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Abstract 

A fractal approach to long-only portfolio optimization is proposed. The quantitative system is 
based on naive risk parity approach. The core of the optimization scheme is a fractal distribution 
of returns, applied to estimation of the volatility law. Out-of-sample performance data has been 
represented in ten period of observation with half year and one year horizons. Implementation of 
fractal estimator of volatility improves all performance metrics of portfolio in comparison to the 
standard estimator of volatility. The efficiency of fractal estimator plays a significant protective 
role for the periods of market abnormal volatility and drawdowns, which allows beating the 
market in the long term perspective. The provided results may be useful for a wide range of 
quantitative investors, including hedge funds, robo-advisors and retails investors.    
 
Introduction 
 
The market crashes of 2000s and 2007-2008 have rose questions about applicability of Modern 
Portfolio Theory (MPT) [1]. For the past two decades investors observed long memory highly 
correlated behavior of several assets and asset classes which raised a problem of the alternative 
hedging of systematic risks. Although correlations and standard deviations of returns are still 
basic concepts of MPT these parameters do not take into account nonlinear effects of abnormal 
volatility [1]. In long term perspective the infrequent large scale declines can sufficiently affect 
the portfolio performance. In 2006-2016 the drawdown of S&P500 index by 36% has decreased 
the accumulated ten year return twice and annual Sharpe ratio by three times. Naive risk parity 
approach has partially reduces the “nonlinear gap” by avoiding calculation of equally weighted 
expected returns and linear correlations. It turned out that naive risk parity strategy with global 
allocation has outperformed S&P500 index by 2% for the past forty years with annual Sharpe 
ratio improvement by 63% [2]. However the volatility estimation of global risk parity model is 
still based on normal distribution of returns which fails to explain effects [2] of the panic based 
persistency. It has been shown that fractal distributions provide more realistic asymptotic for 
large scale returns [3]. The factors of these distributions allow modifying a rule for volatility 
estimation. In this research we introduce a fractal law of volatility into the naive risk parity buy-
and-hold global portfolio and compare the performance of this portfolio to the original model of 
normally distributed returns.  
 
Estimation of volatility 
 
According to [8] the  alpha stable  distributions of returns  can  generalize  the  normal  
distribution  and simultaneously  allow  heavy  tails  and  “three-sigma” declines. The stability of 
this class of distributions is supported by the Central Limit Theorem [3]. Probability alpha stable 
distribution function of returns r is characterized by the following relation:  
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Here , , ,    are static parameters of distribution, t is time. The core of the integral is 
represented by the piecewise function h:  
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The stability of this distribution is defined by   parameter which lies in the interval0 2  . 
Rescaling of this distribution with rescale factor k corresponds to the following relation [9]: 
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Alpha parameter quantifies the tail thickness of the probability distribution which allows its 
implementation into volatility analysis. According to Mandelbrot [4] this key parameter is also 
directly related to Hurst factor H of time series persistency: 1 / H  . We should recall that 
positive memory (momentum) of returns is characterized by (0.5,1]H   while negative memory 
(mean reversion) corresponds to [0,0.5)H  . The law for rescaling of volatility may be derived 
directly from (4): 
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Here the values of two consequent time moments 1 2 2 1, :t t t t  are involved. In this research the 
volatility is estimated as the unbiased standard deviation of returns. Accordingly a one period 
standard deviation 0STD  may be derived [9] for rescaling into the N-period horizon standard 
deviation in the following way: 0

H
NSTD STD N . In this paper we apply an approach of small 

data basis, suggested in [5] for the stable definition of Hurst factor. We recall that MPT and 
market efficiency imply a random walk of returns and the short memory model of volatility 
estimation: 0.5H   for any asset class. Typically rescaling is excluded from estimation as it 
gives a constant factor for the definition of investment weights.    
 
Investment method 
 
Global diversification between four asset classes is suggested in this research. Fundamentally 
uncorrelated asset classes were suggested for justification of algorithm. However we admit the 
possibility of wider selections. We use adjusted closing prices of following low cost liquid 
exchange traded funds (ETFs): 
 

ETF Index Expense ratio,% Asset class 
SPY S&P 500 0.09 US equity 
TLT U.S. 20+ Year Treasury Bond  0.15 US Treasuries 
IYR U.S. Real Estate Index 0.43 US real estate 
GLD Gold Bullion 0.4 Gold 

Table 1. Investment blocks. 
 
The applied history is limited by the inception date of ETFs: 2005-2016 time period is the core 
of algorithm justification. The optimization sample period N and hold period correspond to 
desired investment horizon and coincide. In this paper we consider half year and annual 
horizons. Although risk parity approach implies that an equal amount of volatility is designated 
to each class, in this research a long-only filter is introduced: an investment into the asset class is 
switched on if the historical expected return is positive. Risk free rate parameter is excluded in 
this research. Below we compare fractal and standard algorithms in frame of portfolio long term 
performance. The fractal algorithm may be represented as the consequence of steps: 
 
Fractal risk parity: 

 Historical returns of asset i are calculated through the differences of adjusted price 
logarithms 100% log( )i ir p   



 Expected Hurst factor iH  for each asset is defined on the basis of calculated time series 
of returns according to the small date method [10] 

 Expected daily return ( )i imean r   is defined as simple average of returns in the 
sample period N, the asset class weight is zero if 0i   

 Daily standard deviations of returns 0
iSTD   are calculated   

 Expected asset volatility is rescaled to the horizon N of portfolio: 0
iHi i

NSTD STD N  
 Non zero investment weights are calculated on the basis of rescaled volatilities
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The standard MPT estimation of volatility implies market efficiency and 0.5H  . Therefore the 
standard filtered risk parity algorithm may be represented in the following way: 
  
Standard risk parity: 

 Historical returns of asset i are calculated through the differences of adjusted price 
logarithms with percentage scale 100% log( )i ir p   

 Expected daily return ( )i imean r   is defined as simple unweighted mean of returns in 
the sample period N, the asset class weight is zero 0i   

 Daily standard deviations of returns 0
iSTD   are calculated   

 Expected asset volatility is rescaled to the horizon N of portfolio: 0
i i
NSTD STD N  

 Non zero investment weights are calculated on the basis of rescaled volatilities
1 / i

i Nw STD , the sum of weights is normalized: /i i iw w w   
 
Simulation results 
 
The portfolio simulation is based on the out-of-sample analysis. The algorithmic system analyzes 
past N prices of given assets, construct portfolio and observe cumulated performance for the next 
N days. The performance is recorded into the datebase. The efficiency of both algorithms is 
compared by use of several investment metrics: Sharpe ratio, Treynor ratio, average return, 
capital protection, standard deviation (STD) and beta (SPY benchmark has been used). Capital 
protection is defined as the percentage difference between initial capital and maximum 
drawdown. It is a useful measure of hedging properties of current system, particularly during 
2007-2008 debt crises. The simulation does not take into account slippage and spreads, but 
process commissions, expense ratios and corporate events. We used trading conditions of 
Interactive Brokers for simulation of both algorithms in MatLab 2015a package. All simulations 
are provided for non leveraged long only passive investments. Firstly we provide simulation 
results for the investment capital of $500,000 which corresponds to institutional format. Relative 
percentage improvements are provided in the last raw. 
 

 Sharpe Treynor x 0.01 Return,% Protection,% STD,% beta 
Fractal parity A 1.29  0.37  9.09  93  7.06 0.25 

Standard parity B 1.19 0.32 8.91 92 7.49 0.28 
Benchmark (SPY) 0.52 0.08 8.18 62% 15.68 1 
Improvement A-B 8% 16% 2% 1% 6% 11% 

 Table 2. Annual horizon, $500,000 
 

The interpretation of results shows that most significant advantage of the fractal risk parity 
model is hedging against systematic declines with equal opportunity of return.      



 
 Sharpe Treynor x 0.01 Return,% Protection,% STD,% beta 

Fractal parity A 1.31 0.61 9.45 91 5.10 0.15 
Standard parity B 1.16 0.40 9.00 90 5.48 0.23 
Benchmark (SPY) 0.5 0.08 8.00 64 11.32 1 
Improvement A-B 13% 53% 5% 1% 7% 35% 

 Table 3. Half year horizon, $500,000 
 
The decrease of horizon strengthens the non efficiency influence. As a result almost all metrics 
are improved in spite of more frequent commission charging. In average the system beats the 
market by 1.5% for the twenty out-of-sample periods (Table 3). In the Table 3 we annualized all 
represented metrics. Commissions are included in the benchmark investment cycle as well which 
explains lower annual return of SPY investment for the second simulation. We also 
experimented with lower capital of $10,000 which corresponds to robo-advisor and retail format: 
 

 Sharpe Treynor x 0.01 Return,% Protection,% STD,% beta 
Fractal parity A 1.15 0.35 7.73 92 6.74 0.22 

Standard parity B 1.02 0.27 7.36 90 7.23 0.27 
Benchmark (SPY) 0.46 0.07 7.18 62 15.65 1 
Improvement A-B 13% 30% 5% 1% 7% 19% 

 Table 4. Annual horizon, $10,000 
 

       Sharpe Treynor x 0.01 Return,% Protection,% STD,% beta 
Fractal parity A 0.93 0.43 6.64 90 5.04 0.15 

Standard parity B 0.77 0.26 6.00 89 5.48 0.23 
Benchmark (SPY) 0.44 0.07 7.00 63 11.27 1 
Improvement A-B 21% 65% 11% 1% 8% 35% 

 Table 5. Half year horizon, $10,000 
 
As in previous simulation we observe the significant hedging effect. However this time retail 
commissions liquidate the advantage of the expected return for half-year investment. Still the 
annual Sharpe ratio is twice higher in relation to the pure SPY investment. This observation 
allows applying the system for short term conservative investors with horizon of 1-2 years. We 
should remark that the partial eliminating of systematic risk without decrease of return lies in the 
range of 6-8 percentage points for all simulations which justify the efficiency of fractal approach 
to the estimation of volatility. Below we represent the figure of reinvested return for the best 
simulated strategy – half year optimization with $0.5 mln of investment capital. The bars 
correspond to the difference between the cumulated return of fractal scheme (Sh=1.31) and 
standard scheme (Sh=1.16) of investment. 
 

 
Figure 1. Difference of cumulated returns – two schemes 



The period of debt crisis is remarkable due to the significant growth of cumulated return and is 
marked by black rectangular. This effect confirms the hypothesis of realistic fractal description 
of heavy tails events. However we observe the gradual growth of difference in “normal” market 
environment during ten years of observation – slight inefficiency still contributes to the fractal 
advantage. This advantage reaches 14% at the end of 2016 which remarks a conversion of 
portfolio hedging and “don’t loose” empirical rule into the long term reward.  
 

 
 

Figure 2. Difference of cumulated returns – two schemes 
 

In Figure 2 the absolute cumulative return of fractal risk parity is compared to the SPY 
reinvestment strategy. It is remarkable that a 2007-2008 advantage plays the sufficient role in 
total performance of the strategy and is contradictive to the MPT supporters that consider heavy 
tail events as statistically non significant.  
 
Conclusions 
 
In current research we investigated the applicability of fractal estimators of volatility to the risk 
parity long only non leveraged portfolios. The simulation results show that the current approach 
allows improving all portfolio metrics for large capital investments. The influence on relation 
between reward and systematic risk is most remarkable which makes the proposed estimator an 
efficient tool for portfolio hedging. The decrease of horizon strengthens the advantage of fractal 
estimator in non efficient market environment. We have found that the most remarkable 
application of the method is possible for institutional investment with half-year optimization of 
portfolio. This scheme of investment allows increasing the Sharpe ratio by 2.6 times in relation 
to benchmark investment and increasing average annual return by 1.5%. The application of this 
scheme in reinvestment cycle will allow increasing an advantage of capital accumulation by 14% 
percent in ten years. However we still should note that further research of liquidity influence is 
necessary for strict justification of results especially for institutional investments.   
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