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Abstract

The time dependence of the equation of state (EoS) parameter of the cosmic fluid, for a space of zero
curvature, has been determined in the framework of the Brans-Dicke (BD) theory of gravity, using FRW
metric. For this purpose, empirical expressions of the scale factor, scalar field and the dimensionless BD
parameter have been used. The constant parameters involved in these expressions have been determined
from the field equations. The dependence of the scalar field upon the scale factor and the dependence
of the BD parameter upon the scalar field have been explored to determine the time dependence of the
EoS parameter. Its rate of change with time has been found to depend upon a parameter that governs
the time dependent behaviour of the scalar field. Time dependence of the EoS parameter has been
graphically depicted.
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1 Introduction
High precision astrophysical observations and their interpretations have established that the universe is
expanding with acceleration [1]. This accelerated expansion is said to be caused and controlled by an entity,
known as dark energy, whose true nature has not yet been determined. In theoretical calculations, this dark
energy is often represented by the cosmological constant (Λ), found in General Relativity (GR). Although
it accounts for the experimental observations quite well, but it has its own limitations [2]. A large number
of alternative theoretical models have emerged to explain gravitational observations. The strengths as well
as weaknesses of these models can be found in scientific literature [3]. Non-minimally coupled scalar field
theories, particularly in the framework of Brans-Dicke (BD) theory, have been found to be highly useful in
explaining the phenomenon of accelerated expansion [4]. The dimensionless parameter ω in BD theory plays
a very important role in the prediction of observational results [5, 6]. In several models in BD theory, the
accelerated expansion is found to be generated by a small value of ω, typically of the order of unity [4-6]. It
has also been found that a Brans-Dicke scalar field alone can generate an accelerated expansion in the matter
dominated era of the universe, without having to consider the presence of any quintessence matter or any
interaction between the BD field and the dark matter [7]. A generalized version of BD theory by Bergman
and Wagoner and a more useful form by Nordtvedt can predict this transition [8, 9, 10]. In this generalized
theory, the BD parameter (ω) is regarded as a function of the scalar field (φ) and thus it becomes a function
of time [10].
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Cosmic microwave background radiation and observations on large scale structure indicate that the
universe is highly homogeneous and isotropic on large scales [11, 12]. On the basis of observational results,
the idea of an accelerating universe has emerged in the recent years [13]. To find the true nature of an exotic
type of repulsive force, driving the accelerated expansion, which is said to be caused by an entity named dark
energy (DE), is the aim of research in this regard. This dark energy is known to have a constant or a slightly
changing energy density as the universe expands, but one does not have a clear knowledge regarding the true
nature of DE [2]. The equation of state (EoS) parameter γ = P/ρ, which has conventionally characterised
DE, should not be regarded as a constant. Observational results coming from SN Ia data establish that
−1.67 < γ < −0.62 [14]. However, it is not at all essential to treat γas a constant. Owing to insufficient
observational evidence to determine the variation of γ, the equation of state parameter has been considered
in many studies to be a constant having values −1, 0, 1/3 and +1 for vacuum fluid, dust fluid, radiation and
stiff fluid dominated universe, respectively [5]. But γ is, in general, a function of redshift or time [15]. In
recent years, various models of time dependent γ have been proposed [16]. Recently Ray et al have studied
variable EoS parameter for generalized dark energy model [17, 18].

In the present study, we have determined the time dependence of the equation of state parameter (γ) of
the cosmic fluid, using the field equations of the Brans-Dicke theory (for flat space) and the wave equation
for the scalar field (φ). For this formulation we have used empirical expressions of the scale factor, scalar
field and the Brans-Dicke parameter (ω). Here we have a parameter (n) that controls the rate of change of
the scalar field with time. This parameter is found to govern the behaviour of the EoS parameter (γ) as a
function of time. Time variation of the EoS parameter has been shown graphically.

2 Theoretical Model
The field equations of generalized Brans-Dicke theory, obtained by using FRWmetric, for a space of curvature
k are given by,
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The wave equation for the scalar field (φ) is expressed as,
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Combining equations (1), (2) and (3), one obtains,
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ȧ

a
(ρ+ P ) = 0 (4)

The equation of state of the cosmic fluid is P = γρ, where γ is the equation of state (EoS) parameter.
Solution of equation (4), for a constant value of γ, is given by,

ρ = ρ0a
−3(1+γ) (5)

Combining equations (2) and (3) and taking k = 0 (for flat space), one gets,
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Substituting equation (6) into (3) we have,
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Eliminating ρ from equations (1) and (7), and taking k = 0, one obtains,
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Thus equation (8) is obtained as the general expression for the EoS parameter (γ) in BD theory. To determine
its time dependence, following empirical expressions have been used.
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The scale factor (in eq. 9) has been chosen to ensure a change of sign of the deceleration parameter with
time, as per many recent studies showing a transition of cosmic expansion from a phase of deceleration to
acceleration [4]. Here α, β > 0 to make the scale factor increasing with time in an expanding universe. Using
equation (9), the Hubble parameter (H) and the deceleration parameter (q) are obtained as,

H = αβtβ−1 (12)

q = −1 + 1− β
αβ

t−β (13)

For 0 < β < 1 and α > 0, we get q > 0 at t = 0 and, for t→∝, we have q → −1.
Taking H = H0 and q = q0, at t = t0, one gets,

α =
H0

1−H0t0 (1 + q0)
t
{H0t0(1+q0)}
0 (14)

β = 1−H0t0 (1 + q0) (15)

The scalar field (in equation 10) has been chosen on the basis of some studies on Brans-Dicke theory [10].
The empirical expression of BD parameter (in eq. 11) has been chosen according to the generalized Brans-
Dicke theory, where ω is regarded as a function of the scalar field (φ) [4]. The values of ω0 and l have to be
determined from the field equations.
Using equation (10) along with the relation G = 1/φ one obtains,
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With the help of experimental observations regarding H0 and
(
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, n can be determined from equation
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, obtained from many researchers, are found to be both

positive and negative [19]. According to S. Weinberg, we have
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equation (16), one may express this requirement as,
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From equation (17) one gets, |n| ≤ 5.44 taking H0 = 7.348× 10−11Y r−1

An expression of ω0, determined from equation (1), taking k = 0, is given by,
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Using equation (10) in (8) and writing all parameter values for t = t0, one gets,
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The value of ω0 in equation (19) has to be taken from equation (18).
Using equation (11) in (3) and writing all parameter values at t = t0, one gets,
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Substituting for γ0 in equation (20) from equation (19), one gets,
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The value of ω0 in equation (21) should be taken from equation (18).
Combining the equations (9), (10) and (11), the time dependence of the BD parameter is obtained as,

ω = ω0Exp
[
lnα

(
tβ − tβ0

)]
(22)

The values of α, β, ω0 in equation (22) can be obtained from the equations of (14), (15) and (18) respectively.
Time dependence of γ can be studied from the following equation (eqn. 23) which is obtained by using
equations (10) and (11) in (8).

γ =
ωn2 + 2

(
1 + n+ n2

)
− 2q(n+ 2)

ωn2 − 6(n+ 1)
(23)

The values of q, n, ω in equation (23) can be obtained from equations (13), (16) and (22) respectively.
The values of different cosmological parameters used for the present study are given below.

H0 = 72Km/s/Mpc = 2.33 × 10−18sec−1, q0 = −0.55, ρ0 = 2.83 × 10−27Kgm−3, φ0 = 1/G0 =
1.498× 1010Kg2m−2N−1, t0 = 4.36× 1017sec
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Figure 1: Plots of γ vs. time with γ0 values close to zero.

Figure 2: Plots of γ vs. time with γ0 values close to −1.
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3 Results
Figure 1 shows three plots of γ vs. time, for the values of n for which γ0 is close to zero. For the largest
value of n here, γ initially decreases very fast upto the time of t = 0.5t0 and increases at a very slow rate
thereafter. It has a positive slope at the present epoch (t = t0). For the more negative values of n, we find a
negative slope for γ everywhere. The time dependence of γ, in this figure, is similar to that shown in figure
2 of an article by A Pradhan, based on Einstein’s theory of gravity [18]. Figure 2 shows three plots of γ
vs. time, for the values of n for which γ0 is close to −1. After a very sharp initial fall, each curve rises,
at a gradually smaller rate, to a value close to zero. This behaviour is similar to that shown in figure 6 of
Pradhan’s study on dark energy models with anisotropic fluid [19]. The time dependence of γ in figure 2 is
also similar to that obtained in a study of dark energy models by S Ray [17]. It is found from equation (19)
that the values of γ0, for positive values of n, are large negative numbers, contrary to observations according
to which γ0 should have a small negative value close to −1 [17]. So, one must choose only those negative
values of n for which γ0 is negative. For n = −1.9426735, γ0 is very close to zero, which was generally used
as the value of γ for the matter dominated universe [17]. For this value of n, γ decreases with time at a
gradually decreasing rate.

4 Conclutions
The present study shows that the parameter n determines the behavious of γ as a funtion of time, since
the parameters ω0, γ0 and l are all explicitly dependent upon the parameter n. The parameter n, by its
definition in equation 10, determines the rate at which the scalar field changes with time. Thus, one is likely
to draw a conclusion that any change of the scalar field (φ ≡ 1/G) with time is strongly connected to a
change in the value of the equation of state parameter (γ) of the cosmic fluid during that time. According
to a study by Banerjee and Pavon, the range of variation of ω0 is −3/2 < ω0 < 0 [7]. It is found from
equation (18) that ω0 is always positive for positive values of n. Therefore, only the negative values of n can
be expected to predict the correct behaviour of cosmic expansion. It is found from equation (19) that γ0 < 0
for n ≥ −1.9426735. Here γ0 is found to be zero for a value of n between -1.9426736 and -1.9426735. From
equation (19) we find that, γ0 ≤ −1 for n ≥ −1.8935 and γ0 > −1 for n < −1.8935. Observational results,
coming from SN Ia data, establish that the range of variation of γ is −1.67 < γ < −0.62 [14]. The values
of γ0, shown in figure 2, correspond to this range and these have been obtained here by taking n close to
−1.89. Equation (23) shows that, for n = −1.8935, the universe makes a transition from a phase of γ < −1
(phantom fluid dominated universe) to a phase of γ > −1 (quintessence), passing through a stage of γ = −1
(vacuum fluid dominated universe) which is also evident from the curves of figure 2. Here γ, as a function
of time, gradually approaches a stauration value, at an increasingly smaller rate. An improvement over this
theoretical model can be achieved if one uses a scale factor which has been obtained as a solution of the
field equations after incorporating the empirical scaler field into them. For this study, one may also choose a
different empirical expression for the scale factor satisfying the condition that the deceleration parameter (q)
shows a signature flip. One may work with empirical expressions of the scalar field (φ) and the BD parameter
(ω), which are different from those used in the present study (equations 10, 11). To obtain more tunable
parameters which can be varied to predict better values of γ0, consistent with astrophysical observations,
one may use weight factors while combining the equations (2) and (3) to get equation (6). One may have
different weightages of the equations (2) and (3) in the study by taking different combinations of these weight
factors. The importance of the present study lies in the fact that, unlike other recent studies on variable EoS
parameter, the time dependence of EoS parameter has been determined from Brans-Dicke field equations
without considering or incorporating any role of dark energy in governing its behaviour and using the simple
FRW space-time, assuming isotropy and homogeneity of space.
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