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Abstract

A novel effective Hamiltonian in the subspace of singly occupied
states is obtained by applying the Gutzwiller projection approach to
a generalized Hubbard model with the interactions between two nearest-
neighbor sites. This model provides a more complete description of the
physics of strongly correlated electron systems. The system is not nec-
essarily in a ferromagnetic state as temperature T → 0 at any doping
level δ ≥ 0. The system, however, must be in an antiferromagnetic state
at the origin of the doping-temperature (δ-T ) plane (T → 0, δ = 0).
Moreover, the model exhibits superconductivity in a doped region at
sufficiently low temperatures. We summarize the studies and provide a
phase diagram of the antiferromagnetism and the superconductivity of
the model in the δ-T plane here. Details will be presented in subsequent
papers.

1 Introduction

Since the discovery of high-temperature superconductivity in 1986 [1], a tremen-
dous number of studies have been devoted to the understanding of its under-
lying mechanism. It is generally believed that some essential physics of this
strongly correlated electron system can be described by the Hubbard model
[2, 3] and its strong-coupling limit, the t-J model [4, 5]. The Hubbard model
is the simplest approximation of the general Hamiltonian of the interacting
electron systems, in which all the Coulomb interaction terms except the on-
site term (U -term) are neglected. It is possible that the neglected interaction
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terms may play important roles in the understanding of the physics of the
strongly correlated electron systems. That is, some important physics might
have been missed in the Hubbard model. As a result, the t-J model, which is
a projection of the Hubbard model to the subspace of singly occupied states,
may not be sufficient to describe the essential physics of the strong coupling
systems. In this study, we will apply the Gutzwiller projection scheme to a
more general model, in which, in addition to the Hubbard on-site term, all of
the two-site interaction terms between nearest-neighbor sites are retained in
the approximation of the Coulomb potential energy. Our study shows that
this novel model provides a more complete understanding of the properties of
high-temperature superconductors.

2 The Model

The general Hamiltonian describing the dynamics of electrons in Wannier rep-
resentation can be expressed as [2, 6, 7]

H =
∑
ij,σ

Tijc
†
iσcjσ +

1

2

∑
ijkl,σσ′

〈ij|1
r
|kl〉c†iσc

†
jσ′ clσ′ ckσ, (1)

where c†iσ and ciσ are the creation and annihilation operators for an electron
with spin σ in a Wannier orbital localized at site i, Tij is the Fourier trans-
form of the band energy εk

Tij =
1

N

∑
k

εke
ik·(Ri−Rj), (2)

and the Wannier representation matrix element is given by

〈ij|1
r
|kl〉 = e2

∫
dxdx

′ φ∗(x−Ri)φ(x−Rk)φ∗(x
′ −Rj)φ(x

′ −Rl)

|x− x′ |
, (3)

where φ(x − Ri) and φ∗(x − Ri) are the Wannier functions localized around
lattice site i. In the most general cases where i 6= j 6= k 6= l, the Wannier ma-
trix elements 〈ij| 1r |kl〉 are four-center integrals and the corresponding terms
in the series of the Coulomb interaction in Eq (1) are the so-called four-site
terms. Since the Wannier function φ(x − Ri) goes to zero rapidly when x is
away from Ri, the matrix element (3) is not negligible only when the sites
i, j, k, l are close enough so that the overlaps between the Wannier functions
are sufficiently large. Therefore, the Coulomb interaction energy can be con-
veniently approximated by a number of its leading terms of the series. The
biggest interaction term is the so-called on-site term (i = j = k = l)

1

2
U
∑
iσ

niσniσ̄, (4)
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where niσ = c†iσciσ and U = 〈ii| 1r |ii〉. If only this on-site term is taken into ac-
count, the Hubbard model is obtained. Apparently, the next leading terms are
the ones where the set {i, j, k, l} actually consists of only one pair of nearest-
neighbor sites, which may be referred to as the two-site interaction terms [8].
In this work, we take one step further beyond the Hubbard model. We retain
all of the terms up to the two-site interaction terms in the approximation of
the Coulomb interaction. Such a Hamiltonian can be written as

H ' T0

∑
iσ

niσ − t
∑
ij,σ

γijc
†
iσcjσ + U

∑
i

ni↑ni↓

+
1

2
V
∑
ij,σσ′

γijniσnjσ′ +X
∑
ij,σ

γijc
†
iσcjσ

(
niσ̄ + njσ̄

)
+

1

2
Y
∑
ij,σ

γij
(
c†iσcjσc

†
iσ̄cjσ̄ +

∑
σ′

c†iσc
†
jσ′ciσ′cjσ

)
,

(5)

where γij = 1 for nearest-neighbor sites i, j, and 0 otherwise, which restricts
the summation over the nearest-neighbor pairs, and

V = 〈ij|1
r
|ij〉,

X = 〈ii|1
r
|ij〉 = 〈ii|1

r
|ji〉 = 〈ij|1

r
|ii〉 = 〈ji|1

r
|ii〉,

Y = 〈ii|1
r
|jj〉 = 〈ij|1

r
|ji〉.

(6)

In fact, the X and V terms have been discussed in literature previously [6,
9], and the matrix element Y has been mentioned in [2]. Please note that in
Eq (5) only the constant and nearest-neighbor hopping terms of the kinetic
energy are considered for consistency.

Using the Gutzwiller projection operator technique, the Hamiltonian (5) can
be projected to a subspace of the Hilbert space where only empty and singly
occupied sites are allowed [3, 10, 11]. To the leading order of the perturbation
expansion, the effective Hamiltonian in the subspace of singly occupied states
can be written as

Hs = T0

∑
iσ

ñiσ +
∑
ij,σ

γij

(
− t c̃†iσ c̃jσ −

1

2
J c†iσc

†
jσ̄ciσ̄cjσ

+
1

2
p ñiσñjσ +

1

2
q ñiσñjσ̄

)
,

(7)

where c̃†iσ = c†iσ(1 − niσ̄), c̃iσ = ciσ(1 − niσ̄), ñiσ =
∑
σ c̃
†
iσ c̃iσ, and the

coefficients are given by the following equations

p = V − Y,
q = V − 2J0, J0 = (t−X)2/U ′, U ′ = U + z′(2V − Y ),

J = p− q,
(8)
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where 0 ≤ z′ ≤ z. When V=X=Y=0, Eq (7) reduces to the t-J model [4].
Rescaling Hs with t, this model has only three dimensionless independent ma-
terial parameters T̄0 = T0/t, p̄ = p/t, and q̄ = q/t. One may expect that
the system will exhibit ferromagnetism when q̄ is sufficiently larger than p̄.
On the other hand, the system will exhibit antiferromagnetism when p̄ is suf-
ficiently larger than q̄. Our studies show that this is true. More interestingly,
we will show that this model will exhibit superconductivity for some parame-
ter range of p̄ > q̄.

3 Green Function Method

We use the Zubarev Green function technique [2, 12] to study the physics of
the model established above. Define the grand canonical Hamiltonian opera-
tor [13]

K = Hs − µN, (9)

where N is the total number operator, Hs is the Hamiltonian given in Eq (7),
and µ is the chemical potential of electrons. The corresponding grand parti-
tion function may be written as

ZG = Tre−βK = e−βΩ, β =
1

kT
, (10)

where k is the Boltzmann’s constant and Ω is the thermodynamic potential of
the system. Therefore, the ensemble average of any operator O can be calcu-
lated by

〈O〉 = Tr
[
Oeβ(Ω−K)

]
. (11)

Note here that O and K are operators, while Ω is a c-number. The ensemble
average 〈O〉 is assumed to be the measurement value of the observable O in
experiments. The retarded Green function of two Fermion operators A(t) and
B(t′) in the Heisenberg representation can be defined as

� A(t)|B(t′)�= −iθ(t− t′)〈{A(t), B(t′)}〉, (12)

where {A,B} = AB + BA, the Fermion anticommutation relation, θ(t) is
the usual step function, and 〈...〉 means the ensemble average with the grand
partition function ZG, defined in Eq (11). Since � A(t)|B(t′) � is a function
of t− t′, it is convenient to define the Fourier transform

� A|B �ω=

∫ ∞
−∞

d(t− t′)� A(t)|B(t′)� eiω(t−t′). (13)

It can be shown that the retarded Green function in frequency space satisfies
the following equation of motion

ω � A|B �ω= 〈{A,B}〉+� [A,K]|B �ω, (14)
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where again {A,B} is the anticommutator of operators A and B, and [A,K]
is the commutator of the operators A and K. The ensemble average 〈B(t)A(t′)〉
can be calculated by

〈B(t)A(t′)〉 = i

∫ ∞
−∞

dω

2π

e−iω(t−t′)

eβω + 1

[
� A|B �ω+i0+ − � A|B �ω−i0+

]
. (15)

Eqs (14)-(15) are applicable to all subsequent studies of the ferromagnetism,
antiferromagnetism, and superconductivity of the model given in Eq (7).

Due to the complexity of the model, we only consider the simplest situation
in this study: a three-dimensional square lattice system. The two-dimensional
case and other complicated factors are left as future work.

4 Ferromagnetism

We first study the ferromagnetism of the model using the standard Zubarev
Green function technique. For a uniform system, we assume that the ensemble
average of the electron number operator 〈nlσ〉 is independent of lattice site l,
but dependent on spin σ. Denoting nσ = 〈nlσ〉, the average number of elec-
trons per site and magnetization can be defined as

n = n↑ + n↓, (16)

m = n↑ − n↓, (17)

from which, nσ can be expressed as

nσ =
1

2
(n+ σm), (18)

where σ = 1(−1) in the expression for spin subscript ↑ (↓). Here n is a known
quantity when the doping level is known, from which the chemical potential µ
is determined. For electron-doped materials, n = 1 + δ, while for hole-doped
cases, n = 1 − δ, where δ is the doping concentration. We will focus on the
hole-doping only in this study.

The analysis above shows that the central task in the study of the magnetic
properties is to calculate the ensemble average of the number operator of elec-
trons, 〈nlσ〉. According to Eq (15), 〈nlσ〉 can be evaluated from the Green

function � clσ|c†l′σ �. The retarded Green function in frequency space satis-
fies the following equation of motion

ω � clσ|c†l′σ �ω= δll′+� [clσ,K]|c†
l′σ
�ω, (19)

where [clσ,K] is the commutator of the operators clσ and K, and K is given

in Eq (9). The Green function � clσ|c†l′σ �ω is a function of ω and Rl′ −Rl

for systems with translational invariance.
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Carrying out the commutation relation [clσ,K], to the lowest order of the de-
coupling approximation of the sequence of Green function equations, we ob-
tain

� clσ|c†l′σ �ω=
1

N

∑
k

eik·(Rl−Rl′ )
1

ω + µ− zaσ − bσγ(k)
, (20)

where z is the coordination number and the σ dependent coefficients aσ and
bσ are given by the following equations

aσ = a1σ + σma2σ,

bσ = b1σ + σmb2σ,
(21)

a1σ = T0δ + t(1 + δ) + (p+ q)δ
[1

4
(1− δ2) + Λ2

σ̄ +
1

4
m2
]
,

a2σ = −T0 − t+
1

4
(3p− q)− (p+ q)

(δ2

4
+ Λ2

σ̄ −
1

4
m2
)
,

b1σ = t
[
− 1

4
(1 + δ)2 + Λ2

σ̄ + 2Λσ̄Λσ −
1

4
m2
]
− (p− q)Λσ̄

+
[
− 1

2
(p− q)− 2(p+ q)

(1

4
δ2 − Λ2

σ̄ +
1

4
m2
)]

Λσ,

b2σ = −1

2
t(1 + δ)− (p+ q)δΛσ,

(22)

and the dispersion relation γ(k) is defined as

γ(k) =
∑
a

ek·a, (23)

where a is the lattice space vector and the summation is over all the nearest-
neighbor sites. In Eq (22), Λσ represents the value of the nonzero formal en-

semble average 〈c†l′σclσ〉 for the nearest-neighbor sites l and l′. Λσ will be cal-
culated self-consistently [14].

Using Eqs (15) and (20), the ensemble average 〈c†l′σclσ〉 can be calculated as
follows

〈c†l′σclσ〉 =
1

N

∑
k

eik·(Rl−Rl′ )
1

eβ(Eσ(k)−µ) + 1
, (24)

where the elementary excitations energy spectrum is given by

Eσ(k) = zaσ + bσγ(k). (25)

Eq (24) is the basic formula for the ensemble average 〈c†l′σclσ〉, from which we
are able to obtain the self-consistent equations of nσ and Λσ

nσ = z

∫ 1

−1

dxρ(x)
1

eβzbσ(x−x0σ) + 1
, (26)

Λσ =
z2

z1

∫ 1

−1

dxρ(x)
x

eβzbσ(x−x0σ) + 1
, (27)
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where x0σ = (µ̄ − aσ)/bσ with µ̄ = µ/z, and the density of state can be
expressed as

ρ(x) =
1

3π

√
1− x2, (28)

for three dimensional systems [2]. Here the summation over k has been con-
verted to an integral over x → γ(k)/z and z1 = z(1 − δ), the average number
of the nonempty nearest-neighbor sites of the site l at doping level δ.

Eqs (26) and (27) are the self-consistent equations describing the ferromag-
netism of the model described by Eq (7). Five unknowns, n↑, n↓, Λ↑, Λ↓, and
µ need to be determined from the system of equations. When Eqs (26) and
(27) are written down explicitly for each spin, one has four independent equa-
tions. The fifth equation is given in Eq (16), which indicates that there is only
one independent unknown in the set of n↑ and n↓. Given δ (or n = 1− δ) and
T (or β = 1/kT ), solving Eqs (16), (26), and (27) for nσ, Λσ, and µ, we can
obtain the information about the magnetization m as a function of δ and T .
Of course, m depends on the material parameters T̄0 = T0/t, p̄ = p/t, and
q̄ = q/t as well.

The system can be solved numerically. We briefly outline the main features of
the ferromagnetism as follows:

1. An increase in q̄ or decrease in p̄ is favorable for the magnetization m.
2. The magnetization m decreases with temperature.
3. The doping dependence of m is complicated. The favorability of doping for
m depends on the values of p̄ and q̄.

The detailed results will be presented in a subsequent paper. Our main pur-
pose of discussing the ferromagnetism here is to examine the singularity of the
self-consistent equations and make a comparison with that of the antiferro-
magnetism and superconductivity.

The most interesting feature of the system of equations (26) and (27) is that,
when m = 0, there is no singularity as T → 0 (or β → ∞). This feature per-
sists even for the situation of δ = 0 and T → 0. When β → ∞, the integrals
in Eq (26) and (27) can be carried out analytically with the following results:
For bσ > 0, integrating gives

nσ =
1

2
+

1

π

[
x0σ

√
1− x2

0σ + arcsin(x0σ)
]
,

Λσ = − 4

πz1
(1− x2

0σ)3/2,
(29)
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while for bσ < 0, we have

nσ =
1

2
− 1

π

[
x0σ

√
1− x2

0σ + arcsin(x0σ)
]
,

Λσ =
4

πz1
(1− x2

0σ)3/2,
(30)

Indeed, Eqs (29) and (30) are not singular for any value of m even for the
case of δ = 0. This means that the model of Eq (7) does not necessarily have
a ferromagnetic phase with nonzero m at the condition of T → 0. That is,
m = 0 is a possible solution of the model at zero temperature. As we will see
below, this is in remarkable contrast to the cases of the antiferromagnetism
and superconductivity of this model.

5 Antiferromagnetism

We now proceed to study the antiferromagnetism of the model. As we will see
below, this model exhibits much more interesting antiferromagnetic features
than those of the ferromagnetism. The most striking one is that the system is
necessarily in an antifierrormagnetic state as T → 0 at δ = 0.

The formalism is similar to the discussion of the ferromagnetism. It is con-
venient, however, to formally divide the original lattice into two sublattices
so that the nearest-neighbor sites belong to different sublattices. We use i1,
j1, ..., to label the sites in the first sublattice, and i2, j2, ..., to label the sites
in the second sublattice. The central task is to calculate the average number
of electrons per site for each spin direction in both sublattices. Denoting the
mean number of electrons with spin σ in the sublattices as n1σ = 〈ni1σ〉 and
n2σ = 〈ni2σ〉 respectively, we can define the mean number of electrons per site
and magnetization for the first sublattice

n1 = n1↑ + n1↓, (31)

m1 = n1↑ − n1↓. (32)

Similarly, for the second sublattice, we have

n2 = n2↑ + n2↓, (33)

m2 = n2↑ − n2↓. (34)

Eqs (31)-(34) immediately lead to the following expressions for each sublattice

n1σ =
1

2
(n1 + σm1), (35)

n2σ =
1

2
(n2 + σm2). (36)
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We make two important assumptions: 1) n1 = n2 = n, and 2) m1 = −m2 =
m. Therefore, Eqs (35) and (36) become

n1σ =
1

2
(n+ σm), (37)

n2σ =
1

2
(n− σm), (38)

where n = 1− δ and m will be calculated self-consistently. The above analysis
shows that we only need to find the average electron number in one sublattice.
For example, if n1σ is known, then m = n1↑ − n1↓ is known, and therefor n2σ

is known.

Similar to the ferromagnism case, the ensemble averages n1σ = 〈ni1σ〉 can be

calculated from the Green function � cl1σ|c
†
l
′
1σ
�. Nevertheless, further anal-

ysis shows that the two Green functions � cl1σ|c
†
l
′
1σ
� and � cl2σ|c

†
l
′
1σ
�

are coupled to each other even at the lowest order of the decoupling approxi-
mation of the Green function equations. Therefore we need to discuss the two
Green functions simultaneously. In frequency space, the two Green function
satisfy the following equations of motion

ω � cl1σ|c
†
l
′
1σ
�ω= δll′+� [cl1σ,K]|c†

l
′
1σ
�ω, (39)

ω � cl2σ|c
†
l
′
1σ
�ω=� [cl2σ,K]|c†

l
′
1σ
�ω, (40)

where the anticommutation relations {cl1σ, c
†
l
′
1

} = δll′ and {cl2σ, c
†
l
′
1

} = 0 have

been used. Using Eq (9), the commutation relations [cl1σ,K] and [cl2σ,K] can
be obtained exactly. Nonetheless, an approximation must be used to break off
the chain of Green function equations. To the lowest order of the decoupling
approximation, the Green functions can expressed as

� cl1σ|c
†
l
′
1σ
�ω =

2

N

N/2∑
k

e
ik·(Rl1

−R
l
′
1
)
gkσ(ω), (41)

� cl2σ|c
†
l
′
1σ
�ω =

2

N

N/2∑
k

e
ik·(Rl2

−R
l
′
1
)
fkσ(ω), (42)

where

gkσ(ω) =
Akσ

ω + µ− E1(k)
+

Bkσ

ω + µ− E2(k)
, (43)

fkσ(ω) =
Ck

ω + µ− E1(k)
+

Dk

ω + µ− E2(k)
, (44)

with the elementary excitation spectrum

E1(k) = za−
√(

zma′
)2

+
(
b′γ(k)

)2
, (45)

E2(k) = za+

√(
zma′

)2
+
(
b′γ(k)

)2
, (46)
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and the partial-fraction decomposition coefficients

Akσ =
1

2

[
1− σzma′√(

zma′
)2

+
(
b′γ(k)

)2 ], (47)

Bkσ =
1

2

[
1 +

σzma′√(
zma′

)2
+
(
b′γ(k)

)2 ], (48)

Ck = − b′γ(k)

2

√(
zma′

)2
+
(
b′γ(k)

)2 = Dk, (49)

where γ(k) is given in Eq (23), b′ = b(1 − δ), and the coefficients a, a′, and b
are given the following equations

a =
T0

z
δ + t(1 + δ)Λ + (p+ q)δ

[1

4
(1− δ2) + Λ2 +

1

4
m2
]
, (50)

a′ = −T0

z
+ tΛ +

1

4
(3q − p) + (p+ q)

[
− 1

4
δ2 + Λ2 +

1

4
m2
]
, (51)

b = t
[
− 1

4
(1 + δ)2 + 3Λ2 +

1

4
m2
]

+
[
− J − 1

2
(p− q)

+ 2(p+ q)(−1

4
δ2 + Λ2 +

1

4
m2)

]
Λ. (52)

Here Λ is the value of the nonzero formal ensemble average 〈c†l1σcl2σ〉, where
l1 and l2 are the nearest-neighbor sites. We have assumed that Λ is indepen-
dent of spin σ. Similar to the ferromagnetism case, Λ will be calculated self-
consistently [14]. Please note that a, a′, and b are all independent of σ explic-
itly. As can be seen from Eqs (45) and (46), two branches of the elementary
excitation spectrum exist in the system, both of which are spin σ indepen-
dent. The coefficients Akσ and Bkσ depend on spin σ explicitly, while Ck and
Dk are spin independent. Therefore fkσ(ω) does not depend on σ explicitly,
which results from the assumption that Λ is independent of σ.

Using Eqs (15), (41) and (42), we can obtain the following ensemble averages

〈c†
l
′
1σ
cl1σ〉 =

2

N

N/2∑
k

eik·(l1−l
′
1)
[ Akσ

eβ(E1(k)−µ) + 1
+

Bkσ

eβ(E2(k)−µ) + 1

]
, (53)

〈c†
l
′
1σ
cl2σ〉 =

2

N

N/2∑
k

eik·(l2−l
′
1)
[ Ck

eβ(E1(k)−µ) + 1
+

Dk

eβ(E2(k)−µ) + 1

]
, (54)

where we have used l1 − l
′

1 to represent Rl1 − Rl
′
1

for conciseness. Setting

l1 = l′1 in Eq (53), we have

n1σ =
2

N

N/2∑
k

[ Akσ

eβ(E1(k)−µ) + 1
+

Bkσ

eβ(E2(k)−µ) + 1

]
. (55)
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Noticing n = n1↑ + n1↓ and m = n1↑ − n1↓, and using Eqs (47)-(48), Eq (55)
immediately leads to the following self-consistent equations for µ and m

n =
2

N

N/2∑
k

[ 1

eβ(E1(k)−µ) + 1
+

1

eβ(E2(k)−µ) + 1

]
, (56)

1 =
2

N

N/2∑
k

−za′√(
zma′

)2
+
(
bγ(k)

)2 [ 1

eβ(E1(k)−µ) + 1
− 1

eβ(E2(k)−µ) + 1

]
.

(57)

The self-consistent equation for Λ can be obtained from Eq (54) by setting l2
and l′1 as the nearest neighbors

z1Λ =
2

N

N/2∑
k

−b′γ(k)2

2

√(
zma′

)2
+
(
b′γ(k)

)2 [ 1

eβ(E1(k)−µ) + 1
− 1

eβ(E2(k)−µ) + 1

]
,

(58)

where Eq (49) has been used. Here z1 = z(1 − δ), the average number of
the nonempty nearest neighbors of the site l2. Eqs (45) and (46) show that
E1(k) ≤ E2(k). Thus from Eqs (57) and (58), we see that for meaningful
solutions, 1) a′ must be negative, and 2) Λ and b must have the opposite sign.

Finally, introducing a new variable x → γ(k)/z, and noticing that the in-
tegrand depends on x through x2, for the case of b > 0, the self-consistent
equations can be written in the following integration form

n = 2z

∫ 1

0

dxρ(x)
[ 1

eβε1(x) + 1
+

1

eβε1(x) + 1

]
, (59)

Λ = −z
2

z1

∫ 1

0

dxρ(x)
x2

√
m̄2 + x2

[ 1

eβε1(x) + 1
− 1

eβε1(x) + 1

]
, (60)

b′ = −2za′
∫ 1

0

dxρ(x)
1√

m̄2 + x2

[ 1

eβε1(x) + 1
− 1

eβε1(x) + 1

]
, (61)

where the density of states ρ(x) is given in Eq (28) and the two branches of
energy excitation spectrum take the form

ε1(x) = zb′
[
− x0 −

√
m̄2 + x2

]
, (62)

ε2(x) = zb′
[
− x0 +

√
m̄2 + x2

]
, (63)

where x0 = (µ/z − a)/b′ and m̄2 = (ma′/b′)2. Eqs (59)-(61) are the basic
self-consistent equations for antiferromagnetism of the model in Eq (7). At
a given condition of the doping level δ and temperature T , three unknowns,

11



x0, Λ, and m can be determined from the system of equations. Of course, x0,
Λ, and m also depend on the dimensionless material parameters T̄0 = T0/t,
p̄ = p/t, q̄ = q/t. In the following, we discuss the case of T0 = 0.

The system is in ground state at absolute zero temperature. This is the δ-axis
in the δ-T plane. When T → 0, the integral in Eq (59) can be carried out
analytically with the result

δ =
2

π

[
ξ
√

1− ξ2 + arcsin(ξ)
]
, (64)

where ξ =
√
x2

0 − m̄2. In the case of b > 0, x0 < 0 is applicable to the case of
n = 1 − δ (hole doping), while x0 > 0 is applicable to the case of n = 1 + δ
(electron doping). When T → 0, for the hole doping case (x0 < 0), Eqs (60)
and (61) can be written as

Λ = −z
2

z1

∫ 1

ξ

dxρ(x)
x2

√
m̄2 + x2

, (65)

b′ = −2za′
∫ 1

ξ

dxρ(x)
1√

m̄2 + x2
, (66)

where ξ is given by Eq (64). There is no singularity as long as either ξ or m̄
is nonzero. The quantity ξ depends on δ only and Eq (64) is not coupled with
Eqs (65) and (66). Thus ξ can be solved separately from Eq (64) for a given
δ. When δ is small, to the leading order, Eq (64) can be solved with the result

ξ ' π

4
δ, (67)

which leads to an approximate relation between x0 and m̄ on the δ-axis (T →
0).

x2
0 '

(π
4
δ
)2

+ m̄2. (68)

A more complete solution of the system of equations (64)-(66) can be ob-
tained numerically for given δ, p̄, and q̄. Now we discuss two special points
on the δ-axis (T → 0).

An interesting point on the δ-axis is where m vanishes. At this point, ξ = |x0|
and the integrals in the self-consistent equations (65)-(66) can be carried out
analytically. Use δ0 to denote the doping concentration at this point, which
can be determined by the following equations

δ0 = − 2

π

[
x0

√
1− x2

0 + arcsin(x0)
]
, (69)

Λ = − 4

πz1

(
1− x2

0

)3/2

, (70)

b′ =
4

π
a′
[√

1− x2
0 + ln |x0| − ln

(
1 +

√
1− x2

0

) ]
. (71)
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To the leading order of δ0, x0 can be solved from Eq (69) as

x0 ' −
π

4
δ0. (72)

The term ln |x0| in Eq (71) shows that a meaningful δ0 must be finite. Solving
x0 and Λ from Eqs (69) and (70), and then substituting their values into Eq
(71), we obtain a single variable equation for δ0. Given p̄ and q̄, this equation
can be solved to obtain δ0(p̄, q̄). In practice, the value of δ0 is known from
experiments, so that δ0(p̄, q̄) specifies a relation between the dimensionless
parameters p̄ and q̄. For example, in the case of b > 0, for δ0 = 0.05, q̄ = 0.63
corresponds to r = p̄/q̄ ' 2.5, while q̄ = 1 corresponds to r = p̄/q̄ ' 3.73.

The most interesting case is the ground state at half-filling. This is the origin
of the δ-T plane. Eq (64) indicates that ξ = 0 and therefore x̃2

0 = m̄2 at this
point. Noticing that at δ = 0, z1 = z, and b′ = b, the self-consistent equations
become

Λ = −z
∫ 1

0

dxρ(x)
x2

√
m̄2 + x2

, (73)

b = −2za′
∫ 1

0

dxρ(x)
1√

m̄2 + x2
. (74)

Apparently, the integral in Eq (74) is divergent when m = 0, which indicates
that m = 0 is not a possible solution of the system as T → 0 at δ = 0. That
is, the system must be in an antiferromagnetic state with a nonzero m at the
origin of the δ-T plane. This is one of the most striking features of the model
described by Eq (7). Since in this case T → 0 and δ = 0, the magnetization m
depends on the two parameters q̄ and p̄ (or q̄ and r = p̄/q̄ = p/q ) only. Our
results show that for a given value of q̄, a nonzero m starts with a threshold
value r ≥ r0. Then m increases with r, and finally saturates to a maximum
value of mmax ' 0.6698 when r is sufficiently large. Generally, the greater the
q̄, the greater the threshold value r0. The threshold value of r for a given q̄ is
related to the condition of a′ < 0 and b′ > 0.

In the simplest case where m = 0, for the case of b > 0, the self-consistent
equations become

n = 2z

∫ 1

0

dxρ(x)
[ 1

eβε1(x) + 1
+

1

eβε1(x) + 1

]
, (75)

Λ = −z
2

z1

∫ 1

0

dxρ(x)x
[ 1

eβε1(x) + 1
− 1

eβε1(x) + 1

]
, (76)

b′ = −2za′
∫ 1

0

dxρ(x)
1

x

[ 1

eβε1(x) + 1
− 1

eβε1(x) + 1

]
, (77)
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Figure 1: Antiferromagnetic phase boundary lines for typical values of q̄ = q/t
and r. The region below each line is the antiferromagnetic state.

where

ε1(x) = zb′
(
− x0 − x

)
, (78)

ε2(x) = zb′
(
− x0 + x

)
. (79)

Now there are only two unknowns x0 and Λ, which can be determined from
Eqs (75) and (76) when δ and T are given. The third equation (77) will give
the Néel temperature at a doping concentration δ, TN (δ), in the δ-T plane,
which is the boundary of the area where m 6= 0. Fig. 1 shows the antifer-
romagnetic phase diagrams for some typical values of q̄ and r. As discussed
above, Eq (77) is singular at the point of T → 0 and δ = 0. Therefore, the
boundary of m 6= 0 must bypass the origin of the δ-T plane.

6 Superconductivity

In order to study the superconductivity of the model described by Eq (7),
one needs to calculate the ensemble average 〈cl↓cl′↑〉 or its complex conju-

gate 〈c†l′↑c
†
l↓〉. These quantities provide the information about the state of the

14



Cooper pairs, from which the properties of the superconducting and pseudo-
gap state can be obtained. The ensemble average 〈c†l′↑c

†
l↓〉 can be calculated

from the Green function � c†l↓|c
†
l′↑ � . Further analysis shows that the Green

function � c†l↓|c
†
l′↑ � is coupled with � cl↑|c†l′↑ � even at the lowest order of

decoupling approximation. Therefore, we need to deal with both � c†l↓|c
†
l′↑ �

and � cl↑|c†l′↑ � simultaneously in the study of the superconductivity. In ω-

space, the equations of motion for both Green functions � cl↑|c†l′↑ �ω and

� c†l↓|c
†
l′↑ �ω are

ω � cl↑|c†l′↑ �ω= δll′+� [cl↑,K]|c†
l′↑ �ω, (80)

ω � c†l↓|c
†
l′↑ �ω=� [c†l↓,K]|c†

l′↑ �ω, (81)

where the Fermion anticommutation relations {cl↑, c†l′↑} = δll′ and {c†l↓, c
†
l′↑} =

0 have been taken into account. For translational invariant systems, � cl↑|c†l′↑ �ω

and � c†l↓|c
†
l′↑ �ω are functions of frequency ω and Rl −Rl′ .

To the lowest order of decoupling approximation, we obtain the Green func-
tions as follows

� cl↑|c†l′↑ �ω=
1

N

∑
k

eik·(Rl−Rl′ )
[ Ak

ω − Ek
+

Bk

ω + Ek

]
, (82)

� c†l↓|c
†
l′↑ �ω=

1

N

∑
k

eik·(Rl−Rl′ )
[ Ck

ω − Ek
+

Dk

ω + Ek

]
, (83)

where the partial-fraction decomposition coefficients are given by

Ak =
1

2

(
1 +
−µ+ za+ b′γk

Ek

)
, (84)

Bk =
1

2

(
1− −µ+ za+ b′γk

Ek

)
, (85)

Ck =
1

2

(zc+ d′γk)∆∗

Ek
= −Dk, (86)

and the elementary excitation energy spectrum takes the form

Ek =
√

(µ− za− b′γk)2 + (zc+ d′γk)2|∆|2. (87)

Here the dispersion relation γk is given in Eq (23) and b′ = b(1 − δ)/(1 + r),
d′ = d(1 − δ)r/(1 + r), where r = p/q, and the coefficients a, b, c, and d are
expressions of Λ and ∆

a = t(1 + δ)Λ + (p+ q)δ
[1

4
(1− δ2) + Λ2 − |∆|2

]
, (88)
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b = t
[
− 1

4
(1 + δ)2 + 3Λ2 + |∆|2

]
+
[
− 3

2
(p− q)

+ 2(p+ q)(−1

4
δ2 + Λ2 + |∆|2)

]
Λ,

(89)

c = t(1 + δ) + 2(p+ q)δΛ, (90)

d = t2Λ− 3

2
(p− q) + 2(p+ q)

[1

4
δ2 + Λ2 + |∆|2

]
. (91)

It is easy to check that the dimensionless coefficients ā = a/t, b̄ = b/t, c̄ = c/t,
and d̄ = d/t satisfy the following relations

ā = c̄Λ + (p̄+ q̄)δ
[1

4
(1− δ2)− Λ2 − |∆|2

]
, (92)

b̄ = d̄Λ− 1

2
c̄δ − 1

4
(1 + δ)2 + Λ2 + |∆|2, (93)

where p̄ = p/t and q̄ = q/t. Here Λ and ∆ are the values of the nonzero for-

mal ensemble averages 〈c†lσcl′σ〉 and 〈cl↓cl′↑〉 for the nearest-neighbor sites l
and l′, which will be calculated self-consistently [14]. We have assumed that Λ
and ∆ do not depend on spin σ explicitly in the discussion of superconductiv-
ity.

Using Eq (15), the ensemble averages 〈c†l′↑cl↑〉 and 〈c†l′↑c
†
l↓〉 can be calculated

by the following equations

〈c†l′↑cl↑〉 =
1

2
δll′ −

1

2N

∑
k

eik·(l−l’)
−µ+ za+ b′γk

Ek
tanh

(1

2
βEk

)
, (94)

〈c†l′↑c
†
l↓〉 = −∆∗

2N

∑
k

eik·(l−l’)
zc+ d′γk

Ek
tanh

(1

2
βEk

)
. (95)

These are the general formulas of the ensemble averages for the study of su-
perconductivity. Eqs (94) and (95) confirm that 〈c†l′↑cl↑〉 , and 〈c†l′↑c

†
l↓〉 are

functions of Rl − Rl′ , which is a result of the translational invariance of the
system.

Three quantities µ, Λ, and ∆ need to be determined from this formalism. The
self-consistent equations for µ, Λ, and ∆ can be obtained from Eqs (94) and
(95) with the following form

δ =
1

N

∑
k

−µ+ za+ b′γk
Ek

tanh
(1

2
βEk

)
. (96)

2z1Λ = − 1

N

∑
k

(−µ+ za+ b′γk)γk
Ek

tanh
(1

2
βEk

)
, (97)

2z2 = − 1

N

∑
k

(zc+ d′γk)γk
Ek

tanh
(1

2
βEk

)
, (98)
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where z1 = z(1− δ)/(1 + r) and z2 = z(1− δ)r/(1 + r), the approximate aver-
age numbers of the nearest neighbors of the site l with the same and opposite
spin, respectively.

Furthermore, introducing a new variable x → γk/z, the self-consistent equa-
tions can be written in the integration form

δ = zb′
∫ 1

−1

dxρ(x)
x− x0

E(x)
tanh

(1

2
zβE(x)

)
, (99)

2z1Λ = −z2b′
∫ 1

−1

dxρ(x)
(x− x0)x

E(x)
tanh

(1

2
zβE(x)

)
, (100)

2z2 = −z2d′
∫ 1

−1

dxρ(x)
(x− x′0)x

E(x)
tanh

(1

2
zβE(x)

)
, (101)

where x0 = (µ/z − a)/b′, x′0 = −c/d′, the density of states ρ(x) is given in Eq
(28), and the elementary excitation energy can be written as

E(x) =
√
b′2(x− x0)2 + d′2(x− x′0)2∆2. (102)

In the dimensionless system where the coefficients a, b, c, and d are rescaled
with t, there are only two independent parameters p̄ and q̄. Except for the
expression of density of state (28), all equations are applicable to any dimen-
sional systems.
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Figure 2: Phase diagram of superconductivity state for typical values of q̄ =
q/t and r. The region below each phase boundary line (within each dome) is
the superconductivity state.
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Eqs (99)-(101) are the basic self-consistent equations for the superconductiv-
ity state of the model. There are three unknowns, x0, Λ, and ∆, to be deter-
mined from the system of equations. The most interesting quantity is the en-
ergy gap parameter ∆. It is the order parameter of the superconducting state.
The quantity x0, the effective chemical potential of the system, is relevant to
the features of the Fermi surface. In the case where d 6= 0 and x0 6= x′0, a
nonzero ∆ causes an energy gap at the Fermi surface, as shown in Eq (102).
This is the most remarkable feature of the superconducting state. The system
of equations (99)-(101) can be solved numerically. The phase diagram of the
superconductivity for some typical values of q̄ and r is shown in Fig. 2. Other
detailed results, such as the δ and T dependence of the energy gap parameter
∆, will be presented in the forthcoming papers.

7 Pseudogap State

We believe that the pseudogap state observed in experiments can be described
by the special case of the system of equations (99)-(101) where x0 = x′0. It
can be shown that b = Λd in this case, and therefore the self-consistent equa-
tions take the following form

δ =
zr1Λ

κ

∫ 1

−1

dxρ(x) tanh
(1

2
zβκd(x− x0)

)
, (103)

2 = −z 1

κ

∫ 1

−1

dxρ(x)x tanh
(1

2
zβκd(x− x0)

)
, (104)

Λ2 + ∆2 =
1

4
(1 + δ)2 + (p̄+ q̄)δ2Λ, (105)

where κ is given by

κ =
√

(r1Λ)2 + (r2∆)2. (106)

Note that there is no singularity in Eqs (103)-(104) at any doping level as
T → 0. At a given temperature T and doping level δ, the quantities x0, Λ,
and ∆ are determined from Eqs (103)-(105).

In the pseudogap state, a new degree of freedom, n∗, which is the number of
electrons that cannot ‘see’ the energy gap, emerges. This is the density of the
charge carriers contributing to the electrical conductivity in the pseudogap
region. Explicitly, the condition of x0 = x′0 can expressed as

c̄+ x0r2d̄ = 0, (107)
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where

c̄ = 2− n+ 2(p̄+ q̄)(1− n)Λ, (108)

d̄ = 2Λ− p̄+ 2q̄ + 2(p̄+ q̄)
[
− 1

4
n(2− n) + Λ2 + ∆2

]
. (109)

When n is the total number of the electrons, n = 1− δ, Eq (107) describes the
line of T ∗(δ) [15]. If we require the condition (107) to be satisfied for T < T ∗,
then the only possibility is that n < 1 − δ. We assume that the new degree of
freedom n∗ is determined by Eq (107) when T < T ∗. That is, the condition
x0 = x′0 determines the number of carries n∗ in the pseudogap state.
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Figure 3: Temperature dependence of the charge carriers density n∗ in pseu-
dogap state for typical doping levels (q̄ = 0.63, r = 2.5).

Replacing n by n∗ in Eq (107) leads to a quadratic equation of n∗, which can
be solved with the result

n∗ = 1− δ∗,

δ∗ =
−1(

p̄+ q̄
)
r2x0

[
1 + 2

(
p̄+ q̄

)
Λ +
√
D
]
,

D =
[
1 + 2

(
p̄+ q̄

)
Λ
]2
− 2
(
p̄+ q̄

)
r2x0

[
1 + 2

(
− 3

4

(
p̄− q̄

)
+ Λ +

(
p̄+ q̄

)(
Λ2 + ∆2

))
r2x0

]
.

(110)
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The symbol δ∗ should not be confused with the doping parameter. As Fig. 3
shows, at a doping level δ, n∗ increases linearly with temperature T for the
range of higher T . This remarkable result indicates that the Hall coefficient
RH = 1/en∗ has a temperature dependence of 1/T .

As expected, the condition of n∗ = 0 should give the metal-insulator (MI)
transition line. A semi-phenomenological analysis can show that the resistivity
in the pseudogap region ρ∗ ∼ −1/x0 at the Fermi surface. Detailed discus-
sion of the resistivity and the phase diagram of the pseudogap state (the MI
transition line and T ∗ line) will be presented in forthcoming papers.

8 Conclusion

We have established a novel model Hamiltonian for the strongly correlated
electron systems, which contains the Coulomb potential energy terms up to
the order of two-site interactions. The magnetic properties (ferromagnetism
and antiferromagnetism) of this model have been studied. Our results indi-
cate that the system is not necessarily in the ferromagnetic state as T → 0
at any doping level. Nevertheless, the system must be in an antiferromagnetic
state with a nonzero magnetization at the state point of T → 0 and δ = 0.
Moreover, the system exhibits a superconducting state in a doped region at
sufficiently low temperatures. The phase diagrams for antiferromagnetism and
superconductivity of the model are presented. This model also predicts the
temperature dependence of 1/T of the Hall coefficient in the pseudogap state.
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