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‘... all this action at a distance business will pass [like the ether]. If we’re lucky it will be
to some big new development like the theory of relativity. Maybe someone will just point
out that we were being rather silly, with no big new development. But anyway, I believe
the questions will be resolved,’ after Bell (1990:9). ‘Nobody knows where the boundary
between the classical and quantum domain is situated. More plausible to me is that we’ll
find that there is no boundary: the hidden-variable possibility,’ after Bell (2004:28-29).

Abstract: Studying Bell’s work, using classical analysis and author-date referencing suited to un-
dergraduate STEM students, we arrive at a new classical theory: local realistic quantum mechanics.
Adjusting EPR to accord with Bohr’s insight, and accepting Bell’s principles (but not his false in-
ferences), our method follows: (i) we allow Bell’s pristine � (and its pairwise twin µ) to be classical
fair-coin vectors in 3-space; (ii) we complete the QM account of EPR correlations in a classical way;
(iii) we deliver Bell’s hope for a simple constructive model of EPRB; (iv) we justify EPR’s belief that
additional variables would bring locality and causality to QM’s completion; (v) we refute key claims
that such variables are impossible; (vi) we show that interactions between particles and polarizers are
driven by the total angular momentum; (vii) we bypass Pauli’s vector-of-matrices, but retain all the
tools of the quantum trade. In short, under local realism: classically deriving the related results of
quantum theory, we classically endorse Einstein’s locally-causal Lorentz-invariant worldview.

Keywords: Bell’s errors, causality, CLR, completeness, EPRB, equivalence, GHZ, locality, realism

Notes to the Reader: (i) All paragraphs and equations are numbered to facilitate discussion, im-
provement, correction. (ii) Many key texts are freely available online; see References. (iii) All URLs
were verified 20170328. (iv) The terms ‘particle’ and ‘spin’ are used in accord with quantum conven-
tions. (v) Our mechanical-engineering approach delivers results in full accord with quantum theory
and related experiments. (vi) Taking math to be the best logic, it may flow for several lines before we
comment. (vii) Under (v)-(vi), others should be able to correspond sensibly and take matters further.
(viii) We refute claims like these:

Aspect (2002:9): Bell discovered that ‘the search for [local-realistic] models is hopeless.’
Wiseman (2005:1): Bell (1964) “strengthened Einstein’s theorem (but showed the futility
of his quest) by demonstrating that either reality or locality is a falsehood.” Goldstein
et al. (2011:1): “In light of Bell’s theorem, [many] experiments ... establish that our
world is non-local. This conclusion is very surprising, since non-locality is normally taken
to be prohibited by the theory of relativity.” Maudlin (2014:25): “Non-locality is here
to stay ... the world we live in is non-local.” Gisin (2014:4): “For a realistic theory to
predict the violation of some Bell inequalities, the theory must incorporate some form of
nonlocality.” Norsen (2015:1): “In 1964 Bell demonstrated the need for non-locality in any
theory able to reproduce the standard quantum predictions. (‘Non-locality’ here means
a violation of a generalized prohibition on faster-than-light causal influences.)” Bricmont
(2016:112): ‘There are nonlocal physical effects in Nature.’ Annals of Physics Editors
(2016), unanimously: in the context of Bell’s theorem ‘it’s a proven scientific fact that a
violation of local realism has been demonstrated theoretically and experimentally.’
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1 INTRODUCTION

1 Introduction

1.0. Bell’s theorem: “In a theory in which parameters are added to [QM] to determine the
results of individual measurements, without changing the statistical predictions, there must
be a mechanism whereby the setting of one measuring device can influence the reading
of another instrument, however remote. Moreover, the signal involved must propagate
instantaneously, so that such a theory could not be Lorentz invariant,” Bell (1964:199).
In the context of Bell’s theorem – according to a unanimous claim by Annals of Physics

Editors (2016:67) – it’s ‘a proven scientific fact that a violation of local realism has been
demonstrated theoretically and experimentally’. Dissenting, we refute both statements.

1.1. Studying EPR (1935) in the context of EPRB – the EPR-based experiment in Bohm & Aharonov
(1957) – Bell (1964) claims (see ¶1.0) that EPR’s program requires a grossly non-local mechanism.

1.2. Challenging such views, we find a Bellian inference that is false in quantum settings. Now we accept
the principles of local realism – endorsed by Bell (1980:7) – in d’Espagnat (1979:158): (i) realism –
regularities in observed phenomena are caused by some physical reality whose existence is independent
of human observers; (ii) locality – no influence of any kind can propagate superluminally; (iii) induction

– legitimate conclusions can be drawn from consistent observations. So this is not a dispute about
differing principles. Rather, we show that Bell and d’Espagnat fail under (iii): ie, ignoring consistent
observations re the validity of QM and Bohr’s well-known insight, they draw conclusions that are
quantum-incompatible in general; and certainly illegitimate under EPRB (the focus of their study).
Indeed, d’Espagnat (1983:94) retreats to nonphysical realism (which we also refute; see ¶3.1).

1.3. To be clear from the outset: we identify our classical quantum-compatible position as commonsense

local realism (CLR), the union of local-causality (no causal influence propagates superluminally) and
physical-realism (some physical properties change interactively). So CLR allows 0  v

c

 1 under
relativity, but not ~ ! 0 ever. Then – taking realism to include the view that physical reality exists
and has definite properties – we advance EPR’s program by validating their belief:

“While we have thus shown that the wave function does not provide a complete description
of the physical reality, we left open the question of whether or not such a description exists.
We believe, however, that such a theory is possible,” EPR (1935:780). It is, as we show.

1.4. Under our approach (ie, like mechanical engineers using vectors, vector-products, laws, etc; here,
in 3-space), we study the interaction of elements of physical reality (eg, polarizers) with other elements
of physical reality (eg, particles). Then, taking particles to be sensitive contributors to the veiled

reality of our world – about to use d’Espagnat’s (1983:94) cute phrase re nonphysical realism against
him – we allow: (i) any interactant may be transformed under CLR; (ii) any transformation may
be subject to an uncertainty (a veil) induced by the finite value of Planck’s constant of action; (iii)
every probability distribution represents a veiled reality. Consequently, compatible with EPRB and the
three-part Bell/d’Espagnat definition of local-realism at ¶1.2 – and central to our approach – is CLR’s
sufficient condition for an element of physical reality: ‘If, without in any way disturbing a system, we
can predict with adequate accuracy the result of a test (which may be a disturbance) on that system,
then elements of physical reality mediate this result,’ after Watson (1998:417). This sufficient condition
delivers Bell’s hope (2004:167) for ‘a simple constructive model’ of EPRB; see ¶2.15.

1.5. Thus, under the principles in ¶¶1.2-1.4 – via Analysis, Conclusions, Acknowledgment, Appendix,
References – we deliver the Abstract in line with our continuing respect for Oliver Heaviside.

“Facts are of not much use, considered as facts. They bewilder by their number and their
apparent incoherency. Let them be digested into theory, however, and brought into mutual
harmony, and it is another matter. Theory is of the essence of facts. Without theory
scientific knowledge would be only worthy of the madhouse,” Heaviside (1893:12).
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2 ANALYSIS

2 Analysis

2.0. Einstein “argued that the EPR correlations can be made intelligible only by completing
the quantum mechanical account in a classical way,” Bell (2004:86). EPR suggest that a
state, ‘richer in content than the quantum state, would provide a commonsense explanation
of certain perfect correlations predicted by QM, which are otherwise baffling,’ after GHSZ
(1990:1131). Agreeing, we analyze EPR/EPRB classically and deliver a commonsense
explanation via CLR’s local realistic quantum mechanics.

2.1. Under CLR-completeness, here’s our idealization of every relevant element of the subject reality –
ie, EPRB per Bell (1964) – including 3-space (since time and gravity are not essential to the analysis
here). Further, we allow that Bell’s 1964:(1) hidden-variables � are fair-coin particle-variables:
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2.2. (1) shows experiment E (EPRB) and a test on (a decoherent interaction with) each member of
the i-th particle-pair; thick arrows ()) denote movement toward an interaction, thin arrows (!) point
to the subsequent output. With pristine spin-related properties �

i

and µ
i

, spin-1
2

particles q(�
i

) and
q(µ

i

) emerge from a spin-conserving decay / E . such that (4) holds. Each particle interacts with a
dichotomic linear-polarizer-analyzer �

±
x̂

– freely and independently operated by Alice (with result A)
and Bob (result B) – where x̂ denotes any relevant orientation of its principal-axis in 3-space.

2.2a. Given that A and B are discrete (±1), and seeking generality, we employ variables like �
i

, µ
i

– ordinary vectors with lengths in units of ~
2

– so that our EPRB results are associated with ~
2

.
In this way linking to vector-magnitudes – eg, �
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| in units of ~
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– our variables
may be continuous or discrete. This choice accords with the generality of our approach, and with
Bell’s (1964:195) indifference to whether such variables are discrete or continuous. (Then, in that we
are initially searching for equivalence relations under orientations – taking the equipment-variables
in Bell 1964:(1) to be direction-vectors – ~

2

is suppressed in (1)-(5). The more complete story –
�

±
â
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) ! q(
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±
), with allied relations under magnitudes – is developed in the Appendix.)

2.3. Identifier i is used generically: but each particle may be tested once only in its pristine state, and
thereafter until absorbed in an analyzer. Since the tests are locally-causal and spacelike-separated, we
hold fast to this principle of local causality: the real factual situation of q(µ

i

) is independent of what
is done with q(�

i

) which is spatially separated from q(µ
i

) – and vice-versa – per Bell (1964: endnote
2; citing Einstein). Consistent with this principle, paired test outcomes are correlated via (4).

2.4. (2) expands on (1) to show that each polarizer-analyzer �

±
x̂

is built from a polarizer �

±
x̂

and a
removable analyzer [x̂·⇤] which responds to the polarization-vector (⇤) of each post-polarizer particle
q(⇤) that it receives. We assign the correct polarization x̂

± to q(⇤) by observing the ±1 output of the
related analyzer; or by understanding the nature of polarizer/particle interactions. So experiment E is
EPRB – per Bell (1964) – with this benign finesse: to facilitate additional analysis and experimental
confirmation, we can employ additional polarizers (�

±
ŷ

) to test q(x̂

±
); and ŷ may equal x̂.

‘Via �

±
â

q(�
i

) ! q(â

±
), we take interaction and transformation to be concepts more funda-

mental than measurement, there being no requirement that �
i

= â

± prior to the interaction
of q(�

i

) with �

±
â

,’ after Watson (2014: pers. comm.). “And does not any analysis of mea-
surement require concepts more fundamental than measurement? And should not the
fundamental theory be about these more fundamental concepts?” Bell (2004:118).
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2 ANALYSIS

2.5. (3), with no symmetry requirements, shows the locales for Alice and Bob arbitrarily spacelike-
separated from each other and from the source. Given that (1)-(5) hold over any spacelike separation,
it follows that the relevant particle properties here are stable between emission and interaction with
a polarizer. Further, our theory is locally-causal and Lorentz-invariant because A

i

and B

i

are locally-
caused by precedent local events �

±
â

q(�
i

) and �

±
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b
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i

) respectively, which are spacelike-separated.

2.6. (4) shows �
i

and µ
i

pairwise correlated via the conservation of total angular momentum; our
use of ordinary vectors being prompted by Dirac (1982: eqn (48), p.149) and geometric algebra as we
seek a replacement for Pauli’s vector-of-matrices. (Note, per the Appendix: via Fröhner (1998), CLR
rejects no tools of the quantum trade.) Motivated by Bell, these CLR-based variables provide a more
complete specification of particle-pairs under E. Thus, for now, we allow these pristine spin-related
variables be ordinary vectors for which all magnitudes and orientations are equally probable. (New
conventions begin when we integrate our approach with geometric algebra at ¶5.2.) Then, under our
doctrine of cautious conservatism (and though particle responses to interactions may be similar), we
allow it to be far less than certain that any two pristine particle-pairs are physically the same.

2.7. (5) shows experiment E with Alice and Bob having the same polarizer setting â. (Per ¶2.2a, ~
2

is suppressed here.) Thus, as an idealized example: a physicist, observing one result, may predict the
other spacelike-separated result with certainty. Here’s how Alice predicts Bob’s result after observing
A

i

= +1; and vice-versa, with Bob observing B

i

= �1:
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2.8. This is consistent with CLR’s sufficient condition for an element of physical reality (¶1.4): since,
without in any way disturbing q(µ

i

), Alice can predict with certainty that Bob’s result will be B

i

= �1

when he tests q(µ
i

) with �
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â

(which may be a disturber), then elements of physical reality q(µ
i

), �

±
â

and q(â

�
) mediate Bob’s result. Thus the element of physical reality corresponding to Bob’s B

i

= �1

result will be q(â

�
); a CLR outcome acceptable to EPR and akin to Bell’s position (as follows):

Here’s Bell’s (1980:7): “To explain this dénouement [of his (ie, Bell’s) theorem] without
mathematics I cannot do better than follow d’Espagnat (1979; 1979a).”
Here’s d’Espagnat (1979:166), recast for EPRB (and our E) in our notation, with added

emphasis: ‘A physicist can infer that in every pair, one particle has the property â

+ [a
positive spin-component along axis â] and the other has the property â

�. Similarly, he
can conclude that in every pair one particle has the property ˆ

b

+ and one ˆ

b

�, and one has
property ĉ

+ and one ĉ

�. These conclusions require a subtle but important extension of

the meaning assigned to our notation â

+. Whereas previously â

+ was merely one possible
outcome of a measurement made on a particle, it is converted by this argument into an
attribute of the particle itself. To be explicit, if some unmeasured particle has the property
that a measurement along the axis â would give the definite result â+, then that particle is
said to have the property â

+. In other words, the physicist has been led to the conclusion

that both particles in each pair have definite spin components at all times. ... This view is
contrary to the conventional interpretation of QM, but it is not contradicted by any fact
that has yet been introduced.’

2.9. However, to the contrary under CLR as we’ll show: (i) d’Espagnat’s inferences are false; (ii) a
weaker more-general inference is available; (iii) there’s no need to contravene known facts re QM; (iv)
there’s no need to negate Bohr’s insight which, here supported by Bell – see also Kochen (2015:5;
physicists do not believe ...) – bolsters our case against d’Espagnat’s Bell-endorsed claims:

It’s “Bohr’s insight that the result of a ‘measurement’ does not in general reveal some pre-
existing property of the ‘system’, but is a product of both ‘system’ and ‘apparatus’,” Bell
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2 ANALYSIS

(2004: xi-xii). So CLR’s physical-realism – some physical properties change interactively – is
consistent with Bohr’s insight. Moreover: “It seems to me that full appreciation of [Bohr’s
insight] would have aborted most of the ‘impossibility proofs’ [like Bell’s impossibility the-
orem, as we’ll see], and most of ‘quantum logic’,” Bell (2004: xi-xii). We agree; and thus we
note our departure from Kochen’s (2015:5. In classical physics ...) generalization. Under
CLR’s physical-realism (¶1.3) – ‘some physical properties change interactively’ – we do not
assume that all measured properties already exist prior to measurement interactions.

2.10. Thus, to be clear and consistent with Bohr’s insight, CLR goes beyond the Bell-d’Espagnat
inferences wherein the ‘measured’ property is equated to the pristine property. That is – going beyond
d’Espagnat’s subtle extension cited in ¶2.8 – we instead infer to equivalence under a ‘measurement’

operator . Equivalence – a weaker, more general relation than equality – is here compatible with QM,
Bohr’s view, and the need here (for us) to recognize the effect of ‘the means of observation’:

“... the unavoidable interaction between the objects and the measuring instruments sets
an absolute limit to the possibility of speaking of a behaviour of atomic objects which is
independent of the means of observation,” Bohr (1958:25).
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â

to deliver q(�
i

) and q(â
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S in (12) – the set of all equivalence classes under ⇠ – is a set of two diametrically-opposed extremes:
a maximal antipodean discrimination; a powerful deterministic push-pull dynamic; see ¶5.3a.

2.14. We now combine (1), (2), (8) and (9) into a single test on the i-th particle-pair from two
perspectives: (13), which Alice reads from left-to-right; (14), which Bob reads from right-to-left:
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2 ANALYSIS

Thus, in line with Bell’s (1964:196) specification for his �: (i) seeking a physical theory of
the type envisioned by Einstein, our hidden variables have dynamical significance and laws
of motion; (ii) our pristine � and µ – correlated under (4) – are the initial values of such
variables at some suitable instant; (iii) since different tests produce different disturbances,
different relational properties may be pairwise revealed under ⇠ without contradiction: ie,
finding q(�

i

⇠ â

+

) experimentally, we learn q(µ
i

⇠ â

�
) relationally; etc. QED.⌅
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) denoting Alice’s (Bob’s) result ±1, we can now

provide: (i) the functional relationships missing from Bell 1964:(1); (ii) relevant EPRB probabilities
and expectations; (iii) a refutation of Bell’s theorem; (iv) the whole followed by explanatory comments:
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2.16. That is. Given (13), the cosine function in (15) reads: with q(�) equivalent to q(â
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): ie – under the push-pull dynamic
foreshadowed in ¶2.13; with � ⇠ â

+ here – the outcome is +1 = A

+. (16) similarly, given (14);
etc. Thus, under ⇠, CLR could embrace Bell-d’Espagnat inferences (¶2.8) to equality, but: (i) the
probability that such inferences are valid is negligible; (ii) their theory does not embrace ours; (iii)
being locally-realistic, we conservatively allow P (�

i

= �
j

|E, i 6= j) << 1 under CLR, per (4); etc.

2.17. Next, re (18); and (19) similarly. Via standard probability theory and Bayes’ Law: (i) any
correlation induces the probability relation at LHS (18); (ii) A

+ and B

+ are correlated via (4); (iii)
such correlation is recognized by Bell (in our favor) under EPRB (as follows):

Recasting Bell (2004:208) in line with EPRB: “There are no ‘messages’ in one system from
the other. The inexplicable [sic] correlations of quantum mechanics do not give rise to
signalling between noninteracting systems. Of course, however, there may be correlations
(eg, those of EPRB) and if something about the second system is given (eg, that it is the
other side of an EPRB setup) and something about the overall state (eg, that it is the
EPRB singlet state) then inferences from events in one system [eg, from Alice’s A

+] to
events in the other [eg, to Bob’s B

+] are possible.”

2.18. Further. In (18) under ⇠, the LHS probability relation is – from the middle term in (18) –
equivalent to a classical test on spin-1

2

particles of known polarization. So we derive RHS (18) by
extending Malus’ classical cos

2

s (â

+

,

ˆ

b

�
) Law (c.1808) – re the relative intensity of beams of polarized

photons (s = 1) – to spin-1
2

particles (s =

1

2

). (19) similarly. Then, since our equivalence relations
hold under probability functions P , P is well-defined under ⇠ and is that same law: Malus’ Law.

Re Aspect’s (2002:5-7) troubled discussion of Malus’ Law, our trigonometric arguments
represent clear dynamical law-based processes under (8)-(9) and ¶¶2.3, 2.13: eg, (q(�

i

) ⇠
q(â

+

)) ⌘ (�

±
â

q(�
i

) ! q(â

+

)); the â in �

±
â

denoting the orientation of a non-uniform field
with which q(�

i

) interacts. A wire-grid microwave-polarizer provides a macroscopic anal-
ogy. With its conducting wires represented by a direction-vector in 3-space, an impinging

6
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unpolarized beam of microwaves drives electrons within the wires, thereby generating an
alternating current (Hecht 1975:104). So the wires become polarizing-operators (in our
terms), the transmitted beam being strongly linearly polarized orthogonal to the wires.
(Polaroidr-sheet is a molecular equivalent for photons.) This suggests (see ¶5.3), that
the micro-dynamics of polarizer/particle interactions may be represented by a suitable
vector-product with two boundary-conditions: (i) the angular momentum finally aligned
(±) with the field is always the spin s~; (ii) each pairwise correlation arises from the
pairwise-dynamics associated with the conservation of total angular momentum in (4).

2.19. Thus, from (18), P (A

+ | EB

+

) under ⇠ is Malus’ Law generalized to entangled particles: so
we can let Malus’ quantum Law be the new QM-compatible law that links the first and last terms in
(18) directly. And (19) similarly. Then, seeking one unified law under CLR, we might say that Malus’
Law applies classically to the relational properties of the classical beams that Malus employed: and
quantum-mechanically to the relational properties of particles. (To maintain this law-based unity in
physics – bypassing much debate in philosophy; and backing a reconstruction of QM per Kochen (2015)
– we would then need to define absolute (intrinsic) and relational (extrinsic) properties accordingly.)
However, using (4) and (8) with the generalization �+ µ = 0 , the expanded version of (18) is:

P (A

+ |EB

+

) ⌘ P (�

±
â

q(�) � q(â

+

) |E, �

±
ˆ

b

q(µ) ! q(b

+

)) = P (�

±
â

q(�) � q(â

+

) |E, q(µ)⇠ q(b

+

)) (23)

=P (�

±
â

q(�) � q(â

+

) |E, q(��)⇠ q(b

+

))=P (�

±
â

q(b

�
)�q(â

+

) |E)=cos

2

s (â

+

,

ˆ

b

�
)=sin

2

1

2

(â,

ˆ

b). (24)

2.19a. Now, with (23)-(24), we’re in the following good company: “Nobody knows just where the
boundary between the classical and quantum domain is situated. ... More plausible to me is that we
will find that there is no boundary. ... the so-called ‘hidden variable’ possibility,” Bell (2004:28-29).
QM ‘can be understood as a powerful extension of ordinary probability theory,’ Fröhner (1998:652).
‘The major transformation from classical to quantum physics,’ in Kochen’s (2015:26) approach, ‘lies
not in modifying the basic classical concepts such as state, observable, symmetry, dynamics, combining
systems, or the notion of probability, but rather in the shift from intrinsic to extrinsic properties.’ Via
our classical approach to QM, we take these ideas further in the Appendix.

2.20. However – in passing – allowing that every extrinsic property in QM can be converted to a
relational property under an equivalence relation: our unified Malus’ Law (henceforth, Malus’ Law
without qualification) would apply to relational properties generally. To put it another way, in Malus’
19th-century context – and in our soon-to-be wholly-classical world (post-Bell) – consider two photons

(s = 1, as we now know): (i) q(�
j

�

±
x̂⇠ x̂

+

) ⌘ (�

±
x̂

q(�
j

) � q(x̂

+

)) in our terms; (ii) q(�
k

= x̂

+

) is our
notation for an x̂

+-polarized photon in an x̂

+-polarized classical beam that Malus worked with. We
then say: for each q(.) here, (.) is a relational property under ⇠. For, as relational properties – with
P well-defined under ⇠ from ¶2.17 – they yield identical (and valid) results (here under s = 1):

P (�

±
â

q(�
j

�

±
x̂⇠ x̂

+

) ! q(â)) ⇠ P (�

±
â

q(�
k

= x̂

+

) ! q(â)) = cos

2

s(â

+

, x̂

+

) = cos

2

(â, x̂). (25)

“It is not easy [maybe] to identify precisely which physical processes are to be given the
status of ‘observations’ and which are to be relegated to the limbo between one observation
and another. So it could be hoped that some increase in precision [as is our aim here] might
be possible by concentration on the beables, which can be described ‘in classical terms’,
because they are there [like our q(�

j

⇠ x̂

+

) under �

±
x̂

and q(�
k

= x̂

+

)]. ... ‘Observables’
[like A

j

and A

k

in our notation] must be made, somehow, out of beables [as they are; eg,
in (25)]. The theory of local beables should contain, and give precise physical meaning to,
the algebra of local observables [as is our aim here],” Bell (2004:52).

7
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2.21. Returning to our comments on the flow (15)-(22): (20) follows from (17)-(19) via Bayes’ Law.
The expectations in (21) follow from (20) via the definition of an expectation. Then, with (22) from
(21) via the definition of the overall expectation, we have the expectation hAB |Ei. Thus – with Bell
claiming in the line below his 1964:(3) that (22) is impossible – Bell’s theorem is refuted . With N
denoting absurdity, the source of Bell’s ‘impossibility theorem’ – ie, Bell’s false inference – follows:

2.22. Bell (1964:197), under ‘Contradiction: The main result will now be proved’, takes us via Bell
1964:(14), direction-vector ĉ, and three unnumbered equations – say, (14a)-(14c) – to his 1964:(15):

|hAB |Ei � hAC |Ei | 1 + hBC |Ei ; ie, using our (22): |(â·ĉ)� (â·ˆb) | 1� (

ˆ

b·ĉ); N (26)

ie, Bell 1964:(15) is absurd under CLR, mathematics and QM * |(â·ĉ)� (â·ˆb) | 3

2

� (

ˆ

b·ĉ). (27)

2.23. To pinpoint the source of this absurdity (and avoid any defective intermediaries), we now link
LHS Bell 1964:(14a) directly to LHS Bell 1964:(15). Using illustrative angles, Bell’s 1964:(15) allows:

0  hAB |Ei � hAC |Ei  1 + hBC |Ei ; (28)

ie, using (22), 0  (â·ĉ)� (â·ˆb)  1� (

ˆ

b·ĉ); (29)

so, if (â,ˆb) = ⇡

4

and (â, ĉ) = (ĉ,

ˆ

b) =

⇡

8

, then 0  0.217  0.076 (conservatively); N (30)

ie, Bell 1964:(14a) 6= Bell 1964:(14b) = Bell 1964:(14c) = Bell 1964:(15). QED.⌅ (31)

2.24. Thus, under EPRB, Bell’s theorem (and related inequalities) stem from the 6= in (31); ie, they
begin with Bell’s move from his (14a) to (14b). However: via Bell’s note at 1964:(14b), we find that Bell
moves from (14a) to (14b) via the generalization (A(

ˆ

b,�))2 = 1. But if i 6= j, A(

ˆ

b,�
i

)A(

ˆ

b,�
j

) = ±1;
ie, the product of uncorrelated scalars (each of which may take the value +1 xor �1), is +1 xor �1.
So, as we’ll show, Bell’s generalization is invalid under EPRB, with the following consequences: (i)
Bellian absurdities – like (26) and (30) – flow from Bell’s false generalization under EPRB; (ii) Bell’s
theorem is limited to systems for which Bell’s generalization holds; (iii) EPR/EPRB-based settings are
not such systems; (iv) Bell’s generalization has nothing to do with local causality. Let’s see:

2.25. Using our (1)-(5) and a particle-by-particle analysis of E, let 3n random particle-pairs be equally
distributed over three randomized polarizer-pairings (â,

ˆ

b), (

ˆ

b, ĉ), (ĉ, â). Allowing each particle-pair to
be unique – and here, uniquely indexed – let n be such that (for convenience in presentation and to
an adequate accuracy hereafter):

Bell 1964:(14a) = hAB |Ei � hAC |Ei = � 1

n

nX

i=1

[A(â,�
i

)A(

ˆ

b,�
i

)�A(â,�
n+i

)A(ĉ,�
n+i

)] (32)

=

1

n

nX

i=1

A(â,�
i

)A(

ˆ

b,�
i

)[A(â,�
i

)A(

ˆ

b,�
i

)A(â,�
n+i

)A(ĉ,�
n+i

)� 1] (33)

=

1

n

nX

i=1

A(â,�
i

)A(

ˆ

b,�
i

)[A(

ˆ

b,�
i

)A(ĉ,�
i

)�1] (after using �
i

= �
n+i

[sic])=Bell 1964:(14b) : N (34)

for, under EPRB, and CLR per (4) : P (�
i

=�
n+i

|E) << 1. So (34) joins (26) & (30) under N. (35)

2.26. Thus, under his generalization (A(

ˆ

b,�))2 = 1 (¶2.24), Bell has a generalization akin to an
ordered sample of n objects subject to repetitive non-destructive testing; ie, �

i

= �
n+i

per (34). To
eliminate Bell’s absurdities we now avoid his error and derive the consequences. Since the average of
|A(â,�

i

)A(

ˆ

b,�
i

) | is  1, valid (33) reduces to another valid result:

Bell 1964:(14a) = |hAB |Ei � hAC |Ei| 1� 1

n

nX

i=1

A(â,�
i

)A(

ˆ

b,�
i

)A(â,�
n+i

)A(ĉ,�
n+i

). (36)
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2.27. Now: (i) from (4), the independent and uncorrelated random variables �
i

and �
n+i

generate
independent and uncorrelated random variables (ie, the outputs ± 1); (ii) the expectation over the
product of two independent and uncorrelated random variables is the product of their individual
expectations; (iii) so (36) reduces to:

Bell 1964:(14a) = |hAB |Ei � hAC |Ei | 1� hAB |EihAC |Ei 6= Bell 1964:(14b); (37)

ie, |(â · ˆb)� (â · ĉ) | 1� (â · ˆb)(â · ĉ) 6= RHS Bell 1964:(15) unless â =

ˆ

b _ ĉ. N (38)

2.28. In short: Since LHS (38) is a fact, Bell’s 1964:(15) under EPRB is absurd and false. In passing,
the CHSH (1969) inequality – eg, Peres (1995:164) – falls to a similar fact:

|(â·ˆb) + (

ˆ

b·ĉ) + (ĉ· ˆd)� (

ˆ

d· ˆa) | 2

p
2. ⇧ |(â·ˆb) + (

ˆ

b·ĉ) + (ĉ· ˆd)� (

ˆ

d·â) |⇥ 2. N (39)

2.29. Finally, to complete our analysis, we consider experiment M , Mermin’s (1990) 3-particle variant
of GHZ (1989), widely-regarded as the best variant of Bell’s theorem. Respectively, hereafter: three
spin-1

2

particles with spin-related properties �,µ,⌫ emerge from a spin-conserving decay such that:

�+ µ+ ⌫ = ⇡. ⇧ ⌫ = ⇡ � �� µ (for convenience). (40)

2.30. The particles separate in the y-z plane and interact with spin-1
2

polarizers that are orthogonal
to the related line of flight. Let a, b, c denote the angle of each polarizer’s principal-axis relative to the
positive x-axis; let the test results be A,B,C. Then, based on LHS (15)-(16) in short-form, let

A

±
= cos(a�� |�⇠a

±
) = ±1. B

±
= cos(b�µ |µ⇠b

±
) = ±1. C

±
= cos(c�⌫ |⌫⇠c

±
) = ±1. (41)

2.31. Via the principles in (1)-(22) – and nothing more – we now derive hABC |Mi, the expectation
for experiment M . (Explanatory notes follow.)

⌦
A

+

B

+

C

+ |M
↵
⌘ P (�⇠a

+ |M) cos(a�� |�⇠a

+

) · P (µ⇠b

+ |M) cos(b�µ |µ⇠b

+

)

·P (⌫⇠c

+ |M,�⇠a

+

,µ⇠b

+

) cos(c�⌫ |⌫⇠c

+

) (42)

=

1

4

P (⌫⇠c

+ |M,�⇠a

+

,µ⇠b

+

) =

1

4

P ((⇡ � �� µ)⇠c

+ |M,�⇠a

+

,µ⇠b

+

) (43)

=

1

4

P ((⇡ �a

+ � b

+

)⇠c

+ |M) =

1

4

cos

2

1

2

(⇡ �a

+ � b

+�c

+

) =

1

4

sin

2

1

2

(a+ b+ c). (44)

Similarly:
⌦
A

+

B

�
C

� |M
↵
=

⌦
A

�
B

+

C

� |M
↵
=

⌦
A

�
B

�
C

+ |M
↵
=

1

4

sin

2

1

2

(a+ b+ c), and (45)
⌦
A

+

B

+

C

� |M
↵
=

⌦
A

+

B

�
C

+ |M
↵
=

⌦
A

�
B

+

C

+ |M
↵
=

⌦
A

�
B

�
C

� |M
↵
= �1

4

cos

2

1

2

(a+ b+ c). (46)

⇧ hABC |Mi ⌘ ⌃

⌦
A

±
B

±
C

± |M
↵
= sin

2

1

2

(a+b+c)�cos

2

1

2

(a+b+c) = � cos(a+b+c). QED.⌅ (47)

2.32. (43) follows (42) by reduction using (15)-(17). (44) follows from (43) by allocating the equivalence
relations in the conditioning space to the related variables. Thus, in words, LHS (44) is one-quarter
the probability that ⌫ — ie, ⌫⇠ (⇡ � a

+ � b

+

) — will be equivalent to c

+ under �

±
c

. In other words:
LHS (44) =

1

4

P (�

±
c

q(⌫ ⇠ ⇡ �a

+ � b

+

) ! q(c

+

) | M) = RHS (44) via Malus’ Law. So (44) is the
three-particle variant of (21) in the two-particle EPRB experiment sketched in (1)-(4).

2.33. Thus, delivering Mermin’s (1990:11) crucial minus sign, (47) is the correct result for experiment
M ; ie, from (47) when (a + b + c) = 0: hABC |Mi = �1. So, consistent with QM (using CLR and
its rules for physical operators and EPRB-based interactions in 3-space): we again refute a variant of
Bell’s theorem and we again deliver classically-intelligible EPR correlations.

2.34. With (22), (39), and now (47) – as one with CLR, EPRB and QM, but so clearly in conflict with
the Bellian conclusions cited at ¶1.0 – we rest our case: inter alia, (i) the generality of Bayes’ Law and
Malus’ Law is established under EPRB; (ii) CLR delivers classically-intelligible results that accord with
QM; (iii) Bell’s theorem is refuted; (iv) Einstein’s locally-causal Lorentz-invariant worldview prevails.
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3 Conclusions

3.0. CLR delivers Bell’s (2004:167) hope: ‘Let us hope that these analyses [impossibility
proofs concerned with local causality] also may one day be illuminated, perhaps harshly,
by a simple constructive model.’ For CLR validates Bell’s sentiment (2004:167) – inspired
by Louis de Broglie – that ‘what is proved by impossibility proofs is lack of imagination.’

3.1. In the terms of our Abstract: Accepting Bell’s principles at ¶1.2 – but not his false inference
in (34) – we’ve refuted Bell’s theorem and variants at (22), (39) and (47). Thus justified in support-
ing Einstein’s world-view: we’ve completed the QM account of EPR correlations in a classical way;
delivered Bell’s hope for a simple constructive model of EPRB; justified EPR’s belief that additional
variables would bring locality and causality to QM’s completion. We’ve also refuted claims that such
variables are impossible — including Mermin (1990) at (47) – and this next in general: in the context
of Bell’s theorem ‘it’s a proven scientific fact that a violation of local realism has been demonstrated
theoretically and experimentally,’ (Annals of Physics Editors, 2016).

EPR argued that additional variables would restore causality and locality to QM, after Bell
(1964:195). We agree. (We also refute d’Espagnat’s ¶1.2 retreat to nonphysical realism.)

3.2. Against Bell/d’Espagnat equality-relations, our weaker more-general ⇠ in (11) relates new (to
us) quantum things q(�) to more familiar things q(â

±
); etc. Without such weaker relations, science

would hardly be possible. Yet, at ¶2.8, d’Espagnat (1979:158) – endorsed by Bell (1980:7) – claims
to draw legitimate conclusions from consistent observations under induction: alas, ignoring consistent
observations re QM’s validity and Bohr’s insight, he draws illegitimate conclusions; see ¶2.10. At
¶2.22, Bell’s first error arises similarly and leads to Bell’s (1980:13-15) claim that the factoring of joint
EPRB probabilities in accord with stochastic independence is impossible under local causality. NB:
from (15)-(16) and (22), outcomes A and B would be independent and uncorrelated if, given

hA |Ei= hB |Ei= 0, from (15)-(16) : hAB |Ei= hA |EihB |Ei = 0.But hAB |Ei 6= 0, from (22) : (48)

so A and B are independent but correlated; a big difference. Lets’ see.

3.3. Given: (i) Bell (2004:240) and “full specification of local beables in a given space-time region,”
though such a specification is likely unknowable; (ii) Bell (2014:243) referring to correlations which
permit symmetric factorizations as ‘locally explicable;’ (iii) (Bell (2014:243 again), taking such ‘factor-
izations to be a consequence of local causality and not a formulation thereof’; then:

P (A

+

B

+|E, â, q(�⇠ â

+

),

ˆ

b, q(µ⇠ˆ

b

+

), ..)=P (A

+|E, â, q(�⇠ â

+

), ..)P (B

+|E,

ˆ

b, q(µ⇠ˆ

b

+

), ..)=1. (49)

⇧ � eliminating unknowable equivalence relations from (49) �: P (A

+

B

+ |E, â, q(�),ˆb, q(µ)) (50)

= P (A

+ |E, â, q(�))P (B

+ |E,

ˆ

b, q(µ)) = P (q(�)
�

±
â⇠ q(â

+

) |E)P (q(��)
�

±
b̂⇠ q(b

+

) |E) (51)

=

1

2

P (q(â

�
)

�

±
b̂⇠ q(b

+

) |E) =

1

2

sin

2

1

2

(â,

ˆ

b) = P (A

+|E)P (B

+|EA

+

) = P (A

+

B

+ |E) via (17)-(20). (52)

3.4. (49)-(52) illustrates the fact that stochastic independence at the micro-level may reduce to Bayes’
Law at the macro-level. This fact also holds if source / E . in (1)-(2) is replaced by a source / W .

that emits oppositely-polarized spin-1
2

particle-pairs. (Then hAB |W i = �1

2

â·ˆb.) Further, against Bell
and Aspect (2002), our alternative (local-realistic) factorizations under Bayes’ Law are licensed by the
experimentally-verified generality of Malus’ Law under our equivalence relations.
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3.5. Many agree with du Sautoy (2016:170), “Bell’s theorem is as mathematically robust as they
come.” However, Bell’s use of [A(

ˆ

b,�)]2 = 1 (see ¶2.24), renders Bell’s theorem unphysical under
EPRB, mathematically false at (22), absurd at (26) and (30). For, per ¶2.25, it’s certain that Bell’s
use of [A(

ˆ

b,�)]2 = 1 is invalid under EPRB due to multiple pairing/matching problems; ie, under
i 6= j, the product of uncorrelated scalars is: A(

ˆ

b,�
i

)A(

ˆ

b,�
j

) = ±1. Further: Bayes’ Law for the
probability of joint outcomes is never false (neither mathematically nor experimentally) – confirming
Bell’s (2004:239) ‘utmost suspicion’ – he did throw the baby out with the bathwater. NB: Bayes’ Law
is certainly relevant under EPRB; for A and B are independent but correlated per (48).

3.6. Re ¶¶2.19-20, considerations for a wholesale reinterpretation of QM remain: ‘collapse’ as the
Bayesian updating of an equivalence class via prior correlations; ‘states’ as states of information about
multivectors; ‘measurements’ as the outcomes of interactions; ‘wave-particle duality’ as an equivalence
relation; more classical (not semi-classical) approaches, like that at (54) re Pauli’s vector-of-matrices.

3.7. Further, our Lorentz-invariant analysis resolves Bell’s dilemma re action-at-a-distance (AAD
hereafter) and nonlocality: (i) we’ve dispensed with AAD; (ii) we’ve validated Einstein’s program; (iii)
we do get away with locality; (iv) we thus resolve Bell’s principal questions:

‘I cannot say that AAD is required in physics. I can say that you cannot get away with no

AAD. You cannot separate off what happens in one place and what happens in another.
Somehow they have to be described and explained jointly. That’s the fact of the situation;
Einstein’s program fails ... Maybe we have to learn to accept not so much AAD, but the

inadequacy of no AAD. ... That’s the dilemma. We are led by analyzing this situation
to admit that, somehow, distant things are connected, or at least not disconnected. ... I
step back from asserting that there is AAD and I say only that you cannot get away with

locality. You cannot explain things by events in their neighbourhood. But, I am careful
not to assert that there is AAD,’ after Bell (1990:5-13); emphasis added.

3.8. In so resolving Bell’s questions, we thus justify his belief:

“It’s my feeling that all this AAD and no AAD business will [pass; like ether-based theories].
But someone will come up with the answer, with a reasonable way of looking at these things.
If we are lucky it will be to some big new development like the theory of relativity. Maybe
someone will just point out that we were being rather silly, and it won’t lead to a big new
development. But anyway, I believe the questions will be resolved,” Bell (1990:9).

3.9. For, in line with the quotations at ¶2.19a, our common enterprise with Bell carries the day:

“Now nobody knows just where the boundary between the classical and quantum domain is
situated. ... More plausible to me is that we will find that there is no boundary. It is hard
for me to envisage intelligible discourse about a world with no classical part -- no base of
given events, be they only mental events in a single consciousness, to be correlated. On the
other hand, it is easy to imagine that the classical domain could be extended to cover the
whole. The wave functions [– not beables in our terms; see Bell (2004:53) –] would prove
to be a provisional or incomplete description of the quantum-mechanical part, of which an
objective account would become possible. It is this possibility, of a homogeneous account
of the world, which is for me the chief motivation of the study of the so-called ‘hidden
variable’ possibility,” Bell (2004:29-30). We agree, and conclude:

3.10. In sum: Bell’s theorem is refuted, his questions resolved – via (20), (22), (31), (47), etc, – under
Einstein’s locally-causal Lorentz-invariant worldview. At peace with QM, and with special and general
relativity, a consistent classical account of the world beckons: local realistic quantum mechanics.
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5 Appendix

5.1. The CLR analysis above – via equivalence relations under orientations; and consistent with
EPRB, QM and experiment – is decisive in resolving Bell’s questions. So, via ¶2.2a and ¶2.6, we now
show CLR’s accord with QM via direct relations under magnitudes. To this end (about to represent
polarizer/particle interactions by vector-products as foreshadowed in ¶2.18): (i) from Bell 1964:(1) and
our (1)-(5), let � represent a hidden fair-coin particle-vector; (ii) from ¶2.15, recall that we provide the
experimentally-validated functional relationships missing from Bell 1964:(1); (iii) ie, these functional
relationships can be tested as in ¶2.7, and proven experimentally via variants of the tests in (5)-(7).

5.2. We now show the link between CLR and geometric algebra: (i) let a

1

, a

2

, a

3

be a right-handed
set of orthonormal basis vectors; (ii) let our â ⌘ a

3

; (iii) let â be our preferred term. As the original
identifier of the principal axis of Alice’s polarizer here, â is clearly the unit-vector that represents the
key variable of the polarizing-operator �±

â

with respect to spin-1
2

particles q(�) under EPRB. Then, in
conventional short-form notation under geometric algebra:

a

i

a

j

= a

i

·a
j

+ a

i

^ a

j

= �

ij

+ ı✏

ijk

a

k

; ı ⌘ a

i

a

j

a

k

; ı

2

= (a

i

a

j

a

k

)

2

= �1; a

1

a

2

= a

1

^ a

2

= ıa

3

. (53)

So our real vectors satisfy the defining relation of the Pauli matrices: �
i

�

j

= �

ij

+ ı✏

ijk

�

k.

(54)

The equiprobable spin-bivectors under the fair-coin � are then: ±|s |a
1

a

2

= ±|s | ıa
3

; (55)

where the spin-vector is: s = ±~
2

a

3

= ±~
2

â; + denoting spin-up wrt â; etc. (56)

5.3. As foreshadowed in ¶2.18, and responding to Bell 1964:(1), we now represent polarizer/particle
interactions by a new vector-product. Writing symmetrically – with � ⌘ xor; with â

� antiparallel and
â

? perpendicular to â

+ – we define the reduced spin-product â{s}� under s = 1

2

in EPRB and Mermin
(1990), and under s = 1 in Aspect (2002):

â{s}� ⌘ cos 2s(â, â

+

�) = ±1 equiprobably; if s = 1

2

, â

+

� ⌘ â

+� â

�
; if s = 1, â

+

� ⌘ â

+� â

?
. (57)

5.3a. With its direct relevance to Bell 1964:(1) and the results for EPRB and Aspect (2002), (57) is
adequate for our present purpose. Beyond our current needs, the (non-reduced) spin-product – defined
as â{s~}� ⌘ s~â+� equiprobably, under the push-pull dynamics of ¶2.13 – is not addressed here.

5.4. To be clear, based on (15) , we have for Alice under E (ie, under EPRB per Bell 1964):

(�

±
â

q(�
i

)!A(â,�
i

) |E)=+1 ⌘ A

+

=cos 2s(â,�
i

|q(�
i

)⇠q(â

+

)) ⌘ â{s}�
i

= â·â+ = +1; (58)

(�

±
â

q(�
j

)!A(â,�
j

) |E)= �1 ⌘ A

�
=cos 2s(â,�

j

|q(�
j

)⇠q(â

�
)) ⌘ â{s}�

j

= â·â� = �1. (59)

Thus, with � a random fair-coin: A± ⌘ â{s}� = â·â± = ±1 equiprobably; etc. (60)

5.5. Then, under (53)-(56), Bob’s corresponding results B± are correlated with Alice’s A± via (4). So,
using the most basic (ie, probability-based) definition of an expectation – eg, see Whittle (1976:20) –
we take the expectation hX |Ei to be the conventional arithmetic mean of X under the conditional E:

⇧ hX |Ei ⌘
nX

i=1

P

i

x

i

: given P

i

⌘ P (X = x

i

|E);

nX

i=1

P

i

= 1. (61)

⇧ hAB |Ei = P (AB = +1 |E)� P (AB = �1 |E) (62)
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= P [(â{s}�)(ˆb{s}µ) = +1 |E]� P [(â{s}�)(ˆb{s}µ) = �1 |E] (63)

= sin

2

1

2

(â,

ˆ

b)� cos

2

1

2

(â,

ˆ

b) = �â·ˆb, using Malus’ Law as in (20). QED. ⌅ (64)

5.6. Similarly, for photons (s = 1), with ↵ denoting the experiment in Aspect (2002):

hAB |↵i = P (AB = +1 |↵)� P (AB = �1 |↵) (65)

= P ((â{s}�)(ˆb{s}µ) = +1 |↵)� P ((â{s}�)(ˆb{s}µ) = �1 |↵) (66)

= cos

2

s(â,

ˆ

b)� sin

2

s(â,

ˆ

b) = cos 2(â,

ˆ

b), using Malus’ Law as in (25). QED. ⌅ (67)

5.7. Thus, with Bayes’ Law and Malus’ Law to the fore as usual here (and contra Bell, as at ¶3.4), we
now analyze Fröhner 1998:(75) in the light of CLR and our local realistic quantum mechanics. There
we see the inner products of the polarizer direction-vectors â and ˆ

b with ‘the spin �
1

= ��
2

taken to
be an ordinary vector for which all orientations are equally probable’. Fröhner is thus able to ‘equal

the QM result’ in his terms:

Fröhner 1998:(75):
D
(â·�

1

)(�
2

· ˆb)
E
= �

D
(â·�

1

)(�
1

· ˆb)
E
= �h�2

1i
3

(â·ˆb). (68)

5.8. Thus, in our terms, and to match Bell 1964:(1), (68) needs to be solved for:

(â·�
1

) = ±1; (�
2

· ˆb) = ±1;

h�2
1i
3

= 1. (69)

5.9. Fröhner (1998) does this – see his (70)-(73) – by describing the spin-coordinates via Pauli matrices.
In that our method is coordinate-free, we now show our local-realistic resolution of the difficulty (at
the same time wondering what the physical significance of h�2

1i
3

in RHS (69) might be). Using � as
defined locally-and-realistically in (4) and ¶2.2 – with the same subscripts and polar coordinates as in
Fröhner (1998); under the statistical terms variance (var), covariance (cov) and statistical-correlation
(cor) – we have:

�
1

= ��
2

= � (for convenience) =

0

@
�

x

�

y

�

z

1

A
= �

0

@
sin ✓ cos�

sin ✓ sin�

cos ✓

1

A
;� ⌘ |�| in units of ~

2

. (70)

ˆ

P

⇢(�)d3� =

1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

= 1; (71)

⇧ h...i =
1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(...). (72)

⇧
⌦
�

2

x

↵
=

1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(� sin ✓ cos�)

2

=

h�2i
3

; (73)

⌦
�

2

y

↵
=

1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(� sin ✓ sin�)

2

=

h�2i
3

; (74)

⌦
�

2

z

↵
=

1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(� cos ✓)

2

=

h�2i
3

; (75)

h�
x

�

y

i =
1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(�

2

sin

2

✓ cos� sin�) = 0; (76)
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h�
y

�

z

i =
1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(�

2

sin ✓ cos ✓ sin�) = 0; (77)

h�
z

�

x

i =
1̂

0

d�⇢(�)

1ˆ

�1

d(cos ✓)

2

2⇡ˆ

0

d�

2⇡

(�

2

cos ✓ sin ✓ cos�) = 0. (78)

⇧ cov (A,B |E) ⌘ h(A� hAi)(B � hBi)i = �
D
(â·�)(ˆb·�)

E
(for convenience) (79)

= �(â

x

â

y

â

z

)

*0

@
�

x

�

y

�

z

1

A
(�

x

�

y

�

z

)

+0

@
ˆ

b

x

ˆ

b

y

ˆ

b

z

1

A
= �(â

x

â

y

â

z

)

0

@

⌦
�

2

x

↵
h�

x

�

y

i h�
x

�

z

i
h�

y

�

x

i
⌦
�

2

y

↵
h�

y

�

z

i
h�

z

�

x

i h�
z

�

y

i
⌦
�

2

z

↵

1

A

0

@
ˆ

b

x

ˆ

b

y

ˆ

b

z

1

A (80)

= �(â

x

â

y

â

z

)

0

@
1 0 0

0 1 0

0 0 1

1

A

0

@
ˆ

b

x

ˆ

b

y

ˆ

b

z

1

Ah�2i
3

= �â·ˆbh�
2i
3

. (81)

⇧ var (A |E) ⌘
⌦
(A� hAi)2

↵
=

⌦
(â·�)2

↵
= h(â·�)(â·�)i = â·âh�

2i
3

=

h�2i
3

; (82)

var (B |E) ⌘
⌦
(B � hBi)2

↵
=

D
(

ˆ

b·�)2
E
=

D
(

ˆ

b·�)(ˆb·�)
E
=

ˆ

b·ˆbh�
2i
3

=

h�2i
3

. (83)

⇧ cor (A,B |E) ⌘ cov (A,B |E)p
var (A |E)

p
var (B |E)

= hAB |Ei = �â·ˆb. QED.⌅ (84)

5.10. Thus the task facing Fröhner in our (68)-(69) reduces (for us), to having the inner products in
(83)-(84) deliver results of ±1. Thus – independent of (70)-(83) – our inner products are just those
spin-products defined in ¶5.3. They deliver the spin (the intrinsic angular momentum) in units of s~.

5.11. This leaves us wondering re the physical significance of h�2
1i
3

in RHS (68). Since it now appears

as h�2i
3

in our (81)-(83), we take it to be a scaling factor. Nave (2017) shows that an orientation-based
interaction – like our �

±
â

q(�
i

) ! q(â

±
) per (1)-(5) – is equivalent to polarizer �

±
â

projecting out – as
the â-component of �

i

; i = 1, 2, ..., n – the spin ±~
2

. Moreover, (�±
â

q(�
i

) ! q(

~
2

â

±
) |E) is consistent

with the QM convention of working with the z-axis when (�

±
ẑ

q(�
i

) ! q(

~
2

ẑ

± |E). So, for s =

1

2

:

If �~
2

=

p
3

~
2

, then ~
2

� =

~
2

�

i

=

p
s(s+ 1)~ = S = total angular momentum under QM. (85)

5.12. In relation to EPRB and Bell (1964), this leads us to suggest: (i) � represents the total angular
momentum in units of ~

2

and our spin-product reveals the rotation of spin ~
2

onto a relevant axis via
each polarizer/particle interaction; (ii) the precession of �

i

and µ
i

(about the related polarizer-axis;
our â here) is such that the observable component of total angular momentum, aligned (±) with that
axis, is always the spin: here, ~

2

under E; (iii) we conclude that our local realistic quantum mechanics
is wholly compatible with ordinary quantum mechanics – and less mysterious.
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