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Abstract

In this paper we take a closer look to the distribution of the residues of squarefree
natural numbers and explain an algorithm to compute those distributions.
We also give some conjectures about the minimal number of cycles in the squarefree
arithmetic progression and explain an algorithm to compute this minimal numbers.

1 Introduction

Distribution of the Residues: Let b be an arbitrary natural squarefree number. Now we
ask, what is the distribution of the residues of b over all squarefree numbers. In opposite to
the natural numbers, it turns out that the residues of squarefree numbers are not uniformly
distributed. For example, the probability that an arbitrary squarefree number is even is 1/3.
We give a formula of the ratio of the occurrence of two residues of b if we count over all
squarefree numbers. We explain an algorithm to compute these ratios.
Cycle Counting: We [PRE] introduced the notion of an S-Structure (short for squarefree
structure) and took the squarefree natural numbers as primary example. We considered
”arithmetic” sequences and their periodic cycles. Let b, a ∈ S. An arithmetic sequence start
with a0 = a and continue with ai+1 = ai ⊕ b (i.e. the squarefree part of ai + b). For every
pair a, b we end up in a cycle (for details see [PRE]).
Here we give a short summary about an S-Structure. Every element of a factorial ring can
be split into a squarefree and a squarefull part. Since this splitting is, in general, not unique,
we took only a subset of this ring. We defined a new multiplication and a new addition,
where we took the usual multiplication and addition and then skip the squarefull part of the
result. In some sense, the addition and the multiplication switch their role. Unfortunately
the new addition is no longer associative and therefore the distributive law is not valid.
In particular we considered the natural numbers in more detail and investigated the square-
free arithmetic sequences.
Now, we ask about the number of cycles of squarefree arithmetic sequences. We give an easy
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and quite fast algorithm to compute the number of cycles. We state a bunch of conjectures
but unfortunately for now we have no proofs.

2 Some notes about squarefree numbers

Before we consider the residues, we state two numeric properties of the natural squarefree
numbers.

Well known is

lim
n→∞

∑n
i=1, i is squarefree 1

n
=

6

π2

(i.e. let a ∈ N an arbitrary natural number then a is with the probability 6/π2 squarefree)

2.1 The small primes dominate the value of the limit: Lower and
upper bounds

We consider the sum
∑

i
1
p2i

, where the pi’s be primes. We give rough upper and lower bounds:

1

4
≤

∞∑
i

1

p2i
≤ 1

4
+
∞∑
i=1

1

(2i+ 1)2
=

1

4
+
π2 − 8

8

Let n > 1 we get

∞∑
i

1

p2i
≤

n∑
1

1

p2i
+

π2 − 8

8
−

(pn−1)/2∑
k=1

1

(2k + 1)2

 =:
n∑
1

1

p2i
+ An =: α1,n + An

and

α1,n ≤ α1 :=
∞∑
i

1

p2i
≤ α1,n + An

Now we compute the probability α that c ∈ N is not squarefree. A number c ∈ N is not
squarefree if it exist a prime p with p2|c. The compute the probability α we start with

α '
∞∑
i=1

1

p2i
=: α1

But we counted some numbers twice (i.e. numbers c where a pair of primes pi, pj exist, with
p2i p

2
j |c). So we adjust the sum

α ' α1 −
∞∑

i=1,j>i

1

p2i p
2
j

=: α1 − α2
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But in α2 we counted again some numbers twice (i.e. numbers c where a triple of primes
pi, pj, pk exist, with p2i p

2
jp

2
k|c). So we adjust the sum

α ' α1 − α2 +
∞∑

i=1,j>i,k>j

1

p2i p
2
jp

2
k

=: α1 − α2 + α3

And so on ...
We end up with

α =
∞∑
i=1

(−1)i+1αi

Now we consider α2.

α2 =
∞∑

i=1,j>i

1

p2i p
2
j

=
∞∑
i=1

1

p2i

(
∞∑

j=i+1

1

p2j

)
Let α2,n =

∑n
i=1,j>i

1
p2i p

2
j

and use the upper bound of α1.

α2,n ≤ α2 ≤ (α1,n + An)

(
n∑

j=i+1

1

p2j
+ An

)

= α1,n

n∑
j=i+1

1

p2j
+ α1,nAn + An

n∑
j=i+1

1

p2j
+ A2

n

Since
∑∞

i=n+1
1
p2i
≤ An (i.e. sum up only primes pj, with j > n), the term An

∑n
j=i+1

1
p2j

vanish, we get
α2,n ≤ α2 ≤ α2,n + α1,nAn + A2

n

This lead us to the

Proposition 1. Let αk and αk,n be defined as above, with n ≥ k. Then

αk,n ≤ αk ≤ αk,n + αk−1,nAn + αk−2,nA
2
n + · · ·+ α1,nA

k−1
n + Akn

Proof. We have

αk =
∞∑
i1=1

1

p2i1

 ∞∑
i2=i1+1

1

p2i2
· · ·

 ∞∑
ik=ik−1

1

p2ik

 · · ·


and

α ≤

(
n∑

i1=1

1

p2i1
+ An

)( n∑
i2=i1+1

1

p2i2
+ An

)· · ·
 n∑
ik=ik−1+1

1

p2ik
+ An

 · · ·
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Note (
n∑
i=1

1

p2i

)
An 6= An

(
n∑
i=1

1

p2i

)
Since

∑∞
i=n+1

1
p2i
≤ An (i.e. sum up only primes pj, with j > n), terms of the form

An

(∑n
i=1

1
p2i

)
vanish, we get the expected result.

We have two parameters to control the limes: The number of primes and the number of
terms of the approximation. We stick ourselves to the first three terms and count over the
first 10, 20 and 30 primes. We compute the lower and upper bound of the sum

∑3
i=1 αi:

LowerBound = α1,n − (α2,n + α1,nAn + A2
n) + α3,n

UpperBound = (α1,n + An)− α2,n + (α3,n + α2,nAn + α1,nA
2
n + A3

n)

The next table show the numerical results. We see, that the convergence is quite fast and
the greater primes have low impact to the limes. We do not go deeper in this area, because
we only want to give a first impression.

first n primes | LowerBound | Limes | UpperBound

------------------------------------------------------------

10 | 0.3767967740 | 0.3920728981 | 0.4022854273

20 | 0.3839122477 | 0.3920728981 | 0.3944840555

30 | 0.3857284824 | 0.3920728981 | 0.3923967288

2.2 The convergence of lim
n→∞

∑n
i=1, i is squarefree 1

n is fast: Numerical tests.

To show this, we easily test the first n natural numbers and compute:

c =

∑n
i is squarefree 1

n

The next table show same numerical results of c in order to the first n natural numbers.
Note the strange result for n = 10000. Again, we only want to give a first impression.

n | c | Limes

---------------------------------------

10 | 0.7000000000 | 0.6079271019

100 | 0.6100000000 | 0.6079271019

1000 | 0.6080000000 | 0.6079271019

10000 | 0.6083000000 | 0.6079271019

100000 | 0.6079400000 | 0.6079271019

1000000 | 0.6079260000 | 0.6079271019

10000000 | 0.6079291000 | 0.6079271019

100000000 | 0.6079269400 | 0.6079271019
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3 Distribution of the Residues

Now we consider the following problem:
Let b ∈ S and m ∈ N with 0 ≤ m < b. We ask about the probability that an arbitrary a ∈ S
is a ≡ m mod b.
In other words. Let b ∈ S and m ∈ N, 0 ≤ m < b, a0 = m and ai+1 = ai + b (the ai’s are
natural numbers). Now we compute the

lim
n→∞

∑n
i=0, ai is squarefree 1

n

To do this, we need some

Notation 2. Let b ∈ S and i, j = 0, . . . , b− 1 the residues of b.

1. The ratio Ri,j := [#i : #j] = ri : rj of residues, where, ∀a ∈ S, #i =
∑∞

a=1,a≡i mod b 1.

2. Let Sm the set of numbers who are a product of exactly m different primes.

3. Let γm ∈ Sm (note that γm is squarefree).

Theorem 3. Ratios of the Residues Fix b ∈ S. Let gi = gcd(b, i) =
∏mi

k=1 pk, 0 ≤ i < b.

ri = b/

 m∑
k=0

(−1)k
∑
γk|gi

γk


Sketch of the proof:

1. The notes about squarefree numbers 2 lead us to the following assumption. The
squarefree numbers are uniformly distributed in N, therefore skip the factor 6/π.

2. Split the natural numbers in consecutive intervals, such that each interval consist of
b2 consecutive numbers.

3. Fix i (i.e. fix a residue of b), 0 ≤ i < b. Let a0 = i and aj+1 = aj + b and consider

lim
n→∞

∑n
j=0, aj is squarefree 1

n

4. The non squarefree divisors of b2 are periodic in b2 with the period b2. Therefore it is
enough to consider only one interval.

5. In each interval there are b numbers with aj ≡ i mod b. Eliminate all aj’s, where aj
is a multiple of a non squarefree divisor of b2.
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Proof. (of Theorem 3) Since the elements of S are uniformly distributed, we can skip the
factor 6/π and it is enough to consider the interval of natural numbers [1, . . . , b2] (every
interval with b2 consecutive natural numbers is fine). We choose an interval with length b2,
since all divisors of b are periodic in b and therefore the quadratic divisors of b2 are periodic
in b2. Let as,i = s · b+ i, s = 0, . . . , b and 1 ≤ i < b.
For every i we have the numbers i, b+ i, . . . , (b− 1)b+ i and we eliminate all numbers that
are, in respect to b = Πm

k pk, not squarefree (i.e. we eliminate numbers with at least one pk,
with p2k|as,i).
Fix i, 1 ≤ i < b let gi = gcd(b, i) =

∏mi

k=0 pk, with p0 = 1, and then eliminate and count:
k = 0: In the interval are b numbers as,i. We have: b = b/

∑
γ0|gi (note, γ0 = 1).

k = 1: Eliminate the as,i’s where a prime p exist with p|as,i and p|gi. We have

∑
pk|gi

(
b2/

(
b
∏
j 6=k

pj

))
=
∑
γ1|gi

γ1

as,i to eliminate.
k = 2: In the last step we eliminate some as,i twice (as,i where a γ2|gi exist). Therefore we
sum up all those γ2 and adjust the sum.
k = 3: In the last step we count some as,i twice (as,i where a γ3|gi exist). Therefore we sum
up all those γ3 and adjust the sum.
...
k = n: Sum up all those γn and adjust the sum.
...

Corollary 4. Let b = p be prime. The corresponding ri’s are: r0 = p−1, r1 = p, . . . , rp−1 = p.

Proof. Since gcd(p, i) = 1, 1 ≤ i, p − 1, the corresponding ri’s are p. Except gcd(p, 0) = p
(i.e. p2 is not squarefree) and we have r0 = p− 1.

Corollary 5. Assume the same setting as in theorem 3:

1. If gcd(b, j) = gcd(b, i) then rj = ri.

2. If i ∈ S and the squarefree part of j is equal to i then rj = ri.

Proposition 6. Let b = p be prime. The ratio (
∑p−1

i=1 ri) : r0 = p : 1.

Proof. We have (Theorem 3) one residue 0 with k0 = p− 1 and p− 1 residues with ki = p.
Therefore we get

p− 1

(p− 1)p
=

1

p
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Proposition 6 implies, it is easy to compute that for b = 2 r0 : r1 = 1 : 2.
Theorem 3 implies, in the squarefree numbers the distribution of the residues, in opposition
to N, is no longer uniform.

Theorem 7. Let b ∈ S with b =
∏m

i=1 pi.

b−1∑
i=1

ri : r0 =
m−1∑
k=0

∑
γm−k|b

γm−k : 1

Sketch of the proof:

1. Induction over the number of primes of b.

2. Let Am =
∑m−1

k=0

∑
γm−k|b γm−k and proof Am+1 = pm+1 (Am + 1) + Am

3. Let r0 = Rm and proof Rm+1 = Rm (pm+1 − 1)

4. Let Sm = RmAm and proof Sm+1 = Am+1Rm+1 = Sm(p2m+1 − 1) + pm+1Rm(pm+1 − 1)

5. Proof Sm =
∑b−1

j=1 rj for all m ∈ N.

�

Proof. (of Theorem 7) We proof the theorem by induction over the number of primes of b
and split the proof into few steps.

Recursion: Am
Claim 1: Let A1 = p, A2 = p1p2 + (p1 + p2) and Am =

∑m−1
k=0

∑
γm−k|

∏m
i=1 pi

γm−k, where the
pi’s are distinct primes. Then

Am+1 = pm+1 (Am + 1) + Am , pm+1 -
m∏
i=1

pi

proof of Claim 1: We consider the elements of Am+1. First, all elements of Ampm+1 ⊂ Am+1.
Second, pm+1 is an element of Am+1. Third, Am ⊂ Am+1. Since Am+1 has no more elements,
this proofs claim 1.

Recursion: r0
Claim 2: Let R1 = p− 1, R2 = p1p2− (p1 + p2) + 1 and Rm =

∑m
k=0(−1)k

∑
γm−k|

∏m
i=1
γm−k,

where the pi’s are distinct primes. Then

Rm+1 = Rm (pm+1 − 1) , pm+1 -
m∏
i=1

pi
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proof of Claim 2: We consider the elements of Rm+1. First, all elements of Rmpm+1 ⊂ Rm+1.
Second, pm+1 is already mentioned, since (−1)mγ0 = (−1)m is an element of Rm. Third,
−Rm ⊂ Rm+1. Since Rm+1 has no more elements, this proofs claim 2.

Recursion: Sm = AmRm

Claim 3: Let S1 = p(p− 1) = A1R1, S2 = p1p2(p1p2 − 1) = A2R2 and
Sm =

∑m−1
k=0 (−1)k

∑
γm−k|

∏m
i=1 pi

γm−k(γm−k − 1). Assume Sm = AmRm then

Sm+1 = Am+1Rm+1 = Sm(p2m+1 − 1) + pm+1Rm(pm+1 − 1) , pm+1 -
m∏
i=1

pi

proof of Claim 3: First, we consider one term of Sm and Rm, γk(γk − 1) and γk. We get

p2m+1γk(γk − 1) + pm+1γk(pm+1 − 1) =

p2m+1γ
2
k − p2m+1γk + p2m+1γk − pm+1γk = pm+1γk(pm+1γk − 1)

Second, −Sm ⊂ Sm+1. Third, since (−1)m ∈ Rm we also get (−1)mp2m+1 and (−1)m+1pm+1

as elements of Sm+1. Since Sm+1 has no more elements, this proofs claim 3.

Show: Sm =
∑b−1

j=1 rj
Claim 4: Let b ∈ S and let Sm compute form the primes p1, . . . , pm, with

∏m
i=1 pi = b. Then

Sm =
b−1∑
j=1

rj

proof of claim 4: Let b =
∏m

k=1 pk and 1 ≤ i < b. For every i, with γk|i, we get a term
(−1)kb/γk as an element of ri. There are b/γk − 1 terms with γk|i, i = 1, . . . , b− 1, and we
get b/γk(b/γk − 1), a term of Sm. This proofs claim 4.
The proof of the theorem is complete.

Corollary 8. Let b ∈ S and b =
∏m

k=1 pk. Then

b−1∑
i=0

ri =
m∑
k=0

(−1)k
∑
γm−k|b

γ2m−k

Proof. With Claim 3 in the proof of last theorem we have

b−1∑
i=0

ri = r0 +
b−1∑
i=1

ri =
m∑
k=0

(−1)k
∑
γm−k|b

γm−k +
m∑
k=1

(−1)k
∑
γm−k|b

γm−k(γm−k − 1)

=
m∑
k=0

(−1)k
∑
γm−k|b

γ2m−k
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3.1 Compute the ri’s

A consequence of the proof of Theorem 3 is that it is easy to design an algorithm to compute
all ri’s of a fixed b ∈ S. We split the algorithm in two procedures, the recursive procedure:
SumGamma() and the main procedure: ResidVector().

3.1.1 Procedure: SumGamma

Now we briefly describe Algorithm 3.1.1. Let GcdPrimes() the list of primes of gcd(b, i) and
every prime of ListIndex(p) return the index of p in the list GcdPrimes(). We want to sum
up all γn where one prime, p, of γn exist with ListIndex(p) = StartIdx and all other primes,
pj, of γn have a Listindex(pj) > StartIdx. The procedure SumGamma() find recursively
all possible γn’s and sum them up.

Algorithm 1 Sum up γn
Require: kSum = 0 # a global variable: here we sum up the γn
Require: b # a global Variable: we consider the residues of b
Require: GcdPrimes() # a global List of the primes of gcd(b, residue)

INPUT: StartIdx point to the element of the list GcdPrimes() with listindex StartIdx
INPUT: n we want combinations of n primes all with listindex ≥ StartIdx
INPUT: Term if we have n primes then Term hold the value of γn
OUTPUT: accumulate all γn in the global variable kSum

1: procedure SumGamma(StartIdx, n, Term)
2: if n ≥ 0 then # the combination has less then n elements
3: for k ← StartIdx to length(GcdPrimes()) do
4: SumGamma(k + 1, n− 1, T erm ·GcdPrimes(k))
5: end for
6: else
7: kSum = b/Term
8: end if
9: end procedure

3.1.2 Procedure: ResidVector

Now we describe briefly the Algorithm 3.1.2. We compute a vector −→r , with dim(−→r ) = b
and r(i) = ri (see algorithm 3.1.2). For every residue i we sum up all γ’s and compute the
correspond ri. Note: With Corollary 5, we can skip some computation.

4 Cycle counting

Let b ∈ S, consider the arithmetic sequence of b and count the cycles.
The Kronecker symbol (the Legendre symbol is a special case) give us some hints.
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Algorithm 2 Compute the vector r

Require: kSum = 0 # a global variable: here we sum up the γn
Require: b # a global Variable: we consider the residues of b
Require: GcdPrimes() # a global List of the primes of gcd(b, residue)

INPUT: tb we consider the residues of tb
OUTPUT: r The vector of all ri’s, 1 ≤ i ≤ b

1: procedure ResidVector(tb)
2: b← tb # set the global variable
3: for kp← 1 to b do # loop over all residues
4: r(kp)← b # The length(GcdPrimes) = 0 recursion
5: kGcd← Gcd(b, kp)
6: if kGcd > 1 then
7: if kGcd < kp then # corollary 5
8: r(kp)← r(kGcd)
9: else
10: GcdPrimes()← CollectPrimes(kGcd) # Only primes of kGcd
11: for ki← 1, length(GcdPrimes()) do
12: kSum← 0 # initialize kSum for every rki
13: SumGamma(1, ki, 1)
14: r(kp)← r(kp) + (−1)kikSum
15: end for
16: end if
17: end if
18: end for
19: end procedure
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Definition 9. We define the Kronecker (or Kronecker-Jacobi) symbol
(
a
b

)
for any a and b

in Z in the following way.

1. If b = 0, then
(
a
0

)
= 1 if a = ±1, and equal to 0 otherwise.

2. For b 6= 0, write b = Πp, where the p are not necessarily distinct primes (including
p = 2), or p = −1 to take care of sign. Then we set(a

b

)
=
∏(

a

p

)
,

where
(
a
p

)
is the Legendre symbol for p > 2, and we define

(a
2

)
=

{
0, if a is even

(−1)(a
2−1)/8, if a is odd.

and also (
a

−1

)
=

{
1, if a ≥ 0

−1, if a < 0.

We summarize the properties of the Kronecker symbol. More details in [COH].

Theorem 10. The Kronecker symbol has the following properties:

1.
(
a
b

)
= 0 if and only if gcd(a, b) 6= 1

2. For all a, b and c we have(
ab

c

)
=
(a
c

)(b
c

)
,
( a
bc

)
=
(a
b

)(a
c

)
if bc 6= 0

3. b ≥ 0 being fixed, the symbol
(
a
b

)
is periodic in a of period 4b if b ≡ 2 mod 4, otherwise

it is periodic of period b.

4. a 6= 0 being fixed (positive or negative), the symbol
(
a
b

)
is periodic in b of period |a| if

a ≡ 0, 1 mod 4, otherwise it is periodic of period 4|a|.

Notation 11. .
Ec : The set of the elements of one cycle c.
Ac : The set of the elements of one cycle c in addition with it’s attraction elements.
Ec = |Ec| : The number of elements of one cycle c.
M(b) : The set of the minimal elements of all cycles of b.
Cb = |M(b)| : The number of the cycles of b.
core(n) : The squarefree part of a natural number n.
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Lemma 12. Let a ∈ N, p > 2 a prime, and p - a. If
(
a
p

)
= 1,−1. Then(

a

p

)
=

(
core(a)

p

)
Proof. It hold, a = q core(a) where q is quadratic, but for a quadratic q term hold

(
q
p

)
= 1.

Since the Kronecker symbol is multiplicative, the proof is complete.

Theorem 13. Let b a prime, b > 3. The number of cycles of b is Cb ≥ 3.

Proof. Since b is prime and b > 3, we have the cycle

b→ 2b→ 3b→ 4b ↓ b

Lemma 12 shows, if b is a prime and ∀a ∈ N with
(
a
p

)
= {1,−1} than

(
a
b

)
=
(

core(a)
p

)
.

Therefore it exists, at least, one cycle c such that
(
ai
p

)
= 1 for all ai ∈ c and one cycle where(

ai
p

)
= −1.

Theorem 14. Let b ∈ S even, Eb the elements of a cycle of b where one element (and
therefore all elements) ei ∈ Eb

(
ei
b

)
6= 0. Then Eb ≡ 0 mod 4.

Proof. Since for all even numbers b of S we have b ≡ 2 mod 4 and Theorem 10 says, that
the Kronecker symbol is periodic in ei of period 4b, the theorem follows.

Observation 15. Let b = pc · q where pc is the smallest prime that divide b, and q ≥ 1.
Then the next table shows, for some primes pc and b ≤ 33000, the minimal number of cycles
of b = pc · q.

Prime pc: 2 3 5 7 11 13 17 19 23 29
Cycles Cb: 3* 6** 7 7 7 7 7 7 7 7

*) Except for b = 2 · 5 and b = 2 · 7 which have 2 cycles.
**) Except for b = 3 · 5 which has 4 cycles.

Conjecture 16. Let b ∈ S and Cb the number of cycles of b.

1. If Cb = 1, then b = 1, 2.

2. If Cb = 2, then b = 3, 10, 14.

3. If Cb = 3 and b not prime, then b = 2q, with q prime.

Conjecture 17. Let Cb = 4 and b not prime then b = 2q where q = 5 · 11, 7 · 17, 7 · 19 or q
prime.

Conjecture 18. Let Cb = 5 and b not prime then b = 15 or b = 2q where q = 3 · 7, 5 · 7, 3 ·
19, 7 · 11, 5 · 31, 5 · 53, 7 · 43, 5 · 71 or q prime.

Conjecture 19. Let cb = 6 and b not prime then gcd(b, 6) ≥ 2.
Let cb = 6 and b = 3q then q is prime.
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4.1 Function: CountCycles

Now we briefly describe Algorithm 4.1. Since every cycle has an element ≤ b (see Theorem
21), we test only squarefree numbers kInit, with 1 ≤ kInit ≤ b. Since the cycles (including
their attraction regions) are distinct (see Lemma 20) we store in the bitvector oldCyc all
tested numbers ai, represented as oldCyc(ai) = 1.

Lemma 20. Let b ∈ S and c1, c2 be two cycles of b with distinct minimal elements. Then

Ac1 ∩ Ac2 = ∅

Proof. Since, the result of a⊕ b is unique, every starting value of an arithmetic sequence can
end up in only one cycle.

In ([PRE], Theorem 16) we proofed the following theorem:

Theorem 21. The maximal element of M(b) is ≤ b.
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Algorithm 3 CountCycles(): Compute the number of cycles of b

INPUT: a squarefree number
OUTPUT: the number of cycles

1: function CountCycles(b)
2: # we need two BitVectors Cyc() and oldCyc(), both with dim = b
3: # oldCyc() hold all old detected cycle elements
4: # Cyc() hold all new (and old) cycle elements
5: kInit← 1
6: loop
7: kNow ← kInit
8: loop
9: if kNow ≤ b then
10: if oldCyc(kNow) = 1 then # kNow is element of an older cycle
11: break # goto line 21
12: end if
13: if Cyc(kNow) = 1 then
14: kCnt← kCnt+ 1 # one more cycle
15: break # goto line 21
16: end if
17: Cyc(kNow)← 1 # otherwise set the element
18: end if
19: kNow ← kNow ⊕ b # compute the new element
20: end loop # refresh the oldCyc() vector
21: oldCyc()← Copy(Cyc())
22: while oldCyc(kInit) = 1 do
23: kInit← succ(kInit) # the next squarefree number
24: if kInit > b then
25: break 2 # goto line 29
26: end if
27: end while
28: end loop
29: return kcnt
30: end function
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