
Rotation Invariance Neural Network

Shiyuan Li

Abstract

 Rotation invariance and translate invariance have great values in image recognition. In this

paper, we bring a new architecture in convolutional neural network (CNN) to achieve rotation

invariance and translate invariance in 2-D symbol recognition. We can also get the position and

orientation of the 2-D symbol by the network to achieve detection purpose for multiple

non-overlap target. Human being have the ability look at an object by one glance and remember it,

we also can use this architecture to achieve this one shot learning.

1 Introduction

 Convolutional neural networks have recently shown outstanding performance on image

classification tasks [14]. Have rotation and translate invariance are important goals for model

design in image recognition task [2, 11, 13]. Although convolutional neural network can achieve

some kind of rotation and translate invariance in image recognition, yet that is based on large train

data and not good enough for real world applications [3], which need almost same performance

for same target in different position and orientation, like satellite pictures[3, 4] or microscope

pictures [5, 6].

 The structure of convolutional neural networks have naturally achieved some level of

translate invariance, could this architecture works on rotation invariance? The answer is yes. We

design a new layer in deep convolutional neural networks models called cyclic convolutional layer

to solve this problem, it is mainly a simple 3-D convolutional layer, between this cyclic

convolutional layer and common 3-D convolutional layer are two difference. 1. The kernel size in

the 3th dimension is same to feature map size in that dimension. 2. The padding in the 3th

dimension is not zeros but the other side of the feature map (Figure 1). And the output is also a

4-D array with 3 dimensions for translate and rotate variance and 1 dimension for different

kernels.

 This layers can convert rotate variation of a symbol into a translate variation which is easy to

deal with common convolution operation, by this, it means that the different orientation will lead

to same activation in different position in the feature map of a convolutional neural network. To

make this work, every kernel in the front layers should be rotatable. For example assume there are

k kernels in layer l, and the rotation resolution is r degree, so there are n = 360/r different

orientation, than every kernel in layer l should have n duplicate, each for every orientation. So the

different orientation of the symbol will active the same kernel of the different orientation, and the

followed cyclic convolutional layer will convert the different orientation into a new dimensions of

translate (Figure 2).

 One the other hand, the position and orientation of the object is also important information

for real world image process tasks, common convolutional neural networks can only recognize the

class of the object and ignore the position and orientation of the object. By add and fully

convolutional layer after the cyclic convolutional layer, we can get the position and orientation of

the object by a 3-D heat map produce by the last layer of the network.

 Last but not the least, human being have an ability to look at an object once and remember it.

You look at someone’s picture, and you can recognize the person when you meet him, although

the picture only include one angle and one position of the person. By use the output of the last but

one layer of the network as a feature, we can train a linear classify, which use one sample in one

position and one orientation as train data and can recognize it in different positions and

orientations. By this we achieve some kind of one shot learning.

(a) (b)

Figure 1: (a) structure of the cyclic convolutional layer, w, h and c stand for the width, height and

channels of the feature maps. (b) sketch of an image in different angle to active the different filter

of a layer.

2 Previous Work

 Scale-Invariant feature is well studied in computer vision, hand craft feature have widely

used in many practical applications. D.Lowe’s SIFT [1] use key points extracted from images and

stored in a database, transforms an image into a large collection of feature vectors, each of which

is invariant to image translation, scaling, and rotation. Deformable part models [10] with designed

features assumes an object is constructed by its parts, the detector first found a match of its whole,

and then using its part models to fine-tune the result. Which is limited to a small set of

sub-structure, and destroy information that could be used to whole model object.

Neural network-based architectures recently had great success in significantly advancing the

state of the art on challenging image classification and object detection datasets. Robert Gens and

Pedro Domingos’s Deep Symmetry Networks [8] use symmetry group to describe any form

transformation into a set, and use kernel-based interpolation to compute features through a pooled

map to achieve rotation invariance. J. Bruna and S. Mallat’s Scattering networks [12] are cascades

of wavelet decompositions designed to be invariant to demonstrate translation and rotation

invariance. Sander Dieleman, Kyle W. Willett and Joni Dambre’s Rotation-invariant

convolutional neural networks [9] rotate the input images in different angles, than compute

different images with the same convolutional filters, the output feature maps of those are

concatenated together, and one or more dense layers are stacked on top to achieve rotation

invariance. Well this don’s fully use the different rotated filters.

Our approach for neural network-based rotation invariance is to directly rotate the filter of the

convolutional neural networks by affine transformation, and stack the filters in the order of rotated

angles, and apply new convolutional layer on top of it, so we can use all of the benefit of rotated

filters. All the previous work has some operate pool through the rotate dimension, this will lost the

orientation information of the object, instead of pooling, we use convolutional to maintain the

orientation information of the object.

3 Model

 We first train a very simple Lenet-like convolutional neural network use very little samples

(only 15 image of 15 different symbols, to avoid the “6” rotate 180 degree and become a “9”

problem, all the symbols are not rotationally symmetric, show in figure 2) and rotate the filter of

convolutional layers to build the rotation invariance neural network. Than test it with a dataset

generated by the training set use random rotation and translation.

Figure 2: Some of the symbols we used

 The training process is a greedy per layer way. We first train the network use standard back

propagation gradient descent method, than rotate the filter of the first convolutional later, stack all

rotated filters and use it as the initial of a new network. We than train the new network and fix the

first layer’s weights, after the network is converged we rotate the filter of the second convolutional

layer and use the first and second filter as the initial of another new network. When there is

enough convolutional layers, we put the cyclic convolutional layers between the convolutional

layers and fully connected layers, initial it (with an identity matrix in this paper) and add the fully

convolutional layers after that, use the same weights of the fully connected layers. Than we can

fine-turning the whole network use back propagation. But in our case it is a very simple network

with very little samples, so after the last but one step, we already yield a 100% accuracy in the test

dataset so we didn’t actually do the last step.

Rotate the Filter

 The rotate process is a little tricky here, only rotate the filter will lead to the wrong feature of

the previous layer because the structure of convolutional neural network. The solution we use here

has two part:

1. we arrange the filter by the rotate angles, it mean the first channel of the feature map

which produce by the convolution of the first filter and the previous feature map is rotate by 0

degree, the second channel of the feature map which produce by the convolution of the second

filter and the previous feature map is rotate by 360/n degree (n is the cyclic numbers, stand for

how much different angles we process)… and the last channel of the feature map which produce

by the convolution of the last filter and the previous feature map is rotate by 360*(n-1)/n degree.

2. When we rotate the filter, we also cycle the filter channels, it mean we will put the first

channel of the filter to the second channel, put the second channel of the filter to the third

channel… put the last channel of the filter to the first channel. This will solve the problem. We

also fine-turning the network after the rotate.

Background Depress

 We don’t want the background to active any output of our classifier, so we have to depress

the background. The usual way to do this is to add another class for background, but this may lead

to unexpected result.

If the input of the network is empty (all zero vector), the reasonable output of the network is

also empty (all zeros before the softmax), but it is usually not. How to make this reasonable result

happen? The all zero input will make the inner product zero, after subtract the bias, if the result is

negative, the output will be zero after the ReLu, so the key to this problem is to have a negative

bias. To achieve this, we add some background samples in the train samples and have all zero

labels, the derivation operate of the softmax will direct put all negative gradient to all the former

layers, it directly minus the bias. As this is a kind of regularization to the network, add too much

of the background sample will make the network not converge. The result heat map is shown in

figure 3.

4 Experiment

 We use 15 32x32 images for training sample to train a network, and use those images to

random rotate and translate to generate 1000 64x64 images for test sets, after the rotate filter step,

we achieve 100% accuracy rate, so we accomplish the rotate invariance and it also can consider as

a way to achieve one shot learning.

Implement detail

 The network we use is a lenet-like network, it has two layer of convolution and two layer of

fully connection. The first layer has 6 7x7 filter of6 orientation for edge detect, it arranged by the

angle. After a pooling layer of size 2, is another convolution layer for 36 14x14 filters, and two

fully connected layer for kernel number as 36 and 24. We didn’t use the second pooling layer

because the pooling may influence the rotation invariance.

 We use 12 for orientation resolution, so there are 36*12 = 432 filters for the second

convolution layer, after the cyclic convolution layer, there will be a 3-D feature map for size of

16*16*12, and 36 channels. Than after two fully connected layers the final output of the network

is a probability map for 15 classes of 16*16*12 pixels. Some of the class’s probability map is

shown in figure 3.

Figure 3: out map of the network, each row for one class, each column for one orientation, each

sub picture for 16x16 different position. The red square is the final result, for this example the

class of the sample is 2, angle is 150º and the symbol is in the middle left of the picture.

Detection

 Because the output of the network is for each class of each angle and each position, it can

output all the different symbol in the same picture, which can use as detection when we put a

threshold to distinguish if there is a symbol.

The PR curve of different threshold is shown in figure 4. 0.8 is the best threshold in this

paper.

Figure 4 PR curve of detection

One Shot Learning

One Shot Learning Can use very little sample to train a classify to recognize new objects [15,

16]. By use the output of the last but one layer as a feature, we can train a linear classify to

recognize new samples and add new classes to the network. The positive training data is the new

sample of new classes, with the known position and orientation in the 3-D feature map of the last

but one layer, and use features near the right position and orientation as negative training data.

5 Conclusion

In this paper we bring a method to convert rotate variance into translate variance, and apply

rotate invariance through convolution operator, and achieve transform invariance in high accuracy

rate. There is other kind of variances like scale and skew, it can also covert to translate variance

use the same method in this paper, and it will be a 5-D convolution instead of 3-D convolution. In

real world there are 6 free dimensions (3 translate dimensions and 3 rotate dimensions). So it is

possible to apply to nature pictures use a 6-D cyclic convolutional layer to achieve transform

invariance in real world applications.

The method in this paper will make the network more width not more deep, which is not

same to the current results in other papers, but shallow network will be fast to compute when the

parallel computing resource is abundant, which is almost infinite when computer will be way

more cheaper in the future.

References

[1] David G.Lowe. Distinctive Image Features from Scale-Invariant Keypoints. January 5, 2004.

[2] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document

Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998

[3] Neal Jean et al. Combining satellite imagery and machine learning to predict poverty. Science :

Vol. 353, Issue 6301, pp. 790-794 DOI: 10.1126/science.aaf7894

[4] Super-Resolution on Satellite Imagery using Deep Learning, Part 1

[5] Image processing for accurate cell recognition and count on histologic slides

[6] Josef Madl, Sebastian Rhode, Herbert Stangl A combined optical and atomic force microscope

for live cell investigations

[7] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image

classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2012.

[8] Robert Gens Pedro Domingos. Deep Symmetry Networks. Neural Information Processing

Systems 2014.

[9] Sander Dieleman1, Kyle W. Willett2, Joni Dambre. Rotation-invariant convolutional neural

networks for galaxy morphology prediction. May 24, 2015.

[10] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale,

deformable part model. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2008.

[11] G. E. Hinton, A. Krizhevsky, and S. D.Wang. Transforming auto-encoders. In Proceedings of

the Twenty-First International Conference on Artificial Neural Networks, 2011.

[12] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 35(8):1872–1886, 2013.

[13] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 1999.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing Systems 25, 2012.

[15] A.Santoro, S.Bartunov, One-shot Learning with Memory-Augmented Neural Networks.

arXiv:1605.06065

[16] BM Lake，R Salakhutdinov. One shot learning of simple visual concepts.

