probabilities, in terms of the variable employed by Slater, µ =
√

d11d44
d22d33

.

In Fig. 18, we show the Lovas-Andai counterpart, that is, in terms of the ratio of singular

values variable, ε = σ(V ). Further, in Fig. 19 we display the ratio of the square of the

two-dimensional two-rebit plot (Fig. 15) to the two-dimensional two-qubit plot (Fig. 16).

These three figures all manifest an upward trend in the ratios as ε and/or µ increase.
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FIG. 16: Two-qubit separability probabilities as joint function of ε and µ, based on 3,715 million

randomly-generated density matrices. Note the vacant region ε > µ.

IV. SCENARIOS FOR WHICH ε = µ OR 1
µ

A. Seven-dimensional convex set of two-rebit states

If we set z12 = z34 = 0 in the relation (18), we obtain ε = µ or 1
µ
. So, let us try to obtain

the separability function when these null conditions are fulfilled. First, we found that the

volume of the seven-dimensional convex set is equal to 1
5040
· 2π2

3
= π2

7560
≈ 0.0013055, with a

jacobian for the transformation to µ equal to

µ3 (−11µ6 − 27µ4 + 27µ2 + 6 (µ6 + 9µ4 + 9µ2 + 1) log(µ) + 11)

210 (µ2 − 1)7
. (22)

(2π
2

3
is the normalization constant corresponding to χ1(ε) [1, Table 2], appearing in the

“defect function” (3), as well as the volume of the standard unit ball in the normed vector

space of 2× 2 matrices with real entries, denoted by B1(R2×2).)

We were, further, able to impose the condition that two of the principal 3× 3 minors of

the partial transpose are positive. The resultant separability function (Fig. 20) was
2
(√

µ2−1+µ2 csc−1(µ)
)

πµ2
µ > 1

2
√

1−µ2µ+2i log
(
µ+i
√

1−µ2
)
+π

π
0 < µ < 1

, (23)
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FIG. 17: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 8) to the

estimated two-qubit separability probabilities (Fig. 10), as a function of µ =
√

d11d44
d22d33

with an associated separability probability of 71
105
≈ 0.67619.

We, then, sought to impose–as both necessary and sufficient for separability [24, 25]–

the positivity of the partial transpose of the density matrix. First, we found that the

associated separability function assumes the value 1 at µ = 1. For µ = 2, 3, we formu-

lated four-dimensional constrained integration problems. Mathematica reduced them to

two-dimensional integration problems, for which we were able to perform high precision

calculations. Remarkably, the values obtained agreed with those for χ̃1(
1
2
) = χ̃1(2) and

χ̃1(
1
3
) = χ̃1(3) to more than twenty decimal places. The two-dimensional integrands Math-

ematica yielded for µ = 2 were of the form

3

(
π
√
−4z213 − z214 + 4− 8

√
−z213 − z214 + 1 sin−1

(
z14

2
√

1−z213

)
+ 2
√
−4z213 − z214 + 4 sin−1

(
z14√
1−z213

))
8π2

(24)

for

−1 < z13 < 1 ∧ z14 +
√

1− z213 > 0 ∧ z14 < 0
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FIG. 18: Ratio of the square of the estimated two-rebit separability probabilities (Fig. 2) to the

estimated two-qubit separability probabilities (Fig. 5), as a function of the ratio of singular values

variable, ε = σ(V )

FIG. 19: The ratio of the square of the two-dimensional two-rebit plot (Fig. 15) to the two-

dimensional two-qubit plot (Fig. 16)
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FIG. 20: Two-rebit separability probability function (23) for the seven-dimensional convex set for

which ε = µ or 1
µ , based on the positivity of two principal 3× 3 minors of the partial transpose

and

3

(
π
√
−4z213 − z214 + 4 + 8

√
−z213 − z214 + 1 sin−1

(
z14

2
√

1−z213

)
− 2
√
−4z213 − z214 + 4 sin−1

(
z14√
1−z213

))
8π2

(25)

for

−1 < z13 < 1 ∧ z14 > 0 ∧
√

1− z213 − z14 > 0.

So, in light of this evidence, we are confident in concluding that the Lovas-Andai two-rebit

separability function χ̃1(ε) serves as both the Lovas-Andai and Slater separability functions

in this seven-dimensional setting.

To still more formally proceed, we were able to generalize the pair of two-dimensional

integrands for the specific case µ = 2 given in (24) and (25) to µ = 1, 2, 3, . . ., obtaining

3

(
2µ
√
−µ2z214 − z213 + 1 sin−1

(
z14√
1−z213

)
− 2
√
−z213 − z214 + 1 sin−1

(
µz14√
1−z213

)
+ π
√
−z213 − z214 + 1

)
2π2

(26)

for

1 < z13 < 1 ∧ z14 > 0 ∧
√

1− z213 − µz14 > 0
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and

3

(
−2µ

√
−µ2z214 − z213 + 1 sin−1

(
z14√
1−z213

)
+ 2
√
−z213 − z214 + 1 sin−1

(
µz14√
1−z213

)
+ π
√
−z213 − z214 + 1

)
2π2

(27)

for

−1 < z13 < 1 ∧ µz14 +
√

1− z213 > 0 ∧ z14 < 0.

1. Reproduction of Lovas-Andai two-rebit separability function χ̃1(ε)

Making use of these last set of relations, we were able to reproduce the Lovas-Andai

two-rebit separability function χ̃1(ε), given in (2). We accomplished this by, first, reducing

the (general for integer µ > 1) two-dimensional integrands (26) and (27) to two piecewise

one-dimensional ones of the form

4
(
µ2
√

1− s2 sin−1
(
s
µ

)
+
√
µ2 − s2 cos−1(s)

)
π2µ2

(28)

over s ∈ [0, 1] and

2π
√
µ2 − s2 − 4µ2

√
1− s2 sin−1

(
s
µ

)
+ 4
√
µ2 − s2 sin−1(s)

π2µ2
(29)

over s ∈ [−1, 0].

To obtain these one-dimensional integrands, which we then were able to explicitly evalu-

ate, we made the substitution z14 →
s
√

1−z213
µ

, then integrated over z13 ∈ [−1, 1], with µ ≥ 1,

so that ε = 1
µ
. Let us note that in this approach, the dependent variable (µ) appears in

the integrands, while in the Lovas-Andai derivation, the dependent variable (ε) appears as

a limit of integration. The counterpart set of two piecewise integrands to (28) and (29) for

the reciprocal case of 0 < µ ≤ 1 are

4
(
µ2
√

1− s2 cos−1
(
s
µ

)
+
√

(µ− s)(µ+ s) sin−1(s)
)

π2µ2
(30)

over s ∈ [0, 1] with µ > s and

2µ2
√

1− s2
(

2 sin−1
(
s
µ

)
+ π
)
− 4
√

(µ− s)(µ+ s) sin−1(s)

π2µ2
(31)
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over s ∈ [−1, 0] with µ > −s. The corresponding univariate integrations then directly yield

the Lovas-Andai two-rebit separability function χ̃1(ε), given in (2), now with ε = µ, rather

than ε = 1
µ
.

As an interesting aside, let us note that we can obtain ε = µ in (18), in a nontrivial

fashion (that is, not just by taking z12 = z34 = 0), by setting

z34 =
z12

(
−2 (µ3 + µ) + µ4

(
−
√
z212 − 1

)
+
√
z212 − 1

)
(µ2 − 1)2 z212 − (µ2 + 1)2

, (32)

leading to an eight-dimensional framework. However, this result did not seem readily

amenable to further study/analysis.

B. Eleven-dimensional convex set of two-qubit states

Let us repeat for the 15-dimensional convex set of two-qubit states, the successful form

of analysis in the preceding section, again nullifying the (1,2), (2,1), (3,4), (4,3) entries of

D, so that the two diagonal 2× 2 blocks D1, D2 are themselves diagonal. This leaves us in

an 11-dimensional setting. The associated volume we computed as 1
9979200

· π4

6
= π4

59875200
≈

1.62687 · 10−6. (Here π4

6
is the normalization constant corresponding to χ2(1) [1, Table 2],

as well as the volume of the standard unit ball in the normed vector space of 2× 2 matrices

with complex entries, denoted by B1(C2×2).) The associated jacobian for the transformation

to the µ variable is

µ5 (A(µ− 1)(µ+ 1)− 60 (6µ10 + 75µ8 + 200µ6 + 150µ4 + 30µ2 + 1) log(µ))

83160 (µ2 − 1)12
(33)

with

A = 5µ10 + 647µ8 + 4397µ6 + 6397µ4 + 2272µ2 + 142.

The imposition of positivity for one of the 3 × 3 principal minors of the partial transpose

yielded a separability function of 2µ2−1
µ4

for µ > 1, with an associated bound on the true

separability probability of this set of eleven-dimensional two-qubit density matrices of 126
181
≈

0.696133. (This function bears an interesting resemblance to the later reported important

one (38).)

Again–as in the immediately preceding seven-dimensional two-rebit setting–imposing, as

both necessary and sufficient for separability [24, 25], the positivity of the partial transpose
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of the density matrix, we find that the associated separability function assumes the value

1 at µ = 1. For µ = 2, our best estimate was 0.36848, which in line with the seven-

dimensional analysis, would appear to be an approximation to the previously unknown

value of χ̃2(
1
2
) = χ̃2(2).

1. Proof of the 8
33 -Two-Qubit Hilbert Schmidt Separability Probability Conjecture

We applied the Mathematica command GenericCylindricalDecomposition to an eight-

dimensional set (plus µ) of positivity conditions, enforcing the positive-definite nature of two-

qubit (4×4) density matrices (with their (1,2), (2,1), (3,4) and (4,3) entries nullified) and of

their partial transposes, for µ > 1. (“GenericCylindricalDecomposition[ineqs,x1, x2, ...] finds

the full-dimensional part of the decomposition of the region represented by the inequalities

ineqs into cylindrical parts whose directions correspond to the successive xi, together with

any hypersurfaces containing the rest of the region.”)

These density matrices had their two 2 × 2 diagonal blocks, themselves set diagonal in

nature. The parallel two-rebit analysis (sec. IV A) succeeded in reconstructing the Lovas-

Andai function χ̃1(ε), giving us confidence in this strategy. This pair of reduction strategies

rendered the corresponding sets of density matrices as 11-dimensional and 7-dimensional in

nature, rather than the standard full 15- and 9-dimensions, respectively. The cylindrical

algebraic decomposition (CAD)–applied to the two-qubit positivity constraints (expressible

in terms of µ and four zij and four yij variables)–yielded three complementary solutions.

One of these consisted of three further complementary solutions. We analyzed each of the

five irreducible solutions separately, employing them to perform integrations over the same

set of four (z23, y23, y24 and z24) of the eight variables. Then, we summed the five results,

remarkably simplifying to the four-dimensional integrand

12π2 (− (µ2 − 1) y214 − (µ2 − 1) z214 + y213 + z213 − 1) (µ2 (y214 + z214) + y213 + z213 − 1)

2π4 (1− y213 + z213)
, (34)

subject to the constraints

µ > 1 ∧ − 1

µ
< z14 <

1

µ
∧ −

√
1− µ2z214
µ

< y14 <

√
1− µ2z214
µ

(35)

∧ −
√

1− µ2 (y214 + z214) < y13 <
√

1− µ2 (y214 + z214)

∧ −
√
µ2 (− (y214 + z214))− y213 + 1 < z13 <

√
µ2 (− (y214 + z214))− y213 + 1.
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The transformation to a pair of polar coordinates

{z13 → r13 cos (t13) , z14 → r14 cos (t14) , y13 → r13 sin (t13) , y14 → r14 sin (t14)} . (36)

gave us a somewhat simpler integrand

12π2r13r14 (r214µ
2 + r213 − 1) (−r214 (µ2 − 1) + r213 − 1)

2π4 (1− r213)
. (37)

(Note four “active” variables in the first integrand, and only two radial and no angular ones

in the second.) The integration constraints (35) now simply reduced to r213 +r214µ
2 < 1, with

µ > 1. The integration result

f(u) =
4µ2 − 1

3µ4
, (38)

immediately followed.

Now, the function that Lovai and Andai expressed hope in employing to verify the con-

jecture that the Hilbert-Schmidt two-qubit separability probability is 8
33
≈ 0.242424, is

χ̃2(ε) = f(
1

ε
) =

1

3
ε2
(
4− ε2

)
. (39)

This can be seen since the denominator of the equation (6) for Psep(C) evaluates, as noted

earlier, to
256

1575
, (40)

while the use of the newly-constructed χ̃2(ε) yields a numerator value of

2048

51975
, (41)

with the ratio giving the 8
33

result.

It is somewhat startling to compare the quite simple nature of χ̃2(ε) : [0, 1]→ [0, 1] with

its two-rebit (polylogarithmic/inverse hyperbolic tangent) counterpart ((1), (2)). Let us now

present (Fig. 21) the two-qubit version of Fig. 2, showing again a random distribution of

residuals, serving as further validation/support for the newly-constructed χ̃2(ε).

Let us interestingly note that it was conjectured in 2007 [2, eqs. (93), (95); sec. 9.2] that

the “two-qubit separability function” (in the Slater framework) had the form

6

71
(3− µ2)µ2, (42)

somewhat similar in nature to (39) (cf. Fig. 10, 14).
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FIG. 21: Result of subtracting χ̃2(ε) from the estimated two-qubit separability probability curve

(Fig. 5). Fig. 3 is the two-rebit analogue.

V. REBIT-RETRIT AND QUBIT-QUTRIT ANALYSES

Let us now attempt to extend the two-rebit and two-qubit line of analysis above to rebit-

retrit and qubit-qutrit settings–now, of course, passing from consideration of 4 × 4 density

matrices to 6× 6 ones. Lovas and Andai, in their quite recent study, had not yet addressed

such issues. In [2], candidate (Slater-type) separability functions had been proposed. Two

dependent variables (cf. the use of µ =
√

d11d44
d22d33

in the lower-dimensional setting above)

had been employed [2, eq. (44)]. Let us now refer to these two variables as τ1 =
√

d11d55
d22d44

and τ2 =
√

d22d66
d33d55

. But, interestingly, it was argued that only a single dependent variable

τ = τ1τ2 =
√

d11d66
d33d44

sufficed for modeling the corresponding separability functions. The

separability function in the rebit-retrit case was proposed to be simply proportional to τ [2,

eq.(98)].

In our effort to extend the Lovas-Andai analyses [1] to this setting, we now took D1

and D2 to equal the upper and lower diagonal 3 × 3 blocks of the 6 × 6 density matrix in

question. Then, we computed the three singular values (s1 ≥ s2 ≥ s3) of D
1/2
2 D

−1/2
1 , and

took the ratio variables ε1 = s2
s1

and ε2 = s3
s2

as the dependent ones in question. (An issue

of possible concern is that, unlike the 4 × 4 case [26], positivity of the determinant of the

partial transpose of a 6 × 6 density matrix is only a necessary, but not sufficient condition
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for separability.) Also, in the case of diagonal D, again the two variables in the µ framework

are equal to those in the ε setting, or to their reciprocals.

Then, we generated 3,436 million rebit-retrit and 2,379 million qubit-qutrit density ma-

trices, randomly with respect to Hilbert-Schmidt measure. (These sizes are much larger

than those employed in 2007–for similar purposes–in [2].) We appraised the separability

of the density matrices D by testing whether the partial transpose, using the four 3 × 3

blocks, had all its six eigenvalues positive. The separability probability estimates were

0.13180011 ± 0.0000113109 and 0.02785302 ± 6.6124281 · 10−6, respectively. (We can re-

ject the qubit-qutrit conjecture of 32
1199

≈ 0.0266889 advanced in [2, sec. 10.2]. A pos-

sible alternative candidate is 72
2585

= 5·11·47
23·32 ≈ 0.027853, while in the rebit-retrit case,

we have 298
2261

= 7·17·19
2·149 ≈ 0.1318001.) Further, our estimates of the probabilities that

D had two [the most possible [27]] negative eigenvalues, and hence a positive determi-

nant, although being entangled, were 0.0334197± 0.0000409506 in the rebit-retrit case, and

0.0103211± 0.000031321 in the qubit-qutrit instance.)

In the two-variable settings, we partition the square [0, 1]2 of possible separability prob-

ability results into an 80 × 80 grid, and in the one-variable setting, use a partitioning (as

in the two-rebit and two-qubit analyses above) into 200 subintervals of [0,1]. In Fig. 22 we

show the ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of τ , while in Fig. 23, we show a two-dimensional

version. Fig. 24 is the analog of this last plot using the singular-value ratios ε1 and ε2. As

in Figs. 17, 18 and 19, we observe a gradual increase in these Dyson-index-oriented analy-

ses. In Figs. 25 and 26, we show the highly linear (“diagonal”) rebit-retrit and qubit-qutrit

separability probabilities, holding τ1 = τ2.

VI. CONCLUDING REMARKS

We have found (sec. IV A) that the Lovas-Andai two-rebit separability function χ̃1(ε)

also serves as the Slater separability function in a reduced (from nine to seven-dimensional)

setting where the 2× 2 diagonal block matrices D1, D2 are themselves diagonal. Addition-

ally, we know that Lovas-Andai two-qubit separability function χ̃2(ε) serves as the Slater

separability functions in a reduced (from fifteen to eleven-dimensional) setting where the

2×2 diagonal block matrices D1, D2 are themselves diagonal. It remains a question of some
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FIG. 22: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of τ = τ1τ2 =
√

d11d66
d33d44

FIG. 23: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of τ1 =
√

d11d55
d22d44

and τ2 =
√

d22d66
d33d55
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FIG. 24: The ratio of the square of the rebit-retrit separability probability to the qubit-qutrit

separability probability as a function of the singular value ratios ε1 and ε2
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FIG. 25: Rebit-retrit separability probabilities for τ1 = τ2

interest as to what the Slater two-rebit and two-qubit separability functions themselves are

in the full nine- and fifteen-dimensional settings, in particular, the possibility that the two-

qubit separability function might be 6
71

(3− µ2)µ2 (cf. Figs. 10, 14). (Can the solutions in

the Lovas-Andai setting be “lifted” to those in the Slater one [cf. eqs.(12)-(17)]?) Also, we
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FIG. 26: Qubit-qutrit separability probabilities for τ1 = τ2

note that Lovas and Andai did not specifically consider D1 and D2 to be diagonal. So, if

would be interesting to ascertain whether their same conclusions (such as the formula for

χ̃1(ε)) could have been reached under such assumptions.

The counterpart rebit-retrit and qubit-qutrit 6× 6 problems (sec. V) might also be pro-

ductively studied when the 3 × 3 diagonal blocks are themselves diagonal. The problems

under consideration would then be 14 and 23-dimensional in nature, as opposed to 20 and

35-dimensional, with lower-dimensional CAD’s still.

A formidable challenge, to continue this line of research, is now to establish that the

”two-quater[nionic]bit” Hilbert-Schmidt separability probability is 26
323

. This would move

us, first, from the original 9-dimensional two-rebit and 15-dimensional two-qubit settings to

a 27-dimensional one. But these dimensions can be reduced to 7-, 11- and 19-, using the

apparently acceptable strategy–that has given us χ̃1(ε) and χ̃2(ε)–of setting the two 2 × 2

diagonal blocks themselves to diagonal form. In turn, this leads to cylindrical algebraic

decompositions with 4, 8 and 16 variables–with the last, quaternionic one, still seemingly

computationally unfeasible. Noting that the formula (39) for χ̃2(ε) is much simpler in form

than that (2) for χ̃1(ε), we might speculate as to the degree of complexity of the (yet

unknown) quaternionic counterpart χ̃4(ε). (Theorem 3 of [22] yields π12

315071454005160652800000

for the [unnormalized] χ4(ε), being as well as the volume of the standard unit ball in the

normed vector space of 2×2 matrices with quaternionic entries, denoted by B4(Q2×2).) Our
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speculation/conjecture is that this degree will, as in the two-rebit case be relatively high,

with the complex domain being privileged in these regards.

It should be pointed out that the manner of derivation of χ̃2(ε) here is distinctly different

from that employed by Lovas and Andai [1, App. A] in obtaining the form of χ̃1(ε), though

it has also been able to find this result here using the cylindrical algebraic decomposition

approach (sec. IV A 1).

In their Conclusions, Lovas and Andai write: “The structure of the unit ball in operator

norm of 2 × 2 matrices plays a critical role in separability probability of qubit-qubit and

rebit-rebit quantum systems. It is quite surprising that the space of 2 × 2 real or complex

matrices seems simple, but to compute the volume of the set

{a b

c e

∣∣∣ a, b, c, e ∈ K,

∥∥∥∥∥∥
a b

c e

∥∥∥∥∥∥ < 1,

∥∥∥∥∥∥
a εb

c
ε
e

∥∥∥∥∥∥ < 1
}

for a given parameter ε ∈ [0, 1], which is the value of the function χd(ε), is a very challenging

problem. The gist of our considerations is that the behavior of the function χd(ε) determines

the separability probabilities with respect to the Hilbert-Schmidt measure.” (The operator

norm ‖·‖ is the largest singular value or Schatten-∞ norm.)

It appears that the cylindrical-algebraic-decomposition approach we have applied to 4×4

density matrices D with diagonal 2 × 2 diagonal blocks D1, D2 to obtain both χ̃1(ε) and

χ̃2(ε) specifically answers this “very challenging” question, but in a manner quite different

than Lovas and Andai applied in deriving χ̃1(ε) [1, App. A].

VII. ADDENDUM

It certainly appears that the work of Lovas and Andai [1]–inspired by that of Milz and

Strunz [18]–is highly innovative and successful in finding the two-rebit separability function

χ̃1(ε), and verifying the conjecture that the two-rebit Hilbert-Schmidt separability prob-

ability is 29
64

. However, in our study of the Lovas-Andai paper, we remain unconvinced

by the chain of arguments on page 13 leading to the result 1
4
, and have posted a stack

exchange question (https://mathematica.stackexchange.com/questions/144277/evaluate-a-

pair-of-integrals-of-the-product-of-two-univariate-functions) in this regard.
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