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Abstract

Interval-valued intuitionistic fuzzy set (IVIFS) as a generalization of intuitionis-
tic fuzzy set (IFS) increase its elasticity drastically. In this paper, some important
types of interval-valued intuitionistic fuzzy graphs (IVIFGs) such as regular, ir-
regular, neighbourly irregular, highly irregular and strongly irregular IVIFGs are
discussed. The relation among neighbourly irregular, highly irregular and strongly
irregular IVIFGs is proved. The notion of interval-valued intuitionistic fuzzy clique
(IVIFC) is introduced. A complete characterization of the structure of the IVIFC
is presented.
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1 Introduction

In 1965, Zadeh [26] originally introduced the concept of fuzzy set. Its prominent char-
acteristic is that a membership degree in [0, 1] is assigned to each element in the set.
When it is difficult to give the accurate judgments to the things, fuzzy set shows great
advantages in expressing uncertain or vague information and depict the indeterminacy
of things. It was later understood that a single membership function could not capture
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the ambiguity existing in human mind and the complexity of data. To overcome this
shortcoming of the fuzzy set, Atanassov [4] proposed an extension of fuzzy set by intro-
ducing non-membership function, and defined IFS. As IFS can describe the uncertainty
of an object more reasonably and comprehensively than the FS, lots of research on the
IFS have been done, in recent decades. However, in some cases, membership degree or
non-membership degree cannot be indicated by using a value, but using an interval. That
is why, IFS was extended to the IVIFS by Atanassov and Gargov [5] as a combining
concept of IFS and IVFS. It greatly furnishes the additional capability to deal with im-
precise information and model non-statistical uncertainty by expressing the variations of
membership function and non-membership function and has played a vital role in the
vague system and received much attention from researchers. IVIFS has been widely used
in many areas, such as decision making [9], pattern recognition [28], medical diagnosis[1],
graph theory[12], etc.

It is natural that when there is fuzziness in the description of the items (vertices) or in
their relationships (edges) or in both, a fuzzy graph model is designed. Obtaining analogs
of several basic graph theoretical concepts, Rosenfeld [22] considered fuzzy relations on
fuzzy sets and defined the structure of fuzzy graphs. Applications of fuzzy graphs cover
an extensive range such as control theory, information theory, neural networks, expert
systems, medical diagnosis, cluster analysis, database theory, decision making and opti-
mization of networks. Nair and Cheng [19] defined the concept of a fuzzy clique in fuzzy
graphs. The concept of cycles and cocycles of fuzzy graphs was introduced by Mordeson
and Nair [14]. The complement of a fuzzy graph was proposed by Mordeson and Peng
[13] and then modified by Sunitha and Vijayakumar [25]. Ghosh et al. [10] introduced
fuzzy graph representation of a fuzzy concept lattice. The notion of irregular fuzzy graphs
was defined by Gani and Latha [18]. The concept of strongly irregular fuzzy graphs was
initiated by Nandhini and Nandhini [20]. Intuitionistic fuzzy graphs were first introduced
by Atanassov [6] in 1999 and further discussed in [3] by Akram. The concept of interval-
valued fuzzy graphs was initiated by Hongmei and Lianhua in [11]. Product of IVIFGs
has been proposed by Mishra and Pal in [16]. The concept of strong IVIFGs was defined
by Ismayil and Ali [12]. Rashmanlou and Borzooei [21] introduced the concept of interval-
valued intuitionistic (S, T)-fuzzy graphs. Recently, Akram et al. [24, 2] put forward many
new concepts, including fuzzy soft graphs and m-polar fuzzy graphs.

This paper is organized as follows: In Section 2, basic concepts related to IVIFSs and
IVIFGs are reviewed. In Section 3, we define certain types of IVIFGs like, neighbourly
irregular, highly irregular and strongly irregular IVIFGs. In Section 4, we propose the
concept of IVIFCs consistent with interval-valued intuitionistic fuzzy cycles in IVIFGs
and finally we draw conclusions in section 5.

We have used standard definitions and terminologies, in this paper. For more details
and background, the readers are referred to [7, 8, 15, 17].
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2 Preliminaries

In the following, some basic concepts are reviewed to facilitate next sections.

A graph is a pair of sets G = (V,E), satisfying E ⊆ V ×V . The elements of V are the
vertices and the elements of E are the edges of the graph G. A vertex joined by an edge
to a vertex x is called a neighbor of x. The (open) neighborhood N (x) of a vertex x in a
graph G is the set of all the neighbors of x, while closed neighborhood N [x] of x is given
by N [x] = N (x) ∪ {x}. The degree of a vertex x in G, denoted by degG(x) or deg(x), is
the number of edges incident with x. A graph with no multiple edges and loops is called
simple. Throughout this paper we will consider only undirected, simple graphs. A graph
G is complete if every two distinct vertices of G are adjacent.

In graph theory, clique is an important concept. A clique in a graph G is a complete
subgraph of G. A subgraph H of a graph G is a disjoint union of cliques if V (H) can be
partitioned into H1, H2, . . . , Hk such that xy ∈ E(H) for all x, y ∈ V (H) if and only if
{x, y} ⊆ Hi, for some i, i = 1, 2, . . . , k [19].

Definition 2.1. [26] A fuzzy subset η of a set V is a function η : V → [0, 1]. A fuzzy
relation on a set V is a mapping µ : V × V → [0, 1] such that µ(x, y) ≤ η(x)∧ η(y) for all
x, y ∈ V . A fuzzy relation µ is symmetric if µ(x, y) = µ(y, x) for all x, y ∈ V .

Definition 2.2. [4] An IFS X in V is an object of the form

X = {〈x, µX(x), νX(x)〉 | x ∈ V },

where the functions µX : V → [0, 1] and νX : V → [0, 1] give the degree of membership
and the degree of non-membership of the element x ∈ V , respectively, such that 0 ≤
µX(x) + νX(x) ≤ 1 for all x ∈ V. The class of all IFSs on V is denoted by IFS(V ).

For each IFS X in V , πX(x) = 1− µX(x)− νX(x) is called a hesitancy degree of x in
X . If πX(x) = 0 for all x ∈ V, then IFS reduces to Zadeh’s fuzzy set.

Definition 2.3. [27] An interval-valued fuzzy set (IVFS) X in V is a mapping

MX : V → D[0, 1],

where D[0, 1] = {[a, b] : a ≤ b, a, b ∈ [0, 1]}. The class of all interval-valued fuzzy sets on
V is denoted by IV FS(V ).

For any set X ⊆ [0, 1], we introduce the following notation: X− = infX and X+ =
supX.

Definition 2.4. [5] An IVIFS X in V is an object of the form

X = {〈x,MX(x), NX(x)〉 | x ∈ V },

where MX : V → D[0, 1] and NX : V → D[0, 1] such that M+
X (x) + N+

X (x) ≤ 1 for all
x ∈ V. The set of all IVIFSs on V is denoted by IV IFS(V ).
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Definition 2.5. [22] A fuzzy graph G = (η, µ) is a pair of functions η : V → [0, 1] and
µ : V × V → [0, 1] such that µ(xy) ≤ η(x) ∧ η(y) for all x, y ∈ V . An edge xy of a fuzzy
graph is called an effective edge [23] if µ(xy) = η(x) ∧ η(y). In a fuzzy graph, the path ρ

is a sequence of distinct vertices x0, x1, . . . , xn such that µ(xi−1, xi) > 0, i = 1, 2, . . . , n.

Definition 2.6. [3] An intuitionistic fuzzy graph (IFG) of a graph G is defined to be a
pair G = (X, Y ), where

(i) the functions µX : V → [0, 1] and νX : V → [0, 1] represent the degree of membership
and non-membership of the element x ∈ V , respectively, such that 0 ≤ µX(x) +
νX(x) ≤ 1 for all x ∈ V ,

(ii) the functions µY : E ⊆ V × V → [0, 1] and νY : E ⊆ V × V → [0, 1] are defined by

µY (xy) ≤ min(µX(x), µX(y)) and νY (xy) ≥ max(νX(x), νX(y))

such that 0 ≤ µY (xy) + νY (xy) ≤ 1 for all xy ∈ E.

Definition 2.7. [11] An interval-valued fuzzy graph (IVFG) of a graph G = (V,E) is a
pair G = (X, Y ), where X = [µ−

X , µ
+
X ] is an interval-valued fuzzy set in V and Y = [µ−

Y , µ
+
Y ]

is an interval-valued fuzzy set in E ⊆ V × V such that

µ−
Y (xy) ≤ min(µ−

X(x), µ
−
X(y)) and µ+

Y (xy) ≤ min(µ+
X(x), µ

+
X(y))

for all xy ∈ E.

3 Interval-valued intuitionistic fuzzy graphs (IVIFGs)

Definition 3.1. [16] An IVIFG of a graph G is defined to be a pair G = (X, Y ), where

(i) the functions MX : V → D[0, 1] and NX : V → D[0, 1] denote the degree of interval-
valued membership and interval-valued non-membership of the element x ∈ V ,
respectively, such that M+

X (x) +N+
X (x) ≤ 1 for all x ∈ V ,

(ii) the functions MY : E ⊆ V × V → D[0, 1] and NY : E ⊆ V ×V → D[0, 1] are defined
by

M−
Y (xy) ≤ min(M−

X (x),M
−
X (y)),M

+
Y (xy) ≤ min(M+

X (x),M
+
X (y)),

N−
Y (xy) ≥ max(N−

X (x), N
−
X(y)) and N+

Y (xy) ≥ max(N+
X(x), N

+
X (y))

such that M+
Y (xy) +N+

Y (xy) ≤ 1 for all xy ∈ E.

We call X the interval-valued intuitionistic fuzzy vertex set of G and Y the interval-valued
intuitionistic fuzzy edge set of G.
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Example 3.1. Consider a graph G = (V,E), where V = {v1, v2, v3, v4, v5, v6} and E =
{v1v2, v2v3, v3v4, v4v5, v5v2, v6v4}. Let G = (X, Y ) be an IVIFG of a graph G defined by

X =
〈( v1

0.4
,
v2

0.1
,
v3

0.2
,
v4

0.5
,
v5

0.6
,
v6

0.2

)

,
( v1

0.5
,
v2

0.6
,
v3

0.7
,
v4

0.6
,
v5

0.8
,
v6

0.4

)

,
( v1

0.3
,
v2

0.2
,
v3

0.1
,
v4

0.2
,
v5

0.1
,
v6

0.3

)

,
( v1

0.6
,
v2

0.5
,
v3

0.3
,
v4

0.4
,
v5

0.2
,
v6

0.5

)〉

,

Y =
〈(v1v2

0.1
,
v2v3

0.1
,
v3v4

0.1
,
v4v5

0.4
,
v5v2

0.1
,
v4v6

0.2

)

,
(v1v2

0.3
,
v2v3

0.4
,
v3v4

0.5
,
v4v5

0.5
,
v5v2

0.4
,
v4v6

0.3

)

,
(v1v2

0.5
,
v2v3

0.3
,
v3v4

0.3
,
v4v5

0.3
,
v5v2

0.4
,
v4v6

0.5

)

,
(v1v2

0.9
,
v2v3

0.7
,
v3v4

0.4
,
v4v5

0.7
,
v5v2

0.6
,
v4v6

0.7

)〉

.

The IVIFG is given in Fig. 1. Tabular representation of an IVIFG is given in Table 1.

〈[0
.4
, 0
.5
], [
0.
3,
0.
7]
〉

〈[0
.1
, 0
.4
], [
0.
3,
0.
7]
〉 〈[0

.1
, 0
.5], [0

.3
, 0
.4]〉

〈[0
.1
, 0
.4], [0

.4
, 0
.6]〉

v6〈[0.2, 0.4], [0.3, 0.5]〉

b

b

b
b

b

b

v5〈[0.6, 0.8], [0.1, 0.2]〉

v4〈[0.5, 0.6], [0.2, 0.4]〉
v2〈[0.1, 0.6], [0.2, 0.5]〉

v1〈[0.4, 0.5], [0.3, 0.6]〉
〈[0.1, 0.3], [0.5, 0.9]〉

〈[0.2, 0.3], [0.5, 0.7]〉

v3〈[0.2, 0.7], [0.1, 0.3]〉

Figure 1: IVIFG.

Table 1: Tabular representation of an IVIFG.

v1 v2 v3 v4 v5 v6
M−

X 0.4 0.1 0.2 0.5 0.6 0.2
M+

X 0.5 0.6 0.7 0.6 0.8 0.4
N−

X 0.3 0.2 0.1 0.2 0.1 0.3
N+

X 0.6 0.5 0.3 0.4 0.2 0.5

v1v2 v2v3 v3v4 v4v5 v5v2 v4v6
M−

Y 0.1 0.1 0.1 0.4 0.1 0.2
M+

Y 0.3 0.4 0.5 0.5 0.4 0.3
M−

Y 0.5 0.3 0.3 0.3 0.4 0.5
M+

Y 0.9 0.7 0.4 0.7 0.6 0.7
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Definition 3.2. The degree of a vertex x ∈ V in an IVIFG G is defined as deg(x) =
〈[degM−(x), degM+(x)], [degN−(x), degN+(x)]〉, where

degM−(x) = Σx,y 6=x∈VM
−
Y (xy), degM+(x) = Σx,y 6=x∈VM

+
Y (xy),

degN−(x) = Σx,y 6=x∈VN
−
Y (xy) and degN+(x) = Σx,y 6=x∈VN

+
Y (xy).

For an IVIFG, the degree of a vertex can be generalized in different ways.

Definition 3.3. The sum of the weights of the effective edges incident at a vertex x in an
IVIFG is called the effective degree of x. That is, Edeg(x) = 〈[EdegM−(x), EdegM+(x)], [EdegN−(x),
EdegN+(x)]〉, where

EdegM−(x) = Σx,y 6=x∈VM
−
Y (xy), EdegM+(x) = Σx,y 6=x∈VM

+
Y (xy),

EdegN−(x) = Σx,y 6=x∈VN
−
Y (xy) and EdegN+(x) = Σx,y 6=x∈VN

+
Y (xy)

for all effective edges xy ∈ E.

Definition 3.4. The neighbourhood degree of a vertex x ∈ V in an IVIFG G is defined
as Ndeg(x) = 〈[NdegM−(x),NdegM+(x)], [NdegN−(x),NdegN+(x)]〉, where

NdegM−(x) = Σy∈N (x)M
−
X (y),NdegM+(x) = Σy∈N (x)M

+
X (y),

NdegN−(x) = Σy∈N (x)N
−
X (y) and NdegN+(x) = Σy∈N (x)N

+
X(y).

Definition 3.5. The closed neighbourhood degree of a vertex x ∈ V in an IVIFG G is
defined by Ndeg[x] = 〈[NdegM−[x],NdegM+ [x]], [NdegN−[x],NdegN+ [x]]〉, where

NdegM−[x] = NdegM−(x) +M−
X(x),NdegM+ [x] = NdegM+(x) +M+

X (x),

NdegN− [x] = NdegN−(x) +N−
X(x) and NdegN+ [x] = NdegN+(x) +N+

X(x).

Definition 3.6. The vertices of G which are incident with effective edges are said to be
the effective vertices. The sum of the weights of the effective vertices adjacent to a vertex
x of an IVIFG G is called the effective neighbourhood degree of x.

The types of IVIFGs are introduced according to their (open) neighbourhood and
closed neighbourhood degree.

Definition 3.7. An IVIFG G on G, in which each vertex has the same neighbourhood
degree is called an interval-valued intuitionistic fuzzy regular graph. If each vertex has
degree 〈[j, k], [s, t]〉, G is called 〈[j, k], [s, t]〉-regular.

Example 3.2. Consider a graphG = (V,E), where V = {v1, v2, v3} and E = {v1v2, v2v3, v1v3}.
Let G = (X, Y ) be an IVIFG of a graph G defined by

X =
〈( v1

0.2
,
v2

0.2
,
v3

0.2

)

,
( v1

0.3
,
v2

0.3
,
v3

0.3

)

,
( v1

0.4
,
v2

0.4
,
v3

0.4

)

,
( v1

0.6
,
v2

0.6
,
v3

0.6

)〉

,

Y =
〈(v1v2

0.2
,
v2v3

0.2
,
v3v1

0.1

)

,
(v1v2

0.3
,
v2v3

0.3
,
v3v1

0.2

)

,
(v1v2

0.5
,
v2v3

0.5
,
v3v1

0.6

)

,
(v1v2

0.6
,
v2v3

0.6
,
v3v1

0.7

)〉

.
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〈v1, [0.2, 0.3], [0.4, 0.6]〉
b

bb 〈[0.2, 0.3], [0.5, 0.6]〉

〈v2, [0.2, 0.3], [0.4, 0.6]〉〈v3, [0.2, 0.3], [0.4, 0.6]〉

〈[0.2, 0.3], [0.5, 0.6]〉〈[0.1, 0.2], [0.6, 0.7]〉

Figure 2: Regular IVIFG.

Here degG(vi) = 〈[0.4, 0.6], [0.8, 1.2]〉 for all i = 1, 2, 3. Hence G = (X, Y ) is a regular
IVIFG. The regular IVIFG is given in Fig. 2. Tabular representation of a regular IVIFG
is given in Table 2.

Table 2: Tabular representation of a regular IVIFG.

v1 v2 v3
M−

X 0.2 0.2 0.2
M+

X 0.3 0.3 0.3
N−

X 0.4 0.4 0.4
N+

X 0.6 0.6 0.6

v1v2 v2v3 v1v3
M−

Y 0.2 0.2 0.1
M+

Y 0.3 0.3 0.2
N−

Y 0.5 0.5 0.6
N+

Y 0.6 0.6 0.7

Definition 3.8. An IVIFG G is said to be irregular, if there is a vertex which is adjacent
to vertices with distinct neighbourhood degrees. That is, degG(l) 6= 〈[j, k], [s, t]〉 for all
l ∈ V .

Example 3.3. Consider a graphG = (V,E), where V = {v1, v2, v3} and E = {v1v3, v2v3}.
Let G = (X, Y ) be an IVIFG of a graph G defined by

X =
〈( v1

0.2
,
v2

0.2
,
v3

0.4

)

,
( v1

0.3
,
v2

0.3
,
v3

0.5

)

,
( v1

0.5
,
v2

0.5
,
v3

0.2

)

,
( v1

0.6
,
v2

0.6
,
v3

0.4

)〉

,

Y =
〈(v1v3

0.1
,
v2v3

0.1

)

,
(v1v3

0.3
,
v2v3

0.2

)

,
(v1v3

0.5
,
v2v3

0.6

)

,
(v1v3

0.6
,
v2v3

0.7

)〉

.

Clearly, degG(v1) = degG(v2) = 〈[0.4, 0.5], [0.2, 0.4]〉 and degG(v3) = 〈[0.4, 0.6], [1.0, 1.2]〉.
Hence G = (X, Y ) is an irregular IVIFG. The irregular IVIFG is given in Fig. 3. Tabular
representation of an irregular IVIFG is given in Table 3.
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〈v1, [0.2, 0.3], [0.5, 0.6]〉
b

bb
〈v2, [0.2, 0.3], [0.5, 0.6]〉〈v3, [0.4, 0.5], [0.2, 0.4]〉

〈[0.1, 0.3], [0.5, 0.6]〉

〈[0.1, 0.2], [0.6, 0.7]〉

Figure 3: Irregular IVIFG.

Table 3: Tabular representation of an irregular IVIFG.

v1 v2 v3
M−

X 0.2 0.2 0.4
M+

X 0.3 0.3 0.5
N−

X 0.5 0.5 0.2
N+

X 0.6 0.6 0.4

v1v3 v2v3
M−

Y 0.1 0.1
M+

Y 0.3 0.2
N−

Y 0.5 0.6
N+

Y 0.6 0.7

Definition 3.9. Let G be a connected IVIFG on G. G is called neighbourly irregular, if no
two adjacent vertices of G have same neighbourhood degree. That is, degG(l) 6= degG(m)
for all lm ∈ E.

Example 3.4. Consider a graph G = (V,E), where V = {v1, v2, v3, v4} and E =
{v1v2, v1v3, v2v4, v3v4}. Let G = (X, Y ) be an IVIFG of a graph G, given in Fig.
4, defined by

X =
〈( v1

0.2
,
v2

0.1
,
v3

0.4
,
v4

0.3

)

,
( v1

0.4
,
v2

0.5
,
v3

0.5
,
v4

0.5

)

,
( v1

0.3
,
v2

0.4
,
v3

0.2
,
v4

0.1

)

,
( v1

0.5
,
v2

0.5
,
v3

0.3
,
v4

0.3

)〉

,

Y =
〈(v1v2

0.1
,
v1v3

0.1
,
v2v4

0.1
,
v3v4

0.2

)

,
(v1v2

0.2
,
v1v3

0.3
,
v2v4

0.4
,
v3v4

0.4

)

,
(v1v2

0.5
,
v1v3

0.4
,
v2v4

0.4
,
v3v4

0.3

)

,
(v1v2

0.6
,
v1v3

0.6
,
v2v4

0.5
,
v3v4

0.5

)〉

,

where degG(v1) = degG(v4) = 〈[0.5, 1.0], [0.6, 0.8]〉 and degG(v2) = degG(v3) = 〈[0.5, 0.9], [0.4, 0.8]〉.
Hence G = (X, Y ) is a neighbourly irregular IVIFG.

Definition 3.10. A connected IVIFG G is said to be a highly irregular if every vertex
of G is adjacent to vertices with distinct neighbourhood degrees. That is, l, m ∈ N (x),
l 6= m =⇒ degG(l) 6= degG(m) for all x ∈ V .

Example 3.5. Consider a graph G = (V,E), where V = {v1, v2, v3, v4, v5} and E =
{v1v2, v2v3, v3v4, v4v5, v5v1, v2v4}. Let G = (X, Y ) be an IVIFG of a graph G, as shown in
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〈v1, [0.2, 0.4], [0.3, 0.5]〉
b

bb

〈[0.1, 0.3], [0.4, 0.6]〉

〈v2, [0.1, 0.5], [0.4, 0.5]〉

〈v3, [0.4, 0.5], [0.2, 0.3]〉

〈[0.1, 0.2], [0.5, 0.6]〉

〈[0.1, 0.4], [0.4, 0.5]〉

b

〈v4, [0.3, 0.5], [0.1, 0.3]〉

〈[0.2, 0.4], [0.3, 0.5]〉

Figure 4: Neighbourly irregular IVIFG.

Fig. 5 defined by

X =
〈( v1

0.2
,
v2

0.1
,
v3

0.2
,
v4

0.3
,
v5

0.2

)

,
( v1

0.5
,
v2

0.2
,
v3

0.4
,
v4

0.4
,
v5

0.3

)

,
( v1

0.3
,
v2

0.2
,
v3

0.3
,
v4

0.3
,
v5

0.1

)

,
( v1

0.4
,
v2

0.3
,
v3

0.4
,
v4

0.6
,
v5

0.3

)〉

,

Y =
〈(v1v2

0.1
,
v2v3

0.1
,
v3v4

0.1
,
v4v5

0.2
,
v5v1

0.1
,
v2v4

0.1

)

,
(v1v2

0.2
,
v2v3

0.2
,
v3v4

0.4
,
v4v5

0.3
,
v5v1

0.3
,
v2v4

0.2

)

,
(v1v2

0.4
,
v2v3

0.4
,
v3v4

0.5
,
v4v5

0.5
,
v5v1

0.5
,
v2v4

0.4

)

,
(v1v2

0.6
,
v2v3

0.5
,
v3v4

0.6
,
v4v5

0.6
,
v5v1

0.7
,
v2v4

0.7

)〉

,

where degG(v1) = 〈[0.3, 0.5], [0.3, 0.6]〉, degG(v2) = 〈[0.7, 1.3], [0.9, 1.4]〉, degG(v3) = 〈[0.4, 0.6]
, [0.5, 0.9]〉 and degG(v4) = degG(v5) = 〈[0.5, 0.9], [0.6, 1.0]〉. Therefore, G = (X, Y ) is a
highly irregular IVIFG.

〈v1, [0.2, 0.5], [0.3, 0.4]〉
b b

bb

b 〈v3, [0.2, 0.4], [0.3, 0.4]〉

〈v4, [0.3, 0.4], [0.3, 0.6]〉

〈v2, [0.1, 0.2], [0.2, 0.3]〉

〈v5, [0.2, 0.3], [0.1, 0.3]〉

〈[0
.1
, 0
.2
], [0

.4
, 0
.7
]〉〈[

0
.1
,
0
.3
],
[0
.5
,
0
.7
]〉

〈[0.1, 0.2], [0.4, 0.6]〉

〈[0.2, 0.3], [0.5, 0.6]〉
〈[0
.1,

0.4
], [
0.5

, 0
.6]
〉

〈[0.1, 0.2], [0.4, 0.5]〉

Figure 5: Highly irregular IVIFG

Remark 3.1. A neighbourly irregular IVIFG may not be a highly irregular IVIFG.

Remark 3.2. A highly irregular IVIFG may not be a neighbourly irregular IVIFG.

Definition 3.11. A connected IVIFG G on G is called strongly irregular if every pair
of vertices in G have distinct neighborhood degrees. That is, degG(l) 6= degG(m) for all
l, m ∈ V.
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Example 3.6. Consider a graphG = (V,E), where V = {v1, v2, v3} and E = {v1v2, v2v3, v1v3}.
Let G = (X, Y ) be an IVIFG of a graph G defined by

X =
〈( v1

0.2
,
v2

0.5
,
v3

0.6

)

,
( v1

0.7
,
v2

0.6
,
v3

0.8

)

,
( v1

0.1
,
v2

0.2
,
v3

0.1

)

,
( v1

0.3
,
v2

0.4
,
v3

0.2

)〉

,

Y =
〈(v1v2

0.1
,
v2v3

0.2
,
v3v1

0.1

)

,
(v1v2

0.3
,
v2v3

0.4
,
v3v1

0.2

)

,
(v1v2

0.5
,
v2v3

0.3
,
v3v1

0.6

)

,
(v1v2

0.6
,
v2v3

0.5
,
v3v1

0.7

)〉

,

where degG(v1) = 〈[1.1, 1.4], [0.3, 0.6]〉, degG(v2) = 〈[0.8, 1.5], [0.2, 0.5]〉 and degG(v3) =
〈[0.7, 1.3], [0.3, 0.7]〉. Therefore G = (X, Y ) is a strongly regular IVIFG. The strongly
regular IVIFG is shown in Fig. 6.

〈v1, [0.2, 0.7], [0.1, 0.3]〉
b

bb 〈[0.2, 0.4], [0.3, 0.5]〉

〈v2, [0.5, 0.6], [0.2, 0.4]〉〈v3, [0.6, 0.8], [0.1, 0.2]〉

〈[0.1, 0.3], [0.5, 0.6]〉〈[0.1, 0.2], [0.6, 0.7]〉

Figure 6: Strongly irregular IVIFG.

Theorem 3.1. Every strongly irregular IVIFG is both neighbourly irregular IVIFG and
highly irregular IVIFG.

Proof. Suppose that G is a strongly irregular IVIFG. That is, degrees of every pair of
vertices in G are distinct. Then every two adjacent vertices of G have distinct degrees and
every vertex of G is adjacent to vertices with distinct degrees . Hence G is neighbourly
irregular IVIFG and highly irregular IVIFG.

The converse of above statement does not hold. That is, a highly irregular IVIFG
and neighbourly irregular IVIFG may not be a strongly irregular IVIFG. The following
example illustrate the assertion above.

Example 3.7. Consider a graph G = (V,E), where V = {v1, v2, v3, v4} and E =
{v1v2, v1v4, v3v4}. Let G = (X, Y ) be an IVIFG of a graph G, as shown in Fig. 7,
defined by

X =
〈( v1

0.5
,
v2

0.3
,
v3

0.1
,
v4

0.5

)

,
( v1

0.7
,
v2

0.5
,
v3

0.3
,
v4

0.7

)

,
( v1

0.1
,
v2

0.2
,
v3

0.3
,
v4

0.1

)

,
( v1

0.2
,
v2

0.4
,
v3

0.5
,
v4

0.2

)〉

,

Y =
〈(v1v2

0.1
,
v1v4

0.2
,
v3v4

0.1

)

,
(v1v2

0.3
,
v1v4

0.4
,
v3v4

0.2

)

,
(v1v2

0.2
,
v1v4

0.3
,
v3v4

0.4

)

,
(v1v2

0.5
,
v1v4

0.4
,
v3v4

0.7

)〉

.

Clearly G is neighbourly irregular IVIFG and highly irregular IVIFG, but not strongly
irregular IVIFG, as degG(v2) = degG(v3).
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〈v1, [0.5, 0.7], [0.1, 0.2]〉
b b

b
〈[0.1, 0.2], [0.4, 0.7]〉

〈v4, [0.5, 0.7], [0.1, 0.2]〉

〈[0.2, 0.4], [0.3, 0.4]〉

〈[0.1, 0.3], [0.2, 0.5]〉

b

〈v2, [0.3, 0.5], [0.2, 0.4]〉

〈v3, [0.1, 0.3], [0.3, 0.5]〉

Figure 7: Neighbourly irregular and highly irregular IVIFG

Definition 3.12. An IVIFG G = (X, Y ) is said to be complete if

M−
Y (xy) = min(M−

X (x),M
−
X(y)),M

+
Y (xy) = min(M+

X (x),M
+
X (y)),

N−
Y (xy) = max(N−

X(x), N
−
X (y)), N

+
Y (xy) = max(N+

X (x), N
+
X(y))

such that 0 < M+
Y (xy) +N+

Y (xy) ≤ 1 for all x, y ∈ V.

Proposition 3.1. A complete IVIFG may not be a strongly irregular IVIFG.

Definition 3.13. An IVIFG G is said to be totally irregular, if there is a vertex which
is adjacent to vertices with distinct closed neighbourhood degrees. That is, degG [l] 6=
〈[j, k], [s, t]〉 for all l ∈ V .

An IVIFG in Fig. 3. is totally irregular as, degG[v1] = degG [v2] = 〈[0.6, 0.8], [0.7, 1.0]〉
and degG [v3] = 〈[0.8, 1.1], [1.2, 1.6]〉.

Definition 3.14. A connected IVIFG G is said to be a neighbourly totally irregular, if
no two adjacent vertices of G have same closed neighbourhood degree. That is, degG [l] 6=
degG [m] for all lm ∈ E.

Definition 3.15. A connected IVIFG G is said to be a highly totally irregular if every
vertex of G is adjacent to vertices with distinct closed neighbourhood degrees. That is,
l, m ∈ N (x), l 6= m =⇒ degG [l] 6= degG [m] for all x ∈ V .

Definition 3.16. A connected IVIFG G on G is called strongly totally irregular if every
pair of vertices in G have distinct closed neighborhood degrees.

Example 3.8. Consider a graphG = (V,E), where V = {v1, v2, v3} and E = {v1v3, v2v3}.
Let G = (X, Y ) be an IVIFG of a graph G defined by

X =
〈( v1

0.1
,
v2

0.2
,
v3

0.4

)

,
( v1

0.2
,
v2

0.5
,
v3

0.5

)

,
( v1

0.3
,
v2

0.1
,
v3

0.2

)

,
( v1

0.6
,
v2

0.4
,
v3

0.4

)〉

,

Y =
〈(v1v3

0.1
,
v2v3

0.2

)

,
(v1v3

0.2
,
v2v3

0.4

)

,
(v1v3

0.5
,
v2v3

0.3

)

,
(v1v3

0.6
,
v2v3

0.5

)〉

,
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where degG(v1) = 〈[0.5, 0.7], [0.5, 1.0]〉, degG(v2) = 〈[0.6, 1.0], [0.3, 0.8]〉 and degG(v3) =
〈[0.7, 1.2], [0.6, 1.4]〉. Therefore G = (X, Y ) is a strongly totally irregular IVIFG, as given
in Fig. 8.

〈v1, [0.1, 0.2], [0.3, 0.6]〉
b

〈[0.1, 0.2], [0.5, 0.6]〉

bb
〈v2, [0.2, 0.5], [0.1, 0.4]〉〈v3, [0.4, 0.5], [0.2, 0.4]〉

〈[0.2, 0.4], [0.3, 0.5]〉

Figure 8: Strongly totally irregular IVIFG.

Remark 3.3. A neighbourly irregular IVIFG need not be a neighbourly totally irregular
IVIFG.

Remark 3.4. A neighbourly totally irregular IVIFG need not be a neighbourly irregular
IVIFG.

Theorem 3.2. Let G = (X, Y ) be an IVIFG. If G is neighbourly irregular and 〈[M−
X ,M

+
X ], [N

−
X , N

+
X ]〉

is a constant function. Then G is a neighbourly totally irregular IVIFG.

Proof. Suppose that G is a neighbourly irregular IVIFG. That is, no two adjacent ver-
tices of G have same neighbourhood degree. Let x and y be the adjacent vertices of
G with distinct neighborhood degrees 〈[j1, k1], [s1, t1]〉 and 〈[j2, k2], [s2, t2]〉, respectively.
Also take 〈[M−

X(xi),M
+
X(xi)], [N

−
X(xi), N

+
X(xi)]〉 = 〈[c1, c2], [c3, c4]〉 for all xi ∈ V , where

c1, c2, c3, c4 ∈ [0, 1] are constants. Therefore,

deg[x] = 〈[degM−[x], degM+ [x]], [degN−[x], degN+ [x]]〉

= 〈[degM−(x) +M−
X (x), degM+(x) +M+

X (x)],

[degN−(x) +N−
X (x), degN+(x) +N+

X(x)]〉

= 〈[j1 + c1, k1 + c2], [s1 + c3, t1 + c4]〉,

deg[y] = 〈[degM−[y], degM+ [y]], [degN−[y], degN+ [y]]〉

= 〈[degM−(y) +M−
X(y), degM+(y) +M+

X (y)],

[degN−(y) +N−
X (y), degN+(y) +N+

X(y)]〉

= 〈[j2 + c1, k2 + c2], [s2 + c3, t2 + c4]〉.

To prove that closed neighborhood degrees of every two adjacent vertices are distinct.
Assume that, deg[x] = deg[y].
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〈[j1 + c1, k1 + c2], [s1 + c3, t1 + c4]〉 = 〈[j2 + c1, k2 + c2], [s2 + c3, t2 + c4]〉
⇒ 〈[j1, k1], [s1, t1]〉 = 〈[j2, k2], [s2, t2]〉,
a contradiction. Therefore, no two adjacent vertices of G have same closed neighbourhood
degree. Hence G is a neighbourly totally irregular IVIFG.

Theorem 3.3. Let G = (X, Y ) be an IVIFG. If G is a neighbourly totally irregular and
〈[M−

X ,M
+
X ], [N

−
X , N

+
X ]〉 is a constant function, then G is a neighbourly irregular IVIFG.

Proof. Suppose that G is a neighbourly totally irregular IVIFG. That is, no two adjacent
vertices of G have same closed neighbourhood degrees. Let x and y be the adjacent vertices
of G with distinct closed neighborhood degrees 〈[j1+c1, k1+c2], [s1+c3, t1+c4]〉 and 〈[j2+
c1, k2+c2], [s2+c3, t2+c4]〉, respectively. Also take 〈[M

−
X (xi),M

+
X(xi)], [N

−
X(xi), N

+
X (xi)]〉 =

〈[c1, c2], [c3, c4]〉 for all xi ∈ V , where c1, c2, c3, c4 ∈ [0, 1] are constants. We show that no
two adjacent vertices of G have same neighbourhood degrees.
As deg[x] 6= deg[y]
⇒ 〈[j1 + c1, k1 + c2], [s1 + c3, t1 + c4]〉 6= 〈[j2 + c1, k2 + c2], [s2 + c3, t2 + c4]〉
⇒ 〈[j1, k1], [s1, t1]〉 6= 〈[j2, k2], [s2, t2]〉.
Therefore, no two adjacent vertices of G have same neighbourhood degrees. Hence G is a
neighbourly irregular IVIFG.

Proposition 3.2. If an IVIFG G is both neighbourly irregular and neighbourly totally
irregular, then 〈[M−

X ,M
+
X ], [N

−
X , N

+
X ]〉 may not be a constant function.

Proposition 3.3. The interval-valued intuitionistic fuzzy subgraph H = (X
′

, Y
′

) of a
neighbourly (totally) irregular IVIFG G = (X, Y ) may not be neighbourly (totally) irreg-
ular.

4 Interval-valued intuitionistic fuzzy cliques

In this section, we propose the notion of IVIFC consistent with interval-valued intuition-
istic fuzzy cycles in IVIFGs and present a complete characterization of the structure of
the IVIFC. To do this, we firstly introduce the concept of interval-valued intuitionistic
fuzzy cycles.

Definition 4.1. Let G = (X, Y ) be an IVIFG. Then

1. G is a cycle if and only if G = (V,E) is a cycle.

2. G is called an interval-valued intuitionistic fuzzy cycle if and only if G is a cycle and
there does not exist unique edge lm of G such that

M−
Y (lm) = min{M−

Y (xy) | xy ∈ E},M+
Y (lm) = min{M+

Y (xy) | xy ∈ E},

N−
Y (lm) = max{N−

Y (xy) | xy ∈ E}, N+
Y (lm) = max{N+

Y (xy) | xy ∈ E}.
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Definition 4.2. Let G = (X, Y ) be an IVIFG of a graph G = (V,E) and H = (X
′

, Y
′

)
be a subgraph induced by S ⊆ V . Then H is a clique if H∗ = (S, T ) is a clique and H is
an IVIFC if H is a clique and every cycle in H is an interval-valued intuitionistic fuzzy
cycle.

Example 4.1. Consider an IVIFG G as shown in Fig. 2. Take S = V , then H is the
same as G. Routine computations show that H is a cycle but not an interval-valued
intuitionistic fuzzy cycle. Hence H is a clique but not an IVIFC.

Example 4.2. Consider a graph G = (V,E), where V = {v1, v2, v3, v4} and E =
{v1v2, v2v3, v3v4, v4v1, v1v3, v2v4}. Let G = (X, Y ) be an IVIFG of a graphG withM−

X(v) =
0.4,M+

X(v) = 0.6, N−
X(v) = 0.1 and N+

X(v) = 0.2 for all v ∈ V and set of interval-valued
intuitionistic fuzzy relations

Y =
〈(v1v2

0.1
,
v2v3

0.4
,
v3v4

0.3
,
v4v1

0.1
,
v1v3

0.1
,
v2v4

0.3

)

,
(v1v2

0.2
,
v2v3

0.6
,
v3v4

0.5
,
v4v1

0.2
,
v1v3

0.2
,
v2v4

0.5

)

,
(v1v2

0.4
,
v2v3

0.1
,
v3v4

0.2
,
v4v1

0.4
,
v1v3

0.4
,
v2v4

0.2

)

,
(v1v2

0.6
,
v2v3

0.3
,
v3v4

0.4
,
v4v1

0.6
,
v1v3

0.6
,
v2v4

0.4

)〉

.

Take S = V , then H is the same as G. Routine computations show that every cycle in H

is an interval-valued intuitionistic fuzzy cycle. Hence H is a clique and is also an IVIFC.
The IVIFC is given in Fig. 9. Tabular representation of an IVIFC is given in Table 4.

v1

b b

bb

〈[0
.4
, 0
.6
], [0

.1
, 0
.3
]〉〈[

0
.1
,
0
.2
],
[0
.4
,
0
.6
]〉

〈[0.1, 0.2], [0.4, 0.6]〉

〈[0.3, 0.5], [0.2, 0.4]〉

v2

v3v4

〈[0
.3
, 0
.5
],
[0
.2
, 0
.4
]〉 〈[0

.1
, 0
.2], [0

.4
, 0
.6]〉

Figure 9: IVIFC

Table 4: Tabular representation of an IVIFC.

v1v2 v2v3 v3v4 v4v1 v1v3 v2v4
M−

Y 0.1 0.4 0.3 0.1 0.1 0.3
M+

Y 0.2 0.6 0.5 0.2 0.2 0.5
M−

Y 0.4 0.1 0.2 0.4 0.4 0.2
M+

Y 0.6 0.3 0.4 0.6 0.6 0.4
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Theorem 4.1. Let G = (X, Y ) be an IVIFG of a graph G = (V,E) and H = (X
′

, Y
′

) be
a subgraph induced by S ⊆ V . Then H is an IVIFC if and only if every cycle of length 3
in H is an interval-valued intuitionistic fuzzy cycle.

Proof. Suppose that H is an IVIFC. Then by above definition every cycle in H is an
interval-valued intuitionistic fuzzy cycle and so every cycle of length 3 in H is also an
interval-valued intuitionistic fuzzy cycle.

Conversely, assume that every cycle of length 3 is an interval-valued intuitionistic fuzzy
cycle. To prove that H is an IVIFC, we have to show that every cycle in H of length
n ≥ 3 is an interval-valued intuitionistic fuzzy cycle. The proof is by induction on the
length of interval-valued intuitionistic fuzzy cycles in H . By assumption, every cycle of
length 3 is an interval-valued intuitionistic fuzzy cycle. Induction hypothesis is that every
cycle of length n is an interval-valued intuitionistic fuzzy cycle. Let v0, v1, ..., vn, vn+1 be
any cycle Cn+1 of length n+1 in H . Since H is a clique, H contains a cycle Cn of length
n i.e v0, v1, ..., vn and is an interval-valued intuitionistic fuzzy cycle in H . Therefore ∃ at
least two edges, say e1 and e2 in an interval-valued intuitionistic fuzzy cycle Cn such that

M−
Y (e1) = M−

Y (e2) = min{M−
Y (e) | e is an edge in Cn},

M+
Y (e1) = M+

Y (e2) = min{M+
Y (e) | e is an edge in Cn},

N−
Y (e1) = N−

Y (e2) = max{N−
Y (e) | e is an edge in Cn},

N+
Y (e1) = N+

Y (e2) = max{N+
Y (e) | e is an edge in Cn}.

Also v0, vn, vn+1 is an interval-valued intuitionistic fuzzy cycle and hence ∃ at least two
edges, say e3 and e4 in an interval-valued intuitionistic fuzzy cycle v0, vn, vn+1 such that

M−
Y (e3) = M−

Y (e4) = min{M−
Y (e) | e is an edge in v0, vn, vn+1},

M+
Y (e3) = M+

Y (e4) = min{M+
Y (e) | e is an edge in v0, vn, vn+1},

N−
Y (e3) = N−

Y (e4) = max{N−
Y (e) | e is an edge in v0, vn, vn+1},

N+
Y (e3) = N+

Y (e4) = max{N+
Y (e) | e is an edge in v0, vn, vn+1}.

Then two cases arise, firstly, if one of the edges e1 or e2 is the same as one of the edges e3
or e4. In this case, take e1 = e3. Then e2 and e4 are the edges in Cn+1 such that

M−
Y (e2) = M−

Y (e4) = min{M−
Y (e) | e is an edge in Cn+1},

M+
Y (e2) = M+

Y (e4) = min{M+
Y (e) | e is an edge in Cn+1},

N−
Y (e2) = N−

Y (e4) = max{N−
Y (e) | e is an edge in Cn+1},

N+
Y (e2) = N+

Y (e4) = max{N+
Y (e) | e is an edge in Cn+1}

as required.
Secondly, all four edges e1, e2, e3, e4 are edges in Cn+1 and either

M−
Y (e1) = M−

Y (e2) = min{M−
Y (e) | e is an edge in Cn+1},

M+
Y (e1) = M+

Y (e2) = min{M+
Y (e) | e is an edge in Cn+1},

N−
Y (e1) = N−

Y (e2) = max{N−
Y (e) | e is an edge in Cn+1},

N+
Y (e1) = N+

Y (e2) = max{N+
Y (e) | e is an edge in Cn+1}
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or

M−
Y (e3) = M−

Y (e4) = min{M−
Y (e) | e is an edge in Cn+1},

M+
Y (e3) = M+

Y (e4) = min{M+
Y (e) | e is an edge in Cn+1},

N−
Y (e3) = N−

Y (e4) = max{N−
Y (e) | e is an edge in Cn+1},

N+
Y (e3) = N+

Y (e4) = max{N+
Y (e) | e is an edge in Cn+1}.

Hence in both cases, H is an IVIFC.

Lemma 4.1. Let G = (X, Y ) be an IVIFG of a graph G = (V,E) and H = (X
′

, Y
′

) be
a subgraph induced by S ⊆ V . Then every cycle of length 3 in H is an interval-valued
intuitionistic fuzzy cycle if and only if for any three vertices u, v, w in H such that the
edges uv, vw ∈ E(Ht) implies uw ∈ E(Ht) for all t ∈ [0, 1].

Lemma 4.2. Let G = (X, Y ) be an IVIFG of a graph G = (V,E) and H = (X
′

, Y
′

) be a
subgraph induced by S ⊆ V . Then Ht is a disjoint union of cliques if and only if for any
three vertices u, v, w in H such that the edges uv, vw ∈ E(Ht) implies uw ∈ E(Ht) for all
t ∈ [0, 1].

As a consequence of Lemmas 4.1 and 4.2, we obtain

Theorem 4.2. Let G = (X, Y ) be an IVIFG of a graph G = (V,E) and H = (X
′

, Y
′

) be
a subgraph induced by S ⊆ V . Then H is an IVIFC if and only if every cut set of H is a
disjoint union of cliques.

5 Conclusion

IVIFG is an extended structure of a fuzzy graph which gives more precision, flexibility,
and compatibility to the system when compared with the classical, fuzzy and intuitionistic
fuzzy models. In this paper, we have mainly provided specific types of IVIFGs. Firstly,
regular, irregular, neighbourly irregular, highly irregular and strongly irregular IVIFGs
have been introduced and some of their properties have been investigated. Then, the
concept of IVIFC consistent with interval-valued intuitionistic fuzzy cycles in IVIFGs is
proposed and a complete characterization of the structure of the IVIFC is presented.
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