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Abstract. The main idea of this article is simply calculating integer functions

in module. The algebraic in the integer modules is studied in completely new

style. By a careful construction a result is obtained on two finite numbers with
unequal logarithms, which result is applied to solving a kind of diophantine

equations.
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In this paper p, pi are primes, m,m′,m′′ are great enough. all numbers that are
indicated by letters are integers unless further indication. C,C ′, Ci are constants,
C(z), C ′(z), Ci(z) are constants independent of z.

1. Function in module

Definition 1.1. Define

[a]q := {a + kq : ∀k}

[a = b]q : [a]q = [b]q

[a]q[b]q′ := [x : [x = b]q, [x = b]q′ ]qq′ , (q, q
′) = 1

[a + b]q = [a]q + [b]q

[ab]q = [a]q · [b]q
[a + c]q[b + d]q′ = [a]q[b]q′ + [c]q[d]q′ , (q, q

′) = 1

[ka]q[kb]q′ = k[a]q[b]q′ , (q, q
′) = 1

[ak]q[bk]q′ = ([a]q[b]q′)
k, (q, q′) = 1

Definition 1.2. Function of x ∈ Z: c +
∑m

i=1 cix
i is called power-analytic (i.e

power series).

Define F (z), Z(z) is power-analytic functions of z.
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Theorem 1.3. Power-analytic functions modulo p are all the functions from mod
p to mod p

[x0 = 1]p

[f(x) =

p−1∑
n=0

f(n)(1− (x− n)p−1)]p

Theorem 1.4. (Modular Logarithm)

[y := lma(x)]pm−1(p−1) : [ay = x]pm

[E :=

n∑
i=0

pi

i!
]pm

[Ex =

n∑
i=0

pixi

i!
]pm

n is sufficiently great. e is the generating element in mod p

[e1−p
m

:= E]pm

[lm(x) := lme(x)]pm−1(p−1)

then

[lmE(px + 1) =

n∑
i=1

(−1)i+1pi−1

i
xi]pm−1

[Q(q)lm(1 + xq) =
∑
i=1

(xq)i(−1)i+1/i]qm

Q(q) :=
∏
i

[pi]pm
i
,∀pi|q

To prove the theorem, one can contrasts the coefficients of Ex and Elm(1+px)

to those of exp(px) and exp(log(px + 1)).

Definition 1.5. P (q) is the product of all the distinct prime factors of q.

Definition 1.6.

[lm(px) := plm(x)]pm

Definition 1.7.

[x/y] = a : x/y − 1 < a < x/y

y = T (x, q) : [y = x]q, 0 ≤ y < q

Definition 1.8.

[i = a]pm : [a2 = −1]pm , 4|p− 1
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2. Unequal Logarithms on Two Numbers

Definition 2.1.

x→ a

means the variable x gets value a.

Theorem 2.2. If

qa + b < q2, a, b > 0, (a, b) = (a, q) = (b, q) = (a2 − b2, q) = 1

then

[lm(a) 6= lm(b)]q3

Proof. Presume

(rlm(a)− rlm(b), qm) = q′q, q2r|q′

r := P (q), d := (qm, x− x′, y − y′)

v := [−Qm′′(q)]qm [−1]∏
i(pi−1), pi|q

considering

[ax− by = ax′ − by′ =: q′z]q′q

0 ≤ x, x′ < q′ + r; 0 ≤ y, y′ < qr

[(x, y) = (x′, y′) = (b, a)]r

Checking the freedom and determination of variables and the symmetry between
(x, y), (x′, y′) we can find two distinct points (x, y), (x′, y′) satisfy these conditions.
Then

|ax− by − ax′ + by′| < q′q

hence

ax− by = ax′ − by′

Make

(x, y, x′, y′)→ (x, y, x′, y′) + dC : (ax− by, pmi ) = (pmi , d), (pmi , d)|q′

We have for some k, k′

[k − k′ = (x′ − x)/b]qm

k : k′ = x− y + d(x− y)2 : x′ − y′ + d(x′ − y′)2

Then

[x + kb = x′ + k′b, y + ka = y′ + k′a]qm

[b2v(x + kb)2 − a2v(y + ka)2 = b2v(x′ + k′b)2 − a2v(y′ + k′a)2]qm

and

[x− y + k(b− a) = 0]d2

Use the identity

u2(x + s)− w2(y + t)2 = (x− y + s− t)
u2x2 − w2y2

x− y
+

(ux− wy)2(s + t)

x− y

+
2xy(us− wt)(w − u)

x− y
+ u2s2 − w2t2

and make

(u,w, x, y, s, t)→ (bv, av, x, y, kb, ka), (bv, av, x′, y′, k′b, k′a)
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to get

[(x− y + k(b− a))
b2vx2 − a2vy2

x− y
+

k(bvx− avy)2(b + a)

x− y

= (x′ − y′ + k′(b− a))
b2vx′2 − a2vy′2

x′ − y′
+

k′(bvx′ − avy′)2(b + a)

x′ − y′
]dqq′

then

[
k(bvx− avy)2(b + a)

x− y
=

k′(bvx′ − avy′)2(b + a)

x′ − y′
](d5,d4r,dqq′,pm

i )

[x− y = x′ − y′](dqq′/d3,dr,pm
i )

It’s invalid, unless
qr|d

x− x′ = y − y′ = 0

It’s invalid.
If (q′, pmi ) is great enough, then

api−1 = bpi−1

It’s invalid. �

Theorem 2.3. For prime p and positive integer q the equation

ap + bp = cq

has no integer solution (a, b, c) such that (a, b) = (b, c) = (a, c) = 1, a, b > 0 if
p, q > 36.

Proof. Make logarithm on a, b in mod cq. It’s a condition sufficient for a controversy.
Prove on the module (a2 − b2, c)m or the other part of module. �
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