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Abstract

This article is concerned with the scattering problem for the defocusing nonlinear Schrédinger
equations (NLS) with a power nonlinear |ul’ u where 2/n < p < 4/n. We show that for any
initial data in H'" the solution will eventually scatter, i.e. U(—t)u(t) tends to some function
uy as t tends to infinity.

We consider the defocusing nonlinear Schrodinger equations (NLS )
Ty + EAU = |ul’u, u(0) = up, (1)

where u is a complex value function u : R x R® — C, ug € H%!, and % <p< %.

There are many papers on the scattering theory for the NLS. For both focusing or defocusing
problems, it is well known that for p < % there will be no scattering|1]. For p > %, it is known
that U(—t)u(t) converges weakly in H! for any finite energy solution of NLS|7], if we assume
additionally that ug € H}!, then it is know that U(—t)u(t) converges strongly in L2[11]. For the
asymptotic completeness problem, when n > 3, for any free solution in L2 or H! there exists a
solution of NLS which appoaches the free solution in the same space as ¢ tends to infinity[6]. In the

defocusing case, if p > 8/ (\/(n +2)24+8n+n— 2), then we have the asymptotic completeness

in H1[4, 10, 8]. In present paper we combining methods used in [11, 5|, which gives similar result
for a wider class of solutions. When uy € H>', we have U(—t)u(t) converges strongly in L? and
converging rate t2~ 4 which was implicitly indicate in [11]. Our main result follows:

Theorem 1 : Consider the equation (1) with ug € H2', then there erists a unique global
solution u with regularity U(—t)u(t) € C(R; H>Y), and a function uy € L2(R™) satisfying

~

lim [[U(~t)u(t) — |, < lim 3% =0, (2)

Notation:
Let F¢ and ¢ be the Fourier transform of ¢ defined by

Fo(§) = (27T)_721/ e Ep(z)dx.

n



Let U(t) be the free Schrodinger group defined by

U)o = (2rit) 5 [ el g )y,
Note that U(t) = M(t)D(t)FM(t), where D(t) is the dilation operator D(t)f(z) =i~ 2t"2 f (%),
ilzl2
and M(t) = "5 . Hence U(—t) = M(—=t)F D7 (t)M(—t).
Let P<y¢, P>n¢ be the Littlewood-Paley projections:

Poyg = F'X (%) $(€), Psy=¢— Peyo

where X' is a Schwartz radial symmetry bump function.
Let H™* be the norm define by

2 n 2 2 ?
lelme = || 0= 2)F ¢+ [ +1al?)? e

1 Well-posedness and energy estimate.

The equation (1) is locally L? well-posed with ug € L2 by Strichartz estimate for the linear
inhomogeneous problem

(z@t + %A) U = f, U(O) = Uy,

which gives us
ull gz + Nl o pzee S Noll 2 + 111 oy

where a = 4(1—;”) satisfying the equation % + ﬁp = 5. Appying Holder inequality to the inho-

mogeneous term we obtain the unique local solution via the contraction principle in the space
L¥(0,T; L2) (N Le (0, T; L*P) provided that T is small enough. The global well-posedness of u is
due to the conservation of the mass ||u(t)||;2 = ||uol| 2

Denoting L,u be the vector field L = x i 1V, which is the conjugate of z with respect to the
linear flow, L, = U(t)aU(—t). Naturally we have

1
and the equation of L,u has the form
1 —
(z’@t + §A) Lyu = (1 + g) |ul” Lyu — guz luP~* Lyu,

which is the linearization of (1). The well-posedness of the L,u equation is also obtained by the
same Strichartz estimate and conservation of the mass. This shows the globally well-posed for
initial data in H%'. See |3, 4]. Denoting



w(t,v) = tre M2yt 1), (3)
we have it2e= /2 (Lou) (¢, tv) = dyw(t,v), hence w € C (R\{0};H!) and also globally well-
posed.. It can also be written as w(t,v) = i~2 D™} (t)M(—t)u and gives the differential equation

1 n
iwy + Q—ﬁAw =t |Jwfw (4)

for t € R\ {0}. Multiplying (4) with w; and takes the real part, this leads us to the following
equation, the formal calculation of which can be justified by the regularizing technique of Ginibre
and Velo [3]

1 1 _mp 4—np ,_np
o (319wl + 5t Il ) = e i, )
and use the relation Vw = —it2 L,u(t, tv) to rewrite (5) into the form
F IOl + = @I = § ol + | A )R, ds (6)
4 L L4 Lo fy 4+ 2 L

Hence by Gronwall’s inequality we get the growth

_np
ILoull 2 = V0l 2 Sjzuoll,o £ 4 (7)
x
and
2 2
£F al22, = Tl Sty 1 (®)

Notethat0<1—%<%.

2 Wave packets and the asymptotic equation.

To study the global decay properties of solutions we use the method of testing by wave packets
developing by Ifrim and Tataru [5]. A wave packet is an approximate solution localized in both
space and frequency on the scale of the uncertainty principle. We define a wave packet ¥, adapted
to the ray I', := {x = vt} and measure u along I', by considering

~(t,v) = /u(t,x)\lf_v(t,a:)da:.

The test function V¥, is of the form

U, (t7) = X <”“";z”t> it

— le

where the phase function ¢ = £-. Here for the computation purpose, rewrite v as

v = Peyw,

which is the same definition as the original one.



A direct computation yields

e rlon() ()

We apply the similar arguement of Tsutsumi and Yajima [11] by computing the decaying rate of
|7(t) = (s)||7> when t,s goes to infinity to prove that v converges to some function. Since

_ N LI (N,
ner o () 5 B ()]

and X is a Schwartz function, we get

w —l—t_%PS\/g \w|”w =1 + L. 9)

_3 . _3
i@z Stz el @l e =72 ([ Loull s - (10)
For the nonlinear part

L=t 7% Sﬁ\w\pw

by using (8) and Hélder’s inequality, we have for any s > r > 1 and any 7' > 1

‘</;IZ<U)CZU’7(T)>': / F (Peys ol w(0), (1)) do

< w(o) ||532, |1V (T)]| 240 do
| o @l 1 -
S [ o @) @)z do

1—
S»llﬂcuollg s =T 2.
x

By the relation v(T') = (1) — iflT I(o)do —i f1 I(0)do which directly gives

Y(r) —y(s) = —i /T Li(o)do — i/r Ly(o)do. (12)

Since [|[v(T)| 2 < [w(T)|l 12 = lluoll 2, and by (7), (10) display

,
1_ 1_np 1_np
H[l ”LQCZU ~llzuoll 2 / o i do < Slzuoll 2 S §2 4 =24,
S
and (11) which gives us

(1) =), 70) = 1(5)) Stz 17) =2y (5375 =rd=F ) 4 517F =% (13)

From above equations there 3g € L2 such that lim; o [|7(t) — g|l;- = 0, moreover we have
1_np

1V(t) = 9lI72 Sheuoll,z 1277 17(1) = gl + =% which gives us

1 np

B [[y(t) = gll 1z Sjauo,, im 2274 =0. (14)
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At last, if we take u, =72 F'g, then there is the estimation
U (=tut) = s = [[i2 M (=) F w(t) - i%filgHLg
S|M(=t)F (w(t) - v(t))HLz + || M(=t) F (1) - f’lvHLg

. ' (15)
+[|F ) - F glng
IIRl + RQ + Rg.
It’s obvious that Rs(t) = ||v(t) — gl|;2. For Ry, by direct computation which yields
1_np
Ri(t) = [w®) =v(O)ll 1 = |Poyaw(®)l] 2 S 7 V0]l s Speustys 277 (16)
Use the Taylor expansion of e“we have that
_ - €l ( § ) .
Ry ( 1) F — | w(t 17
0= (=) 7], <G () o, )
= tii va(t)HL% SHLL‘UOHL% tiijp
Together by (14), (15), (16), and (17)
lim U(=t)u(t) = usll 1z Spoual,y Jim 27 =0. (18)

By the time symmetry property of NLS, we have the same result when ¢ — —oo.
From coservation of mass we have [juy||,. = [|g|l;2 = |luol|2and (14), (18) display |V, S

ILaullz Sup 74, 0 <@ <2 =1

@)™ wll gy = i (V) 3l S 1. (19)
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