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Abstract: There are 2 contradictory views on our world, i.e., continuous

or discrete, which results in that only partially reality of a thing T can be

understood by one of continuous or discrete mathematics because of the uni-

versality of contradiction and the connection of things in the nature, just as

the philosophical meaning in the story of the blind men with an elephant.

Holding on the reality of natural things motivates the combination of contin-

uous mathematics with that of discrete, i.e., an envelope theory called math-

ematical combinatorics which extends classical mathematics over topological

graphs because a thing is nothing else but a multiverse over a spacial structure

of graphs with conservation laws hold on its vertices. Such a mathematical

object is said to be an action flow. The main purpose of this report is to

introduce the powerful role of action flows, or mathematics over graphs with

applications to physics, biology and other sciences, such as those of G-solution

of non-solvable algebraic or differential equations, Banach or Hilbert
−→
G -flow

spaces with multiverse, multiverse on equations, · · · and with applications to,

for examples, the understanding of particles, spacetime and biology. All of

these make it clear that holding on the reality of things by classical mathe-

matics is only on the coherent behaviors of things for its homogenous without

contradictions, but the mathematics over graphs G is applicable for contradic-

tory systems because contradiction is universal only in eyes of human beings

but not the nature of a thing itself.

Key Words: Graph, Banach space, Smarandache multispace,
−→
G -flow, ob-

servation, natural reality, non-solvable equation, mathematical combinatorics.

AMS(2010): 03A10,05C15,20A05, 34A26,35A01,51A05,51D20,53A35.

1Reported at the 2017 Spring International Conference on Applied and Engineering Mathemat-

ics, April 18-20, 2017, Chengdu, P.R.China.

1



§1. Introduction

Generally, the reality of a thing T is its state of existed, exists, or will exist in

the world, whether or not they are observable or comprehensible by human beings.

However, the recognized reality maybe very different from that of the truth because

it depends on the way of the observer and his world view is continuous or discrete,

i.e., view the behavior of thing T a continuous function f , or an infinite or finite

sequence x1, x2, · · · , xn with n ≥ 1 on time t.

Is our world continuous or discrete? Certainly not because there exist both

continuous or discrete things in the eyes of human beings. For example, all apples

on a tree is discrete but the moving of a car on the road is continuous, such as those

figures (a) and (b) shown in Fig.1.

(a) (b)

Fig.1

And historically, holding on the behavior of things mutually develops the contin-

uous and discrete mathematics, i.e., research a discrete (continuous) question by

that of continuous (discrete) mathematical methods. For example, let x, y be the

populations in a self-system of cats and rats, such as Tom and Jerry shown in Fig.2,

Fig.2
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then they were continuously characterized by Lotka-Volterra with differential equa-

tions ([4]) {
ẋ = x( λ− by),

ẏ = y(−µ− cx).
(1.1)

Similarly, all numerical calculations by computer for continuous questions are

carried out by discrete methods because algorithms language recognized by computer

is essentially discrete. Such a typical example is the movies by discrete images for a

continuous motion shown in Fig.3. Thus, the reality of things needs the combination

of the continuous mathematics with that of the discrete.

Fig.3

Physically, the behavior of things T is usually characterized by differential equa-

tion

F (t, x1, x2, x3, ψt, ψx1
, ψx2

, · · · , ψx1x2
, · · ·) = 0 (1.2)

established on observed characters of µ1, µ2, · · · , µn for its state function ψ(t, x) in

reference system R3 by Newtonian and R4 by Einstein ([2]).

Fig.4

Usually, these physical phenomenons of a thing is complex, and hybrid with

other things. Is the reality of particle P all solutions of that equation (1.2) in general?
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Certainly not because the equation (1.2) only characterizes the behavior of P on

some characters of µ1, µ2, · · · , µn at time t abstractly, not the whole in philosophy.

For example, the behavior of a particle is characterized by the Schrödinger equation

i~
∂ψ

∂t
= −

~2

2m
∇2ψ + Uψ (1.3)

in quantum mechanics ([24]) but observation shows it in two or more possible states

of being, i.e., superposition such as the skying question of Schrödinger for the alive

or dead of the cat in the box with poison switch shown in Fig.4. We can not even

say which solution of the Schrödinger equation (1.3) is the particle because each

solution is only for one determined state.

Furthermore, can we conclude the equation (1.2) is absolutely right for a particle

P? Certainly not also because the dynamic equation (1.2) is always established with

an additional assumption, i.e., the geometry on a particle P is a point in classical

mechanics or a field in quantum mechanics and dependent on the observer is out or

in the particle. For example, a water molecule H2O consists of 2 hydrogen atoms and

1 oxygen atom such as those shown in Fig.5. If an observer receives information on

the behaviors of hydrogen or oxygen atom but stands out of the water molecule H2O

by viewing it a geometrical point, then he can only receives coherent information on

atoms H and O with the water molecule H2O.

Fig.5

But if he enters the interior of the molecule, he will view a different sceneries for

atoms H and O, which are respectively called out-observation and in-observation,

and establishes equation (1.3) on H2O or 3 dynamic equations
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




−i~
∂ψO

∂t
=

~2

2mO

∇2ψO − V (x)ψO

−i~
∂ψH1

∂t
=

~2

2mH1

∇2ψH1
− V (x)ψH1

−i~
∂ψH2

∂t
=

~
2

2mH2

∇2ψH2
− V (x)ψH2

(1.4)

on atoms H and O. Which is the right model on H2O, the (1.3) or (1.4) dynamic

equations? The answer is not easy because the equation model (1.3) can only char-

acterizes those of coherent behavior of atoms H and O in H2O, but equations (1.4)

have no solutions, i.e., non-solvable in mathematics ([17]).

The main purpose of this report is to clarify that the reality of a thing T should

be a contradictory system in one’s eyes, or multiverse with non-solvable systems of

equations in geometry, conclude that they essentially describe its nature, which

results in mathematical combinatorics, i.e., mathematics over graphs in space, and

show its powerful role to mathematics with applications to elementary particles,

gravitational field and other sciences, such as those of extended Banach or Hilbert
−→
G -flow spaces, geometry on non-solvable systems of solvable differential equations,

· · · with applications to the understanding of particles, population biology and other

sciences.

For terminologies and notations not mentioned here, we follow references [1] for

mechanics, [4] for biological mathematics, [8] for combinatorial geometry, [23]-[24]

for elementary particles, and [25] for Smarandache systems and multispaces, and all

phenomenons discussed in this paper are assumed to be true in the nature.

§2. Contradiction, a By-product of Non-complete Recognizing

Notice that classical mathematical systems are homogenous without contradictions

but contradictions exist everywhere in our world. Thus, let R, MR be respectively

the sets of reality and the reality known by classical mathematics on things. Then,

it is concluded that

MR ⊂ R and MR 6= R (2.1)

in philosophy and we need an envelope theory on mathematics for reality of things,

i.e., a mathematical theory including contradictions.

5



2.1 Thinking Models

Let us discuss 3 thinking models following.

T1. The Blind Men with an Elephant. This is a famous story in Buddhism

which implies the entire consisting of its parts but we always hold on parts. In this

story, there are six blind men were asked to determine what an elephant looked like

by feeling different parts of an elephant’s body. The man touched the elephant’s

leg, tail, trunk, ear, belly or tusk respectively claims it’s like a pillar, a rope, a tree

branch, a hand fan, a wall or a solid pipe, such as those shown in Fig.6.

Fig.6

Each of these blind men insisted on his own’s right, not accepted others, and

then entered into an endless argument. All of you are right! A wise man explains

to them: why are you telling it differently is because each one of you touched the

different part of the elephant. So, actually the elephant has all those features what

you all said. Hence, the wise man told these blind man that an elephant seemingly

looked

An elephant = {4 pillars}
⋃
{1 rope}

⋃
{1 tree branch}

⋃
{2 hand fans}

⋃
{1 wall}

⋃
{1 solid pipe} (2.2)

What is the implication of this story for human beings? It lies in the situation

that human beings understand things in the world is analogous to these blind men.

Usually, a thing T is understand by its known characters at one by one time and

known gradually. For example, let µ1, µ2, · · · , µn be known and νi, i ≥ 1 unknown
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characters on a thing T at time t. Then, T is understood by

T =

(
n⋃

i=1

{µi}

)
⋃
(
⋃

k≥1

{νk}

)
(2.3)

in logic and with an approximation T ◦ =
n⋃

i=1

{µi} at time t. The equation (2.3) is

called the Smarandache multispace ([8], [25]), a combination of discrete characters

for understanding a thing T .

T2. Everett’s Multiverse on Superposition. The multiverse interpre-

tation by H.Everett [3] on wave function of equation (1.2) in 1957 answered the

superposition of particles in machinery. By an assumption that the wave function

of an observer would be interacted with a superposed object, he concluded different

worlds in different quantum system obeying equation (1.2) and the superposition of

a particle be liked those separate arms of a 2-branching universe ([16], [17]) such as

those shown in Fig.7,

Fig.7

which revolutionary changed an ambiguous interpretation in quantum mechanics

before him, i.e., an observer will cause the wave function to collapse randomly into

one of the alternatives with all others disappearing. Everett’s multiverse interpreta-

tion on the superposition of particle is in fact alluded in thinking model T1, i.e., the

story of blind men with an elephant because if one views each of these pillar, rope,

tree branch, hand fan, wall and solid pipe by these blind men feeling on different

parts of the elephant to be different spaces, then the looks of an elephant of the wise

man told these blind men (2.2) is nothing else but an Everett’s multiverse.

T3. Quarks Model. The divisibility of matter initiates human beings to

search elementary constituting cells of matter, i.e., elementary particles such as those
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of quarks, leptons with interaction quanta including photons and other particles of

mediated interactions, also with those of their antiparticles at present ([23], [24]),

and unmatters between a matter and its antimatter which is partially consisted of

matter but others antimatter ([26], [27]). For example, a baryon is predominantly

formed by three quarks, and a meson is mainly composed of a quark and an antiquark

in the models of Sakata, or Gell-Mann and Ne’eman, such as those shown in Fig.2,

where there is also a particle composed of 5 quarks.

Fig.8

However, a free quark was never found in experiments. We can not even con-

clude the Schrödinger equations (1.3) is the right equation on quarks. But why is it

believed without a shadow of doubt that the dynamical equation of elementary par-

ticles such as those of quarks, leptons with interaction quanta is (1.3) in physics?

The reason is because that all observations come from a macro viewpoint, the hu-

man beings, not the quarks, and which can only lead to coherent behaviors, not

the individuals. In mathematics, it is just an equation on those of particles viewed

abstractly to be a geometrical point or an independent field from a macroscopic

point, which results in physicists assuming the internal structures mechanically for

understanding behaviors of particles, such as those shown in Fig.8. However, such

an assumption is a little ambiguous in logic, i.e., we can not even distinguish who

is the geometrical point or the field, the particle or its quark.

2.2 Contradiction Originated in Non-complete Recognizing

If we completely understand a thing T , i.e., T = T o in formula (2.3) at time t, there

are no contradiction on T . However, this is nearly impossible for human beings,

concluded in the first chapter of TAO TEH KING written by Lao Zi, a famous

ideologist in China, i.e., “Name named is not the eternal; the without is the nature
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and naming the origin of things”, which also implies the universality of contradiction

and an generalization of equation (2.1).

Certainly, the looks (2.2) of the wise man on the elephant is a complete rec-

ognizing but these of the blind men is not. However, which is the right way of

recognizing? The answer depends on the standing view of observer. The observation

of these blind men on the elephant are a microscopic or in-observing but the wise

man is macroscopic or out-observing. If one needs only for the macroscopic of an

elephant, the wise man is right, but for the microscopic, these blind men are right

on the different parts of the elephant. For understanding the reality of a thing T ,

we need the complete by individual recognizing, i.e., the whole by its parts. Such

an observing is called a parallel observing ([17]) for avoiding the defect that each

observer can only observe one behavior of a thing, such as those shown in Fig.9 on

the water molecule H2O with 3 observers.

1 ? Y?
I>

O1

P1

O2

P2

O3

P3

Fig.9

Thus, the looks of the wise man on an elephant is a collection of parallel ob-

serving by these 6 blind men and finally results in the recognizing (2.2), and also

the Everett’s multiverse interpretation on the superposition, the models of Sakata,

or Gell-Mann and Ne’eman on particles. This also concludes that multiverse exists

everywhere if we observing a thing T by in-observation, not only those levels of

I − IV classified by Max Tegmark in [28].

However, these equations (1.2) established on parallel observing datum of mul-

tiverse, for instance the equations (1.4) on 2 hydrogen atoms and 1 oxygen atom

([17]), and generally, differential equations (1.2) on population biology with more

than 3 species are generally non-solvable. Then, how to understand the reality of a
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thing T by mathematics holding with an equality MR = R? The best answer on

this question is the combination of continuous mathematics with that of the discrete,

i.e., turn these non-mathematics in the classical to mathematics by a combinatorial

manner ([13]), i.e., mathematical combinatorics, which is the appropriated way for

understanding the reality because all things are in contradiction.

§3. Mathematical Combinatorics

3.1 Labeled Graphs

A graph G is an ordered 2-tuple (V,E) with V 6= ∅ and E ⊂ V ×V , where V and E

are finite sets and respectively called the vertex set, the edge set of G, denoted by

V (G) or E(G), and a graph G is said to be embeddable into a topological space T

if there is a 1− 1 continuous mapping φ : G → T with φ(p) 6= φ(q) if p, q 6∈ V (G).

Particularly, if T = R3 such a topological graph is called spacial graph such as those

shown in Fig.10 for cube C4 × C4,
v1 v2

v3

u1 u2

u3

v4

u4

e1

e2e3
e4

e5 e6

e7e8
e9

e10e11
e12

Fig.10

and a labeling on a graph G is a mapping L : V (G)
⋃
E(G) → L with a labeling

set L such as L = {vi, ui, ej, 1 ≤ i ≤ 4, 1 ≤ j ≤ 12} in Fig.10.

t1

e1

e2

h

l1

l2

l3

l4

t2

Fig.11
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Notice that the underlying structure of an elephant by these blind men is a

labeled tree shown in Fig.11. Then, how can we rebuilt the looks of elephant from

the labeled tree in Fig.11? First, one blows up all edges, i.e., e → a cylinder for

∀e ∈ E(GL) and then, homeomorphically transforms these cylinders as parts of an

elephant. After these transformations, a 3-dimensional elephant is built again in R3

such as those shown in Fig.12.

Fig.12

All of these discussions implies that labeled graph should be a mathematical

element for understanding things ([20]), not only a labeling game because of

Labeled Graphs in R
n ⇔ Inherent Structure of Things.

But what are labels on labeled graphs, is it just different symbols? And are such

labeled graphs a mechanism for the reality of things, or only a labeling game? In fact,

labeled graphs are researched mainly on symbols, not mathematical elements. If one

puts off this assumption, i.e., labeling a graph by elements in mathematical systems,

what will happens? Are these resultants important for understanding things in the

world? The answer is certainly yes ([6], [7]) because this step will enable one to

pullback more characters of things, particularly the metrics in physics, characterize

things precisely and then holds on the reality of things.

3.2 G-Solutions on Equations

Let F : Rn × Rm → Rm be a Ck, 1 ≤ k ≤ ∞ mapping with F (x0, y0) = 0 for

x0 ∈ Rn, y0 ∈ Rm and a non-singular m ×m matrix (∂F j/∂yi(x0, y0)). Then the

implicit mapping theorem concludes that there exist opened neighborhoods V ⊂ Rn

of x0, W ⊂ Rm of y0 and a Ck mapping φ : V → W such that T (x, φ(x)) = 0,
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i.e.,equation (1.2) is always solvable.

Let F1,F2, · · · ,Fm be m mappings holding with conditions of the implicit

mapping theorem and let SFi
⊂ Rn be a manifold such that Ti : SFi

→ 0 for

integers 1 ≤ i ≤ m. Consider the equations






F1(x1, x2, · · · , xn) = 0

F2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn) = 0

(3.1)

in Euclidean space Rn, n ≥ 1. Geometrically, the system (3.1) is non-solvable or not

dependent on

m⋂

i=1

SFi
= ∅ or 6= ∅.

Now, is the non-solvable case meaningless for understanding the reality of things?

Certainly not because the non-solvable case of (3.1) only concludes the intersection
m⋂

i=1

SFi
= ∅, the behavior of the solvable and non-solvable cases should be both

characterized by the union

m⋃

i=1

SFi
such as those shown in (2.2) for the elephant.

-
6
O

x

y

x+ y = 1

x+ y = −1x− y = 1

x− y = −1

A

B

C

D -
6

x

y

x = yx = 1

y = 1
P

x+ y = 2

O

(LESN
4 ) (LESS

4 )

Fig.13

For example, if things T1, T2, T3, T4 and T ′
1, T

′
2, T

′
3, T

′
4 are respectively character-

ized by systems of equations following
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(LESN
4 )






x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS
4 )






x = y

x+ y = 2

x = 1

y = 1

it is clear that (LESN
4 ) is non-solvable because x + y = −1 is contradictious to

x + y = 1, and so that for equations x − y = −1 and x − y = 1, i.e., there are

no solutions x0, y0 hold with this system. But (LESS
4 ) is solvable with x = 1 and

y = 1. Can we conclude that things T ′
1, T

′
2, T

′
3, T

′
4 are x = 1, y = 1 and T1, T2, T3, T4

are nothing? Certainly not because (x, y) = (1, 1) is the intersection of straight line

behavior of things T ′
1, T

′
2, T

′
3, T

′
4 and there are no intersection of T1, T2, T3, T4 in plane

R2. However, they are indeed exist in R2 such as those shown in Fig.13.

Let La,b,c = {(x, y)|ax + by = c, ab 6= 0} be points in R2. We are easily know

the straight line behaviors of T1, T2, T3, T4 and T ′
1, T

′
2, T

′
3, T

′
4 are nothings else but the

unions L1,−1,0

⋃
L1,1,2

⋃
L1,0,1

⋃
L0,1,1 and L1,1,1

⋃
L1,1,−1

⋃
L1,−1,−1

⋃
L1,−1,1, respec-

tively.

Definition 3.1 A G-solution of system (3.1) is a labeling graph GL defined by

V (G) = {SFi
, 1 ≤ i ≤ n};

E(G) =
{
(SFi

, SFj
) if SFi

⋂
SFj
6= ∅ for integers 1 ≤ i, j ≤ n

}
with a labeling

L : SFi
→ SFi

, (SFi
, SFj

)→ SFi

⋂
SFj

.

For Example, the G-solutions of (LESN
4 ) and (LESS

4 ) are respectively labeling

graphs CL
4 and KL

4 shown in Fig.14 following.

L1,−1,−1 L1,1,1

L1,−1,1L1,1,−1

L1,0,1 L1,−1,0

L0,1,1L1,1,2

A

B

C

D P

P

P

P

P P

CL
4

KL
4

Fig.14
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Theorem 3.2 A system (3.1) of equations is G-solvable if Fi ∈ C1 and Fi|(x0
1,x0

2,···,x0
n)

= 0 but
∂Fi

∂xi

∣∣∣∣
(x0

1,x0
2,···,x0

n)

6= 0 for any integer i, 1 ≤ i ≤ n.

More results on combinatorics of non-solvable algebraic, ordinary or partial

differential equations can be found in references [9]-[14]. For example, let (LDES1
m)

be a system of linear homogeneous differential equations





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)

where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Clearly, this system is non-solvable with solution bases

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} respectively on equations

(1)− (6) and its G-solution is shown in Fig.15,

〈et, e2t〉 〈e2t, e3t〉

〈e3t, e4t〉

〈e4t, e5t〉〈e5t, e6t〉

〈e6t, et〉

〈e2t〉

〈e3t〉

〈e4t〉

〈e5t〉

〈e6t〉

〈et〉

Fig.15

where 〈∆〉 denotes the linear space generalized by elements in ∆.

3.3 Mathematics Over Graph

Let (A ; ◦1, ◦2, · · · , ◦k) be an algebraic system, i.e., a ◦i b ∈ A for ∀a, b ∈ A , 1 ≤

i ≤ k and let
−→
G be an oriented graph embedded in space T . Denoted by

−→
G

L

A all of

those labeled graphs
−→
G

L
with labeling L : E

(
−→
G
)
→ A constraint with ruler:

R1 : For ∀
−→
G

L1

,
−→
G

L2

∈
−→
G

L

A , define
−→
G

L1

◦i
−→
G

L2

=
−→
G

L1◦iL2

, where L1 ◦i L2 :

e→ L1(e) ◦i L2(e) for ∀e ∈ E
(−→
G
)

and integers 1 ≤ i ≤ k.
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For example, such a ruler on graph
−→
C 4 is shown in Fig.16, where a3=a1◦ia2,

b3 =b1◦ib2, c3=c1◦ic2, d3 =d1◦id2.- ?�6 ?�6 ?�6◦i

v1 v2

v3v4

v1 v2

v3v4

v1 v2

v3v4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

- -
Fig.16

Then,
−→
G

L1

◦i
−→
G

L2

=
−→
G

L1◦iL2

∈
−→
G

L

A by the ruler R1, and generally,

−→
G

L1

◦i1
−→
G

L2

◦i2 · · · ◦is
−→
G

Ls+1

∈
−→
G

L

A

for integers 1 ≤ i1, i2, · · · , is ≤ k, i.e.,
−→
G

L

A is also an algebraic system, and it is

commutative on an operation ◦i if (A ; ◦1, ◦2, · · · , ◦k) is commutative on an operation

◦i for an integer i, 1 ≤ i ≤ k. Particularly, if k = 1,
−→
G

L

A is a group if (A ; ◦1) is

a group. Thus, we extend (A ; ◦1, ◦2, · · · , ◦k) and obtain an algebraic system over

graph
−→
G underlying a geometrical structure in space T .

Notice that such an extension
−→
G

L

A is only a pure extension of algebra over
−→
G

without combining the nature of things, i.e., the conservation of matter which states

that the amount of the conserved quantity at a point or within a volume can only

change by the amount of the quantity which flows in or out of that volume. Thus,

understanding the reality of things motives the extension of mathematical systems

(A ; ◦1, ◦2, · · · , ◦k) over graph
−→
G constrained also on the laws of conservation

R2 :
∑

l

F(v)−l =
∑

s

F(v)+
s , where F(v)−l , l ≥ 1 and F(v)+

s , s ≥ 1 denote

respectively the output and input amounts at vertex v ∈ E(
−→
G).

This notion brings about a new mathematical element finally, i.e., action flows,

which combines well the continuous mathematics with that of the discrete.

Definition 3.3([19]) An action flow
(
−→
G ;L,A

)
is an oriented embedded graph

−→
G in

a topological space S associated with a mapping L : (v, u)→ L(v, u), 2 end-operators

A+
vu : L(v, u) → LA+

vu(v, u) and A+
uv : L(u, v) → LA+

uv(u, v) on a Banach space B-u v
L(u, v)A+

uv A+
vu

Fig.17
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with L(v, u) = −L(u, v) and A+
vu(−L(v, u)) = −LA+

vu(v, u) for ∀(v, u) ∈ E
(
−→
G
)

holding with conservation laws

∑

u∈NG(v)

LA+
vu (v, u) = cv for ∀v ∈ V

(
−→
G
)

such as those shown for vertex v in Fig.18 following

- --
-

-
-v

u1

u2

u3

u4

u5

u6

L(u1, v)

L(u2, v)

L(u3, v)

L(v, u4)

L(v, u5)

L(v, u6)

A1

A2

A3

A4

A5

A6

Fig.18

with a conservation law

−LA1(v, u1)− L
A2(v, u2)− L

A4(v, u3) + LA4(v, u4) + LA5(v, u5) + LA6(v, u6) = cv,

where cv is the surplus flow on vertex v, and usually, let cv = 0.

Indeed, action flow is an element both with the character of continuous and

discrete mathematics. For example, the conservation laws on an action flow over

dipole shown in Fig.19 --��v u

(x, y)t

(x, y)t

(x, y)t

(x, y)t

A1

A2

A3

A4

B1

B2

B3

B4

Fig.19

are partial differential equations






a1
∂2x

∂t2
+ b1

∂2y

∂t2
− a3

∂x

∂t
+ (a2 − a4)x+ (b2 − b3 − b4)y = 0

c2
∂2x

∂t2
+ d2

∂2y

∂t2
− d4

∂y

∂t
+ (c1 − c3 − c4)x+ (d1 − d3)y = 0

,

16



where, A1 = (a1∂
2/∂t2, b1∂

2/∂t2), A2 = (a2, b2), A3 = (a3∂/∂t, b3), A4 = (a4, b4),

B1 = (c1, d1), B2 = (c2∂
2/∂t2, d2∂

2/∂t2), B3 = (c3, d3), B4 = (c4, d4∂/∂t).

Certainly, not all mathematical systems can be extended over a graph
−→
G con-

straint with the laws of conservation at v ∈ V (
−→
G ) unless

−→
G with special structure

but such an extension of linear space A can be always done.

Theorem 3.4([20]) Let (A ; +, ·) be a linear space,
−→
G an embedded graph in space

T and A+
vu = A+

uv = 1A for ∀(v, u) ∈ E(
−→
G ). Then,

(
−→
G

L

A ; +, ·
)

is also a linear space

under rulers R1 and R2 with dimension dimA β(
−→
G ) if dimV <∞, or infinite.

An action flow
(−→
G ;L, 1A

)
, i.e., A+

vu = A+
uv = 1A for ∀(v, u) ∈ E(

−→
G) is usually

called
−→
G -flows, denoted by

−→
G

L
and the linear space

(
−→
G

L

A ; +, ·
)

extended over
−→
G

by
−→
G

A

for simplicity.

§4. Banach
−→
G-Flow Spaces with Multiverses

4.1 Banach
−→
G-Flow Space

A Banach or Hilbert space is respectively a linear space A over a field R or C

equipped with a complete norm ‖ · ‖ or inner product 〈·, ·〉, i.e., for every Cauchy

sequence {xn} in A , there exists an element x in A such that

lim
n→∞

‖xn − x‖A = 0 or lim
n→∞

〈xn − x, xn − x〉A = 0,

which can be extended over graph
−→
G by introducing the norm of a

−→
G -flow

−→
G

L

following ∥∥∥−→G
L
∥∥∥ =

∑

(v,u)∈E(
−→
G )

‖L(v, u)‖ ,

where ‖L(v, u)‖ is the norm of L(v, u) in A .

Theorem 4.1([15]) For any graph
−→
G ,
−→
G

A

is a Banach space, and furthermore, if

A is a Hilbert space,
−→
G

A

is a Hilbert space too.

We can also consider operators action on the Banach or Hilbert
−→
G -flow space

−→
G

A

. Particularly, an operator T :
−→
G

A

→
−→
G

A

is linear if

T
(
λ
−→
G

L1

+ µ
−→
G

L2
)

= λT
(−→
G

L1
)

+ µT
(−→
G

L2
)

17



for ∀
−→
G

L1

,
−→
G

L2

∈
−→
G

A

, λ, µ ∈ F , which enables one to generalize the representation

theorem of Fréchet and Riesz on linear continuous functionals of Hilbert space to

Hilbert
−→
G -flow space

−→
G

A

following.

Theorem 4.2([15]) Let T :
−→
G

A

→ C be a linear continuous functional. Then there

is a unique
−→
G

L̂
∈
−→
G

A

such that T
(
−→
G

L
)

=

〈
−→
G

L
,
−→
G

L̂
〉

for ∀
−→
G

L
∈
−→
G

A

.

Notice that linear continuous functionals exist everywhere in mathematics, par-

ticularly, the differential and integral operators. For example, let A be a Hilbert

space consisting of measurable functions f(x1, x2, · · · , xn) on a set

∆ = {(x1, x2, · · · , xn) ∈ R
n|ai ≤ xi ≤ bi, 1 ≤ i ≤ n} ,

which is a functional space L2[∆] with inner product

〈f (x) , g (x)〉 =

∫

∆

f(x)g(x)dx for f(x), g(x) ∈ L2[∆],

where x = (x1, x2, · · · , xn). By Theorem 4.1, A can be extend to Hilbert
−→
G -flow

space
−→
G

A

, and the differential or integral operators

D =
n∑

i=1

ai

∂

∂xi

and

∫

∆

on A are extended to
−→
G

A

respectively by D
−→
G

L
=
−→
G

DL(v,u)
and

∫

∆

−→
G

L
=

∫

∆

K(x,y)
−→
G

L[y]
dy =

−→
G
∫
∆

K(x,y)L(v,u)[y]dy

for ∀(v, u) ∈ E(
−→
G ), where ai,

∂ai

∂xj

∈ C
0(∆) for integers 1 ≤ i, j ≤ n and K(x,y) :

∆×∆→ C ∈ L2(∆×∆,C) with

∫

∆×∆

K(x,y)dxdy <∞.

Theorem 4.3([15]) The differential or integral operator D :
−→
G

A

→
−→
G

A

,

∫

∆

:

−→
G

A

→
−→
G

A

both are linear operators on
−→
G

A

.

For example, let let f(t) = t, g(t) = et, K(t, τ) = t2 + τ 2 for ∆ = [0, 1] and let
−→
G

L
be the

−→
G -flow shown on the left in Fig.20,
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b(t)

b(t) b(t)

Fig.20

where a(t) =
t2

2
+

1

4
and b(t) = (e− 1)t2 + e− 2.

4.2 Multiverses on Equations

Notice that solving Schrödinger equation (1.3) with initial data only get one state of

a particle P but the particle is in superposition, which brought the H.Everett mul-

tiverse on superposition and the quark model of Sakata, or Gell-Mann and Ne’eman

on particles machinery. However, Theorems 4.1− 4.3 enables one to get multiverses

constraint with linear equations (3.1) in
−→
G

A

.

For example, we can consider the Cauchy problem

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial values X|t=t0 in
−→
G

Rn×R

, i.e., Hilbert space R
n × R over graph

−→
G , and

get multiverse solutions of heat equation following.

Theorem 4.4([15]) For ∀
−→
G

L′

∈
−→
G

Rn×R

and a non-zero constant c in R, the Cauchy

problems on differential equations

∂X

∂t
= c2

n∑

i=1

∂2X

∂x2
i

with initial value X|t=t0 =
−→
G

L′

∈
−→
G

Rn×R

is solvable in
−→
G

Rn×R

if L′ (v, u) is contin-

uous and bounded in Rn for ∀(v, u) ∈ E
(
−→
G
)
.

19



And then, the H.Everett’s multiverse on the Schrödinger equation (1.3) is noth-

ing else but a 2-branch tree

63Y�o o 7
ψ1

ψ11 ψ12

ψ111 ψ112 ψ121 ψ122

Fig.21

with equalities ψ1 = ψ11 + ψ12, ψ11 = ψ111 + ψ112, ψ12 = ψ121 + ψ122, · · · ([16], [17]).

If the equations (3.1) is not linear, we can not immediately apply Theorems

4.1−4.3 to get multiverse over any graphs
−→
G . However, if the graph

−→
G is prescribed

with special structures, for instance the circuit decomposable, we can also solve the

Cauchy problem on an equation in Hilbert
−→
G -flow space

−→
G

A

if it is solvable in

A and obtain a general conclusion following, which enable us to interpret also the

superposition of particles ([17]), biological diversity and establish multiverse model

of spacetime in Einstein’s gravitation.

Theorem 4.5([15]) If the graph
−→
G is strong-connected with circuit decomposition

−→
G =

l⋃

i=1

−→
C i

such that L(v, u) = Li (x) for ∀(v, u) ∈ E
(
−→
C i

)
, 1 ≤ i ≤ l and the Cauchy problem

{
Fi (x, u, ux1

, · · · , uxn
, ux1x2

, · · ·) = 0

u|x0
= Li(x)

is solvable in a Hilbert space A on domain ∆ ⊂ Rn for integers 1 ≤ i ≤ l, then the

Cauchy problem {
Fi (x, X,Xx1

, · · · , Xxn
, Xx1x2

, · · ·) = 0

X|x0
=
−→
G

L

such that L (v, u) = Li(x) for ∀(v, u) ∈ X
(−→
C i

)
is solvable for X ∈

−→
G

A

.
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Theorem 4.5 enables one to explore the multiverse, particularly, the solutions

of Einstein’s gravitational equations

Rµν −
1

2
Rgµν + λgµν = −8πGT µν ,

where Rµν = Rµαν
α = gαβR

αµβν , R = gµνR
µν are the respective Ricci tensor, Ricci

scalar curvature, G = 6.673×10−8cm3/gs2, κ = 8πG/c4 = 2.08×10−48cm−1 ·g−1 ·s2

([24]). In fact, Einstein’s general relativity is established on R
4. However, if the

dimension of the universe> 4, how can we characterize the structure of spacetime

for the universe? If the dimension of the universe> 4, all observations are nothing

else but a projection of the true faces on our six organs because the dimension of

human beings is 3. We can characterize the spacetime by a complete graph KL
m

labeled by R4 (See [7]-[8] for details). For example, if m = 4 there are 4 Einstein’s

gravitational equations respectively on v ∈ V
(
KL

4

)
. We solve it one by one by

the spherically symmetric solution in R4 and construct a KL
4 -solution labeled by

SF1
, SF2

, SF3
, SF4

in Fig.22,

Sf1
Sf2

Sf3
Sf4

Fig.22

where, each SFi
the geometrical space of the Schwarzschild spacetime

ds2 = f(t)
(
1−

rs

r

)
dt2 −

1

1− rs

r

dr2 − r2(dθ2 + sin2 θdφ2)

for integers 1 ≤ i ≤ 4.

Notice that m = 4 is only an assumption. We do not know the exact value of

m at present. Similarly, by Theorem 4.5 we also get a conclusion on multiverse of

the Einstein’s gravitational equations and we do not even know which is the real

spacetime of our universe.
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Theorem 4.6([15], [19]) There are infinite many
−→
G -flow solutions on Einstein’s

gravitational equations

Rµν −
1

2
Rgµν = −8πGT µν

in
−→
G

C

, particularly on those graphs with circuit-decomposition

−→
G =

m⋃

i=1

−→
C i

labeled with Schwarzschild spacetime on their edges.

For example, let
−→
G =

−→
C 4. We are easily find

−→
C 4-flow solution of Einstein’s

gravitational equations such as those shown in Fig.23.- ?y6
Sf1

Sf2

Sf3

Sf4

v1 v2

v3v4

Fig.23

Then, the spacetime of the universe is nothing else but a curved ring such as those

shown in Fig.24.

Fig.24

Generally, if
−→
G is the union of m orientated circuits

−→
C i, 1 ≤ i ≤ m, Theorem 4.6

implies the spacetime of Einstein’s gravitational equations is a multiverse consisting

of m curved rings over graph
−→
G .
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Notice that a graph
−→
G is circuit decomposable if and only if it is an Eulerian

graph. Thus, Theorems 4.1−4.5 can be also applied to biology with global stability

of food webs of n species following.

Theorem 4.7([21]) A food web
−→
G

L
with initial value

−→
G

L0

is globally stable or

asymptotically stable if and only if there is an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=

s⊕

i=1

−→
H

L

i

with solvable stable or asymptotically stable conservative equations on Eulerian sub-

graphs
−→
H

L

i for integers 1 ≤ i ≤ s, where
(
−→
G
⋃←−
G
)L̂

is the bi-digraph of
−→
G de-

fined by
−→
G
⋃←−
G with a labeling L̂ : V (

−→
G
⋃←−
G ) → L

(
V (
−→
G )
)
, L̂ : E

(
−→
G
⋃←−
G
)
→

L
(
E
(
−→
G
⋃←−
G
))

by L̂ : (u, v) → {0, (x, y), yf ′}, (v, u) → {xf, (x, y), 0} if L :

(u, v)→ {xf, (x, y), yf ′} for ∀(u, v) ∈ E(
−→
G), such as those shown in Fig.25,

ẋ ẏ ẏ- �ẋ

-
u v

xf (x, y) yf ′
0

(x, y)
yf ′

xf
(x, y)

0

u v

Fig.25

and a multi-decomposition
s⊕

i=1

−→
H

L

i of
(−→
G
⋃←−
G
)L̂

is defined by

(
−→
G
⋃←−

G
)L̂

=

s⋃

i=1

−→
H i

with
−→
H i 6=

−→
H j,
−→
H i

⋂−→
H j = ∅ or 6= ∅ for integers 1 ≤6= j ≤ s.

Theorem 4.8([21]) A food web
−→
G

L
with initial value

−→
G

L0

is globally asymptotically

stable if there is an Eulerian multi-decomposition

(
−→
G
⋃←−

G
)L̂

=
s⊕

k=1

−→
H

L

k

with solvable conservative equations such that Reλi < 0 for characteristic roots λi

of Av in the linearization AvXv = 0hv×hv
of conservative equations at an equilib-

rium point
−→
H

L0

k in
−→
H

L

k for integers 1 ≤ i ≤ hv and v ∈ V (
−→
H

L

k ), where V (
−→
H

L

k ) =
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{v1, v2, · · · , vhv
},

Av =





av
11 av

12 · · · av
1hv

av
21 av

22 · · · av
2hv

· · · · · · · · · · · ·

av
h1 av

h2 · · · av
hhv





a constant matrix and Xk = (xv1
, xv2

, · · · , xvhv
)T for integers 1 ≤ k ≤ l.

§5. Conclusion

Answer the question which is better to the reality of things, the continuous or

discrete mathematics is not easy because our world appears both with the continuous

and discrete characters. However, contradictions exist everywhere, which are all

artificial, not the nature of things. Thus, holding on the reality of things motivates

us to turn contradictory systems to compatible systems, i.e., giving up the notion

that contradiction is meaningless and establish an envelope theory on mathematics,

which needs the combination of the continuous mathematics with that of discrete,

i.e., mathematical combinatorics because a non-mathematics in classical is in fact

a mathematics over a graph
−→
G ([13]), and action flow

−→
G

L
is a candidate for this

objective.
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