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Abstract : After an articulated exposition of the basic features of the Clifford algebra we give evidence that the basic elements of 

this algebra may represent the basic entities of the mind. According also to the previous basic results of V.A. Lefebvre on 

conscience , we delineate also some peculiarities of the consciousness and we give proof that they may be correctly represented by 

this algebra. 
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Consciousness is an abstract identity marked from several and unique features but mainly is marked from 

two basic salient and peculiar properties. 

(-)  It is an entity that has self-awareness and this is to say that it has in its inner the image of itself. In most 

cases we speak of self-image to represent such peculiar feature. 

(-) The other marking property is that it has awareness of an external space -time located abstract entity. 

Every one is convinced  that  it is extremely difficult to conceive and to represent a system existing in 

Nature and having such self-referential properties and this is the reason because we mark the problem to 

represent the consciousness from several and several years of activity as the basic " hard problem ". 

Constantly the hard problem involves the interest of biological, medical and, in general, Life Sciences, it is a 

basic problem in neurology as well as in science of mind here including the tentative to approach this 

problem under the field of the philosophy and of physics. Physicists usually approach the problem under a 

particular perspective: may we use the basic foundations of physics to explain the two previous mentioned 

peculiar features of consciousness ? In detail, have we the mathematical instruments that pertaining to 

physical formulation, are able to approach the hard problem giving explanation of the previous mentioned 

basic features? 

The list of physicists who have engaged in this hard problem is of course endless but we acknowledge, in 

particular,   one scholar who in years of activity has conducted  studies and has given us some fundamental 

indications and results. This scientist is V.A.  Lefebvre who, in fact, has culminated his activity with a 

celebrated book entitled "The Algebra of the Conscience ". Here we consider the algebra of consciousness: 

a tentative to indicate us that consciousness may be described by an algebra and thus by a mathematical 

tool.  

This is precisely the question that we attempt to develop in this paper, to describe for the first time this 

algebra, able to delineate the two basic peculiar features of consciousness that we have previously 

indicated. 



Let us start to present this algebra. 

Let us start with a proper definition of the 3-D space Clifford (geometric) algebra 3Cl . 

It is an associative algebra generated by three vectors ,e,e 21  and 3e  that satisfy the orthonormality relation  

jkjkkj eeee δ2=+       for [ ]321 ,,,k,j ∈λ                              (1.1) 

That is, 

12 =λe    and    jkkj eeee −=   for  kj ≠  

Let a and b be two vectors spanned by the three unit spatial vectors in 0,3Cl . By the orthonormality relation  

the product of these two vectors is given by the well known identity: )ba(ibaab ×+⋅=  where 321 eeei =  

is a Clifford algebraic  representation of the imaginary  unity   that commutes with vectors. 

The (1.1) are well known in quantum mechanics. Here we give proof under an algebraic profile.  Let us 

follow the  approach  that, starting with 1981, was developed by  Y. Ilamed and N. Salingaros
 
[1]. Imaeda 

and Edmonds also used extensively this algebra in the past [2,3]. 

Let us admit that  the  three abstract basic elements, ie , with 321 ,,i =   admit the following two postulates: 

a) it exists the scalar square for each basic element: 

111 kee =  , 222 kee = , 333 kee =   with  ℜ∈ik  .                              (1.2) 

In particular we have also the unit element, 0e , such that that  

100 =ee , and 00 eeee ii=  

b) The basic elements ie  are anticommuting elements, that is to say: 

1221 eeee −=  ,    2332 eeee −= ,  3113 eeee −= .                                   (1.3) 

Theorem n.1. 

Assuming the two postulates given in (a) and (b) with 1=ik , the following commutation relations 

hold for such algebra : 

31221 ieeeee =−= ;
12332 ieeeee =−= ; 

23113
ieeeee =−=  ; 321 eeei = , ( 12
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1 === eee )       (1.4) 

They characterize the Clifford Si algebra. We will call it the algebra A(Si). 

Proof. 

Consider the general multiplication of the three basic elements ,,, 321 eee  using scalar coefficients 

kkk γλω ,, pertaining to some field: 

33221121 eeeee ωωω ++=   ; 33221132 eeeee λλλ ++=  ;  



33221113 eeeee γγγ ++= .                   (1.4a) 

Let us introduce left and right alternation: for any )j,i( , associativity exists jiijii eeeeee )(=  and 

)( jjijji eeeeee = that is to say  

211211 )( eeeeee = ; )( 221221 eeeeee = ; 322322 )( eeeeee = ; )( 332332 eeeeee = ; 133133 )( eeeeee = ;      

)( 113113 eeeeee = .                                                                  (1.5) 

Using the (1.4) in the (1.5) it is obtained that  

3132121121 eeeekek ωωω ++= ; 2332221112 eekeeek ωωω ++= ; 

3232212132 eekeeek λλλ ++= ; 3332231123 keeeeek λλλ ++= ; 

3323213113 keeeeek γγγ ++= ;  1331221131 eeeekek γγγ ++=  .                    (1.6) 

From the (1.6), using the assumption (b), we obtain that 
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 We have that it must be  

0313221 ====== γγλλωω                                                                           (1.8) 

and  

02211 =+− kk γλ   03322 =− kk ωγ          03311 =− kk ωλ                      (1.9) 

 The following set of solutions is given: 

,321 ωγ−=k  312 ωλ−=k  , 213 γλ−=k                                             (1.10) 

that is to say  

i=== 213 γλω                                                                   (1.11) 

In this manner, as a theorem, the existence of such algebra is proven. The basic features of this algebra  are 

given in the  following manner 
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1 === eee ; 31221 ieeeee =−= ; 12332 ieeeee =−= ; 23113 ieeeee =−= ; 321 eeei =       (1.12)                                        



The content of the theorem n.1 is thus established: given three abstract basic elements as defined in (a) 

and (b) ( )1=ik , an algebraic structure is given with four generators ( ).,,, 3210 eeee  

Note that in the algebra A(Si) the ie ( 3,2,1=i ) have an intrinsic potentiality that is to say an ontic 

potentiality or equivalently an irreducible intrinsic indetermination. Since 12 =ie ( 3,2,1=i ),  we may think 

to attribute them or the numerical value +1 or the numerical value –1 . Both such alternatives (+1 and -1) 

both coexist ontologically.   

A generic member of our algebra A(Si)  is given by  

+=∑=
=
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xexx i
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i  x                                                 (1.13) 

with ix  pertaining to some field ℜ or C . 

We may define [2]  the hyperconjugate x̂  

−= 0
ˆ xx x 

the complex conjugate  

+=∗ ∗
0xx x

o
 

and the conjugate  

−= ∗
0xx x

∗
 

The Norm  of x is defined as  

Norm (x) = 
2

3

2

2
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1

2

0
ˆˆ xxxxxxxx −−−==                                        (1.14) 

with  

Norm (xy) = Norm (x) Norm (y) 

The proper inverses of the basic elements ie ( 3,2,1=i ) are themselves. Given the member x, its inverse 

1−x  

is /x̂ Norm (x) with Norm (x) 0≠  

We may transform Clifford members according to Linear Transformations  

CAxBx +='                                                              (1.14a) 

with unitary norms for the employed Clifford members BA, and 0=C  for linear homogeneous 

transformation. 

Let us now take a step on.  



As previously said, in the algebra A (Si) the ie ( 3,2,1=i ) have an intrinsic potentiality that is to say an ontic 

potentiality or equivalently an irreducible intrinsic indetermination. Since 12 =ie ( 3,2,1=i ), we may think 

to attribute them or the numerical value +1 or the numerical value –1. Let us give proof of such our basic 

assumption. 

Since the ie  are abstract   entities, having the potentiality that we may think to attribute them the 

numerical values, 1± , they have an intrinsic and irreducible indetermination. Therefore, we may admit to 

be )1(1 +p the probability that 1e  assumes the value )1(+  and )1(1 −p the probability that it assumes the 

value  1− . We may represent the mean value that is given by  

)1()1()1()1( 111 −−+++>=< ppe                  (1.15)  

Considering the same corresponding notation for the two remaining basic elements, we may introduce the  

other two mean values: 

)1()1()1()1( 222 −−+++>=< ppe ,                     (1.16) 

).1()1()1()1( 333 −−+++>=< ppe   

We have 

11 +≤>≤<− ie    )3,2,1(=i                  (1.17)                                               

Selected the following  generic element of the algebra A(Si): 
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Note that 
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 Its mean value results to be 

><+><+><>=< 332211 exexexx                                                               (1.20) 

Let us call 
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1 )( xxxb ++=                                                                                    (1.21) 

so that we may attribute to x  the value b+    or  b−  

We have that                                                                    

bexexexb ≤><+><+><≤− 332211                                                              (1.22) 

The (1.22) must hold for any real number ix , and, in particular, for  

>=< ii ex  



so that we have that 

bxxx ≤++ 2
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that is to say 

bb ≤2     1≤→ b  

so that we have the fundamental relation  
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1 ≤><+><+>< eee                                       (1.23) 

These results were also previously obtained by Jordan but not using Clifford algebra [4]. Our results are 

contained in [5-34] where we mention also the contributions of also authors that inspired our work as in 

particular Altafini , Orlov , Cini. 

This is a basic relation of irreducible indetermination that we are writing in our Clifford algebraic 

elaboration.  

Let us observe  some important features: 

(a)  In absence of numerical attribution to the ie ( and in analogy with physics this means ….in absence of a 

measurement, that is to say in absence of direct observation of one quantum observable), the (1.23) 

holds. If we attribute instead a definite numerical value to one of the three  entities, as example we 

attribute to 3e  the numerical value +1, we have  

13 >=< e , and  the (1.23))  is  reduced to 
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1 =><+>< ee , 021 >=>=<< ee ,                                                       (1.24) 

       and we have complete, irreducible, indetermination for 1e and for 2e .  

(b) Finally, the (1.23) affirms that we never can attribute simultaneously definite numerical values to two 

basic non commutative  elements ie . 

We may now summarize the obtained results. First, we retain that the first  axiom of the )(SiA algebra, 

the (1.2) with 1=ik , indicates that the abstract basic elements ie have an ontic potentiality, that is to 

say  that they have an irreducible indeterminism as supported finally from the (1.23). In order to 

characterize such features we have introduced the concept of mean value for such algebraic entities 

and, consequently, that one of potentiality. When we attempt to attribute a numerical values to an 

abstract element, as it happens as example, in the (1.24), we perform an operation that in physics has a 

counterpart that is called an act of measurement. For us, any measurement is a semantic act. No 

matter if the measurement is performed by a technical instrument or by an human observer. In any 

case it is realized having at its basic arrangement,  a semantic act. If we remain in the restricted domain 

of the )(SiA , we are in some sense in a condition that, on the general plane, may be assimilated to 

that one in which we have human or technical systems that are in some manner forced  to answer to 

questions (the attribution of numerical values to the basic elements) which they cannot understand in 

line of principle. As consequence, the probabilities that we have used  in the (1.15) and in the (1.16) are 

fundamentally different from classical probabilities under a basic conceptual profile. In classical 



probability theory, as it is known, probabilities represent a lack of information about preexisting and 

pre-established properties of systems .In the present case we have instead a situation in which we have 

not an algorithm in )(SiA  to execute a semantic act devoted to identify the meaning of a statement in 

terms of  truth values  and in relation to another statement. So we need to introduce probabilities that 

pertain now not to a missing our knowledge but to basic intrinisc foundation of irreducible 

indetermination in the inner structure of our reality. 

Let us evidence another important feature of Clifford algebra )(SiA . 

In Clifford algebra )(SiA  we have idempotents (as counterpart we have  projection operators in quantum 

mechanics). In von Neumann language projection operators can be interpreted as logical statements. 

Let us give some example of idempotents in Clifford algebra. 

It is well known the central role of density matrix  in traditional quantum mechanics . In the Clifford 

algebraic scheme, we have a corresponding algebraic member that is given in the following manner  

321 decebea +++=ρ                                                 (2.1)  

with 
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where the ie are the basic elements in our algebraic Clifford scheme while in matrix notation, 1e , 2e , and 3e

in standard quantum mechanics  are the well known Pauli matrices. The complex coefficients ic ( )2,1=i

are the well known probability amplitudes for the considered quantum state 
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For a pure state in quantum mechanics it is ρρ =2 . In our scheme a theorem may be demonstrated in 

Clifford algebra. It is  that 

↔= ρρ 2
 

2

1
=a   and  

2222 dcba ++=                  (2.4)    

The details of this our theorem are given in references .  We have also 12)( == aTr ρ . In this manner we 

have the necessary and sufficient conditions for ρ  to represent a Clifford member whose counterpart in 

standard quantum mechanics represents a potential state or, equivalently, a superposition of states. 

Let us consider still other  two of such idempotents in )(SiA  
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 Let us examine now the following algebraic relations: 

13113 ψψψ == ee                           (2.6) 

23223 ψψψ −== ee                        (2.7) 

Similar relations hold in the case of 1e or 2e . 

Here is one central aspect of the present paper. By a pure semantic act, looking at the (2.6) and (2.7), we 

reach only a conclusion. With reference to the idempotent 1ψ , the algebra A(Si) (see the (2.6)), attributes 

to 3e  the numerical value of 1+ while,  with reference to the idempotent 2ψ , the algebra A(Si) attributes 

to 3e (see the (2.7)), the numerical value of -1 . 

The basic point is that at the basis we have a semantic act . 

However, assuming the attribution  3e →  +1, from the  (1.4) we have that new commutation relations 

should hold in a new Clifford algebra , given in the following manner:  

12
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1 == ee , 12 −=i ; iee =21 , iee −=12 , 12 eie −= ,  

12 eie = ,  21 eie = , 21 eie −=                 (2.8)  

with three new basic elements ( ),, 21 iee  instead of ( ),, 321 eee . 

We totally agree with the possible criticism that  such our argument to express the (2.8) on the basis of a 

rough attribution to 3e with our mind may be in itself very rough, and, in any case, only pertaining, still 

again, a pure semantic operation . This is what we intend to evidence with the greatest emphasis. We have 

performed only  a SEMANTIC ACT pertaining to cognition of our mind. I have realid a logic statemnet as it 

corresponds roughly in our mind .   Actually we are admitting that  in the case in which we attribute to 3e  

the numerical value +1, roughly  , this is to say : considering 3e as a pure symbol  a new algebraic structure 

should arise with new generators whose rules should be given in (2.8) instead of the (1.4). Therefore, the 

arising central problem is that we should be able to proof the real existence of such new algebraic structure 

with rules given in the (2.8). We repeat: in the case of the starting algebraic structure, the algebra A(Si), we 

showed by theorem that it exists with its proper rules: 
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1 === eee ; 

31221 ieeeee =−=  ; 12332 ieeeee =−= ; 23113 ieeeee =−=  ; 321 eeei =        (2.9)                      

              

In the present case in which we attribute to 3e the numerical value +1, and we do this operation using only 

our mind and in particular our cognition,  we should demonstrate  that really it exists a new algebra given in 

the following manner  

12

2

2

1 == ee ;  12 −=i ; 

iee =21  , iee −=12 , 12 eie −= , 12 eie = , 21 eie = , 21 eie −=      (2.10) 



If we arrive to demonstrate that such algebraic structure certainly exists in the field of the Clifford algebra ,  

, we have given for the first time demonstration and confirmation that we may have a representation of 

our mental activity whose counterpart is an universal theorem. In brief , the important result is that for the 

first time we have obtained a representation of our mental operations and we have shown that its 

counterpart is characterize by an universal theorem. We have an algebraic representation of our mental 

activity. Obviously such theorem must hold also in the other case in which we attribute to 3e the numerical 

value -1 in our mind. If such theorem exists, we will call it the theorem n.2  

Let us go  to give proof of the existing  theorem n.2. 

First  of all we have to emphasize once again  that we are attributing to the previous Clifford basic element 

3e  a numerical value only on the basis of a semantic act. Consequently we are reasoning only of basic 

abstract entities of our mind  not of material objects . Let us go to demonstrate the real existence of  the 

theorem 2 . 

Theorem n.2 . 

Assuming the postulates given in (a) and (b) with 11 =k , 12 =k , 13 −=k , the following  commutation 

rules hold  for such new algebra: 

12

2
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1 == ee ;  12 −=i ; 

iee =21  , iee −=12 , 12 eie −= , 12 eie = , 21 eie = , 21 eie −=             (2.11)                                                        

They characterize the Clifford Ni algebra. We will call it the algebra 1,+iN  

Proof                                                

To give  proof,  rewrite  the (1.4a) in our case,  and performing  step by step the same calculations of the 

previous proof, we arrive to the solutions of the corresponding homogeneous algebraic system  that  in this 

new case are given in the following manner: 

321 ωγ−=k ; 312 ωλ−=k ; 213 γλ−=k                                  (2.12)     

where this time it must be 121 +== kk and 13 −=k . It results 

11 −=λ ; 12 −=γ ; 13 +=ω                          (2.13)                                 

and the proof is given. 

The content of the theorem n.2 is thus established. When we attribute to 3e the numerical value +1 as a 

semantic act of our mind, we pass from the Clifford algebra )(SiA  to a new Clifford algebra 1,+iN whose 

algebraic structure is no more given from the (2.9) of the algebra )(SiA   but from the following new 

basic rules: 

12

2

2

1 == ee ;  12 −=i ; 

iee =21  , iee −=12 , 12 eie −= , 12 eie = , 21 eie = , 21 eie −=               (2.14)  



The theorem n.2  also holds in the case in which we attribute  to 3e  the numerical value of 1−  . 

Assuming the postulates given in (a) and (b) with 11 =k , 12 =k , 13 −=k , the following  commutation 

rules hold  for such new algebra 

12

2

2

1 == ee ;  12 −=i ; 

iee −=21  , iee =12 , 12 eie = , 12 eie −= , 21 eie −= , 21 eie =            (2.15)  

They characterize the Clifford Ni algebra. We will call it the algebra 1,−iN  

To give proof , consider the solutions of the (2.12) that  are given in this new case by  

11 +=λ ; 12 +=γ ; 13 −=ω                     (2.16)                                         

and the proof is given. 

The content of the theorem n.2 is thus established. When we attribute to 3e the numerical value –1,  we 

pass from the Clifford algebra )(SiA  to a new Clifford algebra 1,−iN whose algebraic structure is not given 

from the (2.9) of the algebra )(SiA  and not even from the (2.14) but from the following new basic rules: 

12

2

2

1 == ee ;  12 −=i ; 

iee −=21  , iee =12 , 12 eie = , 12 eie −= , 21 eie −= , 21 eie =         (2.17)                         

   

In a similar way, proofs may be obtained  when we consider  the cases  attributing numerical values ( )1±  

to 1e   or to  2e . 

 The Clifford algebra, 1,1 ±N , given in the (2.15 ) and in the (2.17) are  the dihedral Clifford algebra iN . 

In conclusion, we have shown two basic theorems, the theorem n.1 and the theorem  n.2. As any 

mathematical theorem they have maximum rigour, and an aseptic mathematical content that   cannot be 

questioned. The basic statement that we reach by the proof of such two theorems is that in Clifford 

algebraic framework, we have the Clifford algebra A(Si) and inter-related Clifford algebras 1,±iN . When we 

consider ( ),, 321 eee  as the three abstract elements with rules given in (2.9) , we are in the Clifford algebra 

A(Si) .When we attribute with our mind  to 3e the numerical value +1, we pass from the algebra )(SiA  to 

the  Clifford algebra 1,+iN . Instead, when we pass from the Clifford algebra )(SiA  to the Clifford algebra 

1,−iN ,   we are attributing to  3e  the numerical value –1 . 

The same conceptual facts hold when we reason for Clifford basic elements 1e  or to 2e , attributing in this 

case a possible numerical value ( 1± ) or to 1e or to 2e , respectively. 

The basic conclusion is the following: for the first time we have considered three basic abstract Clifford 

elements . We have verified that using such abstract elements we may perform what we have called 



semantic acts.  Semantic acts relate cognition. We cannot escape the conclusion that we are considering 

mind entities. We have identified that mental entities may be represented by a proper algebraic structure. 

The first great objective of the present paper has been reached. 

Obviously the implications of such shown theorems for the measurement problem in quantum mechanics 

are of relevant interest. 

If one looks at the algebraic rules and commutation relations   given in the  (2.9), the algebra )(SiA  

immediately remembers  that they are universally valid in quantum mechanics. It links the Pauli matrices 

that are sovereign in quantum theory. Still the isomorphism between Pauli matrices and Clifford algebra 

)(SiA  is well established at any order.  

Passing from the algebra A(Si) to 1,±iN it happens an interesting feature. Consider the case, as example, of 

3e . While in )(SiA  3e  is an abstract algebraic element that has the potentiality to assume or the value +1 

or the value –1 (in correspondence, in quantum mechanics it is an operator with possible eigenvalues 1± ), 

when we pass in the algebra 1,±iN , 3e  is no more an abstract element in this algebra, it becomes a 

parameter to which we may attribute the numerical value +1, and we have 1,+iN whose three abstract 

element now are ( ),, 21 iee  with commutation rules given in the (2.14). If we attribute to 3e  the numerical 

value -1, we are in 1,−iN whose three abstract elements are still ( ),, 21 iee , and the commutation rules are 

given in (2.17). Reading this statement in the language and in the framework of a quantum mechanical 

measurement, it means that if we are measuring the given quantum system S with a measuring apparatus 

and, as result of the actualized and performed measurement, we read the result +1, we are in the 

corresponding algebraic case, in  the algebra 1,+iN . If instead, performing the measurement, we read the 

result –1, in   this  case we are in the algebra 1,−iN . In each of the two cases this means that a collapse of 

the wave function has happened. 

During  a process of quantum measurement, speaking in terms of Clifford algebraic framework, we could  

have the passage from the Clifford algebra A(Si), in the case in which the result of the measurement of 3e  is 

+1 (read on the instrument), and instead we could have the passage to the new 1,−iN  Clifford algebra, in 

the case in which the result of the quantum measurement of 3e  gives value –1 (read on the instrument). 

In such way it seems that a reformulation of von Neumann’s projection postulate may be suggested. The 

reformulation is that, during a quantum measurement (wave-function collapse), we have the passage from 

the Clifford algebra A(Si), to the new Clifford algebra 1,±iN . In brief :  

Quantum Measurement at a cognitive level (wave-function collapse)  = passage from algebra )(SiA to 

1,±iN . 

In conclusion we think that the two previously shown theorems in Clifford algebraic framework  give 

justification of the von Neumann’s projection postulate and they seem to suggest, in addition, that we may 

use the passage from the algebra )(SiA  to 1,±iN to describe actually performed quantum measurements. 



A detailed exposition of such results has been discussed by us in papers given in references  but we may 

discuss still here  some illustrative examples. 

Let us start discussing a preliminary application. 

Assume a two –level microscopic quantum system S with two states +u , −u  corresponding to energy 

eigenvalues +ε , −ε . The Hamiltonian operator SH can be written 
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In the standard quantum methodological approach  we have  that 
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u   ,   and   iiiS uuH ε= .             (2.19)                             

We may also choose εε =+  and 0=−ε  simplifying the (2.18) to 

ε)1(
2

1
3eH S +=                         (2.20)                                           

Indicate an arbitrary state of such quantum microsystem as  

−−++ += ucucSψ                 (2.21)                                                                               

where, according to Born’s rule, we have  

1δiepc ++ =   ,  2δiepc −− =   (2.22)                                                                       

jp  ( −+= ,j )              (2.23)                                                                    

corresponding probabilities with 1=+ −+ pp . 

This is the standard quantum mechanical formulation of the system.  

Let us admit now that we want to measure the energy of S  using a proper apparatus . The rules of 

quantum mechanics tell us that we will obtain the value ε  with probability +p , and the value zero with 

probability −p . After the measurement the state of S  will be either +u or −u according to the measured 

value of the energy. The experiment will enable us also to estimate +p as well as −p . 

In such simple quantum mechanical example we have, as known, the (2.18)), 3e , the (2.20) that are linear 

Hermitean operators with quantum states acting on the proper Hilbert space.   

Let us see instead the question from our Clifford algebraic   point of view. 

The 3e , and SH given in the (2.18) or in the (2.20) are members of the )(SiA  Clifford algebra  with basic 

rules 12

3

2

2

2

1 === eee  

31221 ieeeee =−=   ;  12332 ieeeee =−=   ;  12332 ieeeee =−=   ;  321 eeei =        (2.24) 



However, on the basis of theorems n.1 and n.2 shown in the previous sections,  starting with the Clifford 

algebra A(Si), we must use  the existing Clifford, dihedral algebra, 1,±iN when we arrive to attribute (by a 

measurement) as example to 3e in one case the numerical value +1 and, in the other case, the numerical 

value –1. 

In the first case we have a dihedral Clifford iN algebra that is given in the following manner: 

12

2

2

1 == ee 12 −=i  

iee =21   ,  iee −=12  ,  12 eie −=  ,  12 eie −=  ,  12 eie =  ,  21 eie =  ,  21 eie −=    (2.25)  

attributing to 3e  the numerical value +1 (in analogy with quantum mechanics: the quantum measurement 

process has  given as result +1). In the second case, we have instead that  

12

2

2

1 == ee ;  12 −=i ; 

iee −=21  , iee =12 , 12 eie = , 12 eie −= , 21 eie −= , 21 eie =            (2.26)                                                              

 that holds when we have arrived to  attribute to 3e  the numerical value –1 by a direct 

measurement.  

Reasoning in terms of a Clifford algebraic framework, we are authorized to apply the passage from 

algebra A(Si) to algebra 1,±iN  in the (2.18). From it , we obtain: 

 +− = ε)( elementCliffordSH                      (2.27)                                       

if the instrument has given as result of the measurement, the value +1 to 3e  (Clifford algebraic 

parameter of dihedral 1,+iN algebra ), and 

−− = ε)( elementCliffordSH                   (2.28)                                                                                             

In the first case, we have  

ε=− )( elementCliffordSH                (2.29) 

and in the second case, we have 

0)( =−elementCliffordSH                   (2.30) 

Consider now the second application . 

Let us introduce  a two state quantum system S with connected quantum observable 3σ ( )3e . We have 

2211 ϕϕψ cc +=   ,  







=
0

1
1ϕ   ,  








=
1

0
2ϕ                (2.31)                                                 

and 

1
2

2

2

1 =+ cc   

As we know, the density matrix of such system is easily written  

321 decebea +++=ρ             (2.32) 

with 
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1 cc
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212
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1 cccc
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=   , 
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*

21 cccci
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−
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2
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2

2

1 cc
d

−
=     (2.33)                     

where in matrix notation, 1e  , 2e , and 3e  are the well known Pauli matrices 
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3e        (2.34) 

Of course, the analogy still holds. The (2.32) is still an element of the )(SiA  Clifford algebra. As Clifford 

algebraic member, the (2.32) satisfies the requirement to be ρρ =2  and Tr( 1) =ρ  under the conditions 

2/1=a  and 02222 =−−− dcba   as we evidenced in the (2.4) . In the algebraic  framework, let us 

admit that we attribute to 3e  the value +1 (that is to say …  the quantum observable 3σ assumes the value 

+1 during quantum measurement ) or to 3e  the numerical value –1 (that is to say…   the quantum 

observable 3σ assumes the value –1 during the quantum measurement). As previously shown, in such two 

cases the  algebra A, (Si)  no more holds, and it will be replaced from the Clifford 1,±iN . To examine the 

consequences, starting with the  algebraic element (2.32), write it in the two equivalent algebraic forms 

that are obviously still in the algebra A(Si). 
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1
eccieeccieecccc −+−++++=ρ   (2.35)   

and 
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1
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1
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1
)(
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1
eccieeccieecccc −+−++++=ρ   (2.36)                

Both such expressions contain the following  interference terms.  

))((
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))((
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1
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*

121

*

21 ieeccieecc −++                (2.37)  

and 

))((
2

1
))((

2

1
212

*

121

*

21 ieeccieecc −++                (2.38)   

Let us consider now that the quantum measurement gives as result +1 for 3e . In this case there are the 

(2.35) and the (2.37) that we must take in consideration. On the basis of our principle, we know that the 

previous Clifford algebra A(Si) no more holds, but instead it is valid the 1,1 +N that has the following new 

commutation rules: 

iee =21  , iee −=12 , 12 eie −= , 12 eie = , 21 eie = , 21 eie −=          (2.39)     

Inserting such new commutation rules in the (2.35) and in the  (2.36), the interference terms are erased 

and the density matrix, given in the (2.35), now becomes  



2

1cM =→ ρρ                 (2.40) 

The collapse has happened. 

In the same manner let us consider instead  that the quantum measurement gives as result  -1  for 3e . In 

this case there are the (2.36) and the (2.38) that we take in consideration  The  Clifford algebra )(SiA  no 

more holds, but instead it is valid the 1,1 −N that has the following new commutation rules 

iee −=21  , iee =12 , 12 eie = , 12 eie −= , 21 eie −= , 21 eie =            (2.41)  

Inserting such new commutation rules in the (2.36)  and (2.38), remembering that the parameter 3e  now 

assumes value –1, one sees that the interference terms are erased and the density matrix now becomes 

2

2cM =→ ρρ                   (2.42)                                           

The collapse has happened. 

By using the Clifford bare bone skeleton , we conclude that quantum mechanics now becomes a self-

consistent theory since by the )(SiA  and 1,±iN algebras, the formulation becomes able to describe the 

collapse of the wave function without recovering an outside ad hoc postulate on quantum measurement as 

initially formulated by von Neumann. 

Let us examine in detail  von Neumann results [36]. 

 Consider the spinor basis given in (2.31). 

According to such   projection postulate  the complete phase-damping way  for a two state system may be 

written  

11110000)( ><><+><><= ρρρD             

where the  effect of this mapping is to zero-out the off-diagonal entries of a density matrix: 
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δ

α

δγ

βα

0

0
D           

If we  have a set of mutually orthogonal projection operators ( ),.....,, 21 mPPP which complete to identity, i.e., 

jijji PPP δ=   and 1=∑
i

iP  when a measurement is carried out on a system with state >ψ  then 

(1) The result i is obtained with probability >=< ψψ ii Pp  

(2) The state collapses to >ψi
i

P
p

1
 

 The projection operators  are the idempotents in the )(SiA Clifford algebra. 

We have that  



00 ><   and      11 ><                   (2.43)                                                                 

are respectively  the idempotents 

2

1 3e+    and      
2

1 3e−                   (2.44)                                                                                                              

We have that 

 (
2

1 3e+ ) ρ (
2

1 3e+ )                 (2.45)                                                                                

that  gives 

 (
2

1 3e+ ) ρ (
2

1 3e+ ) =α  (
2

1 3e+ )               (2.46) 

 and explicitly                             










00

0α
                          (2.47)                                                                  

 In the case of  

2

1 3e−                  (2.48)                                                                                                                  

one obtains as result  

(β  )
2

1 3e−                   (2.49)                                                                                                            

and explicitly 










δ0

00
                                                                                                                        

The sum gives 










δ

α

0

0
                                                                                                          

Generally speaking, given an observable with connected linear Hermitean operator O  having eigenvalues 

,........., 21 OO  

we have  

Prob )().( ρnn PTrO =               (2.49a) 

that obviously is fully justified by our 1,±iN theorem. 



In conclusion we have given a full Clifford algebraic justification of von Neumann’s projection postulate.  

Note that we have involved idempotents in the )(SiA Clifford algebraic quantum scheme, and they have 

projectors as counterpart in standard quantum physics. We cannot ignore a fundamental step: according to 

J. von Neumann projection operators represent logical statements .We have verified that they assume the 

same meaning in our algebraic scheme. Consequently we cannot escape to the conclusion previously 

introduced. Measurements must be intended as semantic acts, and conceptual entities are represented in 

our scheme as a motor device as well as objects and matter dynamics. 

Another question : demonstrated that mental entities are their algebraic structure represented from the 

Clifford algebra ,  may we identify a time dynamics of such our Clifford admitted basic entities ? The answer 

is again positive .  

Consider the quantum system S and  indicate by 0ψ  the state at the initial time 0. The state at any time t  

will be given by  

0)()( ψψ tUt =   and )0(0 == tψψ              (2.50) 

An Hamiltonian H must be constructed such that the evolution operator U(t), that must be unitary, gives  
iHtetU −=)( . 

It is well known that, given a finite N-level quantum system described by the state ψ , its evolution is 

regulated according to the time dependent Schrödinger equation 

)()(
)(

ttH
dt

td
i ψ

ψ
=h    with 0)0( ψψ = .          (2.51)  

Let us introduce a model for the hamiltonian H(t). We indicate by H0 the  hamiltonian of the system S, and  

we add to H0 an external time varying hamiltonian, H1(t), representing the perturbation to which the 

system S is subjected by action of the  measuring apparatus. We write the total hamiltonian as  

     H(t) = H0 + H1(t)                                                                     (2.52) 

                                     

so that  the time evolution  will be given by the following Schrödinger equation 

[ ] )()(
)(

10 ttHH
dt

td
i ψ

ψ
+=h                (2.52a)  

We have that 

[ ] )()()()(
)(

10 tUtHHtUtH
dt

tdU
i +==h       and U(0)=I           (2.53) 

where U(t) pertains to the special group SU(N).  

This is an argument that holds in quantum mechanics . The basic question that we have to solve is : have 

we the possibility to represent such Hamiltonian formalism only using abstract Clifford entities ? In other 



terms , have we the possibility to give here an Hamiltonian representation of our mental entities and of 

basic interaction with the outside? The answer is positive .                            

Let A1,A2,……..,An  , (n=N
2
-1), are skew-hermitean matrices forming a basis of Lie algebra SU(N). In this 

manner one arrives to  write the explicit expression of the Hamiltonian H(t). It is given in the following 

manner 

[ ] j

n

j

jj

n

j

j AbAatHHitiH ∑∑
==

+=+−=−
11

10 )()(             (2.54) 

where aj and bj = bj(t) are respectively the constant components of the free hamiltonian and the time-

varying control parameters characterizing the action of the measuring apparatus , just the semantic act. If 

we introduce T, the time ordering parameter  (for details on this elaboration consider first of all the 

development that is due to Altafini, ref.20), we have 

)))((exp())(exp()(
0 0

ττττ dAbaiTdHiTtU jj

t t

j +−=−= ∫ ∫       (2.55)  

that is the well known Magnus expansion. Locally U(t) may be expressed by exponential terms as it follows  

)........exp()( 2211 nn AAAtU γγγ +++=            (2.56)  

on the basis of the Wein-Norman formula   
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with Ξ  n x n matrix, analytic in the variables iγ . We have 0)0( =iγ  and I=Ξ )0( , and thus it is invertible. 

We obtain 
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Consider a simple case  based on the superposition of only two states. We  have  

[ ]Tyy 21 ,=ψ         and    1
2

2

2

1 =+ yy              (2.59)  

We have here an SU(2) unitary transformation, selecting the skew symmetric basis for SU(2). We will have 

that 
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The following matrices are given  

jj e
i

A
2

=   , j = 1,2,3                (2.61) 

The reader may now ascertain that the previously developed formalism is moving in direct correspondence 

with our Clifford algebra A(Si).        

We are now in the condition to express H(t) and U(t) in our case of interest.  The most simple situation we 

may examine is that one of fixed and constant control parameters bj. The Hamiltonian H  will become fully 

linear time invariant and its exponential solution will take the following form 
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with 
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11 )()()( bababak +++++= . In matrix form it will result 
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and, obviously, it will result to be unimodular as required. 

Starting with this matrix representation of time evolution operator U(t), we may deduce promptly the 

dynamic time evolution  of quantum state at any time t writing 

0)()( ψψ tUt =                (2.64)  

assuming  that we have for 0ψ the following expression 
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having adopted for the true and false states  (or yes-not  states,  +1 and –1 corresponding  eigenvalues of 

such states) the following matrix expressions 
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Finally, one obtains the expression of the state )(tψ  at any time 
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As consequence, the two probabilities Ptrue(t) and Pfalse(t), will be given at any time t by the following 

expressions 
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and                                                                                                                                         

)()(
2

1

2
cos)()( 222
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k
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where 

A= Re ctrue ,  B=Im ctrue, C=Re cfalse ,  D=Im cfalse ,  

P=-D(a1+b1)+C(a2+b2)-B(a3+b3), 

Q=C(a1+b1)+D(a2+b2)+A(a3+b3),                                

R=-B(a1+b1)-A(a2+b2)+D(a3+b3), 

S=A(a1+b1)-B(a2+b2)-C(a3+b3) 

Until here we have developed only  standard elaborations that of course we performed in previous our 

publications.  The reason to have developed here such  formalism has been  to evidence  that at each step 

it has its corresponding counterpart in Clifford algebraic framework A(Si), and thus we may apply to it the 

two theorems previously demonstrated, passing from the algebra )(SiA  to 1,±iN . In fact, to this purpose, 

it is sufficient to multiply the (2.63) by the (2.65) to obtain the final forms of )(tctrue  and )(tc false  

In the final state we have that  
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tc
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tψ                             (2.69)                       

We may now write the density matrix that will result to have  the same structure of the previously case  

given in the (2.32) but obviously with explicit evidence of time dependence.  In the Clifford algebraic 

framework it will pertain still to the Clifford algebra A(Si). In order to describe the wave-function collapse 

we have to repeat the same procedure that we developed previously from the (2.32) to the (2.42), 

considering that, in accord to our criterium, we have to pass from the algebra A(Si) to 1,±iN , and obtaining 

2
)(tctrueM =→ ρρ                   (2.70)                                                                                                



in the case 1,+iN  

and  

2

)(tc falseM =→ ρρ               (2.71) 

in the case  1,−iN , as required in the collapse. 

Note that, using Clifford algebra, we have given now a complete theoretical elaboration of the problem of 

wave function reduction in quantum mechanics also considering the process under the profile of the time 

dynamics. 

Evidences of such elaboration have been given by us at cognitive level using introducing also experimental 

verifications . 

We have now to develop the argument giving the title of the present paper . 

Previously we have given different indications on the fact that using the Clifford algebra we were reasoning 

about our mind entities, It is now missing the final evidence that we are considering an algebra relating our 

consciousness. To reach this objective we need to give proof that it is possible an algebraic representation 

of the two consciousness peculiarities that are : 

(-)  It is an entity that has self-awareness and this is to say that it has in its inner the image of itself. In most 

cases we speak of self-image to represent such peculiar feature. 

(-) The other marking property is that it has awareness of an external space -time located abstract entity.  

In brief consciousness is an abstract entity that at the same entity has self-awareness (self image) of itself 

and self image of the outside  

We will develop such algebraic features  here now. 

 

Until here we considered only basic Clifford abstract elements  at their elementary order. Let us expand our 

formulation introducing the Clifford algebra at any order n. 

First consider Clifford )(SiA  algebra at order n=4 (for details see our previous papers and references 

therein). One has  

E0 i = I 
1 ⊗ e i ;  Ei 0 = e i ⊗ I 

2
           (2.72a)                                 

The notation ⊗ denotes direct product of matrices, and I 
i
 is the ith 2x2 unit matrix. Thus, in the case of n= 4 

we have two distinct sets of Clifford  basic unities, E0 i and Ei 0, with  

1
2

0 =iE  ;  12

0 =iE , i = 1, 2, 3;          (2.72b)                   

    

E0 i E0 j = i E0 k ;  Ei 0 Ej 0 = i Ek 0    , j = 1, 2, 3;  i ≠ j 

and 



Ei0 E0 j =E0 j Ei 0               (2.73) 

                                               

with (i, j, k) cyclic permutation of (1, 2, 3).  

Let us examine now the following result  

 (I 
1 ⊗ ei) (ej ⊗ I 

2
) = E0 i Ej 0 =Ej i                (2.74)  

It is obtained according to our basic rule on cyclic permutation required for Clifford  basic unities. We have 

that E0 i Ej0 = Ej i with i = 1, 2, 3 and j=1, 2, 3, with E j i

2 = 1, Ei j Ek m ≠ Ek m Ei j, and Ei j Ek m = Ep q where p results 

from the cyclic permutation (i, k, p) of (1, 2, 3) and q results from the cyclic permutation (j, m, q) of (1, 2, 3).  

In the case n = 4 we have two distinct basic set of unities  E0 i , Ei 0 and, in addition, basic sets of unities (Ei j , Ei 

p  , E0 m) with ( j, p, m) basic permutation of  (1, 2, 3).  

This is the Clifford algebra A at order n=4. 

We may now give the explicit expressions of E0 i, Ei 0, and Ei j at the order n=4. 

The starting elements are: 
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We  consider that these are the starting elements to interact with  the outside entity to  have awareness . 

The outside entity is represented   by 
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At the order n= 4 we have  
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         (2.76)  

Comparing the starting representation at order n=2 with the new abstract entities given in (2.76) we see 

that this new abstract entity maintains in its inner structure the inner image of itself. This three entities 

maintain the first required structure, the proper inner self- image but with reference to the outside self -

image . This is the first requirement we posed for an algebraic representation of consciousness.                       
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 ;   (2.77) 

In this second set  of abstract elements  we have instead the self image of the outside but with reference to 

the inner self - image of itself .  

In the mind of the subject consequently coexist the three self image of him (her)-self with reference to the 

three outside entities (awareness of itself with reference to the outside) (2.76) and the three abstract 

elements  given in (2.77) represent that in the mind of the subject coexist the three self image of the 

outside ( awareness of the outside) as seen in the inner awareness of this  subject. Both the (2.76 and the 

(2.77) coexist in the mind inner structure of the subject. This result totally agrees with the algebraic 

elaboration realized by Lefebvre who studied in detail the algebra of conscience [35]. 
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