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Abstract 

 

This paper presents a complete and exhaustive proof of Landau's Fourth Problem. The 

approach to this proof uses same logic that Euclid used to prove there are an infinite 

number of prime numbers. Then we use a proof found in Reference 1, that if p > 1 and d 

> 0 are integers, that p and p+ d are both primes if and only if for integer m: 

 

m = (p-1)!( 
𝟏

𝒑
 + 

(−𝟏)𝒅(𝒅!)

𝒑+𝒅
) + 

𝟏

𝒑
 + 

𝟏

𝒑+𝒅
 

 

We use this proof for d = 2n + 1 to prove the infinitude of Landau’s Fourth Problem 

prime numbers. 

The author would like to give many thanks to the authors of 1001 Problems in Classical 

Number Theory, Jean-Marie De Koninck and Armel Mercier, 2004, Exercise Number 

161 (see Reference 1). The proof provided in Exercise 6 is the key to making this paper 

on the Landau’s Fourth Problem possible. 
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Introduction 

 

At the 1912 International Congress of Mathematicians, Edmund Landau listed four basic 

problems about primes. These problems were characterized in his speech as 

"unattackable at the present state of mathematics" and are now known as Landau's 

problems. They are as follows: 

1. Goldbach's conjecture: Can every even integer greater than 2 be written as the 

sum of two primes? 

2. Twin prime conjecture: Are there infinitely many primes p such that p + 2 is 

prime? 

3. Legendre's conjecture: Does there always exist at least one prime between 

consecutive perfect squares? 

4. Are there infinitely many primes p such that p − 1 is a perfect square? In other 

words: Are there infinitely many primes of the form n2 + 1?  

As of 2017, the third problem is still unresolved, however the author has already proven 

the first and second problems using elementary proofs (see references 2 and 3). 

This proof will solve the fourth problem above, namely we shall prove that there are 

infinitely many primes p such that p − 1 is a perfect square.  We shall do this by proving 

that there are infinitely many primes of the form n2 + 1.  The first several primes of form 

n2 + 1 are: 

2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2117 

 

 

  



3 
 

 

Proof  

 

In number theory, Landau’s Fourth Problem's states:  

It is conjectured that there are infinitely many primes of the form n2 + 1.   

First we shall assume that the set of primes of the form n2 + 1 are finite and then we 

shall prove that this is false, which shall prove that are primes of the form n2 + 1 are 

infinite.  First let us define the finite set of Landau’s Fourth Problem as pi where i is 

finite, and the last i = n. Our goal is to prove that i is infinite to disprove our assumption 

of finiteness. Even though we have assumed that the set of finite primes of the form n2 

+ 1 since there are an infinite number of prime numbers we can pick a prime number p 

which is outside the finite set of primes of the form n2 + 1.  Therefore a prime cannot 

exist that is prime otherwise we would have discovered a prime of the form (n+1)2 + 1 

which is outside our assumed set of finite primes of the form n2 + 1.  Thus all we need 

to do is to prove that there exists a prime of the form (n+1)2 + 1 outside our assumed 

finite set is to prove that (n+1)2 + 1 is prime since we already know that many prime 

numbers exist outside the finite set of primes of the form n2 + 1.   

We use the proof, provided in Reference 1, that if p > 1 and d > 0 are integers, that p 

and p+ d are both primes if and only if for integer m: 

 

m = (p-1)!( 
𝟏

𝒑
 + 

(−𝟏)𝒅(𝒅!)

𝒑+𝒅
) + 

𝟏

𝒑
 + 

𝟏

𝒑+𝒅
 

 

For our case p is known to be prime and is of form n2 + 1 and, 

 d = (n+1)2 + 1 – (n2 + 1) for Landau’s Fourth Problem, where n is any integer, 

therefore: 
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p = n2 + 1, and 

 

d = (n+1)2 + 1 – (n2 + 1) 

d = (n+1)2 – n2 

 d = n2 + 2n + 1 - n2   

d = 2n + 1 = odd integer 

Therefore, 

p + d = n2 + 1 + 2n + 1 = n2 + 2(n + 1) 

 

And p + d is prime if and only if m is an integer for:  

   

m = (p-1)!( 
𝟏

𝒑
 + 

(−𝟏)(𝟐𝒏 + 𝟏)((𝟐𝒏 + 𝟏)!

𝒑+𝟐𝒏 + 𝟏
) + 

𝟏

𝒑
 + 

𝟏

𝒑 + 𝟐𝒏 + 𝟏
 

 

Multiplying by p, and since 2n + 1 is always odd, then (−𝟏)(𝟐𝒏 + 𝟏)  = -1 

mp = (p)!( 
𝟏

𝒑
 + 

−(𝟐𝒏 + 𝟏 )!

𝒑 + 𝟐𝒏 + 𝟏 
) + 1 + 

𝒑

𝒑 + 𝟐𝒏 + 𝟏 
 

 

Multiplying by (p + 2n + 1), 

(p + 2n + 1)mp = (p + 2n + 1)(p)!( 
𝟏

𝒑
 + 

−(𝟐𝒏 + 𝟏 )!

𝒑 + 𝟐𝒏 + 𝟏 
) + p + (2n + 1) + p 



5 
 

Reducing again, 

(p + 2n + 1)mp = (p)!( 
(𝒑 + 𝟐𝒏 + 𝟏 )

𝒑
 - (2n + 1)!) + 2p + 2n + 1 

 

Factoring out, (p)!, 

(p + 2n + 1)mp = p(p-1)!( 
(𝒑 + 𝟐𝒏 + 𝟏)

𝒑
 - (2n + 1)! + 2p + 2n + 1 

 

And reducing one final time, 

(p + 2n + 1)mp = (p-1)!(𝒑 + 𝟐𝒏 +  𝟏  - 𝒑(𝟐𝒏 +  𝟏 )!) + 2p + 2n + 1 

 

We already know p is prime, therefore, p = integer. Since p is an integer and by 

definition n is an integer, the right hand side of the above equation is an integer 

(likewise the left hand side of the equation must also be an integer). Since the right 

hand side of the above equation is an integer and p and n are integers on the left hand 

side of the equation, then (𝑝 + 2n + 1) is also an integer. Therefore there are only 4 

possibilities (see 1, 2a, 2b, and 2c below) that can hold for m so the left hand side of the 

above equation is an integer, they are as follows. 

 

1) m is an integer, or  

2) m is a rational fraction that is divisible by p. This implies that n = 
𝒙

𝒑
 where, p is prime 

and x is an integer. This results in the following three possibilities:  

a. Since m = 
𝒙

𝒑
 , then p = 

𝒙

𝒎
 , since p is prime, then p is only divisible by p and 1, 

therefore, the first possibility is for n to be equal to p or 1 in this case, which are 

both integers, thus m is an integer for this first case.  
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b. Since m = 
𝒙

𝒑
, and x is an integer, then x is not evenly divisible by p unless x = 

p, or x is a multiple of p, where x = yp, for any integer y. Therefore m is an 

integer for x = p and x = yp.  

c. For all other cases of, integer x, m = xp , m is not an integer.  

 

To prove there is a Pell Prime, outside our set of finite Pell Primes, we only need to 

prove that there is at least one value of m that is an integer, outside our finite set. There 

can be an infinite number of values of m that are not integers, but that will not negate 

the existence of one Pell Prime, outside our finite set of Pell Primes.  

First the only way that n cannot be an integer is if every m satisfies paragraph 2.c 

above, namely, m = 
𝒙

𝒑
, where x is an integer, x ≠ p, x ≠ yp, m ≠ p, and m ≠ 1 for any 

integer y. To prove there exists at least one Pell Prime outside our finite set, we will 

assume that no integer m exists and therefore no Pell Primes exist outside our finite set. 

Then we shall prove our assumption to be false.  

 

Proof: Assumption no values of m are integers, specifically, every value of m is   

m = 
𝒙

𝒑
  ,where x is an integer, x ≠ p, x ≠ yp, m ≠ p, and m ≠ 1, for any integer y. 

Paragraphs 1, 2.a, and 2.b prove cases where m can be an integer, therefore our 

assumption is false and there exist values of m that are integers.  

 

Since we have already shown that p and p + (2n + 1), where d = 2n + 1, are both 

primes if and only if for integer m: 

m = (p-1)!( 
𝟏

𝒑
 + 

(−𝟏)𝒅(𝒅!)

𝒑+𝒅
) + 

𝟏

𝒑
 + 

𝟏

𝒑+𝒅
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It suffices to show that there is at least one integer m to prove there exists a Landau’s 

Fourth Problem Prime outside our set of finite set of Landau’s Fourth Problem. 

Since there exists an m = integer, we have proven that there is at least one p and p + 

2n + 1 that are both prime. Since we showed earlier that if p + 2n + 1 is prime then it 

also is not in the finite set of pi, pi + 2n + 1 of primes of form n2 + 1, therefore, since we 

have proven that there is at least one p + 2n + 1 that is prime, then we have proven that 

there is a prime outside the our assumed finite set of of form n2 + 1. This is a 

contradiction from our assumption that the set of primes of form n2 + 1 is finite, 

therefore, by contradiction the set of primes of form n2 + 1 is infinite. Also this same 

proof can be repeated infinitely for each finite set of primes of form n2 + 1, in other 

words a new prime of form n2 + 1 can added to each set of finite primes of form n2 + 1. 

This thoroughly proves that an infinite number of Landau’s Fourth Problem exist.  
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