Title Goldbach Conjecture

Author Barry Foster

Abstract The Goldbach Conjecture states:

Every even number greater than 4 can be written as the sum of two primes.

Examples:

```
6 = 3+3

8 = 3+5

10 = 3+7 5+5

:

etc

:

1224 = 71+1153 73+1151 191+1033 193+1031
```

We will call the two primes summing to a particular number a Goldbach Pair (GP) for that number.

Method

This attempt requires very little mathematical knowledge.

Important Facts

Fact 1

Bertrand's (proven) postulate confirms that for every integer P>1 there will be at least one prime between P and 2P.

https://en.wikipedia.org/wiki/Bertrand%27s postulate

Fact 2

The following diagram shows how GP's are distributed for successive primes M and N.

6 M	N	2M	2N

GP's in this region have primes <M GP's in this region have primes <=N

Proof

Consider a case where all even numbers less than a particular even number E are GP's. (a)

We need to show all even numbers {X; $E \le X \le 2N$ } are also GP's.

For even numbers (E_1, E_2) where $(0 < E_2 < = E_1 < E)$

$$X = E_{1+}E_2$$
 (b)

Using E = 12 as an example the following values for E_1 and E_2 are possible.

E1	E ₂	
10	2	(c)
8	4	
6	6	

 E_1 is always a GP but E_2 is a GP only when it is >= 6.

For X to be a GP the numbers in (b) must be of the form:

Thus one solution for X = 12 is for line (c) above:

And the GP is (7+5) verifying the Goldbach Conjecture.

It appears that even though a GP exists the primes must be found by inspection.