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Model	of	emerging	Intelligence	in	Universe.	
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Abstract.	
The	paper	proposes	a	scenario	of	origin	and	emerging	of	intelligent	life	in	Universe based upon the 
mathematical discovery of a new class of dynamical systems described by ODE coupled with their 
Liouville equation. These systems called self-controlled since the role of actuators is played by the 
probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, 
non-Newtonian and quantum-like properties such as randomness, entanglement, and probability 
interference typical for quantum systems have been described. At the same time, these systems expose 
properties of livings: decomposition into motor and mental dynamics, the capability of self-identification 
and self-awareness, as well as self-supervision. But the most surprising discovery is the existence of a 
special sub-class, in which the dynamical systems can violate the second law of thermodynamics, and that 
makes them different from both Newtonian and quantum physics. This sub-class should be associated with 
intelligent livings due to capability to move from disorder to order without external help. Based upon the 
mathematical discovery described above, on can assume that there are good chances that similar dynamical 
systems representing intelligent livings exist in real physical world. This provides a reason for a 
“rehabilitation “of the Maxwell demon and put it into physics of intelligent systems. Indeed, the Maxwell 
demon is implemented by the feedback from the Liouville equation to the original ODE while this feedback 
is capable to rearrange the probability distribution against the second law of thermodynamics. In addition to 
that, the same feedback removes the entropy paradox by explaining high order in our surrounding by 
“intelligent life support”. Two-steps transition: from the Newtonian physics to the linear model of Life, and 
from the latter to the model of Intelligent life are analyzed. The first transition is triggered by the Hadamard 
instability of the Newtonian physics with respect to small random disturbances in linear terms of the 
Liouville feedback. The second transition is triggered by instability of linear model of Life with respect to 
small random disturbances of non-linear terms of Liouville feedback. This transition could be implemented 
by such physical phenomena as shock waves or negative diffusion in probability space.  Both transitions 
can be associated with catastrophe theory, in which sudden shifts in behavior arises from small changes in 
parameters of the model. 
	
1.	Introduction.	
The	 idea	of	 this	paper	 is	originated	 from	 the	concept	of	 structural	 instability,	when	 the	qualitative	
behavior	of	a	mathematical	model	 is	sharply	changed	by	small	perturbations	of	 its	parameters.	We	
start	with	the	model	of	Newtonian	physics.		
   In Newtonian physics, the concept of probability ρ for a moving particle is introduced via the Liouville 
equation 

∂ρ
∂t
+∇•(ρF) = 0, ρdv

−∞

∞

∫ =1       (1) 

generated by the 3D vector ODE (ordinary differential equation)  

dv
dt
= F(v)        (2) 

where v is velocity vector, and F is a Newtonian force per unit mass  . 

It describes the conservation of the probability density flow originated by the error distribution at t=0 

ρ0 =ρ0 (V ), where ρ ≥ 0, and ρ0 dV
−∞

∞

∫ =1   (3) 
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Remark 1. Here and below we make distinction between the random variable v(t) and its values V in 
probability space. 
Remark 2. In general, the force F can depend upon velocity v and position r of the particle. Then one has to 
replace Eq. (2) by the 6D system 

dv
dt
= F(v), dr

dt
= v        (4) 

The criterion (1) is formally the same if one introduce an extended “force” 

Fe = F,v and consider the operation div in the corresponding 6D space. 
2. Rehabilitation of the Maxwell demon. 
All the previous attempts to develop models for so called active systems have been based upon the 
principles of Newtonian and statistical mechanics, ( Mikhailov, 1990). These models appear to be so 
general that they predict not only physical, but also some biological and economical, as well as social 
patterns of behavior exploiting such fundamental properties of nonlinear dynamics as attractors. 
Notwithstanding indisputable successes of that approach (neural networks, distributed active systems, etc.) 
there is still a fundamental limitation that characterizes these models on a dynamical level of description: 
they propose no difference between a solar system, a swarm of insects, and a stock market. Such a 
phenomenological reductionism is incompatible with the first principle of progressive biological evolution 
associated with Darwin ( Prigogine, 1980,  Haken, 1988). According to this principle, the evolution of 
living systems is directed toward the highest levels of complexity if the complexity is measured by an 
irreducible number of different parts which interact in a well-regulated manner. At the same time, the 
solutions to the models based upon dissipative Newtonian dynamics eventually approach attractors where 
the evolution stops while these attractors dwell on the subspaces of lower dimensionality, and therefore, of 
the lower complexity (until a “master” reprograms the model). Therefore, such models fail to provide an 
autonomous progressive evolution of living systems (i.e. evolution leading to increase of complexity). In 
addition to this limitation, there are some problems, and even paradoxes with the Second Law of 
thermodynamics when it is applied to intelligent systems. One of the paradoxes of the Second Law of 
thermodynamics that is still under discussion is the following: We live in a world that shouldn't be possible. 
Indeed, the world around us is in a high order, although given the age of the Universe, there is not “enough 
time” to create a non-vanishingly small probability for such complex world. Ludwig Boltzmann reasoned 
that brains and other complex, orderly objects on Earth were the result of random fluctuations. But why, 
then, do we see billions of other complex, orderly objects all around us? Just a short strand of DNA is so 
intricately constructed that the probability of it arising as a result of "random fluctuations" in physical 
material is unthinkably small. So how is it that there are billions of base pairs in a single cell, trillions of 
cells in a complex organism, and millions of species on Earth? So, we have another question. If the only 
requirement of consciousness is a brain like the one in your head, why aren't you a Boltzmann brain? If you 
were assigned to experience a random consciousness, you should almost certainly find yourself alone in the 
depths of space rather than surrounded by similar consciousnesses. The easy answers seem to all require a 
touch of magic. But we will turn to mathematics instead, and replace the Newtonian force F(V) in Eqs. 
(2) and (3) with an information force, (Zak, 2017)  

dv
dt
= F[ρ(v)], ρdv

−∞

∞

∫ =1       (5) 

∂ρ
∂t
+∇•{ρF[ρ(V)]}= 0         (6) 

  
This is a fundamental step in our approach: in Newtonian dynamics, the probability never explicitly enters 
the equation of motion. In addition to that, the Liouville equation (6), in contrast to Eq. (4), is nonlinear 
with respect to the probability density ρ , and therefore, the system (5), (6) departs from Newtonian 
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dynamics. However, although it has the same topology as quantum mechanics (since now the equation of 
motion is coupled with the equation of continuity of probability density), Zak, 2016a, it does not belong to 
it either. Indeed Eq. (5) is more general than the Hamilton-Jacoby equation (2): it is not necessarily 
conservative, and the feedback F is not necessarily the quantum or classical potential although further we 
will impose some restriction upon it that links F to the concept of information. The relation of the system 
(5), (6) to Newtonian and quantum physics is illustrated in Fig.2. 

 

Figure 1. Classic Physics, Quantum Physics and Physics of Life. 
 	
Following Zak 2016a, 2017, we consider the force F that plays the role of a feedback from the Liouville 
equation (6) to the equation of motion (5). Turning to one-dimensional case, let us specify this feedback as 

F = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (9) 

c0 > 0, c1 > 0, c3 > 0        (10)  
Then Eq. (9) can be reduced to the following: 

v = c0 +
1
2
c1ρ−

c2
ρ
∂ρ
∂v

+
c3
ρ
∂2ρ

∂v2
       (11) 

and the corresponding Liouville equation will turn into the nonlinear PDE 
∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

− c2
∂2ρ
∂V 2 + c3

∂3ρ
∂V 3 = 0       (12)  

(see the remark above). 

This equation is known as KdV-Burgers (Korteweg-de Vries-Burgers) PDE. The mathematical theory 

behind the KdV equation became rich and interesting, and, in the broad sense, it is a topic of active 
mathematical research. A homogeneous version of this equation that illustrates its distinguished properties 
is a nonlinear PDE of parabolic type. But a fundamental difference between the standard KdV-Bergers 
equation and Eq. (12) is that Eq. (12) dwells in the probability space, and therefore, it must satisfy the 
normalization constraint 

ρdV =1
−∞

∞

∫  

However as noticed in (Zak 2016a) this constraint is satisfied: in physical space, it expresses conservation 
of mass, and it can be easily scale-down to the constraint (13) in probability space. That allows one to apply 
all the known results directly to Eq. (12). However, it should be noticed that all the conservation invariants 
have different physical meaning: they are not related to conservation of momentum and energy, but rather 
impose constraints upon the Shannon information. 
       In physical space, Eq. (12) has many applications from shallow waves to shock waves and solitons.  
However, application of solutions of the same equations in probability space is fundamentally different.    
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Analysis of Eqs. (11),(12) and (13) performed in (Zak 2016a) discovered non-Newtonian properties of their 
solutions such as randomness, entanglement, and probability interference typical for quantum systems. But 
the most surprising property of these equations that may have fundamental philosophical implications was 
a capability of their solutions to violate the second law of thermodynamics, and we will demonstrate it 
below. For that purpose consider the simplest case of the system (11),(12).and (13) assuming that 

c0 = 0, c2 = 0, c3 = 0, c1 > 0         (14) 
The closed form analytical solution can be presented in the following implicit form (Whitham, 1974) 

ρ(V ,t) =ρ0 (V − ξρt), ρ0 =ρt=0    (15) 
The process of violation of the second law of thermodynamics is illustrated in Fig. 2: the higher values of 
ρ  propagate faster than lower ones. As a result, the moving front becomes steeper and steeper, and that 
leads to formation of solitons (c3>0), or shock waves (c3=0) in probability space. This process is 
accompanied by decrease of entropy. 

 
Figure 2. Formation of shock waves in probability space. 
 
At the same time, the original system (11), (12) is isolated: it has no external interactions. Indeed, the 
information force Eq. (9) is generated by the Liouville equation that, in turn, is generated by the equation of 
motion (11). In addition to that, the particle described by ODE (11) is in equilibrium v = 0prior to 
activation of the feedback (9). Therefore, the solution of Eqs. (11), and (12) can violate the second law of 
thermodynamics, and that means that this class of dynamical systems does not belong to physics as we 
know it.  
 It should be emphasized that despite the mathematical similarity between Eq. (12) and the KdV-Bergers 
equation, the physical interpretation of Eq. (12) is fundamentally different: it is a part of the dynamical 
system (11),(12) in which Eq. (12) plays the role of the Liouville equation generated by Eq. (11). As 
follows from Eq. (15), this system, being isolated and being in equilibrium, has the capability to decrease 
entropy, i.e. to move from disorder to order without external resources. In addition to that, as shown in Zak 
2016a, the system displays transition from deterministic state to randomness  
 This property represents departure from classical and quantum physics, and, as shown in (Zak, 2012), 
provides a link to behavior of livings. That suggests that this kind of dynamics requires extension of 
modern physics to include physics of life.  

A	biological	interpretation	of	the	model	presented	by	Eqs.	(11)	and	(12)	(that	can	be	associated	
with	motor	and	mental	dynamics,	respectively)	has	been	described	in	(Zak	2012,	2017).	In	addition	
to	that,	we	will	notice	that	the	motor	dynamics	Eq.	(11)	is	non-conservative	and	irreversible,	while	
the	mental	dynamics	Eq.	(12),	(if	c2=0),	is	conservative	and	reversible	as	KdV	equation	is,	(Whisam	
1974).	Since	 the	mental	dynamics	 (12)	can	be	considered	 independently	 from	the	motor	dynamics	
(11),	 this	means	 that	 there	 is	no	arrow	of	 time	 in	mental	dynamics,	 i.e.	mentally	 the	activity	of	 the	
livings	can	be	directed	from	present	to	future	as	well	as	from	present	to	past	(memories),	and	this	is	
another	evidence	of	similarity	between	the	proposed	model	and	behavior	of	livings.	
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So	 far,	 the	model	 Eqs.	 (11)	 and	 (12)	 has	 been	written	 for	 a	 one-dimensional	 case.	 It	 can	be	 easily	
generalized	to	3D	case	

!v = c0 +
1
2
c1ρ−

c2
ρ
∇ρ+

c3
ρ
Δρ 	 	 	 	 	 (16) 

∂ρ
∂t
+∇•[ρ( c0 +

1
2
c1ρ−

c2
ρ
∇ρ+

c3
ρ
Δρ)]= 0 	 	 	 (17)	

Finally, we will emphasize the rehabilitation of the conceit of the Maxwell demon when it is applied to 
physics of livings. Actually,	the	mental	dynamics	plays	the	role	of	the	Maxwell	sorting	demon:	it	
rearranges	the	probability	distribution	by	creating	the	information	force	and	converting	it	into	a	
force	that	is	applied	to	the	particle.	One	should	notice	that	mental	dynamics	describes	evolution	of	
the	whole	class	of	state	variables	(differed	from	each	other	only	by	initial	conditions),	and	that	can	be	
associated	with	the	ability	to	generalize	that	is	a	privilege	of	living	systems.		
Remark	1.	Maxwell's Demon is an imaginary creature that the mathematician James Clerk Maxwell created 
to contradict the second law of thermodynamics. The demon is trying to create more useful energy from the 
system than there was originally. Equivalently he was decreasing the randomness of the system (by 
ordering the molecules according to a certain rule), which is decreasing the entropy. No such violation of 
the second law of thermodynamics has ever been found in physics.						
	
3.	Structural	instability	of	Newtonian	physics.	
In	this	section,	we	demonstrate	that	the	Second	Newton	Law	is	structurally	unstable	with	respect	to	
perturbations	 coming	 from	 the	 Liouville	 feedback.	 For	 this	 purpose,	 we	 discuss	 transition from 
determinism to randomness in ODE that coupled with their Liouville PDE. Let us turn to Eq. (11) and (12).  
Without the Liouville feedback, i.e. when 
c0=0, c1=0, c2=0, c3=0      (18) 
they represent the Second Newton’s Law and the conservation of probability, respectively. 
Let us assume now that 
 c3>0         (19) 
 In order to complete the solution of the system (11), (12), one has to substitute the solution of Eq. (12):  
ρ =ρ(V ,t) at V = v                            (20) 

into Eq. (11).  Since the transition from determinism to randomness occurs at t→ 0 , let us turn to Eq. 
(12) with sharp initial condition 

ρ0 (V ) = δ(V ) at t = 0,       (21) 
Then applying one of the standard analytical approximations of the delta-function, one obtains the 
asymptotic solution 

ρ =
1
t π

e
−
V 2

t2 at t→ 0        (22)  

Substitution this solution into Eq. (11) shows that       
    

v = 4c3v
2

t4
at t→ 0, v ≠ 0        (23) 

Eq. (23) has the following solution (see Fig. 2) 

v = t3

4c3 +Ct
3
at t→ 0, v ≠ 0       (24)  

where C is an arbitrary constant. 
This solution has the following property: the Lipchitz condition at t→ 0 fails 
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∂ v
∂v

=
8c3v
t4

=
8c3t

3

t4 (4c3 +Ct
3)
→∞ at t→ 0, v ≠ 0     (25) 

and as a result of that, the uniqueness of the solution is lost. Indeed, as follows from Eq. (24), for any value 
of the arbitrary constant C, the solutions are different, but they satisfy the same initial condition 
v→ 0 at t→ 0         (26) 
Due to violation of the Lipchitz condition (25), the solution becomes unstable. That kind of instability 
when infinitesimal errors lead to finite deviations from basic motion (the Lipchitz instability) has been 
discussed in (Zak, 1992). This instability leads to unpredictable shift of solution from one value of C to 
another. It means that appearance of any specified solution out of the whole family is random, and that 
randomness is controlled by the feedback (9) from the Liouville equation (12). Indeed, if the solution (21) 
runs independently many times with the same initial conditions, and the statistics is collected, the 
probability density will satisfy the Liouville equation (12), Fig.3.   

 
Figure 3. Family of random solutions describing transition 
 
But here we will be interested in another property of this solution – its structural instability. Indeed, when  
C3 = 0         (27) 
we have an inertial motion of a particle, and with initial condition (26), the particle is in the state of rest. 
However, any small, even infinitesimal, but positive perturbation of the parameter  
c3 > 0         (28) 
shifts the solution to random non-inertial motion. It can be shown, (Zak,2016a) that similar qualitative shift 
occurs when instead of c3 we consider other parameters in Eq. (11). Therefore, the solution to Eq. (11) is 
structurally unstable since it’s	qualitative	behavior	is	sharply	changed	by	small	perturbations	of	its	
parameters.		
				This	 suggests	 the	 following	mathematical	scenario	of	origin	and	emerging	of	Life:	 if	we	postulate	
the	model	of	Newtonian	physics,	then	due	to	its	structural	instability	with	respect	to	a	certain	kind	of	
perturbations	of	parameters	of	possible	Liouville	feedback,	the	model	of	the	Newtonian	physics	shifts	
to	 the	 model	 of	 Life.	 The	 appearance	 of	 these	 perturbations	 could	 be	 random,	 and	 from	 physics	
viewpoint,	special	conditions	of	such	appearance	have	to	be	satisfied.	Obviously,	these	conditions	are	
beyond	the	mathematical	scenario	that	is	under	consideration.		
			In	order	to	make	our	argumentation	more	transparent,	we	will	deviate	from	the	main	target	that	is	
physics	 of	 Life,	 and	 turn	 to	 quantum	mechanics	 described	 by	 the	 Madelung	 equation	 (Madelung,	
1926)	representing	the	hydrodynamic	version	of	the	Schrödinger	equation	

∂ρ
∂t
+∇•( ρ

m
∇S) = 0       (29) 

 
∂S
∂t
+ (∇S)2 + F − 

2∇2 ρ

2m ρ
= 0      (30) 
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Here ρ and S are the components of the wave functionψ = ρeiS / , and   is the Planck constant 
divided by 2π . The last term in Eq. (30) is known as quantum potential and F represents a classical 
potential. From the viewpoint of Newtonian mechanics, Eq. (29) expresses continuity of the flow of 
probability density, and it can be associated with the Liouville equation, while Eq. (30) is the Hamilton-
Jacobi equation for the action S of the particle of mass m, and it can be associated with the Secomd 
Newton’s Law. Actually, the quantum potential in Eq. (30), as a feedback from Eq. (29) to Eq. (30), 
represents the difference between the Newtonian and quantum mechanics, and therefore, it is solely 
responsible for fundamental quantum properties. Choosing the Planck constant as a parameter, one finds 
the similarity between  and c3 in Eq. (23): the Newtonian model is structurally unstable with respect to 

perturbations of the quantum potential since we have the model of Newtonian physics as long as  = 0, and 
this model shifts to quantum model at  > 0. The scenario of this transition has been described in 
(Zak,2016b), see Fig. 4 

 
Figure 4. Family of random trajectories and particle velocities after transition from the deterministic state. 	

This scenario is qualitatively similar to that of transition to the model of Life in Fig.3. 

4. Structural instability of Physics of Life.  

In this section, we investigate the structural instability of Physics of Life model described by Eqs. (11) and 
(12). We will start with the linear version of this model by setting  
c1 = 0, c2 = 0       (31)    
     

!v = c0 +
c3
ρ
∂2ρ
∂v2

		 	 	 	 	 (32)	

∂ρ
∂t
+ c0

∂ρ
∂V

+ c3
∂3ρ
∂V 3 = 0        (33) 

 
The first applications of linear (parabolic) version of KdV equation (1.2) appear in models of shallow water 
waves.  The equation is conservative, and its solution is represented by a train of traveling waves  

ρ(v,t) = Aeikv−ωt                                     (34) 
 
where ω  is the frequency, and k is the wave number. For KdV equation, these two constants are connected 
by the following dispersion relation 
 
c3 > 0, c0 > 0, c1 > 0       (35) 
 
If the initial profile ρ = u(v,0)  is represented as a sum of the Fourier harmonics, then each of this 
harmonic will propagate with the phase speed  
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C =ω / k .          (36) 
 
Comparing equations (35) and (36), one can see that each Fourier harmonics will propagate with different 
phase speed that depends upon its wave number k. Therefore, any initial profile eventually is dispersed over 
the whole positive subspace, Fig.5.  
 

 
Figure 5. Linear dispersion of initial profile. 
 
 Two important properties of the linear version of the KdV equation should be emphasized. Firstly, its 
solutions depend on the initial conditions for all times, and secondly, they do not violate the Second Law of 
thermodynamics. The latter property provides a reason to attribute the linear model Eqs. (32),(33) to 
Physics of non-intelligent Life. 
Let us turn to the feedback (9) at  
c2 = 0           (37) 
and modify Eq.(11) as  

!v = c0 +
1
2
c1ρ +

c3
ρ
∂2ρ
∂v2

       (38)  

c3 > 0, c0 > 0, c1 > 0.  
Then the corresponding Liouville equation will turn into the following nonlinear PDE 
∂ρ
∂t
+ (c0 + c1ρ)

∂ρ
∂V

+ c3
∂3ρ
∂V 3 = 0       (39)  

that is a celebrated Korteweg-de Vries (KdV) equation. 
However, a fundamental difference between the standard KdV equation and Eq. (39) is that Eq. (39) dwells 
in the probability space, as well as the KdV-Burgers Eq. (12), and therefore, it must satisfy the 
normalization constraint 

ρdV =1
−∞

∞

∫          (40)  

 But since the KdV equation has the conservation invariants, (Whitham,1974)  

ρdV =Const.,
−∞

∞

∫         (41)  

ρ2 dV =Const.,
−∞

∞

∫  etc.       (42) 

 
the constraint (40) becomes a particular case of the invariant (41); consequently, if the normalization 
constraint is satisfied at t = 0, it is satisfied all the time. That allows one to apply all the known result 
directly to Eq. (39). However, it should be noticed that the conservation invariants (41) and (42) have 
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different physical meaning: they are not related to conservation of momentum and energy, but rather 
impose constraints upon the Shannon information. 
Since closed form solution of Eq. (39) is not available, we will continue with the solution for large time. 
The rationale for that is the assumption that eventually the solution tends to a stationary shape as a result of 
a balance between dispersion and shock wave formation. Therefore, we will seek the solution in the form of 
a stationary motion 
 
ρ(v,t) = f (v −Ut) = u(ζ) at t→∞               (43)                             
Substituting (43) into (39) one obtains      

−U ∂ρ
∂ζ

+ (c0 + c1ρ)
∂ρ
∂ζ

+ c3
∂3ρ
∂ζ 3

= 0 	 	 	 	 	 	 (45) 

 
Integrating this equation with respect to z and setting the arbitrary constant to zero, one arrives at the ODE 
in its final form 
 

c3
∂2ρ
∂ζ 2

+ (c0 −U)ρ +
c1
2
ρ2 = 0      (45) 

 The solution of this equation is a soliton moving with the speed U 

ρ = aSech2[ c1a
12c3

(v−Ut)] 	 	 	 	 	 	 	(46) 

    
where 

U = c0 +
1
3
c1a           (47) 

see Fig. 6. It should be emphasized that the soliton (46) does not depend upon initial conditions, and 
consequently it can be considered as a static attractor in probability space. This means that in physical 
space, a solution of Eq. (38) eventually approach a stochastic attractor. 

 
Figure 6. Soliton as an attractor of KdV solution.   
Comparing	the	solutions	(45)	and	(34)	one	notice	that	any small, even infinitesimal, but positive 
perturbation of the parameter c1> 0 shifts the solution (34) from dispersive waves that depend upon initial 
conditions, to a dynamical attractor-soliton in the probability space, while this attractor does not depend 
upon initial conditions. Therefore, the solution to Eq. (34) is structurally unstable since it’s	qualitative	
behavior	is	sharply	changed	by	small	perturbations	of	its	parameters.		
		It	 should	 be	 noticed	 that	 the	 solution	 Eq.	 (46)	 illustrates	 the	 failure	 of	 the	 Second	 Law	 of	
thermodynamics.	 Indeed,	 since	 it	 does	 not	 depend	upon	 initial	 condition,	 one	 can	 choose	 the	 high	
entropy	 initial	 conditions,	 for	 instance,	 the	Brownian	motion,	 and	 regardless	 of	 that,	 this	 solution,	
eventually,	will	be	attracted	to	the	lower	entropy	soliton	Ed.(46),	Fig	6.	
				Now	we	can	 complete	 the	mathematical	scenario	of	origin	and	emerging	of	 intelligent	 Life:	 if	we	
postulate	 the	 model	 of	 Newtonian	 physics,	 then	 due	 to	 its	 structural	 instability	 with	 respect	 to	 a	
certain	 kind	 of	 perturbations	 of	 parameters	 of	 possible	 Liouville	 feedback,	 the	 model	 of	 the	
Newtonian	physics	shifts	to	the	model	of	non-intelligent	Life,	i.e.	to	the	model	described	by	Eqs.	(32)	
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and	(33).	Then	due	to	structural	instability	of	the	latter	with	respect	to	different	kind	of	perturbation	
of	the	Liuoville	 feedback,	the	model	of	non-intelligent	Life	Eqs.	(32)	and	(33)	shifts	to	the	model	of	
intelligent	 Life	 described	 by	 Eqs.(38)and	 (39).	 As	 was	 noticed	 above,	 the	 appearance	 of	 these	
perturbations	could	be	random,	and	special	conditions	for	their	appearance	should	be	satisfied	while	
these	conditions	are	beyond	the	mathematical	scenario	considered	above.	
	
Remark	2.	The	concept	of	structural	stability/instability	is	a	subject	of	the	mathematical	theory	of	
catastrophe that is a branch of bifurcation theory in the study of dynamical systems. It has been originated 
by Rene Thom and advanced by Arnold,1992. Small changes in certain parameters of a nonlinear system 
can cause equilibria to appear or disappear, or to change from attracting to repelling and vice versa, leading 
to large and sudden changes of the behavior of the system. That what actually happens in the scenario of 
transition from Newtonian dynamics to intelligent Life introduced above.  
 
 5. Formation of collective brains. 
The model of intelligent Life introduced above (see Eqs. (38), (39)) allows one to advance into a model of 
collective brain that amplifies intellectual capabilities of individual brains. For illustration, let as introduce 
the following two brains coupled by the joint probability density 𝜌	
!v1 = c1

(1)ρ 	 	 	 	 	 	 	 	 (48)	

!v2 = c1
(2)ρ 	 	 	 	 	 	 	 	 (49)	

Each of these equations is a simplified version of Eq.(38) when  c0 = 0, c2 = 0, c3 = 0 . 
The corresponding analog of the Liouville equation (39) is 
∂ρ
∂t
+ c1

(1)ρ
∂ρ
∂V1

+ c2
(2)ρ

∂ρ
∂V2

= 0 	 	 	 	 	 	 (50)	

As follows from this equation, the capability to decrease entropy of the joint probability ρ  is amplified,  
and that is the first step in formation of collective brain. Projecting this result from the model to real life, 

one can explain the concentration of talented in Gottingen, (Einstein, Gauss, Hilbert,…) or Prinseton, 
(Godel, Hadamard,..) therefore removing the entropy paradox.  

Discussion and conclusion. 
This work is about studying reality via mathematical models. Although models are not identical to reality, 
(The picture of a cat cannot harm the picture of a rat), nevertheless models are supposed to extract the most 
fundamental features of reality. Therefore, importance of models should not be underestimated. Indeed. 
theoreticians studying reality via models make great discoveries illuminating the way to proper 
experiments.   
The most instructive is a story of discovery of quantum entanglement: although the surprising correlation 
between quantum particles was in apparent disagreement with “common sense”, it follows from the 
Schrödinger equation, and despite the critique by many scientists, including Einstein, those theoreticians, 
which stood with mathematics, were appeared to be right. That is why the results introduced in this work 
could be successfully projected from models to reality.   
The	paper	proposes	a	scenario	of	origin	and	emerging	of	intelligent	life	in	Universe based upon the 
mathematical discovery of a new class of dynamical systems described by ODE coupled with their 
Liouville equation. These systems called self-controlled since the role of actuators is played by the 
probability produced by the Liouville equation. Following the Madelung equation that belongs to this class, 
non-Newtonian and quantum-like properties such as randomness, entanglement, and probability 
interference typical for quantum systems have been described. At the same time, these systems expose 
properties of livings: decomposition into motor and mental dynamics, the capability of self-identification 
and self-awareness, as well as self-supervision. But the most surprising discovery is the existence of a 
special sub-class, in which the dynamical systems can violate the second law of thermodynamics, and that 
makes them different from both Newtonian and quantum physics. This sub-class should be associated with 
intelligent livings due to capability to move from disorder to order without external help. Based upon the 
mathematical discovery described above, on can assume that there are good chances that similar dynamical 
systems representing intelligent livings exist in real physical world. This provides a reason for a 
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“rehabilitation “of the Maxwell demon and put it into physics of intelligent systems. Indeed, the Maxwell 
demon is implemented by the feedback from the Liouville equation to the original ODE while this feedback 
is capable to rearrange the probability distribution against the second law of thermodynamics. In addition to 
that, the same feedback removes the entropy paradox by explaining high order in our surrounding by 
“intelligent life support”. Two-steps transition: from the Newtonian physics to the linear model of Life, and 
from the latter to the model of Intelligent life are analyzed. The first transition is triggered by the Hadamard 
instability of the Newtonian physics with respect to small random disturbances in linear terms of the 
Liouville feedback. The second transition is triggered by instability of linear model of Life with respect to 
small random disturbances of non-linear terms of Liouville feedback. This transition could be implemented 
by such physical phenomena as shock waves or negative diffusion in probability space.  Both transitions 
can be associated with catastrophe theory, in which sudden shifts in behavior arises from small changes in 
parameters of the model. 
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