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Abstract 

The paper proposes generalization of geometric notion of vectors concerning dimensionality 

of the configuration space. Trivial mapping between an algebraic vector space and Euclidean space 

is possible as the Euclidean space is able to configure all elements of the algebraic vector space. 

Such configuration relies on the notion of globally valid directions those satisfy the vector axioms 

upon their direct product with lengths. We prove that, certain type of ordered direction exists in each 

number of Euclidean dimensions along which elements of vector spaces can be interpreted. We show 

that such general ordered directions equivalently exist at each point in Euclidean space and there 

exists a special metric for each kind of the ordered direction. An algebraic structure of addition and 

scaling exists for the direct product of such directions and path lengths along such directions. The 

path length is in terms of the special metric that comes with each dimension. We further show that 

this consideration satisfies the vector axioms and leads to the complete normed space within the 

Euclidean space. A mathematical framework is built with 3 lemmas, 8 theorems and a conjecture. 

Application of the framework to locally 3+1 dimensional universe leads to four fundamental versions 

as which a vector can exist geometrically. Thus any physical quantity in the universe should come in 

four versions of vectors as long as the underlying structure of spheres exists for the ordered 

directions.   
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1. Introduction 

The algebraic notion of vector as defined through the vector axioms provides abstract 

mathematical tool. On other hand, there is a valid geometric interpretation of the algebraic 

vectors as an arrow of certain length in its configuration space. The trivial configuration 

space for geometric interpretation of n-dimensional vector is n-dimensional Euclidean space. 

Possible geometric notion of the vector is just the direction along straight line. In this paper 

we present the possibility of the general geometric notion of vector by introducing a concept 

of ordered direction.  

The algebraic vector space and corresponding configuration space are needed to be 

separately considered. By configuration space we mean the space wherein the elements of 

corresponding algebraic vector space are geometrically interpreted as the magnitudes along 

certain directions. For instance, the ordered n-tuple of numbers belonging to an algebraic 

space can be configured with numerical coordinates in n-dimensional space.  

There is bijective relationship between an n-dimensional algebraic vector space and n-

dimensional Euclidean space, as the Euclidean space is able to configure all the elements of 

the algebraic vector space. In this regard, we find few geometrical characteristics of the 

Euclidean space associated with its dimensionality are of interest. Such dimensional 

characteristics provide ingredients for generalization of the direction as well as of magnitude, 

those are useful for establishing morphisms between algebraic vectors and the configured 

geometric vectors. Dimensional characteristics those come with every number of dimension 

are conventionally called as n-volume and n-plane. Both these characteristics imply classes of 

length, area, volume etc. and point, line, plane etc. respectively. There is another important 

dimensional characteristic: the class of distance, angle, solid angle etc. We find such 

characteristics useful for defining notion of vector. It will be proved that every number of 

Euclidean dimensions comes with a type of ordered direction and that of a measure, 

facilitating definition of corresponding dimensional vector. The theory model is developed in 

section 2, and case of the locally Minkowskian manifold as an example is concerned in 

section 3.  

In the paper, dimension is to be referred as Euclidean dimension. Also, n-dimensional 

space implies n-dimensional Euclidean space unless specified.  

2. Dimensional Characteristics 

An m-dimensional space that is embedded in n-dimensional space with n > m leads to 

realization of certain geometric characteristic for each m. Examples are point, line, and plane 

for m = 0, 1, and 2 respectively. Let’s denote the set of all points in m-dimensional space 

which may be embedded in higher spaces by Im i.e. Im = {(x1,x2,…,xm)I xi ∈ ℝ}. With this 

notation, points are identical with I0s, lines with I1s and planes are with I2s. We will denote 

the highest dimensional space concerned for analysis (in which different Ims can be 

identified) by Xn ,  n being the highest number of dimensions considered.  For specific choice 



of m except m = n, there are infinitely many Ims existing in Xn. Ims can be classified based on 

different values of m i.e. Im & Im’ such that m ≠ m’ constitute to different types. 

Lemma 1: n + 1 types of Ims exist in n-dimensional space. 

Proof: At most n number of mutually perpendicular lines can be drawn at a point in 

Xn. A subspace of Xn consisting of the m mutually perpendicular lines is nothing but Im. 

Hence Im such that 0< m≯ n can be manifested at each point in Xn. In this way, one can 

manifest n types of Ims differing by number of dimensions.  Additionally the points exist as 

I0s; thus in total n+ 1 types of Ims exist in Xn.  

□ 

Quantification of subsets of the configuration space is essential for the analysis. 

Quantification of subsets of the Ims would provide a useful tool for quantitative analysis. Any 

quantification in Xn is possible through quantifications of subsets of various Ims only. We can 

quantify subsets of Ims by defining appropriate measures on them. Lebesgue measure 

provides trivial quantification of subsets of the Ims.  

 Let’s denote the quantification of a proper subset E of Im given by Lebesgue measure 

on it by Lm(E). For general expression, we can omit the E in bracket as long as possible. Thus 

length, area and volume are L1, L2 and L3 respectively. I0s being just the points, don’t have 

any proper subset. Hence we can’t define the Lebesgue measure on I0; hence there is no 

existence of L0.  

Going a step forward with the lemma 1, an n-dimensional geometrical object i.e. 

proper subset of Xn will have n types of Lms obtained by Lebesgue measures on all the types 

of corresponding Ims (enclosed by boundary of the object) except on I0. For instance, a 3-

dimensional object has length (or perimeter), area (or surface area) and volume. We can 

regard the Lms as trivial geometrical properties (or quantifications); in Xn any subset would 

have at most n types of geometrical properties. 

  Definition 1: In Xn nm, m+1 points as relative position of one point with 

respect to the remaining m points can be specified by single real valued function defined 

as m-dimensional Geometrical Relation (Rm) of the point with respect to the m points. i.e. 

Rm: Xn→ℝ  

Such functions do exist in Euclidean geometry; we can check that distance and angle 

are the functions which fit in above definition. 

Distance is R1 which specifies positions of two points i.e. relative position of one 

point with respect to another point. Angle is R2 obtained by relative positions of three points- 

as of one points with respect to two points. In similar fashion, solid angle is R3 obtained from 

four points (relative positions of a point with respect to three points). Inversely, the angle and 

solid angle yield the set of points on sphere of certain radius. In general, they lead to 

degeneracy of the points along same radius ray for different concentric spheres.  



Distance, angle and solid angle can be defined by using concept of the spheres. Hence 

spheres seem to be useful for defining Rms. Topology can be induced on Xn by considering 

collection of all the open subsets of Xn. Spheres exist in general topological space. Let’s 

denote an m-sphere in Xn by Sm i.e. Sm≡ {x ∈ ℝm : || x || = r}. By a sphere about a point we will 

mean the sphere having centre at the point. 

Rms would be useful for dynamical analysis in Xn as they facilitate specification of 

relative positions of points. Here we conjecture, 

Conjecture: The m-dimensional geometrical relation (Rm) of m points with respect to 

a point x is given by  

                  
m-1

=
r

m-1
m

L (E)
R   (1) 

Where, E is the m vertex open set formed by projections of the m points on a Sm-1 

having centre at x. And r is the radius of the Sm-1 on which E is measured.  

m-dimensional geometrical relation of an open set (E) formed by the m points of 

interest on the sphere can be written as: Rm(E) with respect to centre point of the sphere. For 

consideration of E and quantification Rm, a frame in Xn is essential. The frame should 

facilitate the Sm-1 with the implied point at its centre. 

Lemma 2: Rm defined by the conjecture is a measure in Xn   

Proof: In Xn nm, embedding of Sm-1 is possible. Hence there exists Sm-1 about each 

point. Further, any point can be projected on a Sm-1 along the radial direction.    

Thus any m points can be projected on a Sm-1, so that on the spherical surface, they 

lead to an open set E (analogous curved polygon) fixed by the projections as vertices. Let ∑ 

be a σ-ring of open sets over the Sm-1; then the Rm given by (1) is a function from ∑ to ℝ. Lm-1 

of any E is non-negative and therefore Rm is non-negative as r too is non-negative. i.e for all 

sets E on any Sm-1,  

            Rm(E) ≥ 0  (2) 

As we are considering open sets E, an empty set would be that which contain no 

point. For the empty set ∅ containing no points, Lm-1(∅) = 0; thus by (1),    

       i.e. Rm(∅) = 0  (3) 

For all countable collections 
 i i N
E

 of pairwise disjoint sets in Σ, by the conjecture:   

            ( )
1

m i

i

R E
=

 = 
( )

m-1
1 r

m-1 i
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L E

=

  
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As the sets in
 i i N
E

  are disjoint and Lm-1 is a measure, 
( )

m-1
1 r

m-1 i

i

L E

=

 = 
m-1r

m-1 i

i=1

L E
 
 
   

Hence rewriting the RHS by using the conjecture, 

          ( )
i=1

m iR E =
1

m i

i=

R E
 
 
 

 (4) 

Essential conditions for a function to be measure are non-negativity, null empty set 

and countable additivity (or σ-additivity) which are proved by (2), (3) and (4) respectively. 

Hence the Rm is a measure on Sm-1 embedded in Xn.   

Sn-1 about any point exists in Xn. Rm is defined for m points with respect to the centre 

point (the centre point can be fixed by a specific frame). Any m points in Xn can be radially 

projected on a Sm-1. Sm-1 is subset of same centered Sn-1 of same radius; hence any Sm-1 needed 

to realize radial projections of the m points exists on the Sn-1. Thus Rm can be used for any 

m+1 points in Xn by proper choice of the Sm-1 in certain frame; hence it is measure in whole 

Xn. 

□ 

 

For every value of an Rm, because of continuity of Sm-1 and Lm-1, we can find at least 

one corresponding point in Xn in fixed frame of m points. Hence Rm is surjective map from 

Sm-1 to real numbers, Rm: Sm-1 →ℝ.  

 For m=1, the conjecture is meaningless due to geometry of S0. The end points of a 

diameter (arbitrary line segment) represent S0; but there is no existence of proper subsets of 

S0. This makes Lm-1(E) in (1) meaningless.  Hence the conjecture is meaningless for m=1.  

However, we can identify R1 by using S0 and obeying definition 1. The R1 should be able to 

specify relative positions of two points. Any two points can be considered to lie on a 

corresponding S0. A S0 lies on a line i.e. I1. Thus the Lebesgue measure on subsets of the line 

can be used as R1. That is, distance can be identified as the R1. Such R1 too is a measure in Xn.  

Though the conjecture is meaningless for m=1, we can specially consider R1 to be distance 

between two points as long as it doesn’t make contradiction with the framework.   

Rm and Lm both are measures in Xn. Lm is measure of proper subsets of Im, and Rm is 

measure of relative positions of points with respect to a point in Im. For a dynamical analysis 

where changes happen with time, essential characteristic of a measure to be parameter is that 

continuous variation in its real value should be possible in certain reference frame. Existence 

of Cauchy sequences with real number images is essential for this. Rm is better measure for 

studying dynamics where out of m+1 points, m can be fixed as the references frame and 



variation in positions of the remaining point object can be analyzed as variation in its Rm in 

the frame. 

As n types of spheres exist in Xn, the n types of Rms such that 1≤ m≤ n do exist. 

Variation in position of a point object with respect to certain reference frame can be 

measured in form of its varying Rms. Thus in n-dimensional space, a motion can be 

characterized by any of n types of Rms as suitable. In 3-dimensional space, a motion can be 

described in terms of variation in distance or that in angle or even in solid angle whichever is 

suitable. We can make difference between general direction and ordered direction. Direction 

is the manifestation of variation in positions of a point object in its neighborhood in a 

reference frame. It can be configured by variation of Rms in the frame. An ordered direction is 

special in a sense that it is realized in ordered pattern and can be parameterised by single type 

of Rm. 

Definition 2: A continuous path ϒ in a neighborhood of point x in Xn is defined as an 

m-dimensional ordered direction (Dm) if there exists a bijection Rm: ϒ → ℝ for every point 

xϒ ∈
 
ϒ in a frame.     

When all points on a path are described by values of single typed geometrical relation 

in a frame, then the direction described by the path is to be called as ordered direction. 

Rectilinear path is set of points that can be analyzed by concerning only distances in certain 

frame. Curvilinear path is set of points that can be analyzed by concerning distances and 

angles in a frame. For a random path, there is no frame wherein all the points can be 

described by angles or distances only. On other hand, angular path can be described by 

concerning only angles in a frame. Thus rectilinear and angular are ordered directions, while 

curvilinear and the random aren’t. It is easy to identify rectilinear direction as D1 (as we have 

identified R1 with distance) and angular direction as D2. Such directions are globally valid 

throughout the path. They are not local directions defined by the tangents to path.  

The higher Rms are periodic functions, thus they are surjective maps. Yet they offer 

bijection when considered within single period i.e. as long as the path ϒ in a neighborhood of 

x doesn’t form a loop. Definition 2 defines the ordered directions in neighbourhood of a 

point. Thus, the bijection in the neighborhood suffices here.  

Lemma 3:  The set of points along a Dm forms metric space with a special metric, and 

Cauchy sequences along Dm exist for every point along the Dm.  

Proof: By definition 2, all the points along Dm can be mapped with different real 

numbers by Rm in certain frame. The conjecture implies that all these points lie on a Sm-1. To 

map each point x along the Dm , corresponding set Ex is needed to be realized on the Sm-1. For 

this, the frame defined by m fixed points as m–1 points on the Sm-1 and remaining one at the 

centre of the Sm-1 can be used. In this frame, the open set formed on the Sm-1 by the m–1 

reference points and x is the Ex. This Ex gives Rm(x) by (1). In this way we can get the real 

number Rm(x) in the frame for each point x along the Dm.  



Now in same frame, for x,y  on the Dm, let  

 d(x,y) = | Rm(x) - Rm(y) |  (5) 

Then, d(x,y) = d(y,x). Also, d(x,y) ≥ 0 for any x and y. Further, d(x,y)=0 implies 

Rm(x)=Rm(y). But as per definition 2, Rm on the Dm is a bijection in neighbourhood of x and y. 

Hence Rm(x)=Rm(y) implies x=y. That is, d(x,y)=0 implies x=y. 

Now consider d(x,z) ≤ d(x,y)+d(y,z). It’s true if two of x, y, z are same or equivalently: 

any of Rm(x), Rm(y), Rm(z) are equal. Let’s assume Rm(x) < Rm(z).Then there are 3 possibilities 

as Rm(y) < Rm(x) < Rm(z) , Rm(x) < Rm(y) < Rm(z), Rm(x) < Rm(z) < Rm(y). In the first case d(x, 

z) < d(y, z) and in the third case d(x, z) < d(x, y), so in both these cases we get the strict 

inequality d(x, z) < d(x, y) + d(y, z). In the second case we get the equality: d(x, z) = d(x, y) + 

d(y, z). The case of Rm(x) > Rm(z) yields the inequality in similar way. This proves the triangle 

inequality.    

 This makes it clear that d(x,y) for the points along a Dm bears symmetry, non-

negetivity, identity of indiscernibles, and triangle inequality. Hence set of the points along a 

Dm form a metric space with the special metric defined in (5).  

Furthermore, consider a sequence of points {xi} = x1, x2, x3,… along a Dm in Xn. Then 

the sequence {xi} is identified by varying values of Rm in a constant frame. The points are 

identified by values of Rm in the frame i.e.  =
r

m-1 i
i m-1

L (E )
x  where, Ei is the set defined by the 

point xi and the reference points on the Sm-1 of the frame. As the m points are fixed due to 

frame, only xi determines Ei. As range of Lm-1(Ei) is ℝ, for any positive real number ε and N < 

i, j, Nℕ we can obtain | Lm-1(Ei) – Lm-1(Ej) |  ε. This ensures existence of the Cauchy 

sequence {Lm-1(Ei)}. And as Rm is division of Lm-1(Ei) by just a positive number rm-1, for any 

positive real number ε and N < i, j, Nℕ we have 
m-1 m-1

( ))

r r

m-1 jm-1 i
L EL (E

−   ε, equivalently we 

have |Rm(xi)– Rm(xj)|  ε. This proves that the Cauchy sequence along a Dm exists.   

□ 

As all the points along a Dm are described by single type of geometrical relation i.e. 

Rm, such direction can be parameterized by the Rm in the frame. As Cauchy sequences for the 

Rms exist, their continuous variations are possible.   

If a point object is taking different positions x  varying with time, then the path ϒ 

describes the motion. Thus the motions of point objects along the Dms can simply be defined 

as ordered motions. Then according to definition 2, an observer in n-dimensional space can 

manifest m-dimensional ordered motions such that 1 ≤ m ≤ n. Hence in n-dimensional space, 

one can manifest at most n types of ordered motions (and directions). Thus in 3-dimensions, 



one can manifest 3 types viz. rectilinear (D1), angular (D2) and solid angular (D3) of ordered 

motions.    

Vector has magnitude and direction. We can generalize the notion of vector while 

preserving the algebraic properties. The directions Dms would be useful for 

interpreting/identifying algebraic vectors in Xn.   

Theorem 1: In a frame in Xn, continuous variation in Rm m ≤ n indicates direction 

along the. Im. 

Proof: In a frame in Xn the Rm is a map from a Sm-1, defined for all points on the Sm-1.   

m-1r

m-1
m

L (E)
R =    E is the set formed by the m points on the Sm-1 in the frame. Lm-1(Ei) is 

conventionally called as (m-1)-surface area. It for entire Sm-1is given [1] as  

( )11 -m- mL S  =
m/2

m 12
r

m

2

−

 
 
 

  (6) 

where, Γ denotes the gamma function. For a set Ei formed on the sphere, the Lm-1(Ei) 

will be fraction of (6).  

i.e.      Lm-1(Ei) =
m/2

m 1i2f .
r

m

2

−

 
 
 

  , i0 f 1 
 

 

putting this in the conjecture (1) we get 
m/2

i2f .

m

2

mR =

Γ



 
 
 

       (7) 

This new expression (7) of the Rm indicates that in a frame, Rm is defined irrespective 

of radius of the sphere. As Sm-1 exists in m-dimensional space (and concentric Sm-1s cover the 

m-dimensional space), now Rm can be thought as a function on whole m-dimensional space 

spanned by the Sm-1s. But m-dimensional space embedded in higher dimensional space is 

nothing but an Im. Thus Rm is a morphism from the Im to ℝ. This would be a surjection from 

Im to ℝ.   

 Thus any point x in an Im can be identified by a value of Rm as the Rm(x) in the frame. 

Due to existence of Cauchy sequence for Rm in a neighborhood of x on Sm-1 of certain radius, 

the Rm will either increase or decrease or can be unchanged for each neighboring point. We 

can assign directions to such variations, suppose we assign direction Dm to manifestation of 

increasing Rm, then -Dm will be manifestation of decreasing Rm. No change in the Rm of 

neighboring point will not lead to manifestation of the direction Dm as on the ordered path Rm 



is bijection according to definition 2. Conclusively, any change in Rm manifests single 

direction Dm in (or along) the Im. And, no change in Rm manifests no Dm.  

□ 

Dm is actually an algebraic notion for the direction realized by varying Rm. For 

manifestation of direction along the Im, there should be continuous variation in Rm so that Dm 

is continuously manifested. If value of Rm for neighbouring points remains same, then no Dm 

is realized.  

Im is collection of points that is equivalent to m-dimensional space. Thus coordinate 

chart on an Im is possible by identifying points in Im with elements of ℝm as C : mI →  ℝm. But 

Theorem 1 and eq. (7) suggest that the points in Im can be identified by Rm with elements of 

ℝ i.e. mC :m mR I →  ℝ. Thus Rm may be thought as the 1-dimensional co-ordinate system 

for m-dimensional space; but it has non empty kernel, at least all points along a radius of the 

Sm-1 are mapped to same element of ℝ. Further, all the points having same Rm (those don’t 

manifesting the Dm) are too mapped to same element of ℝ. However, we get a useful 

corollary from theorem 1. 

Corollary 1.1: Any m-dimensional space can be identified with set of real numbers by 

Rm as the chart mC :m mR I →  ℝ  in certain frame.  

The geometrical relations provide trivial real numbered chart for corresponding 

dimensional space. 

All points in neighbourhood of a point nXx  having same Rms in the frame 

constitute to kernel of the chart Cm. As Rm is same for all points along a radial direction, it is 

inevitably non-injective surjective map. A good coordinate chart is needed to be injective and 

surjective. In order to achieve this, extra components should be considered in the chart 

amenable to distinguish the kernel points. This can be done by considering extra components 

from lower dimensional geometrical relations i.e. Rm’s such that m’< m in the chart. For 

example, points along same radial direction in the frame having same Rm can be distinguished 

by considering the radial distance (i.e. R1) as an additional component of the chart. Two 

points having same Rm in a frame can be distinguished by values of Rm’ in a subframe. By 

subframe we mean subset of the frame amenable to provide m’ fixed reference points in order 

to quantify Rm’ of a point. By adopting lower dimensional geometrical relations in the chart in 

order to make it bijective, we would be needed to consider all the m types of Rm m=1,2,3..m. 

Thus eventually we get map of Im to ℝm. In other words, set of all kinds of the geometrical 

relations would provide a potential co-ordinate chart for  C : mI →  ℝm.  

Realization of a path in a neighborhood can be interpreted as the direction defined by 

the path. Before exploring characteristics of the directions, let’s make two definitions. 



Definition 3:  A set of directions S= {Di} near a point is to be called as mutually 

exclusive directions if realization of a direction Dj ∈
 
S along a path in Xn implies no 

realization of all other directions Di≠j S along same path. 

Definition 4:  A set of directions S= {Di} near a point is to be called as collectively 

exhaustive directions if no direction other than elements of S can be realized along any path 

in neighborhood of any point in Xn. 

Definitions of mutually exclusive and collectively exhaustive directions can be used 

for ordered directions. This is because the ordered directions are special type (subsets with 

respect to underlying paths) of general directions.   

Theorem 2: In n-dimensional space, continuous variation in position of a point 

object can lead to manifestation of n types of mutually exclusive ordered directions. 

Proof:  In an n-dimensional space Xn, Sm-1 such that m being at most n exists. Thus 

highest dimensional spherical path would exist on Sn-1. The direction along Sn-1 configured by 

continuously varying Rn in a frame is Dn.  As implied by definition 2, Dn isn’t manifested on 

the continuous path defined by the non varying Rn value because of conditional bijection of 

Rn in definition of Dn. 

If in neighborhood Nx of a point x in Xn, Rn values of all the points in a frame are 

same, then Nx constitutes kernel of the direction implied by Rn. The n reference points being 

constant in the frame, the set E is identified by point x only. Hence it is fair to call the Lm(E) 

be Lm of x i.e. Lebesgue measure of the point.  From (1) we infer that same Rn implies same 

Ln-1 of the points in the frame. If a Lebesgue measure of continuous (neighbouring) points is 

same, then we can find a subframe wherein an ordinate (in same dimension) of all the points 

is same. That is- all those points lie in a lesser dimensional cross section of the space. The 

cross sectional space accommodating all those point has number of dimensions one lesser 

than that of the prior space. In short, if Lm of continuous points is same, then all those points 

lie in single Im-1 (i.e. a lesser dimensional section of the Im). Thus the points in Nx having 

same Rn should lie on cross section of the Sn-1 with the In-1 containing Nx. Cross section of the 

Sn-1with In-1is nothing but the Sn-2. Hence Nx lies on a Sn-2 which is subset of Sn-1. Frames for 

Sn-2 are subsets of frames for Sn-1; thus in the same frame we can obtain the map n 1 : xR N− →ℝ 

for the points which do not lead to manifestation of Dn. Continuous varying Rn-1 implies 

direction Dn-1 along the Sn-2. The general Rms aren’t injective (and bijective) but the Dms are 

defined by the bijection i.e. Dms pick up the subsets on which corresponding Rms are 

bijective. Hence on the Sn-2 (equivalently in Nx), there will be some continuous points (let’s 

identify their set be Nx’) leading to a path for which Rn-1 is constant and not manifesting of 

Dn-1. This is possible only when Nx’ n 3 n 2S S− −  . Then paths on the Sn-3 for which Rn-2 

uniquely identifies the points, are manifested as Dn-2. But yet there would be continuous 

points having same Rn-2. Such points must lie on Sn-4 leading to Dn-3. Following this scheme, 

on the most general sphere i.e. Sn-1, different ordered directions are manifested as Dn, Dn-1, 



Dn-2,…,D3, D2. Direction D2 is manifested on S1, and on S1, there are no two points having 

same R2 i.e. angle in a frame.  

 In addition to these ordered directions, a type of ordered directions is possible along 

the paths that change radius of the spheres considered so far. This is manifestation of 

direction along a straight line , in terms of distances as R1: →ℝ. Straight line is nothing 

but I1. Such rectilinear path is manifested as primary ordered direction D1. Hence there are n 

types of ordered directions Di , 1  i  n, i ∈ ℕ in Xn.  

When Rm doesn’t lead to identification of difference in points along a path, then we 

adopt Rm-1 to identify the points. Equivalently when Dm is not manifested along a path, then 

Dm-1 can be manifested; and sequentially when Dm-1 isn’t manifested, we may manifest Dm-2 

by employing Rm-2. This sequence is followed till manifestation of D1. Further, any two 

neighboring points having varying Rm don’t lie on same Sm-2 (or lower spheres), thus they 

can’t be distinguished by Rm-1(or lower dimensional geometrical relations). That is when Dm 

is manifested, then no lower dimensional ordered direction is manifested. Hence no two 

ordered directions Di are manifested on same path in the frame. In other words, the n types of 

ordered directions Dis realized in Xn are mutually exclusive. 

□ 

In Xn, there exist infinitely many Dms for any m < n. This is because with this 

condition, infinitely many Sm-1s exist about a point in Xn.  While there only one Sn-1 exists at a 

point; thus single Dn is manifested. This is a useful corollary.  

Corollary 2.1: In Xn there exists infinitely many Dms for specific m 1  m < n, m∈ ℕ, 

but only one Dn.  

Ordered directions are manifested by paths on spheres or along straight lines. But 

there are general paths which are neither along any sphere nor along lines. Such paths 

manifest directions different from ordered directions. Therefore different directions can be 

manifested in Xn which aren’t ordered direction. This leads to following proposition. 

Corollary 2.2: The n types of ordered directions manifested in Xn aren’t collectively 

exhaustive. 

The corollary 2.1 states existence of infinitely many Dms for certain m in higher 

dimensional space. Existence of infinitely many Sm-1s having same centre is the reason behind 

this proposition. The ordered direction along each Sm-1 is regarded as different from those 

along others while all of them belonging to same class due to dimensionality m. For 

analytical purpose, relationship between various Dms is essential. For now, we can make two 

definitions which would help for establishing relationship between different Dms. 



Definition 5:  An m-dimensional ordered direction Dm
a is defined to be dependent on 

another m-dimensional ordered direction Dm
b if projection of any path along Dm

a gives 

certain path on Dm
a.  

Definition 6:  An m-dimensional ordered direction Dm
a is defined to be independent 

of another m-dimensional ordered direction Dm
b if projection of any path along Dm

a gives no 

path on Dm
a.  

 Projection of a path along Dm
a on Dm

b is characterized by extremities of the path. The 

projection is realised by the right angle at the intersection with target entity. If projections of 

both the path extremities lie on different points along Dm
b then the certain path length of 

projection is realized. If both the projections lie at same point along Dm
b then no path on Dm

b 

is realized. A rough idea of above definitions is that the Perpendiculal directions are 

independent of each other, while inclined directions have some interdependency.  

Path length along Dms can be measured in terms of the metric induced by Rm. 

Independent Dms have projection of zero path length on each other, as there is absence of the 

projected path. When two Dms are dependent on each other, projections of the path lengths 

along them on each other will differ from the original path lengths. More or less difference in 

the magnitude of projection should imply more or less dependency respectively. But we get a 

special case where path length of the projection is exactly equal to original path length. This 

case can be used for defining equivalence between both the Dms, where the path lengths 

along Dms are completely depend on each other. By definition 2, each point along a Dm is 

determined by Rm. Thus equal path lengths in terms of Rm imply equivalence of all the points 

along the paths.    

Definition 7:  Two m-dimensional ordered directions Dm
a and Dm

b are defined to be 

equivalent if projection of any path along Dm
a gives equivalent path on Dm

b and vice versa. 

The equivalence of paths is determined by equality of path lengths. 

 

Theorem 3: For any certain m, different Dms obey triangle law of addition in Xn m < 

n, if addition impies successively traversing paths along the Dms . 

 i.e. if points nXx, y,z , then  

    Dm(xy) +Dm(yx) = Dm(xz)    (8) 

Where, Dm(ij) implies that the direction along the path going from i to j is realized as 

Dm. 

Proof:  A Sn-1 having centre at point O accommodates many Sm-1s for every m < n.  

The cross section of Sn-1 made by an Im is set of all points in the Im equidistant from O. Set of 

all points in Im equidistant from a point is nothing but a Sm-1. If the cross section contains O, 

then radius of Sm-1 is same as radius of the Sn-1. Otherwise Sm-1 has smaller radius, and has 



centre at projection of O on the Im. Thus every cross section of Sn-1 made by an Im is a Sm-1.  

As Dm is manifestation of path along Sm-1 (continuously varying Rm), the path along arbitrary 

cross section of Sn-1 made by a Im leads to manifestation of Dm. Different cross sections of a 

Sn-1 made by different Ims in Xn lead to manifestation of different Dms. Sn-1 has infinitesimally 

Sm-1 structure in the cross section with Im. 

 Consider left hand side of the equality as Dm(xy) +Dm(yz). It implies that in Xn, Dm 

along paths xy & yz exists. Thus existence of the bijections Rms from these paths in a frame 

are evident. According to the conjecture (which is used for defining Ds), all the points along 

path xy should lie on a Sm-1 of radius r. Similarly all points along path yz too lie on a Sm-1 of 

same radius r as it goes through common point B. Hence points x and z lie on the same sphere 

of radius r. As arbitrary cross section of Sn-1 made by an Im leads to manifestation of Dm , for 

any two points x & z in the frame we can get a cross section to manifest Dm along xz. 

Infinitely many cross sections going through two such points are possible. In order to be 

consistent with left hand side of (8), Dm should be realized on a Sm-1 of same radius. This can 

be achieved if the Im goes through O. Thus we get a path on Sm-1 of radius r going from x to z 

all the points along which can be bijectively identified by the Rm in the frame.   

Conclusively, we have Dm(xy) +Dm(yz) = Dm(xz)  for any nXx, y,z .  

□ 

We learn that the cross section of Sn-1 made by the Im passing through centre of the Sn-

1 is of importance over the cross sections by other Ims. Let us define such special cross 

sections those would be useful for analysis of Dms. 

Definition 8:  The cross section of Sn-1 made by an Im passing through centre of the 

Sn-1 is defined as an m-1 great sphere (Gm-1) lying on the Sn-1 for 2≤ m<n. 

Gm is generalization of great circles. Infinitely many Gms are possible on Sn-1 due to 

various orientations of the Ims passing through O. It is easy to check that radius of each Gm is 

same as the Sn≥m on which it lies, as it has centre at O and contains points on Sn-1. Thus a Gm 

goes through diametrically opposite points of Sn-1.  

Theorem 4: All the independent Dms exist at each point on Sn-1 having equivalence 

relation with the independent Dms existing at all other points on the Sn-1. 

Proof: Dms are manifestations of paths along Sm-1s. An Im is determined by the m+1 

points all of which don’t belong to a single Im-1. Thus arbitrary m points on the Sn-1 that don’t 

lie on a single Im-1, along with the centre O determine an Im that can generate the Gm-1 for the 

m points. If the points belong to single Im-1, then Gm-2 is generated; there m-1 points suffice to 

specify Gm-2. Even lesser points suffice to specify a Gm-3. Only two points suffice to generate 

a G1 i.e. great circle. Also, any Gm-1 has sufficient number of points to specify the Im 

containing it. This number is m+1. All the m+1 points can be on the Sn-1 or equivalently, m 

points on the Sn-1 and remaining one at the centre O. Second set seems useful for analysis. 



Thus hereafter we will stick to proposition that the m points on a Sn-1 and the centre O 

determine a Gm-1. It is also true that the m points on Sn-1 alone can not determine a single Sm-1, 

they need one more point to specify a Sm-1. 

Assume radius of the Sn-1 be r. Consider a Gm-1 specified by any m points on Sn-1 and 

O. Path along this Gm-1 leads to realization of a Dm. To distinguish this specific Dm from 

other Dms on the Sn-1, label it Dm
A. Also, Gm-1

A is label for the Gm-1 specified by the m points.   

Cross section of Sn-1 made by a Im parallel to Gm-1
A is Sm-1. As this Sm-1 doesn’t go 

through O, its radius is smaller than that of Gm-1
A. Radius of such Sm-1 decreases as the 

parallel distance between the Im and Gm-1
A increases. This is because, centre of such Sm-1 is at 

the gradually increasing distance <r from O (in Perpendiculal direction from Gm-1
A) and any 

point on Sm-1 is distance r from O. For a constant hypotenuse triangle, increase in one side 

implies the decrease in other. Let’s denote the set of Sm-1s parallel to Gm-1
A by {Sm-1

A}. 

Gradual decrease in the radius with increase in the distance should lead to a zero radius. This 

is because, as Gm-1
A passes through O, an Im can’t intersect Sn-1 at a parallel distance more 

than r. By definition of Sn-1, there should be only one point at distance r from O. Let’s call 

this point as a pole with respect to Gm-1
A. There should be two poles with respect to Gm-1

A 

determined by the parallel progressions in opposite directions. Both the poles are 2r apart 

from each other, thus they should be diametrically opposite. Both the poles exist in the 

intersections of Ims with Sn-1 that are parallel to Gm-1
A. Moreover, the poles contain the entire 

such intersections. A Im can be drawn passing through both the poles. Such Im is 

Perpendiculal to the Sm-1s realized by the parallel progressions from Gm-1
A. Specially, it is 

Perpendiculal to Gm-1
A. Thus, any Im going though both the poles should be Perpendiculal to 

Gm-1
A.  The Ims going through the diametrically opposite poles will go through O and will 

generate a Gm-1. But m+1 points are needed to specify any Im or Gm-1. As only two points are 

there to generate this Gm-1, there is no certain such Gm-1 for m>1. Thus there are infinitely 

many such Gm-1s specified by different points in addition to the poles. All such Gm-1s are 

Perpendiculal to Gm-1
A. Let’s denote set of all these Gm-1s by {Gm-1

A⊥}. As Gm-1 is Sm-1, paths 

along them lead to manifestation of Dms. Thus all of {Gm-1
A⊥} lead to Dms, let {Dm

A⊥} be 

their set. All {Dm
A⊥} are Perpendiculal to Gm-1

A and so to Dm
A, thus projections of them on 

Gm-1
A would give zero path length along Dm

A.  Hence all of {Dm
A⊥} are independent 

directions with respect to Dm
A.   

Each of {Gm-1
A⊥} runs between both the poles with respect to Gm-1

A. Thus each of 

them should cross Gm-1
A. As each of {Gm-1

A⊥} is perpendicular to Gm-1
A, no two of {Gm-1

A⊥} 

will cross Gm-1
A at same locations. This property can be used to distinguish different of {Gm-

1
A⊥}. We can use the metric induced by Rm to distinguish different points on Gm-1

A. Suppose 

one of {Gm-1
A⊥} crosses Gm-1

A at x, then it can be identified by Rm (x) on Gm-1
A. Cross section 

of two Gm-1s will be a curved Im-2 (as it is the cross section of 3 geometrical entities: two Ims 

of the Gm-1s and the Sn-1), and no Sm-1 can exist in Im-2. Existence of the set Ex on Sm-1 is 

essential for getting Rm (x) according to (1). Due to inexistence of Sm-1, Ex formed by x on Gm-

1
A is empty. Thus Rm (x) is zero. Though Rm (x) is zero, for other cross sections on Gm-1

A, it 

provides a reference point x. If another of {Gm-1
A⊥} crosses Gm-1

A at y, then x and y existing 



on a Sm-1 facilitate the set Exy on its surface. Other reference points for configuration of Exy are 

provided by the cross section of Gm-1
A at x.  Thus, Rm (y) will be nonzero for all y. In this way, 

all cross sections of Gm-1
A with each of {Gm-1

A⊥} can be distinguished by the difference Rm 

(i)- Rm (x) or Rm (x)- Rm (i).  Each of {Gm-1
A⊥} can cross Gm-1

A at two diametrically opposite 

locations on Gm-1
A. Thus same element of {Gm-1

A⊥} can have two different values of Rm (x)- 

Rm (i). These two different values distinguish the two halves of the element of {Gm-1
A⊥} lying 

along different directions between the poles. Thus values of the metric Rm (x)- Rm (i) 

configure two halves per element of {Gm-1
A⊥} rather than the whole element. Both the halves 

disjointly cover the corresponding element. Such metric facilitates measurement of the 

projections of path lengths on Gm-1
A as projected by{Gm-1

A⊥}. 

It isn’t general to consider the Sm-1s parallel to Gm-1s
A across only one direction. 

Multiple parallel such dimensions are possible on Sn-1 if m < n-1. If possible, the elements of 

{Sm-1
A} also exist in a direction perpendicular to all the elements of {Sm-1

A} considered till 

now. Similar to as discussed above, we get the Gm-1
A⊥s in this new direction. But all these Gm-

1
A⊥s are perpendicular to previously considered Sm-1

As, hence are perpendicular to all the Gm-

1
A⊥s in the previously considered dimension. Let’s denote the new set of Gm-1

A⊥s by {Gm-

1
A⊥⊥}. All of {Gm-1

A⊥⊥} are Perpendicular to all of {Gm-1
A⊥}. If possible, there can be 

numerous such classes like {Gm-1
A⊥⊥⊥}, {Gm-1

A⊥⊥⊥⊥} etc, elements of all of them being 

mutually perpendicular. Also, all elements of {Gm-1
A⊥}, {Gm-1

A⊥⊥}, {Gm-1
A⊥⊥⊥} etc. are 

perpendicular to elements of {Sm-1
A}. It can be checked that one element from each of {Gm-

1
A⊥}, {Gm-1

A⊥⊥}, {Gm-1
A⊥⊥⊥} etc. and {Sm-1

A} exists at each point on the Sn-1 due to perfect 

symmetry of Sn-1. The m-dimensional ordered direction exists along all Gm-1s. Thus such 

directions exist along all elements of above sets. Let’s denote set of the ordered directions 

along {Gm-1
A⊥⊥} by {Dm

A⊥⊥} and {Gm-1
A⊥⊥⊥} by {Dm

A⊥⊥⊥} and so on. With similar reasoning 

that made {Dm
A⊥} independent of Dm

A, {Dm
A⊥⊥}, {Dm

A⊥⊥⊥} etc. are also independent 

direction w.r.t. Dm
A. And also, Dm

A, {Dm
A⊥}, {Dm

A⊥⊥}, {Dm
A⊥⊥⊥} etc. are mutually 

independent directions.  

The elements of {Gm-1
A⊥} facilitate projections of a path from Gm-1

A on {Sm-1
A}. Such 

projections preserve the path length due to the compensating radius of certain Sm-1
A. Thus 

from definition 7, the Dms along all of {Sm-1
A} are equivalent to Dm

A. Alternatively, Dm
A 

exists along Gm-1
A and all of {Sm-1

A}. 

All of {Dm
A⊥} are perpendicular to Dm

A, hence all of them can be induced to have a 

relation with respect to Dm
A. Reflexivity, symmetry and transitivity of such relation among 

all elements of {Dm
A⊥} are compatible with the fact that the paths along them get equally 

projected on each other by {Sm-1
A}. Thus all of them are interchangeably independent of Dm

A, 

and share equivalence relation. Therefore {Dm
A⊥} can be written as a single direction Dm

A⊥. 

In similar way, all elements of {Dm
A⊥⊥} are independent directions of Dm

A and Dm
A⊥ sharing 

the equivalence relation. Thus they can be represented by single direction Dm
A⊥⊥. Similarly 

all of {Dm
A⊥⊥⊥}, {Dm

A⊥⊥⊥⊥} etc can be represented by Dm
A⊥⊥⊥ , Dm

A⊥⊥⊥⊥ etc. respectively. In 

summary, Dm
A, Dm

A⊥, Dm
A⊥⊥, Dm

A⊥⊥⊥ etc. are the only mutually independent Dms on Sn-1, 

which have existence at each point on Sn-1 due to elements of {Sm-1
A}, {Gm-1

A⊥}, {Gm-1
A⊥⊥}, 



{Gm-1
A⊥⊥⊥} etc. Hence all the independent Dms exist at each point on Sn-1 having equivalence 

relation with the independent Dms existing at all other points on the Sn-1. 

□ 

Choice of the Gm-1
A in above discussion is arbitrary. Set of Dm

A, Dm
A⊥, Dm

A⊥⊥, 

Dm
A⊥⊥⊥ etc depend on this choice. There would be symmetry about this choice on Sn-1, but for 

now we can consider this choice be part of the frame of Dms. We can proceed towards next 

result. 

Theorem 5: Algebraic structure exists for the Dms with path lengths on Sn-1, for 

certain m.  

Last theorem proves that all the independent Dms exist at each point on Sn-1. Dm is 

realization of changing Rm along certain Sm-1. This can be casted into realization of moving 

certain path length along the Sm-1 by introducing a doublet consisting of the Dm and Rm. 

Consider a set  

P = {pa = pa ⊗ Dm
a : Dm

a ∈{ Dm
A, Dm

A⊥, Dm
A⊥⊥, Dm

A⊥⊥⊥ etc.}, pa ∈ ℝ } (9) 

here real number pa can be attributed to certain path length along the Dm
a. Then each 

pa can be expressed in terms of Rm along the Dm
a. According to theorem 4, any Dm

a exists at 

each point on Sn-1. And as Dm
a is along a Sm-1, the real valued Rm can be traversed along the 

Dm
a at each point on Sn-1. Thus existence of pa at x can be attributed to traversing Rm of 

magnitude pa along the Dm
a from x.  

For pa and pb ∈ P, we can consider an operation of successively following the 

magnitudes and directions. That is if ‘+’ denotes this operation, then 

pa + pb ➔ traverse Rm of pa along Dm
a, then traverse Rm of pb along Dm

b on Sn-1. 

We can call this operation is addition. Further, we can define another operation (.) for 

any c ∈ ℝ as  

c . pa ➔ traverse Rm of pa multiplied by c along Dm
a on Sn-1. 

This operation can be called as scaling. Note that both the operations are possible at 

any point on Sn-1 due to existence of all Dm
a s of (9) at all the points. As these operations are 

possible across Sn-1 along with existence of all p ∈ P there, it is the algebraic structure existing 

for the Dms with path lengths on Sn-1. 

□ 

Due to above algebraic structures, independent Dms can be combined to generate 

dependent Dms. Hence all the Dms spanning the Sn-1 can configured in terms of Dm
A, Dm

A⊥, 



Dm
A⊥⊥, Dm

A⊥⊥⊥ etc. of the frame. Thus the Dms along Sm-1s inclined to Gm-1
A also get 

configured algebraically. Due to existence of all Dm
a s of (9) at all the points along with the 

addition and scaling, the algebraic structure exists for all the Dms.  

Path along any Dm existing on a Sm-1 of different radius can be projected on the Sm-1of 

radius r by radial projections. Radial projections bijectively map each point between the 

spheres of different radii. Therefore the paths remain equivaleent and of equal lengths due to 

the same proportion of the radii and the Lebessgue measures on the surfaces. Thus paths 

along the Dms existing on ‘coplanar’ concentric Sm-1s are equivalent. This makes such Dms 

equivalent according to definition 7. Hence the algebra of Dms spans whole Xn rather than 

mere Sn-1.  

 

Theorem 6: For a certain m, set of the Dms with consideration of specific path length 

forms vector space.  

Proof: Consider a set Vm of all the Dms in a frame on Xn having associated with 

specific path length on the Sm-1s.        

i.e.  Vm = {va = v ⊗Dm
a: v ∈ ℝ, and Dm

a ∈ {Dm}} (10) 

Elements of Vm are m-dimensional ordered directions Dm
as having certain path length 

v. By definition 2, certain Dm is realization of varying Rm. Furthermore, Rm results to metric 

along a Dm by lemma 3. Thus the path length can be quantified in terms of Rm of path 

extremities in the frame. Hence the elements of Vm can be considered as a direct product of 

an ordered direction and the path length along it. Many Dms are possible depending on 

number n of dimensions of the configuration space Xn in which the set Vm is considered (as 

stated by corollary 2.1). Algebraic structure exists for Dms with path lengths as per the 

theorem 5. Thus we can explore addition and scaling among elements of Vm.   

The product in (10) obeys rules of multiplication, thus -va implies that either v or Dm
a 

has negative sign when compared to va. If Dm
a is realization of increasing Rm on a path, then 

the -Dm
a is manifestation of decreasing Rm on same path. If a point object traverses path of 

length v along Dm
a, then further traversing same v along -Dm

a (or equivalently going –v along 

Dm
a) will bring it to the initial point. Thus va & - va are inverses of each other under addition.    

Denote elements of Vm having either v = 0 or absence of Dm by 0. Then addition of 0 

to a va implies no variation in va. Also, addition of va to 0 implies net va. Thus for any va

 
∈ Vm 

we have va + 0 = 0 + va = va i.e. 0 is identity element of Vm under addition.    

The Sm-1s are obtained as arbitrary cross sections of higher sphere Si>m made by Ims. 

As a Sm-1 represents the Im in which it exists, two Sm-1s are perpendiculal or inclined only if 

corresponding Ims are so. Therefore such spheres can be adopted to facilitate projections of va 

∈ Vm at desired points in Sn-1 thereby in Xn. Discussion in proof of the theorem 4 suggests 

existence of a unique Gm-1 passing through a point and perpendicular to a Sm-1. Thus 



projection of a va on every other vb is defined due to existence of unique Im perpendicular to 

the Dm
b (i.e. to vb) and going through the extremity of va. A perpendicular Gm-1 would pass 

through the Gm-1 (e.g. along which vb lies) at two diametrically opposite points. In order to 

avoid degeneracy of the projection, the projection should be considered which doesn’t go 

through any pole while projecting. Thus any point gets projected to a single point on the Gm-1. 

In this way, projection of a va on every other vb is defined. 

  From theorem 5, algebraic structure of addition and scaling exists for Dms with path 

lengths. Thus the same exists on Vm. Due to this, any va is equivalent to corresponding 

addition of the path lengths along the independent Dms. All the independent Dms at the 

extremities of path lengths on each of independent Dm form a closed parallelogram (or its 

higher dimensional analogue); where parallel coplanar sides represent same element. Then a 

diametrically opposite point of the parallelogram can be reached by the addition in variety of 

order of the elements. Thus order of addition doesn’t matter for elements of Vm existing 

along independent Dms.  

Consider a point o on the Sn-1 relative to which path lengths v of all va are defined. 

This is possible because all Dm
as can be projected near o, and Rm results to same metric along 

each of them. Let points x and y are described by vx and vy
 ∈ Vm respectively in this frame i.e. 

there is equivalence ox ≡ vx = vx⊗Dm
a, and oy ≡ vy = vy⊗Dm

b. Both vx and vy
 can be resolved 

along the independent Dm
as. Order doesn’t matter for addition of the resolved elements along 

independent Dm
as. Also the order doesn’t matter for addition of real numbers. Thus vx + vy 

should take to same point, as vy + vx should i.e. vx + vy = vy + vx. This is commutativity under 

addition of elements of Vm.  

Theorems 4 and 5 imply equivalence of all elements of Vm at all points on the Sn-1. 

Hence addition of the elements is associative under addition. 

Elements of Vm are direct products of real numbers and directions, and the algebraic 

structure of scaling exists. Thus Vm holds the characteristics of scalar multiplication: 

compatibility of scalar multiplication with field multiplication, identity element of scalar 

multiplication, distributivity of scalar multiplication with respect to addition, distributivity of 

scalar multiplication with respect to field addition.  

From above, all the axioms for a set to be vector space are satisfied and we can 

conclude that Vm is a vector space.  

Any point x in the Xn can be identified with an element vx of Vm in certain frame.   

□ 

There several Dms are possible depending on dimensionality n of the space. Different 

vector spaces Vms having different value of m lead to different realizations of the vector 

elements. For instance,. elements of V2 have angular direction while those of V3 have 

direction enough to span 2-sphere. Elements of V1 have rectilinear direction, though they 



don’t exist on Sn-1 and their framework is general. Dimensionality of the configured elements 

of vector spaces is inherently intrinsic due to directions Dm in their definition. Thus we can 

explicitly define the geometric vectors based on the Euclidean dimensions spanned by single 

element in the configuration space. 

Definition 9: The m-dimensional vector is defined as element of Vm having direction 

along a Dm.  

According to Theorem 2, in n-dimensional space we manifest n types of ordered 

directions. Hence in n-dimensional space we have n-types of vectors viz. m-dimensional 

vectors with m ≤ n ∈ℕ. Also according to Theorem 1, Rm indicates direction along the Im. 

There exists only one In, hence only one Dn in Xn. Therefore Vn has only one direction for all 

elements. Thus Vn is not much useful for analysis in Xn as the Vms are.   

We identify the scalar number field v in definition (10) with range of Rm along Dm
a in 

same frame. For utilization of Vms for analysis on Xn, every xXn should be identified with 

single element of Vm. We have a simple scheme to do so. Any xXn can be considered on a 

path defined by single Dm. For this, we need the m fixed points on the Sn-1 for quantification 

of Rms. Then any point x will lie along specific Dm specified by cross section of 

corresponding Im with the Sn-1. The m reference points fixed by the frame and x define the 

cross sectional Im. In this way specific direction Dm
a for every x is identified. The scalar value 

corresponding to x can be identified with path length given by Rm of the x from the reference 

point on the Sm-1. As Rm is bijection upto period on the Dm, no two points have same path 

length in same direction (Dm
a). Hence in order to identify points in Xn with elements of Vm, 

we should use the mapping v: Xn→Vm given by  

v(x) = Rm(x) ⊗ Dm
a(x)  (11)

   

Where Rm(x) is the path length of x along the Dm
a w.r.t. the reference points of the 

frame. Thus a vector space is direct product of the directions Dm
as and range of Rm for points 

along corresponding Dm
as in the configuration space.  

Theorem 7: In Xn, Vms  m ≤ n ∈ ℕ  are Banach spaces having the metric topology.  

Proof: Theorem 6 concludes existence of vector space Vm in Xn and definition 2 

defines it for all m ≤ n ∈ℕ. Elements of Vm can be configured in Xn by (11). Further, the 

configuration (11) facilitates a possible mapping |v|: Vm 
→ℝ for every element of Vm as 

|v(x)|= Rm(x). In Xn, it is the Rm(x) along Dm
a.   

As Rm is a measure by lemma 2, for any v ∈ Vm, always |v(x)|= Rm(x) 0 i.e. |v(x)| is 

non negative. Further, when |v(x)|= Rm(x) = 0, it means that the Lm-1(Ex) concerned by the 

conjecture is zero. In such case, no separation of the point x from the reference point occurs; 

thus no manifestation of any path by x and hence absence of any Dm. Thus in such case the 



element v has no direction i.e. v(x) = 0. In other words, Rm(x) = 0 and absence of any Dm in 

(11) yields v(x) = 0. Conclusively we get non degeneracy of |v(x)| i.e. |v(x)| = 0  v(x) = 0. 

For a scalar λ, we have |λv(x)| = λ Rm(x) = λ|v(x)|. This is scalar multiplicativity of |v|. 

Further, for any x, y ∈ Xn, v(x)+v(y) =  Rm(x)⊗Dm
a + Rm(y)⊗Dm

b. |v| yields path 

length along the Dm
a specified by v. Algebraic structure exists for the path lengths along Dms 

and v(x) and v(y) are elements of a vector space, hence v(x), v(y) and v(x)+v(y) form a 

triangle on surface of Sn-1. We have the inequality for the path lengths along the triangle i.e. 

|v(x)+v(y)| ≤  |v(x)| + |v(y)|.  

As |v| has essential properties of non negativity, non degeneracy, multiplicativity and 

triangle inequality on Vm, |v| is norm on Vm. Rm of each element makes Vm a normed vector 

space. This norm induces a metric ( ) ( )( )d ,v vx y  = ( ) ( )−v vx y = ( ) ( )−v vy x  and makes 

Vm a metric space. This induces the usual metric topology on Vm.    

Consider a sequence {v(xi)} = v(x1), v(x2), v(x3),… of elements of Vm for points xi in 

Xn. Then due to continuity of Xn, there exists some index N for every real r > 0 such that 

( ) ( )( )d ,v vi jx x  <  r. whenever i and j are greater than N. Thus {v(xi)}  is Cauchy sequence, 

and d is complete metric. This suggests that Vm with |v| is complete normed space i.e. Banach 

space. 

□ 

It is worth to note that the mapping (11) is surjective for the range being algebraic 

vector space, due to surjectivity of the norm Rm. However, it is bijective upto the period of 

Rm. Such period is given by (7) where fi=1. Thus, an arbitrary algebraic vector space can be 

configured as Vm in Xn if maxima of the scalar field fall under limit of such period. For the 

general scalar field, the algebraic elements those are the period apart (in terms of the norm 

induced metric) get configured to the same element of Vm configured in Xn. However, 

geometry in Xn explicitly leads to Vm as discovered in last theorems.  

From this point, one can derive all the aspects of conventional vectors spaces for Vm. 

We can check that the unit path lengths in terms of Rm along all the independent Dms in Xn 

form basis of Vm for each m.  

Theorem 8: If an entity exists as a vector quantity in n-dimensional space then it 

exists in all the n types of vectors as elements of  Vms m ≤ n ∈ ℕ ; and induces same 

dynamics with all the types.  

Proof: If an entity exists as a vector quantity in n-dimensional space, then it has 

magnitude and direction in n-dimensional space Xn. The magnitude can be expressed as the 

path length along the direction in Xn. Mathematics is needed to keep scope for the general 

direction, and not to confine the existence of only certain specific kind of direction. A path 

along most general direction in Xn can be expressed as resultant of the paths along all the 



ordered directions. Thus the magnitude along general direction can be expressed as sum of all 

the magnitudes along ordered directions by introducing an algebraic structure. An algebraic 

structure is defined by successively traversing the paths along the directions in constant 

frame. Therefore the general existence of the entity can be expressed as resultant of its 

components (or versions) along the ordered directions in Xn. Therefore the entity should exist 

as the path length along each kind of ordered direction in Xn in order to quantify any 

infinitesimal component of it. Total n kinds of ordered directions exist in Xn as Dm, m ranging 

from 1 to n ∈ ℕ. By theorem 6, path length along Dm is element of a vector space Vm. Hence 

the entity should exist in all the n types of vectors as elements of corresponding Vms m ≤ n ∈ 

ℕ. Theorem 2 implies existence of mutually exclusive ordered directions in Xn. Therefore 

variation in point object is along any of the n types of ordered directions independently. An 

infinitesimal variation results in change in magnitude of any one type of vector (along any 

Dm m n ) and not of other.  

Despite of possibility of existence of different versions of the vector quantity, an 

underlying structure in Xn is needed to facilitate existence of a vector version by offering 

infinitesimally piecewise corresponding direction. Elements of V1 have rectilinear direction 

while those of Vm>1 have directions along corresponding Sm-1s. Thus elements of Vm>1 can 

exist on the corresponding spheres only and not in general Xn, while elements of V1 can exist 

in general parts of Xn. This is because Xn is infinitesimally piecewise rectilinear.  

Here we considered the notion of magnitude and direction for existence of vector 

quantity. For the abstract vector, we can directly configure it in any version of vector in Xn as 

algebra of all the Vms is identical. Difference between different the versions arises when we 

concern for the nature of direction i.e. when we consider the vector geometrically under the 

notion of magnitude and direction. 

□ 

Elements of an abstract vector space can be interpreted in Xn. Conventionally they are 

interpreted to be straight line segments (D1), while now we can interpret them to be segments 

along any of Dms. For the new interpretation, dimensionality n of Xn & m of the Dm is 

important. In same Xn, dimensionality of Vm varies with m due to limitation on number of 

mutually perpendicular Ims.  

Possible underlying structure to facilitate existence of V2 in Xn is solid spheres or 

bound circles. Solid spheres facilitate existence of the vectors along D2 such as angular 

velocity, angular momentum, torque etc. Typically these vectors are considered along 

rectilinear direction by assigning right hand thumb rule as the morphism. It is algebraically 

fine as all the kinds of Vms form same abstract vector spaces. But the difference arises in 

geometry. These vectors indicate their difference when studied under symmetries. The 

scientific community compensated this matter by making two classes of vectors as pure 

vector (or polar vector) and pseudovector (or axial vector). Pseudovector is always associated 

with the cross product of two pure vectors [2], The pseudovectors don’t obey laws of 



symmetry e.g. reflection. Reflection of D2 is different from that of D1 in same plane. We have 

some insights for the vector for m>1.  

The trivial case of the application of above mathematical framework is of our physical 

universe. Let us see it as the example.  

 

3. Case of the universe 

Our universe can be identified with a 4-dimensional general manifold. Out of the four 

dimensions, locally 3 are spatial and 1 is temporal. Such space having 3 spatial dimensions 

and a parameter of evolution will be written as 3+1-dimensional space. More precisely, the 

universe U is globally 4-dimensional while locally it is 3+1-dimensional. Theorem 7 implies 

that for n = 4, Vms m 4,m ℕ form topological Banach spaces i.e. there would exist 4 

types of vectors as elements of V1, V2, V3 and V4. Elements of V2, V3 and V4 can exist on 

spheres only. Thus such higher dimensional vectors can exist on S3 or equivalently 4-ball. 

Pretending the existance of the 4-balls, we can assume existence of the higher dimensional 

vectors on them.  

The 4-dimensional vectors i.e. elements of V4 are useless for analysis. This is because 

in U, single D4 exists i.e. V4 configured in U is 1-dimensional Banach space; 1-dimensional 

vector space has least analytical value since it can be considered as scalar space. If linearly 

independent directions of vectors exist, then the vectors are useful for analysis. In this sense 

in U there are three types of analytical vectors viz. 1-dimensional, 2-dimensional & 3-

dimensional (4-dimensional being dormant for vector analysis).  

1-dimensional vectors are the conventional vectors having directions along straight 

lines. 2-dimensional vectors have directions along S1. While 3-dimensional vectors are 

having directions along S2. In the immediate subsection, we will glampse on the 2-

dimensional vectors.  

The case study of our universe is presented here purposefully. A theory in physics to 

be proposed in [3] concerns the universe as the configuration space accommodating four 

types of vectors. 

3.1 Angular Vectors 

It is well accepted that the infinitesimal angular rotations can be represented as 

vectors [4]. Angle is measure of arc of circle in plane. And as every section of the sphere 

made by a plane is a circle, every infinitesimal curve on circle can be measured in terms of 

angle (i.e. R2). In general Rm is measure on a Sm-1, and every cross section of Im & higher 

sphere is Sm-1. Thus the higher spheres have infinitesimally piecewise Dm structure to 

accommodate m-dimensional vectors.   

Definition 7: Elements of V1 having direction along D1 are defined as rectilinear 

vectors. 



Definition 8: Elements of V2 having direction along D2 are defined as angular 

vectors. 

Frame of m points is needed for configuration of Vm. For configuration of rectilinear 

vectors (m=1) in the frame, the origin in form of one point is needed. For angular vectors 

(m=2), origin in form of a ray giving the centre and a point on every radius sphere is needed. 

The angular magnitudes are to be measured with respect to this ray. In contrast to rectilinear 

version, the angular vectors can exist on higher spheres or 4-balls only. 

Algebraic expressions for all types of vectors are same such as linear combination of 

components, identities of dot product and cross product etc. This is valid if the magnitude in 

terms of Rm is considered for m-dimensional vectors. As discussed in proof of theorem 7, 

trivial norms for vectors are Rms i.e. distance, angle and solid angle correspondingly. But 

comparison of different typed vector magnitudes may be done by fixing all the 

quantifications (Rm) in terms of distances. For this, we can exploit the conjecture. Angle can 

be written as ratio of arc and radius.  

Basis can be identified for the vector spaces, wherein an arbitrary vector can be 

expanded in terms of basis vectors. Suppose an angular vector x is written as 

 x = Ma + Nb (12) 

where, M & N are quantified in angles (R2) and a and b are basis angular vectors in 

X3. Then same can be written as  

x = 
r

M
a + 

r

N
b          

 where, M & N are quantified in distances (R1) on sphere of radius r. The resultant 

vector and its components form spherical triangle on the S2. We have equality from spherical 

trigonometry [5] as 

( ) ( ) ( ) ( ) ( )c ύos cos M cos N sin M sin N .cosx = +    (13) 

where x , M and N are sides of spherical triangle formed on a sphere. ύ is angle 

opposite to side x. The basis similar to Dm
A & Dm

A⊥ (as concerned in proof of theorem 4) is 

possible. Then spherical triangle formed by the resultant angular vector and its components is 

right angled, i.e. if x is resultant of M & N, then ύ = 

c

2


. Hence second term in RHS of (13) 

vanishes. Thus using (12) & (13) we get magnitude of angular vector as  

( ) ( )( )carccos os M cos Nx =  (14)     

Further, we obtain unit angular vector as 



u = 
x

x
 = 

( ) ( )( )arcco

 M N

cos M os Ns c

a b+
       (15) 

Let two angular vectors in spatial universe X3, x =Ma+Nb and y =M’a+N’b, then we 

get magnitude of the vector obtained by their addition as  

|x + y| = arccos [cos(M+M’).cos(N+N’)]                       (16) 

It can be checked that the essential triangle inequality |x + y|   |x| +|y| holds for 

angular vectors.  

The scalar product of two vectors is obtained as product of their projections on each 

other. Using the spherical law of sine [6] and (13), we obtain the scalar product of x and y as 

product of their projections on each other as follow 

 x.y = 
( )( )arcsin sin .

cos
arccos

cos sin

x

x  

 









.
( )( )arcsin sin . sin

cos
arccos

cos        

y

y  

 
 
 
 


         (17)         

where θ is angle between x and y on the higher sphere of existence.    

It is easy to check that the scalar product (17) is commutative and fulfils desired 

properties of scalar product such as x.x = |x|2, and for basis units a.a = 1, b.b = 1 and a.b = 

b.a = 0. Using these relations for basis vectors, the scalar product in terms of components can 

be obtained as 

x.y = (MM’)+(NN’)          (18) 

This expression of scalar product is same as the abstract expression in terms of basis. 

Vector product of two angular vectors can be developed using crux of vector product 

i.e. combination of perpendicular component of the vector acting on magnitude of other. If a 

vector x acts on another vector y, then by geometric definition of cross product we take 

magnitude of component of x that is perpendicular to y and multiply it by magnitude of y. 

Formulae for spherical trigonometry in [6] assists the derivation. Then we get the magnitude 

of cross product as  

|x x y| = |x’|.|y|     where |x’| magnitude of component of x that is perpendicular to y.  

By using equations for spherical triangles, we get   

     

cos
arccos .

cos arcsin sin .sin

x
x y y

x

 
 
  =
     

−          2

  (19) 



Idea behind the vector product implies that the vector product of two vectors is 

perpendicular to both of them. This is possible only if the product has direction linearly 

independent to that of both. In the example, x and y are expressed in terms of basis a and b. 

Hence the vector product should have direction linearly independent to a and b. Let’s denote 

the unit vector in the new direction by l; thus the vector product (19) has direction l. That is, 

 

cos
arccos .

cos arcsin sin .sin

x
x y y l

x

  
  
   =
      

−            2

  (20) 

 Using (20) we obtain the properties of angular vector product as  

a x a = 0 and b x b =0   and I a x b I = I b x a I = 1 

also a x b = l and b x a = –l    

Using these properties, in terms of basis we obtain (equivalent to general expression)  

  x x y = (MN’- NM’)l = – (y x x) (21) 

We have revealed basic details about 2-dimensional vectors or angular vectors which 

are elements of V2. The formulary is consistent with that of V1. Thus one may generalize the 

scalar and vector products for higher dimensional vectors in terms of basis. The algebraic 

properties of different types of vectors are identical. If angular vectors are identified to be 

rectilinear vectors by appropriate morphism, then algebraically one can’t reveal the fact.  

If we consider the angular vectors instead of pseudovectors, all physical systems are 

invariant under all trivial symmetry operations including reflection.    

3.2 Sangular Vectors 

As discussed earlier, in 4-dimensional space the vector space V3 having elements as 

3-dimensional vectors can be configured. Such vectors will exist on the 4-balls (or 3-spheres) 

existing in U; and have directions along D3 and norm in terms of R3 i.e. solid angle. This 

norm will induce metric in terms of solid angle for the sangular vectors.  

Definition 9: Elements of V3 having direction along D3 are defined as sangular 

vectors. 

U being 4-dimensional, can be configured as sangularly 2-dimensional vector space. 

Continuous random change in positions of a point object on surface of S2 leads to 

manifestation of a sangular vector. 

For sangular vectors in the frame, two points on S2 are needed referring to which area 

traced by a point on S2 (i.e. E in the conjecture) can be measured. Both ends of a diameter 



can be considered as the reference points in the frame, these two points and the object point 

form triangle on the sphere. Area of such triangle divided by square of radius of the sphere 

yields the solid angle i.e. norm of the sangular vector of the object point in the frame. For 

quantification of area on the spheres, any two reference points would work, but we concluded 

end points of a diameter because this makes symmetry for choice of frames on the spheres. 

Further the end points of a diameter means S0, this may help for generalization for higher 

dimensional vectors. 

Area of the spherical triangle formed by two reference points and one object point 

characterizes norm of the sangular vector of the object point. Area A of plane triangle is half 

of the product of base and height (b.h/2); and area A of spherical triangle having same base b 

and height h has different but comparable area due to spherical excess. We can write A= 

g.b.h/2 where, g is the deviation (function) due to spherical area. We don’t need to explore g 

here.  

For any sangular vector, the base concerned is constant as out of the three points, two 

are always reference points (i.e. end point of a diameter). The spherical distance between 

ends of a diameter is πr i.e. b= πr. Using this substitution, we get area of the spherical 

triangle formed by point x as Ax= g πr.hx/2, where location of x characterizes hx. Using this in 

the conjecture we get  

R3(x)=
gπh

2r

x      (22) 

3.3 Vectors in the universe 

In the universe U, rectilinear, angular and sangular types of vectors should exist. An 

angular vector spans two Euclidean dimensions as S1 exists in 2-dimensional space. Similarly 

a sangular vector spans three Euclidean dimensions. Let in a frame, the four rectilinear basis 

dimensions of U are x1, x2, x3 and x4; let x1 be time dimension. Let the unit angular vectors in 

planes x1x2, x1x3 and x1x4 be basis for V2 in same frame. Note that any combination xixj with i 

being same and j varying over three others forms basis for angular vector space, and all basis 

sets are equivalent as should be related by linear transformations.    

In 4-dimensional space, only two linearly independent sangular vectors can exist and 

a sangular vector spans three rectilinear (Euclidean) dimensions.  

In the universe U, there exist three versions of vectors viz. rectilinear, angular and 

sangular. According to theorem 8, any quantity like displacement, momentum etc. should 

come in four versions as long as there is underlying structure to facilitate infinitesimal 

piecewise directions. The formalism on a version (or for general vector) is to be followed for 

all the versions of vectors. This means if rate of change (w.r.t. a quantity) of a vector quantity 

v is defined as u, then it holds for all versions of vector as long as the underlying structure of 

say 4-ball exists to facilitate existence of v and the quantity. Therefore if a quantity is 

conserved, then it should be conserved in all typed vectors.     



According to Theorem 8, a vector quantity should exist in all the versions of vectors 

in general. If it changes in U, then it must change locally i.e. the change must be manifested 

in spatially 3-dimensional space with time evolution. If the change happens in magnitude, 

then it is manifested as change in the Rm along the ordered direction. But if a vector of fixed 

magnitude exists and can change via variation in direction only, then local geometry on U is 

important. If two linearly independent vectors of a version exist locally, then change in the 

vector via change in direction is manifested due to there are many vector directions possible. 

Local space of manifestation is spatial 3-dimensional portion of U with time evolution. As in 

3-dimensional space at least two linearly independent vectors of rectilinear and angular 

versions can exist, change in them due to direction is straightforward. This isn’t the case with 

sangular vectors as only one such vector spans whole 3-dimensional (spatial) space.   

According to theory of relativity, U is globally 4-dimensional continuum while 

locally is 3+1-dimensional having Minkowskian geometry. Thus if there exists 4-ball in U, 

then locally it is manifested as 3-ball with one dimension being evolution parameter. Two 

linearly independent sangular vectors can exist on 4-ball, but only one such on 3-ball. The 3-

ball is projection (or cross section) of 4-ball aligned with local spatial space of manifestation 

Us. If change in a sangular vector direction happens, then the change must be perpendicular 

to Us. If a vector changes direction (or rotates) perpendicular to a subspace, then its 

projection on (or component in) the subspace should change. If a path along Dm having 

specific path length is changed (rotated) perpendicular to the accommodating Im, then path 

length along the projection of the path in the Im will be changed depending on the amount of 

change (rotation). Thus even the path length is generally constant, for the projection in the 

subspace- it changes. Thus in effect, in local portion of U, change in sangular vector is 

manifested as change in its magnitude on the 3-ball (even if its magnitude on 4-ball is 

constant).  

3.4 Comparison of Magnitudes of different typed vectors 

Three versions of vectors exist in the universe. For fruitful analysis, comparison 

between magnitudes of different typed vectors is must. All the m-dimensional vectors with m 

> 1 exist on the respective spheres or balls. Rectilinear vectors are fundamental vectors 

quantified in terms of R1. The universe is infinitesimally piecewise rectilinear. All the 

comparison should be done with respect to magnitude of rectilinear vector. 

Consider a rectilinear vector vR of norm IvRI, it should exist along D1 i.e. straight line. 

But the same set of points with same measure L1 (i.e. curved line segment of the length IvRI) 

can exist on spheres. This leads to norm of an angular vector along D2. Magnitude of an 

angular vector vA is given by IvAI = E/r, E being L1 of the open set formed by the path 

extremities. The comparison can be obtained by substituting IvRI for E meaning that same set 

of points with same measure is used to construct both the vectors. Thus we get 

R

A
r

=
v

v      (23) 



Relation (23) provides comparison of magnitudes of the angular and rectilinear 

vectors if same amount of geometric content (in terms of Lebesgue measure) is used to 

generate both the vectors.   

Norm of sangular vector is given by difference in R3s of its extremities. Thus norm 

IvSI of sangular vector vS is ratio of area due to vS on the sphere to square of the radius. It is 

as given in (22). There hx is curved length which can be regarded as magnitude of the 

corresponding rectilinear vector for comparison. In other words, for comparison purpose 

R3(x) in (22) is magnitude of a sangular vector vS while hx is magnitude of a corresponding 

rectilinear vector vR when equivalent geometric content constitutes both the vectors. It takes 

the form  

R

S

gπ
=

2r
v

v
     (24) 

This equality provides abstract comparison of magnitudes. Here g is general function 

and we haven’t explored it. The relative magnitudes of the three types of vectors may be 

helpful in theory.  

 

4.  Conclusion 

Vectors have ordered directions that are not needed to be rectilinear always. The 

paper provides generalization of conventional interpretation of vectors. It concludes that a 

type of ordered direction exists for every number of Euclidean dimension. Path lengths along 

such ordered directions satisfy axioms of the vectors, hence they can be considered as 

vectors. Thus every number of dimensions comes with a version of vector. Algebra of all the 

typed vectors is identical. Expressions in terms of basis or components for scalar product and 

vector product are identical. But different typed vectors differ in magnitude; an n-

dimensional vector has magnitude in terms of Rn. Elements of arbitrary algebraic vector 

space may be interpreted as of any geometrical version in corresponding geometrical 

(configuration) space. All versions of the vector form Banach spaces and have metric 

induced topologies. 

In 4-dimensional Euclidean space, three types of vectors exist viz. rectilinear, angular 

and sangular. A gross comparison of their magnitudes is obtained as (23) & (24). The 

versions of the vectors retain their directions infinitesimally i.e. it is meaningless to say that 

an angular (or sangular) direction is infinitesimally rectilinear. This makes the generalized 

vectors different from those through the differential geometry.  
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