
Short notice on (exact) trigonometric interpolation:
1) detailed calculation

2) symmetric cut-off for even number of points
3) general approach to aN/bN cut-off for even number of points

4) SciLab code

Andrej Liptaj∗

Abstract
Method of trigonometric interpolation is presented in details and summarized. New ideas related to the high-

frequency cutoff in the case of an even number of data points are presented.

Introductory note: This text was previously published on Scribd1.

1 Foreword
Given a set of experimental points (xi, yi), one wants to find a cut-off Fourier series (i.e. its coefficients an and bn)

y =
a0
2

+

N∑
n=1

[bn sin (nx) + an cos (nx)] (1)

that exactly passes through all points. This problem has been (of course) solved and the solution can be found on many
different places (on internet). This notice covers some points related to the trigonometric interpolation. First, it seems
to me, that existing descriptions I have found are not detailed enough, or somewhat messy (my personal opinion). So
I provide here a detailed calculation leading to the an and bn coefficients. The second point concerns an even number
of point pairs (xi, yi). The formula 1 naturally contains an odd number of parameters: they come in pairs in the sum,
plus the stand-alone a0 coefficient. The number of free parameters should match the number of points, in the case of an
even number of points one has to find an ad hoc approach to cut-off the series. Here I present the symmetric cut-off with
aN = bN = w. Then I also discuss a generalization of this approach. Finally, I provide a SciLab code to perform the
trigonometric (and polynomial) interpolation.

2 Detailed calculation
The condition that coefficients need to fulfill is

yi =
a0
2

+
N∑

n=1

[bn sin (nxi) + an cos (nxi)] .

This condition can be transformed as follows:

yi =
a0
2

+
N∑

n=1

[bn sin (nxi) + an cos (nxi)]

=
a0
2

+
N∑

n=1

[
bn

einxi − e−inxi

2i
+ an

einxi + e−inxi

2

]
∗Institute of Physics, Bratislava, Slovak Academy of Sciences, andrej.liptaj@savba.sk

I am willing to publish any of my ideas presented through free-publishing services in a journal, if someone (an editor) judges them interesting
enough. Journals in the “Current Contents” database are strongly preferred.

1https://www.scribd.com/document/270904435/Short-notice-on-exact-trigonometric-interpolation

1

=
a0
2

+
N∑

n=1

[
bn
2i

einxi − bn
2i

e−inxi +
an
2
einxi +

an
2
e−inxi

]

=
a0
2

+

N∑
n=1

[(
bn
2i

+
an
2

)
einxi +

(
an
2

− bn
2i

)
e−inxi

]

=
a0
2

+

N∑
n=1

[
1

2
(an − ibn) e

inxi +
1

2
(an + ibn) e

−inxi

]

=
a0
2

+
1

2

N∑
n=1

(an − ibn) e
inxi +

1

2

N∑
n=1

(an + ibn) e
−inxi

=
a0
2

+
1

2

N∑
n=1

(an − ibn) e
inxi +

1

2

N∑
k=1

(ak + ibk) e
−ikxi

r = −k

k = −r

=
a0
2

+
1

2

N∑
n=1

(an − ibn) e
inxi +

1

2

N∑
−r=1

(a−r + ib−r) e
irxi

=
a0
2

+
1

2

N∑
n=1

(an − ibn) e
inxi +

1

2

−N∑
r=−1

(a−r + ib−r) e
irxi

=
a0
2

+
1

2

N∑
n=1

(an − ibn) e
inxi +

1

2

−N∑
n=−1

(a−n + ib−n) e
inxi

=
a0
2

+
1

2

[
N∑

n=1

einxi (an − ibn) +

−N∑
n=−1

einxi (a−n + ib−n)

]

=
1

2

{
a0 +

[
N∑

n=1

einxi (an − ibn) +

−N∑
n=−1

einxi (a−n + ib−n)

]}

cn>0 =
1

2
(an − ibn)

cn<0 =
1

2
(a−n + ib−n) = c̄−n

c0 =
1

2
a0ϵℜ

=

N∑
n=−N

cne
inxi

=

N∑
n=−N

cn
(
eixi

)n
zi ≡ eixi

yi =

N∑
n=−N

cnz
n
i

We have a power series, however with negative powers. Multiplying by zNi , one can get a polynomial:

yi =
N∑

n=−N

cnz
n
i

zNi yi = zNi

N∑
n=−N

cnz
n
i

Yi ≡ zNi yi

Yi =
N∑

n=−N

cnz
N+n
i

2

k = n+N

n = k −N

Yi =

2N∑
k=0

ck−NzN+k−N
i

αk ≡ ck−N

Yi =

2N∑
k=0

αkz
k
i

Yi =
2N∑
n=0

αnz
n
i

Next, one uses some standard interpolation procedure for the polynomial interpolation, interpolating the (complex) points
(zi, Yi) by a (complex) polynomial.

Let me repeat, the procedure with 2N + 1 experimental points is:

• Take the xi values and compute zi ≡ eixi .

• Take the yi values and compute Yi ≡ zNi yi.

• Compute interpolation-polynomial coefficients αn for the points (zi, Yi).

• Rename the coefficients cn−N ≡ αn, ck ≡ αk+N

• Compute the original coefficients an = 2Re (c−n) = 2Re (cn) , bn = 2Im (c−n) = −2Im (cn). (Is b0 automatically
zero? Yes, it is!)

• Construct the function a0

2 +
∑N

n=1 [bn sin (nxi) + an cos (nxi)] (do not forget to divide by 2 in the case of a0).

3 Even number of data points: symmetric cut-off
In this case an ad hoc choice must be made to reconciliate the number of parameters with the number of data points:

• Cut the highest-frequency cosine?

• Cut the highest-frequency sine?

• Cut a0?

I want to cut high-frequencies, so I do not want to cut the a0, I want to be symmetric, so I introduce the term

w sin (Nxi) + w cos (Nxi) .

With this choice the things become little bit more complex. The number of data points is even, let me note it 2N . In order
to solve the coefficients, I introduce a new “data” point (x2N+1, y2N+1) and I will place it correctly so that w = aN = bN .
With this point the situation looks similar to the “odd” case:

yi =
a0
2

+

N∑
n=1

[bn sin (nxi) + an cos (nxi)]

and corresponds to 2N + 1 data points. The condition w = aN = bN implies:

w sin (Nxi) + w cos (Nxi) =
1

2
(w − iw) eiNxi +

1

2
(w + iw) e−iNxi

M = −N

N = −M

=
1

2
(w − iw) eiNxi +

1

2
(w + iw) eiMxi

=
1

2
(w + iw) ei(−|N |)xi +

1

2
(w − iw) ei|N |xi

3

So that the polynomial looks like:

yi =
N∑

n=−N

cnz
n
i

where

cN>n>0 =
1

2
(an − ibn)

c−N<n<0 =
1

2
(a−n + ib−n) = c̄−n

c−N =
1

2
(w + iw)

cN =
1

2
(w − iw) = c̄−N

c0 =
1

2
a0ϵℜ

After renaming the indices (as in the “odd” case), we want to get to the polynomial interpolation

Yi =

2N∑
n=0

αnz
n
i .

Now comes the reasoning: Imagine we have already the interpolation polynomial P for 2N points. We want to construct
a new polynomial Π that keeps the interpolation property of P and, in addition, goes through the point (x2N+1, y2N+1).
Π can be written as:

Π = P +K (x− x1) (x− x2) · · · (x− x2N)

where the constant K is responsible for fitting the (x2N+1, y2N+1) point. How do the x0 and x2N+1 terms of Π look like?
They look like (p0 comes from P):

Π = [p0 ±Kx1x2 · · ·x2N] + · · ·+ [K]x2N

q ≡ ±x1x2 · · ·x2N

[p0 + qK] + · · ·+ [K]x2N

Coefficients of these two terms are just shifted coefficients c−N and cN , so one requires:

K =
1

2
(w − iw)

⇒

p0 + q
1

2
(w − iw) =

1

2
(w + iw)

⇔
2p0 + q (w − iw) = w + iw

⇔
2p0 + qw − iqw = w + iw

⇔
2p0 = w + iw − qw + iqw

⇔
2p0 = (1 + i− q + iq)w

⇔
w = 2

p0
1 + i− q + iq

This needs to be a real number.
Let me repeat the procedure for case of 2N points:

• Take the xi values and compute zi ≡ eixi .

• Take the yi values and compute Yi ≡ zNi yi.

• Determine the interpolation polynomial P for the points (zi, Yi).

4

• Extract the absolute term p0 of P . Compute q = (−x1)× (−x2)× . . .× (−x2N). Then compute w = 2p0

1+i−q+iq and
K = 1

2 (w − iw).

• Construct a new polynomial Π = P +K (x− x1) (x− x2) · · · (x− x2N).

• Treat the polynomial Π as the interpolation polynomial for (2N + 1 points) from the previous (“odd“) case. From
its coefficients (αn) compute an and bn. Automatically one gets aN = bN = w.

4 Even number of data points: general aN/bN cut-off
The approach from the previous paragraph can be straightforwardly generalized to any aN/bN cut-off. The algorithm is
as follows:

• Formulate the constraints on the coefficients aN and bN .

• Find the corresponding constraints on cN and c−N .

• Build polynomial P . Find the appropriate equation which follows from the constraints, solve it, and build Π.

• Take the coefficients αn of Π and treat them same as in the “odd” case, compute from them the coefficients an and
bn.

I give here the example of the highest-sine cut-off.

• The condition reads: bN = 0.

• The coefficients c±N then look like c±N = aN

2 .

• One has immediately:

K =
aN
2

⇒
p0 + q

aN
2

=
aN
2

⇔
p0 =

aN
2

− q
aN
2

⇔
p0 =

aN
2

(1− q)

⇔

aN =
2p0

(1− q)
⇔

K =
p0

(1− q)

• Polynomial Π = P +K (x− x1) (x− x2) · · · (x− x2N) can be built and its coefficients read-out.

5 Efficient approach for non-minimal series
An efficient alternative approach is achieved by interpolating the data with a complex exponential sum

yi =
N∑

n=0

qne
inxi .

One proceeds analogically

yi =
N∑

n=0

qn
(
eixi

)n
zi = eixi

=
N∑

n=0

qnz
n
i .

5

One constructs the interpolation polynomial for (yi, zi) and finds the coefficients qn. However qn can be complex. If yi
is real, then

∑N
n=0 qnz

n
i needs also to be real. Because a real part of a sum is sum of real parts, one can focus on an

individual term

qne
inxi = (αn + iβn) (cosnx+ i sinnx)

= αn cosnx+ iαn sinnx+ iβn cosnx− βn sinnx

= [Re (qn) cosnx− Im (qn) sinnx] + i [Re (qn) sinnx+ Im (qn) cosnx] .

The second bracket is vanishing for purely real yi, thus the trigonometric interpolation is fully given by the first one. One
immediately gets the coefficients

an = Re (qn) ,

bn = −Im (qn) ,

where the coefficient a0 is not divided by two

yi = a0 +
N∑

n=1

[bn sin (nxi) + an cos (nxi)]

and the coefficient b0 is irrelevant. In this approach, however, the series is (approximately) twice as long as in the
“standard” approach (2N − 1 terms in total for N experimental points). But still, it is a valid Fourier series.

6 SciLab code
Here is a SciLab code for the polynomial (works also for complex data points) and the trigonometric interpolation (works
for real-valued data points only) passing (in both cases) through all data points (“standard” approach):

cutOffType = 0 // symmetric
// cutOffType = 1 //high−s i n e

// INTERPOLATING POLYNOMIAL
func t i on [f] = in t e rpo l a t i on_po ly (x , y)

nData = length (x)

atom (1) = poly (1 ," x" ," c o e f f ")

f o r i =2:nData
atom(i) = atom(i −1)∗poly (x (i −1) ,"x")

end

po ly_inte rpo l = poly (0 ," x" ," c o e f f ")
f o r i =1:nData

const = (y (i) − horner (po ly_interpo l , x (i)))/ horner (atom(i) , x (i))
po ly_inte rpo l = po ly_inte rpo l + const ∗atom(i)

end

f = po ly_inte rpo l
endfunct ion

// INTERPOLATING FOURIER SERIES

// COMPUTING COEFFICIENTS
func t i on [a , b ,N] = t r i g o_c f s (x , y)

nDat = length (x)

i f modulo (nDat ,2)==1 then
N = round ((nDat−1)/2) // I f nDat IS ODD

e l s e
N = round ((nDat)/2) // I f nDat IS EVEN

6

end

f o r i =1:nDat
z (i)= exp (%i ∗x (i))
Y(i) = (z (i))^N∗y (i)

end

z_polynomial = in t e rpo l a t i on_po ly (z ,Y)

// SPECIAL TRATMENT IN THE CASE OF EVEN NUMBER OF POINTS
i f modulo (nDat ,2)==0 then

p0 = c o e f f (z_polynomial , 0)
q = 1
f o r i =1:nDat

q = q∗(−z (i))
end

i f cutOffType==0 then // cu t t i ng symmetr ica l ly
w = 2∗p0/(1 + %i − q + %i ∗q)
K = (1/2)∗ (w − %i ∗w)

end

i f cutOffType==1 then // cu t t i ng high−f r equency s i n e
K = p0/(1−q)

end

polyToAdd = K∗poly (z , " x")
z_polynomial = z_polynomial + polyToAdd

end

c f s = c o e f f (z_polynomial)

f o r i=−N:N
i f i <0 then

cont inue
end
co e f = c f s (i+N+1)
a (i +1)=2∗ r e a l (c o e f)
b(i+1)=−2∗imag (co e f)
// mprint f (" a%i = %f , b%i = %f \n" , i +1,a (i +1) , i +1,b(i +1))

end
endfunct ion

// COMPUTING TRIGONOMETRIC INTERPOLATION
func t i on [f] = i n t e r po l a t i o n_t r i g o (x , a , b ,N)

f = a (1)/2
f o r i =1:N

f = f + b(i +1)∗ s i n (i ∗x) + a (i +1)∗ cos (i ∗x)
end

endfunct ion

// START OF THE PROGRAM FLOW

dataSet = read (" tr igoData . dat " ,−1 ,2)
nDat = length (dataSet)/2

f o r i =1:nDat
x (i) = dataSet (i , 1)

7

y (i) = dataSet (i , 2)
end

[a_cfs , b_cfs ,N] = t r i g o_c f s (x , y)

de l t a = x(nDat)−x (1)
margin = de l t a /10
x_ax = [x(1)−margin : 0 . 0 1 : x (nDat)+margin]
p l o t (x_ax , i n t e r p o l a t i o n_t r i g o (x_ax , a_cfs , b_cfs ,N))
p l o t (x , y , ’ ∗ ’)

8

